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Evolution and plasticity of photosynthetic thermal 
tolerance, specific leaf area and leaf size: congeneric 
species from desert and coastal environments 

Charles A. Knight  and David D. Ackerly

Summary 

• We examined whether increased high temperature photosynthetic thermal toler
ance (PT), reduced specific leaf area (SLA) and reduced leaf size represent correlated 
and convergent adaptations for recently diverged Encelia, Salvia, Atriplex and Erio-
gonum congeneric species pairs from contrasting thermal and water environments 
(the Mojave Desert and coastal California). We also studied whether variation in PT 
is associated with inducible small heat shock protein expression (sHsp). 
• Traits were measured in a common environment (CE) and in the field to partition 
effects of phenotypic plasticity and genetic divergence. 
• We found little evidence for convergent adaptation of PT (CE measurements). 
Field measurements revealed significant plasticity for PT, which was also associated 
with increased sHsp expression. Compared to coastal congeners desert species had 
lower SLA in the CE. These differences were magnified in the field. There was a neg
ative correlation between SLA and PT. Desert species also tended to have smaller 
leaves both in the CE and in the field. 
• SLA and leaf size reductions represent repeated evolutionary divergences and are 
perhaps convergent adaptations for species radiating into the desert, while PT is 
highly plastic and shows little evidence for convergent adaptation in the congeneric 
species pairs we studied. 

Key words: specific leaf area (SLA), heat shock protein, stress, plasticity, 
fluorescence (F /F ), thermotolerance, convergent adaptation, phylogenetic v m 

independent contrasts. 

environments and hot, dry deserts (Fig. 1). Many morph-
Introduction ological and physiological traits contribute to this tremend-
Temperature and water availability are prominent among the ous niche differentiation, including photosynthetic thermal 
abiotic factors that limit the distribution and abundance of tolerance and traits related to the energy balance of leaves 
plants. Evergreen perennial plants cannot avoid these stresses (Gates, 1965; Berry & Bjorkman, 1980). 
and must tolerate great diurnal and seasonal fluctuations. In Here we examine whether increased photosynthetic ther
semiarid regions, temperature and precipitation are often mal tolerance (PT, measured by F /F  chlorophyll fluoresv m 
negatively correlated, with lower rainfall in warmer cence), reduced specific leaf area (SLA) and reduced leaf size 
environments. Remarkably, angiosperms possess a great can be interpreted as convergent evolutionary responses for 
capacity to adapt and tolerate far ranging differences in 
temperature and precipitation; they are common across the 

several lineages radiating across a temperature and precipita
tion gradient. We also study whether variation in these traits 

entire continuum of habitats, from those that experience just is associated with levels of inducible small heat shock protein 
a few weeks of frost-free weather to cool, wet coastal expression (sHsp), both in a common garden and in the field. 



                                  

We used a set of phylogenetically independent species con
trasts (PICs, in our case congeneric Encelia, Salvia, Atriplex 
and Eriogonum species) to test these hypotheses. Within each 
PIC there was one species from the hot, dry Mojave Desert 
and a congeneric species from the cooler coastal environments 
of southern California. Our PICs were arbitrarily chosen at 
the generic level for lack of better information concerning 
divergence times between species. We made measurements 
both in a common environment (CE) and in the field to help 
partition the effects of genetic divergence and phenotypic 
plasticity for observed trait variation. 

The traits we studied (SLA, leaf size, PT and sHsp expres
sion) vary in their responsiveness to environmental stimuli. 
SLA changes on the scale of the development and senescence 
of a leaf, but varies little within and between days – except 
during periods of rapid leaf expansion. PT and sHsp expres
sion can vary rapidly on the scale of minutes to hours (Knight 
& Ackerly, 2002a,b, 2003). Therefore it is also interesting to 
test whether highly responsive traits (PT and sHsp expression) 
or more time-integrated traits (SLA) are more likely to exhibit 
convergent adaptation. 

Like most other biochemical and physiological processes, 
photosynthesis is highly responsive to temperature. Photosyn
thetic thermal tolerance (PT) can be defined at several levels, 
from a change in the excitation capacity of photosystem II 
(PSII) to the rate of carbon assimilation or biomass accumu
lation. Within a range of temperatures the rate of photosyn
thesis responds rapidly and reversibly, with the functional 
integrity of the photosynthetic apparatus intact (Berry & 
Bjorkman, 1980). However, beyond extreme high and low 
critical temperatures, irreversible damage occurs, which can 
significantly affect short and long-term carbon gain. PSII has 
long been recognized as one of the most thermally labile 
components of photosynthesis (Weis & Berry, 1988; Havaux, 
1993). Therefore we chose excitation capacity of PSII as our 
metric of comparison of PT between species. 

