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A meshless solution algorithm for the full potential equation has been developed by 
applying the principles of the Taylor Least Squares (TLS) method. This method allows 
for a PDE to be discretized on a local cloud of scattered nodes without the need of con-
nectivity data. The process for discretizing the full potential equation within a meshless 
framework is outlined along with a novel Hermite TLS technique for enforcement of Neu-
mann boundary conditions. Several two-dimensional test cases were solved that compare 
well with analytical and benchmark solutions. The first test case solved for the subcritical 
compressible flow over a circular cylinder at a freestream Mach number of 0.375. The last 
two cases solved for the non-lifting and lifting subcritical flows over a NACA 0012 airfoil 
with freestream conditions (M∞ = 0.72, α = 0◦ ) and (M∞ = 0.63, α = 2◦ ) respectively. 

Nomenclature 

C F D Computational Fluid Dynamics 
Cp Pressure coefficient 
F P E Full Potential Equation 
h Characteristic length 
M Mach number 
n Iteration 
ns Total number of cloud support points 
n Normal vector 
P DE Partial Differential Equation 
r Euclidian distance 
S Surface 
T LS Taylor Series Least Squares 
V Total velocity vector 
(U∞ , V∞ ) Freestream velocity components 
Vn Normal velocity component 
w Derivative coefficient 
x, y Cartesian directions 
α Angle of attack 
Γ Circulation 
γ Ratio of specific heats 
E Error 
θ Angle measured from wake cut plane 
µ Doublet Strength 
Φ Total velocity potential 
φ Perturbation velocity potential 
ρ Density 
Ψ Vector potential 
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Subscript 
a Airfoil 
i Indexing value 
l Lower 
max Maximum 
ob Outer Boundary 
u Upper 
w Wake 
0 Cloud center 
∞ Freestream 

Superscript 
1x, 1y First derivatives in the x and y directions 
2x, 2y Second derivatives in the x and y directions 

I. Introduction 

Meshless methods can be best described as techniques that do not employ grid data to discretize a 
partial differential equation. There are a multitude of different algorithms within this research area that are 
formulated to solve a vast array of different engineering problems. A subset of solution techniques within this 
broad research area are those that apply the concept of discretizing a PDE on a local cloud of points. The 
cloud shown in Figure 1 can either be selected by having it encompass a constant local area or contain a pre
determined amount of points. In either case, this concept is not a relatively new one,1 yet its implementation 
to solve aerodynamic problems has only been an active research topic in the last two decades.2 
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Figure 1. Point Cloud 

One of the earliest methods that proposed the discretization of a PDE on a local cloud of points applied 
the least squares fit of a Taylor series.3–5 The earliest meshless method to solve aerodynamic problems by 
applying the local cloud concept was the work of Batina2, 6 which solved the Euler/Navier Stokes equations. 
Batina discretized the PDE by solving a least squares polynomial fit on the local cloud of points and enforced 
Neumann boundary conditions by generating ghost nodes. The polynomial least square method was further 
developed by Oñate et. al. to solve other fluid mechanic and heat transfer problems of engineering interest.7–11 

Sridar and Balakrishnan revisited the Taylor series concept by developing an upwind meshless Euler solver 
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for two dimensional inviscid transonic flows.12, 13 

These meshless discretization techniques have been used to model aerodynamic problems by solving some 
form of either the Euler or Navier-Stokes equations. This paper applies these techniques to solve the full 
potential equation which has the benefit of being a one equation one unknown model that can describe 
inviscid compressible flows. Specifically, the method developed in this paper is formulated to solve for a 
steady two-dimensional subcritical compressible flowfield. 

Before a more detailed discussion on how to implement the meshless technique can take place, the 
assumptions necessary for a flow to be governed by the full potential equation will be addressed. Once the 
mathematical background has been established, the implementation of the TLS method to discretize the full 
potential equation will be discussed in detail. The enforcement of the Neumann boundary condition at walls 
will be specifically addressed in order to demonstrate how a Hermite interpolation technique can implicitly 
enforce the Neumann boundary condition. Finally some test cases will be analyzed in order to verify the 
accuracy of the meshless scheme. 

II. The Full Potential Equation 

The full potential equation (FPE) is a scalar partial differential equation which represents steady, irro
tational flow. Although these limitations preclude using the FPE to model flows with physical phenomena 
including shocks, work addition, and friction, its single equation nature makes it an attractive approach for 
modeling inviscid subcritical compressible flows. The FPE is fundamentally an expression of the conservation 
of mass expressed here as the continuity equation for a steady flow. 

\ · (ρV) = 0 (1) 

Equation (1) represents the continuity equation in conservative form. Applying the chain rule to the left 
hand side results in the non-conservative form of the continuity equation. 

V · \ρ + ρ\ · V = 0 (2) 

Although the non-conservative form can lead to numerical difficulties when modeling discontinuous prob
lems, either form may be used to accurately solve continuous problems.14 This research is limited to sub-
critical and therefore shock-free flow such that the non-conservative form of the continuity equation may be 
used. 

Helmholtz’s decomposition theorem, sometimes called the fundamental theorem of vector calculus, states 
that any sufficiently smooth vector field whose curl and divergence vanish at infinity may be represented as 

15, 16 the sum of two vector fields V = \Φ + \ × Ψ.
The first component vector field, \Φ, is inherently irrotational (its curl vanishes) and the second com

ponent, \ × Ψ, is inherently selenoidal (its divergence vanishes). When decomposed in this way, Φ is called 
a scalar potential and Ψ is called a vector potential; the vector potential Ψ is also selenoidal. 

When the vector field is known to be irrotational, the second term may be omitted, leaving an expression 
capable of representing any irrotational vector field V = \Φ. Representing the velocity field in this way is 
the transformation which allows the continuity equation to be written as a scalar equation (in conservative 
form). 

\ · (ρ\Φ) = 0 (3) 

Or, equivalently in non-conservative form. 

ρ\2Φ + \ρ · \Φ = 0 (4) 

To arrive at this equation, the velocity has been assumed to be continuous, smooth, and irrotational. 
These assumptions are consistent with an inviscid flow without shocks. Crocco’s theorem17 dictates that 
such a flow will also be isentropic. The isentropic flow relations provide a scalar algebraic equation for 
density in terms of velocity (or velocity potential).18 

1 

ρ γ − 1 γ−1 
2 = 1 + M∞ (1 − |\Φ|2) (5)

ρ∞ 2 
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Equations 4 and 5 describe a compressible flow in terms of a single scalar differential equation. In 
subsequent sections the differential form of this equation will be solved for a two dimensional flowfield. 

ρ

 
∂2Φ 
∂x2 

+ 
∂2Φ 
∂ y2

 
+ 

∂ ρ 
∂ x 

∂Φ 
∂x 

+ 
∂ρ 
∂ y 

∂Φ 
∂y 

= 0 (6) 

Now that the governing PDE for full potential flows has been formulated, it is necessary to enforce 
the correct boundary conditions in order to establish a well posed problem. The velocity potential (Φ) 
is commonly broken up into a freestream (Φ∞) and a perturbation (φ) component where the freestream 
potential describes the flow at a boundary infinitely far away from the perturbing surface and is assumed to 
be uniform and at a constant angle of attack 

Φ = Φ∞ + φ (7) 

The problem domain in an external aerodynamics problem consists of a farfield boundary (S∞), a wall 
boundary (Sa), and a wake cut plane (Sw