Previous investigators have found considerable variation 
between species for PT, as well as pronounced acclimatory 
changes (Berry & Bjorkman, 1980; Weis & Berry, 1988, 

Fig. 1 (a) July maximum temperature and 
annual precipitation for each species in the 
California flora (each grey point represents a 
species). Lines connect the desert and coastal 
congeneric species chosen for this study. 
(b) Thirty-year average monthly temperature 
(solid lines) and precipitation (dashed lines) at 
our field sites in the Mojave Desert and on 
the southern coast of California (Sedgwick 
Ranch). 

1988; Knight & Ackerly, 2001, 2002a). However, most stud
ies have involved only one or a couple of species with varying 
degrees of evolutionary relatedness. Therefore it is still not 
known whether the evolution of increased PT represents a 
repeated evolutionary response for independent lineages 
diverging across thermal gradients – although it is frequently 
assumed to be the case. 

Accumulating evidence suggests that small heat shock 
proteins (sHsps) are important for the maintenance of photo
synthetic and respiratory electron transport during and after 
heat stress (Downs & Heckathorn, 1998; Heckathorn et al., 
1999). Small Hsps dominate protein synthesis during and 
after high temperature stress and under some conditions can 
rapidly accumulate to greater than 1% of total leaf protein 
(Vierling, 1991; O’Connell, 1994). While most eukaryotes 
have just a few sHsps, in plants the protein class has dupli
cated and diversified to include 20–50 nuclear encoded genes. 
In general it is thought that Hsps prevent irreversible aggrega
tion of denatured proteins, thereby facilitating protein re
folding following high temperature stress ( Jakob et al., 1993; 
Lee et al., 1997). Variation between species for expression lev
els of the chloroplast sHsp following heat stress is positively 
correlated with the maintenance of PSII electron transport 
(Preczewski et al., 2000; Knight & Ackerly, 2001, 2003). Sev
eral sHsps (including the chloroplast sHsp) are not constitu
tively expressed. Therefore, induced sHsp expression is a 
useful indicator of physiological stress. Despite the continu
ing interest in plant sHsps, only a few studies have examined 
plant sHsp expression in the field. Of the few studies that 
have, two made no report of Hsp expression in leaves 
(Hernandez & Vierling, 1993; Stout et al., 1997), and the 
others examined Hsp expression in agricultural fields (Burke 
et al., 1985; Kimpel & Key, 1985). 

Species with smaller, thicker leaves generally occur in more 
stressful environments and exhibit lower specific leaf area 
(SLA). Previous studies observed reduced SLA in experimen
tal water stress treatments (Li et al., 2000) and others found 
correlations across species between SLA and water availability 
(Fonseca et al., 2000; Li et al., 2000; Wright et al., 2001). 



                                                          

   

 

 

 

Higher SLA in environments with greater water availability 
may be due to enhanced water use efficiency associated with 
the increase in photosynthetic tissue relative to transpiring 
area (Givnish, 1987; Cunningham et al., 1999; Fonseca et al., 
2000; Wright et al., 2001) suggesting a link between SLA and 
photosynthetic performance. Others have shown that varia
tion in SLA is correlated with a suite of physiological and 
plant growth parameters including: slower growth rates, lower 
leaf nitrogen content, lower light-saturated photosynthetic 
capacity and dark respiration rates, and longer leaf life spans 
(Dijkstra & Lambers, 1989; Chapin et al., 1993; Reich et al. 
1997, 1998). The fact that SLA is related to these traits may 
be coincidental, or perhaps due to functional interrelation
ships that may represent both evolutionary constraints and 
correlated responses to the environment. 

Materials and Methods 

This study involved several phylogenetically independent 
contrasts (PICs) involving congeneric Atriplex, Encelia, 
Eriogonum and Salvia species pairs that differed in mean July 
maximum temperature inside their geographic ranges by 
close to 10°C. See Knight & Ackerly (2002b) for a detailed 
description of how we calculated these species level estimates. 
Figure 1a highlights the contrasting realized niche spaces of 
the PICs (sensu Austin et al., 1990). We chose PICs with 
minimal differences in annual precipitation while maximizing 
differences in July maximum temperature. 

Desert populations were collected in the Mojave Desert 
near the Desert Studies Center (operated by California State 
University, 35°11′ N, 116°4′ W). Coastal populations were 
collected in the Santa Monica and Santa Ynez Mountains 
north of Santa Barbara. Physiological work for these popula
tions was conducted at the Sedgwick Reserve (operated by the 
University of California Natural Reserve System, 34°37′ N, 
120°5′ W). Temperatures at the desert field site are on average 
10°C warmer than the coastal field site in July, but 4°C cooler 
in December and January. The coastal field site gets twice the 
precipitation in the winter, but both field sites receive little 
precipitation in the summer (Fig. 1b). 

Seeds were collected in the spring of 1998, germinated in 
vermiculite and later transplanted to variable grain size sand 
in 20-cm diameter and 50-cm deep pots in a glasshouse at the 
Plant Growth Facility on the campus of Stanford University. 
Separate pots for approximately 50 individuals of each species 
within a congeneric pair (PIC) were established together in a 
rectangular block. Each genus had its own block. Within a 
block, pots for the two species were arranged in an alternating 
matrix. 

We collected 15–20 randomly selected, mature, healthy, fully 
exposed leaves from each species – each leaf was collected 
from a different plant to avoid pseudo-replication. Our 
method was to blindly reach into the exposed canopy and 
then to ensure that the leaf we picked conformed to the rest 
of our criteria. We selected fully exposed leaves because these 

watered approximately once every week. Therefore they expe- species have relatively open canopies (i.e. few leaves could be 
rienced fluctuating water availability but were never as water classified as ‘shade leaves’) and to standardize measurements 
stressed as they sometimes are in the field. The plants were between individuals and between species. We did not sample 

The mean daytime temperature in the glasshouse was 25°C 
during the day and 15 C during the night. Plants were ° 

Table 1 The mean specific leaf area (SLA) and F /F T50 for desertv m 
and coastal species in the common environment (CE), and at the 
desert (D) and coastal (C) field sites 

Congeneric species in the 
common environment 

SLA (mm2 mg−1) F /Fv m T50 

CE Field CE Field 

Atriplex hymenelytra (D) 11.5 8.1* 41.5 46.2* 
Atriplex leucophylla (C) 16.9 16.5 41.7 42.5 
Encelia farinosa (D) 12.9 10.4* 42.6 45.2* 
Encelia californica (C) 21.6 18.8* 42.3 40.9* 
Eriogonum fasiculatum (D) 8.3 8.2 44.9 45.9 
Eriogonum latifolium (C) 9.4 8.5* 44.4 43.9 
Salvia mohavensis (D) 12.0 9.8* 41.3 42.9* 
Salvia leucophylla (C) 15.6 12.6* 41.9 41.2 

Additional species at the field sites 
Artemesia californica (C)  – 41.6 
Ambrosia dumosa (D) 12.3 43.5 
Baccharis pilularis (C) 14.0 42.6 
Brickellia arguta (D) 14.0 42.8 
Encelia frutescens (D) 9.7 42.6 
Hazardia sqr. var. sqr. (C) 14.4 41.5 
Isocoma acradenia (D) 9.6 43.3 
Isocoma menziesii (C) 10.8 39.3 
Larrea tridentata (D) 8.0 46.9 
Salvia dorrii var. dorrii (D) 10.7 42.7 
Salvia mellifera (C) 15.1 40.9 

Measurements for SLA and F /F T50 that are significantly different v m 
between the CE and field sites are indicated by an asterisk (*). 

fertilized monthly. The amount of nutrient addition was 
determined so that adequate growth and healthy foliage was 
maintained with minimal fertilizer (based on information 
from test plantings and by visual inspection of the plants in 
our experiment). Nutrient addition was identical within con
generic pairs. The plants were grown in the CE for over a year 
before the first measurements were made. In May 2000, the 
parent field populations of the common garden species pairs 
were revisited and the physiological parameters listed below 
were measured with identical methodology as measurements 
made in the CE. Most of the co-occurring dominant species 
at the two field sites were also measured. The full species 
names, along with each of the variables described below, are 
listed in Table 1. 

Specific leaf area (SLA) and leaf size 



                                  

 

 

 

 

 

 

 
 

 

for developmental variation in SLA. However, results from a 
previous study involving 20 chaparral species suggested that 
species to species differences for SLA and leaf size can be 
detected with small sample sizes for mature leaves because 
between species variance is much greater than within species 
variance (Ackerly et al., 2002). We measured SLA and leaf size 
for CE plants when they were approximately two years old. In 
the CE congeneric species were sampled on the same day. For 
plants in the CE, leaf area was determined using a Li-3100 leaf 
area meter (LiCor, Lincoln, Nebraska, USA). Leaf area for 
leaves collected in the field was determined using an AM100 
portable leaf area meter (ADC Bioscientific, Hoddeson, UK). 
Leaves were weighed using an analytical balance (Mettler-
Toledo, Columbus, OH, USA) after drying for 5 days in an 
oven at 80°C. Specific leaf area (SLA) is expressed in mm2 leaf 
area mg−1 d. wt. 

Photosynthetic thermal tolerance – F /Fv m 

We used the temperature dependent decline in the 
photochemical efficiency of photosystem II (PSII) as a metric 
of comparison between species for photosynthetic thermal 
tolerance. We quantified the photochemical efficiency of PSII 
using the ratio of variable to maximal fluorescence (F /F )v m 
following actinic light pulses (12 000 µmol m−2  s−1, 0.7 s, 
Fig. 2) using a Hansatech FMS2 fluorometer (King’s Lynn, 
Norfolk, UK). Excitation is the first step in photosynthesis 
while carbon fixation can be considered the last. Most literature 
suggests that the D1 protein and the oxygen evolving proteins 
of PSII are the most thermally labile components of photo
synthesis (Berry & Bjorkman, 1980; Weis & Berry, 1988; 
Havaux, 1993; Heckathorn et al., 1998), therefore we chose 
the initial photochemistry of PSII as our metric of compari
son for PT. However, photosynthetic thermal tolerance can 
be defined at several levels, from a change in excitation capa
city, as we did, to a change in carbon assimilation or biomass accu
mulation. We chose F /F  because its measurement is rapid v m 
(enabling comparisons of multiple species and larger sample 
sizes) and adaptable to field conditions. 

Stems with several healthy leaves were collected early in the 
morning and kept in the dark. Five leaves of each species were 

Fig. 2 (a) A typical curve for the temperature 
dependent decline in F /F . The temperature v m 
at which F /F  declined to 50% of itsv m 
maximum (F /F T50) was used forv m 
comparison between species and treatments. 
(b) The relative contribution of F  and F  too m 
the decline in F /F . Notice that the F /F v m v m 
axis is plotted in reverse (high to low), 
representing increasing stress (higher 
temperatures) to the right. The data plotted 
here are averages of > 1080 individual F /Fv m 
measurements taken for this study. 

placed on moist filter paper in a small plastic chamber sub
merged in a temperature controlled water bath. Outside air 
was circulated through the chamber during the temperature 
treatment. Leaf temperatures inside the chambers did not vary 
by more that 0.1°C and equilibrated to water bath tempera
tures in less than 5 min. A proportional, integrated and dif
ferential temperature controller was used to maintain water 
bath temperatures (Oven Industries, Mechanicsburg, PA, 
USA). Four-hour heat treatments were carried out between 
39 and 46°C at 1°C intervals, as well as at room temperature 
(approximately 28°C). For a given set temperature, the actual 
treatment temperature did not vary by more than 0.1°C. Five 
replicates of each temperature treatment were conducted 
both in the CE and in the field. F /F  was quantified 4 h after v m 
the heat treatments ranging from 28 to 46°C. The last hour 
of recovery was in the dark. The treatment temperature at 
which F /F  declined 50% from the species maximum, here v m 
referred to as F /F , was estimated for each species by v m T50 
linear interpolation between the temperature treatments 
that bracketed the 50% decline (Fig. 2a). Knight & Ackerly 
(2002a) measured the temperature at which the steady state 
fluorescence F  reached 20% of it’s maximum (TS20). Here o 
we present correlated relationships of TS20 with SLA and 
F /F T50.v m 

sHsp expression 

We quantified standing levels of sHsp expression for leaves 
collected in the CE and in the field at the same time as our 
F /F  measurements. Small Hsp expression was quantiv m T50 
fied for seven samples of each species both in the CE and in 
the field. Each sample consisted of 5–10 randomly chosen 
leaves. Protein extraction followed the methods of Knight 
& Ackerly (2001). We used a polyclonal antibody that 
detects multiple sHsps in heat-stressed plant tissue (provided 
by S. A. Heckathorn). It was produced using an oligopeptide 
of the conserved heat-shock domain found in all plant 
sHsps (as in Downs et al., 1998, except that the antiserum 

raised in rabbits and the peptide was conjugated towas 
keyhole limpet hemocyanin). The antibody cross-reacts 
with several sHsps. Because we used one-dimensional 



 

 

 

  

 

  

 
 

 

 

electrophoresis we could not precisely quantify variation in 
the number of sHsps recognized. The comparison data 
consisted of the optical density of sHsp ‘bands’ developed 
using the alkaline phosphatase reaction following incubation 
with a secondary antibody conjugated to the alkaline 
phosphatase enzyme. For each species, the samples from the 
field and common garden were run on the same gel to 
highlight relative differences for sHsp accumulation. A 
positive control run on each gel to normalize gel-to-gel 
variation in band intensity. 

Statistical analysis 

The questions raised by this study primarily relate to whether 
there are significant differences for four traits (SLA, leaf size, 
F /F , and sHsp expression) between congeneric species v m T50 
native to desert and coastal environments when grown in a 
common environment (CE) and when measured in the field. 
We performed two-way anovas for each trait measured in the 
CE, and additional two-way anovas for field measurements 
(eight total for native environment comparisons). Genus, 
native environment were modelled as fixed factors. The 
interaction term was included. We were primarily interested 
in the native environment factor (differences between species 
within genera). To further examine significant differences for 
the native environment factor we performed planned 
comparisons in each of the two-way anovas following 
Underwood (1997). There were four planned comparisons in 
the CE, comparing desert to coastal species within each genus. 
In the field there was an additional comparison between 
desert and coastal species of Isocoma. The numerator when 
calculating the F statistic for each of these planned 
comparisons is the mean square difference between species 
values, and the denominator is the error mean square from the 
full model. All of the planned comparisons are orthogonal so 
we could use α = 0.05 level for each of the planned 
comparisons (Underwood, 1997). However, all significant 
planned comparisons were also significant using the 
Bonferroni adjustment of α. Data for SLA, leaf size, and F /v 
F  were normally distributed and conformed to the m T50 
assumptions of the anova. We used Data desk for the two-
way anovas and computed the planned comparisons by 
hand. 

There were several additional unpaired species at the desert 
and coastal field sites. Therefore, to test for over-all differences 
for these traits at our field sites, we also performed nested 
anovas where species were nested in native environment. We 
also calculated Pearson’s correlation coefficient for relationships 
between SLA, F /F , and TS20 – a trait measured for these v m T50 
same species pairs and presented in Knight & Ackerly 
(2002a). 

environments were different. Genus and growth environment 
(CE or field) were modelled as fixed factors. Our model 
included the interaction term. We also performed planned 
comparisons as described above with the exception that that 
growth environment (CE vs field) was substituted for native 
environment (desert vs coast). 

Results 

Field 

Comparisons of congeners in the field indicated that native 
environment was a significant factor for two-way anovas 
involving SLA, leaf area, and F /F  (Appendix 1a–c). v m T50 
Desert species had lower SLA, smaller leaf areas, and greater 
F /F (Fig. 3a,b). There was also a significant difference v m T50 
between genera and significant interactions between genera 
and environment for all three factors. Planned comparisons 
for SLA indicated that there was a highly significant difference 
between the desert and coastal Atriplex, Encelia and Salvia, 
but not for Eriogonum and Isocoma. Leaf area was also greater 
for the coastal Atriplex, Eriogonum and Salvia, not different 
for the Isocoma PIC, and smaller for the coastal Encelia. 
Planned comparisons for F /F  indicated that all of thev m T50 
desert species had greater F /F  when compared to their v m T50 
coastal congeners when measured in the field. 

Across all species at the desert and coastal field sites 
(PICs and unpaired species), anovas with species nested in 
environment (desert or coast) indicated that SLA and leaf 
area were significantly lower, and F /F  was significantlyv m T50 
greater for species at the desert field site (Fig. 3a,b, Appendix 
1d–f ). Interspecific variation for SLA was nearly twice as 
great at the coastal field site than in the desert (10.3 mm2 

mg−1 and 5.8 mm2 mg−1, respectively) but variation within 
both communities was greater than the mean difference 
between communities (3.8 mm2 mg−1). Within field site varia
tion for F /F  (4.3°C and 4.6°C, respectively, for desert v m T50 
and coastal field sites, respectively) was greater than mean 
difference between communities (2.6°C). The mean F /Fv m 

 and SLA for each species is listed in Table 1. T50 

Common environment (CE) 

Native environment was a significant factor in the CE for 
two-way anovas involving SLA and leaf area (Fig. 3c, 
Table 1, Appendix 1g,h). There was also a significant difference 
between genera and a significant interaction between genus 
and environment for SLA and leaf area. Planned comparisons 
indicated that the desert Atriplex, Encelia and Salvia species 
all had lower SLA compared to their coastal congener, but 
there was not a significant difference between the desert and 

Plasticity for each trait between the CE and the field was coastal Eriogonum species. Leaf areas for the coastal Atriplex, 
also analysed with two-way anovas. Plasticity for desert and Eriogonum and Salvia species were greater than their desert 
coastal species was modelled separately because the field counterparts but smaller for the coastal Encelia. 



 

 

 

   

   

   

When measured in the CE, native environment was not 
a significant factor for F /F  (Appendix 1i, Fig. 3d). v m T50 
However, there were significant differences between genera. 
Knight & Ackerly (2002a) found that there was a significant 
difference between the desert and coastal species for TS20. 
However, the effect was largely driven by a highly significant 
difference between the desert and coastal Atriplex. We did not 
perform planned comparisons for F /F  because thev m T50 
native environment term was not significant. There was a sig
nificant positive correlation between TS20 and F /F  in thev m T50 

Fig. 3 Differences between congeneric 
species at the desert and coastal field sites for 
SLA (a) and F /F T50 (b). Congeneric species v m 
are connected by solid lines. There were two 
Salvia and Encelia species at the desert field 
site and two Salvia species at the coastal field 
site; the mean of these pairs are connected to 
the congener(s) in the opposite environment 
by a solid line. Unpaired species are 
represented by an x. Genetic differences for 
SLA (c) and F /F T50 (d) for the congeneric v m 
pairs in the common environment (CE). 
Plasticity for SLA (e) and F /F T50 (f)v m 
between the CE and the field. Measurements 
in the CE are represented by open symbols 
and measurements in the field are closed 
symbols. Dashed lines connect measurements 
for the coastal species between the CE and 
field in (e) and (f). For full species names of 
the desert and coastal congeners refer to 
Table 1. 

CE. However, within PICs there were both positive and neg
ative relationships (Fig. 4d). 

Plasticity between the CE and field 

SLA was lower in the field than in the CE for both coastal and 
desert species (two-way anova, Appendix 1j,m, Fig. 3e). 
Planned comparisons indicated that the differences for the 
coastal Salvia and Encelia species and the desert Atriplex and 
Encelia species were significant. Leaf areas were often slightly 



 

 
 

 

 

 

 

 

 

 

 

  
   

  

Fig. 4 Relationships between SLA and F /F T50 in the field (a) and v m 
in the common environment (CE) (b) and between TS20 and F /Fv m T50 
in the field (c) and in the CE (d). In b and d congeneric species are 
connected with a line. Open symbols are coastal species, closed 
symbols are desert species. Refer to the legend and Table 1 for 
species names. 

larger in the CE compared to field measurements for both 
desert and coastal species. There was a significant difference 
between CE and field measurements for F /F . However, v m T50 
the coastal Encelia, Eriogonum and Salvia species had greater 
F /F  in the CE compared to field measurements while v m T50 
desert species all had lower F /F  in the CE (Fig. 3f, v m T50 
Appendix 1f,h). Post-hoc multiple comparisons for the 
coastal species indicated that only the Encelia species had a 
significantly greater F /F  in the CE compared to the v m T50 
field, while the desert Atriplex, Encelia and Salvia species all 
had significantly lower F /F  in the CE.v m T50 

Correlations among SLA, TS20, and F /Fv m T50 

For field measurements, there was a significant negative 
correlation between SLA and F /F  (Fig. 4a). This v m T50 

Evolutionary studies concerning photosynthetic thermal 

relationship was not significant for CE measurements 
(Fig. 4b). The correlation between SLA and TS20 both for CE 
and field measurements was not significant, but in both cases 
there was a negative trend. There was a positive correlation tolerance are also complicated by the fact that a variety of 

sHsp expression in the common environment and in 
the field 

Small Hsp expression levels were significantly different 
between CE and the field (two-way anova with interaction 
term, environment (CE or field) and genus as fixed factors, 

= 112.3, P ≤ 0.001). We were unable to obtain F5,72 
sufficient soluble protein extractions to quantify sHsp 
expression for the Saliva species, perhaps because of high 
concentrations of phenolics, which may have contributed to 
sample degradation. For the desert Encelia, Atriplex and 
Eriogonum species, sHsp expression in the field was 
significantly greater than in the CE (Fig. 5, planned 
comparisons, P < 0.001 in all cases). In the CE, only the 
desert and coastal Eriogonum species had low levels of sHsp 
expression. Of the coastal species, only Encelia californica had 
significantly greater sHsp expression in the field (planned 
comparison, P = 0.035). Expression levels were largely 
unchanged for Eriogonum latifolium between the CE and 
field. We did not detected sHsp expression for Atriplex 
leucophylla in the CE or in the field, despite the fact that we 
were able to extract and separate proteins for Coomassie 
stained gels. 

Discussion 

The most interesting result from this study was the lack of 
genetic variation for photosynthetic thermal tolerance 
between desert and coastal congeneric species (i.e. from 
common environment measurements). There are several 
possible explanations for this. Thermal environments are 
highly variable across the entire range of spatial and temporal 
scales, which may allow species with various tolerances to 
persist in both desert and cooler coastal environments. In 
addition, whole plant thermal tolerance (i.e. survival) and PT 
may not be correlated because photosynthesis occurs only 
when environmental conditions are favourable. Favourable 
conditions may be frequent enough even in environments 
with frequent and extreme high temperature stress – 
therefore, there may not be selection pressures for increased 
PT. It is also possible that the plasticity we observed for PT 
was adaptive and that plasticity for PT precluded genetic 
divergence (Sultan, 1987). Another possibility is that there 
has been genetic divergence for PT, but we did not detect it 
because the norms of reaction for PT converged to similar 
phenotypic states in the CE we used. If the congeneric species 
had been grown in a different CE with a different 
combination of abiotic factors perhaps we would have found 
significant differences (i.e. if we had tested the entire norm of 
reaction). 

between TS20 and F /F  both for field measurements and environmental factors can affect photosynthesis, including v m T50 
in the CE (Fig. 4c,d). plant water status (Seemann et al., 1979, 1986; Havaux, 
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1992; Valladares & Pearcy, 1997), soil salinity (Larcher et al., 
1990), light levels (Schreiber & Berry, 1977; Weis, 1982; 
Havaux & Strasser, 1992), nutrient availability (Field & 
Mooney, 1986), and growth temperature (Schreiber & Berry, 
1977; Seemann et al., 1979, 1986; Downton et al., 1984). In 
addition, photosynthetic acclimation can occur on the scale of 
minutes to hours in response to moderately elevated tempera
tures (Havaux, 1993), and comparable leaves from different 
individuals of a single species in the same environment can 
also exhibit considerable variation (Knight & Ackerly, 
2002a). 

The 25°C daytime temperatures in our CE were higher 
than the average growing season temperatures at the coastal 
field sites, but lower than those in the desert. Water availabil
ity in our CE was probably higher than usual levels at the 
desert and coastal field sites. Both of these factors (tempera
ture and water availability) probably contributed to PT differ
ences between the CE and the field, as well as from decreased 
light availability due to greenhouse shading (the CE was 
under glass, which blocked approximately 20% of full 
sunlight). 

To interpret trait variation between species it may be 
important to consider the evolutionary trajectory of these spe
cies with respect to their current environment (e.g. did they 
move into the desert from a cooler environment or into a 
cooler environment from the desert?). If an ancestral species 
inhabited a hot desert, and the capacity for high temperature 
photosynthetic acclimation was selectively neutral, when a 
daughter species later encountered a cooler environment it 
may have retained the same PT. It is also possible that the con
generic species we studied were too recently related for sub
stantial phenotypic divergence for PT. However, it is 
interesting to note that SLA and leaf size did exhibit genetic 
divergence. We did observe genetic variation for PT among 
genera in the CE, suggesting that at deeper levels of evolution
ary relatedness PT does evolve. 

It is thought that the Mojave Desert was formed by the 
rapid geologic uplift of the Sierras approximately 1–2 mya, 
forming a large rain shadow (Oakeshott, 1971; Thorne, 
1986). Packrat middens suggest great climatic changes in the 
last 40 000 yr, with a significant warming trend in the last 
10 000 yr (Spaulding, 1990). However, due to shifts in plant 
distributions, climatic conditions in the Mojave region do 
not represent the historical conditions experienced by these 

Fig. 5 Small hsp expression for desert and 
coastal species in the common environment 
(CE) and in the field. There are seven 
replicates for each species in each 
environment. PC is a positive control run on 
each gel to normalize gel-to-gel variation in 
band intensity. The CE and field samples for 
each species were run on the same gel. 

populations. Paleoecological analyses suggest that in cooler 
and wetter times (i.e. > 10 000 ybp) elements of the Mojave 
flora were found at lower elevations and to the south in 
Mexico and parts of Central America (Axelrod, 1950, 1979; 
Thorne, 1986). Unfortunately there is a paucity of phytogeo
graphic or historical biogeographic information for the 
groups that we studied. Of these, Encelia is the one most likely 
to have originated in the south-western deserts of North 
America from desert dwelling species (Bruce Baldwin, per
sonal communication). Thus, despite the geologic youth of 
the deserts, it is not possible to state with confidence the direc
tion of divergence for our species pairs. 

Several morphological and biochemical processes may con
tribute to plastic acclimation of photosynthesis. We found 
differences in standing levels of sHsp expression between the 
CE and the field populations. These differences were associ
ated with increased PT in the field, which is consistent with 
the hypothesis that sHsps play a role in the acclimation of 
photosynthesis to high temperature. We also demonstrate 
that plants in their native environment express sHsps that are 
often found to be strictly inducible in controlled environment 
studies, which highlights the importance of expression profil
ing under native environmental conditions to fully under
stand the cellular function of candidate genes. 

F /F  was positively correlated with the fluorescence v m T50 
rise parameter TS20 (data from Knight & Ackerly, 2002a, 
Fig. 4c,d), though this relationship was only significant in the 
CE. Under the protocol of Knight & Ackerly (2002a) TS20 
differs from F /F  in that it involved a rapid (1°C min−1)v m T50 
increase in temperature, TS20 measurements did not involve a 
recovery period, and F  was not measured. The temperature m 
dependent decline in F /F  is both a function of increasing v m 
basal fluorescence (F ), indicating a decline in photochemicalo 
quenching with increasing temperature, and a decline in exci
tation capacity (F , Fig. 2b), which may represent a dissociam 
tion of light harvesting complexes from the PSII reaction 
centre core (Yamane et al., 2000), increased membrane fluid
ity (Raison et al., 1982), the temperature dependent denatur
ing of the D1 or oxygen evolving proteins, or the dissociation 
of primary electron acceptors QA and QB (Bilger et al., 1984; 
Bukov et al., 1990). 

Our study supports the hypothesis that reduced SLA is a 
convergent trait in plant lineages evolving into thermally 
stressful environments with lower annual precipitation. Our 
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results concur with other studies indicating that, within the 
same habitat, variation among species for SLA is considerable, 
reflecting the diversity of growth strategies and life histories 
within the same community (Reich et al., 1997; Ackerly et al., 
2002; Ackerly, 2003). The reduction in SLA in the desert pri
marily represents an absence of species with high SLA; there 
were species with low SLA at the coastal field site (e.g. Erio
gonum latifolium) but species at the coastal field site also had 
the greatest SLA (e.g. Encelia californica). 

Leaves with lower SLA were better able to withstand and 
recover photosynthetic electron transport after high tempera
ture stresses than species with greater SLA (Fig. 4a). In the 
field this correlation was apparent for all species pairs as well 
as across all taxa (paired and unpaired). In the CE the corre
lation was not robust within congeneric pairs because of the 
lack of genetic variation for photosynthetic thermal tolerance, 
but there was a negative trend (Fig. 4b). Knight & Ackerly 
(2001) found that after identical heat stresses, species with 
lower SLA accumulated greater levels of a chloroplast sHsp 
compared to species with higher SLA. Other studies suggest 
that greater leaf longevity, which is associated with low SLA 
(Reich et al., 1997), promotes nutrient retention, enhancing 
long-term photosynthetic nitrogen-use efficiency (Field & 
Mooney, 1986; Chapin et al., 1993). Perhaps it is not surpris
ing that leaves with stress tolerant life histories (indicated by 
low SLA) are resilient to thermal damage of photosynthesis. 
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Appendix 1 

Two-way ANOVA tables for variation in specific leaf area (SLA), leaf area, and F /F T50 with genus (G) and native environment (NE) as fixed v m 
factors and their interaction (G × NE) in the field for just the congeneric pairs (A, B, C) and for measurements in the CE (G, H, I). Two-way ANOVAs 
for plasticity between the CE and the field are also presented where growth environment (GE) and genus (G) are modelled as fixed factors with 
their interaction (G × GE). Because field environments were different separate two-way ANOVAs for plasticity between GE are presented for desert 
species (J, K, L) and coastal species (M, N, O). Nested anovas for all species at the field sites (including the unpaired species) are presented for 
SLA (D), leaf area (E) and F /F T50 (F). The last row of each Table 1 lists the error degrees of freedom (d.f) and the error mean square (MS). v m 
**P < 0.001, *0.05 > P > 0.001. Field measurements, PICs, two-way ANOVAs – A,B,C 

A. SLA B. Leaf area C. Fv/Fm T50 

d.f. F P d.f. F P d.f. F P 
G 4 45.65 ** G 4 35.5 ** G 4 43.31 ** 
NE 1 129.1 ** NE 1 100.1 ** NE 1 197.1 ** 
G × NE 4 29.09 ** G × NE 4 30.06 ** G × NE 4 4.77 * 
Error 119 MS = 333.2 Error 119 MS = 270.9 Error 55 MS = 0.59 

Nested ANOVAs, all species, field measurements – D,E,F 

D. SLA E. Leaf area F. Fv/Fm T50 

d.f. F P d.f. F P d.f. F P 
NE 1 9.47 * NE 1 18.74 * NE 1 14.4 ** 
Sp(NE) 16 21.38 ** Sp(NE) 16 7.65 * Sp(NE) 17 29.1 ** 
Error 161 MS = 310.6 Error 161 MS = 120.7 Error 76 MS = 0.37 

Common Environment measurements, PICs, two-way ANOVAs – G,H,I 

G. SLA H. Leaf area I. Fv/Fm T50 

d.f. F P d.f. F P d.f. F P 
G 3 49.42 ** G 3 43.12 ** G 3 41.02 ** 
NE 1 98.64 ** NE 1 78.34 ** NE 1 0.003 NS 
G × NE 3 8.67 * G × NE 3 6.56 * G × NE 3 1.20 NS 
Error 112 MS = 448.7 Error 113 MS = 67.06 Error 32 MS = 0.50 

Plasticity between the CE and field, desert species – J,K,L 

J. SLA K. Leaf area L. Fv/Fm T50 

d.f. F P d.f. F P d.f. F P 
G 3 16.94 ** G 3 12.36 * G 3 34.31 ** 
GE 1 20.97 ** GE 1 9.05 * GE 1 115.9 ** 
G × GE 3 4.60 * G × GE 3 7.06 * G × GE 3 12.74 ** 
Error 112 MS = 239.8 Error 113 MS = 56.04 Error 32 MS = 0.52 

Plasticity between the CE and field, coastal species – M,N,O 

M. SLA N. Leaf area O. Fv/Fm T50 

d.f. F P d.f. F P d.f. F P 
G 3 86.97 ** G 3 10.05 * G 3 43.20 ** 
GE 1 16.57 ** GE 1 7.68 * GE 1 5.14 * 
G × GE 3 1.54 NS G × GE 3 5.48 * G × GE 3 5.66 * 
Error 112 MS = 438.6 Error 113 MS = 23.67 Error 32 MS = 0.33 




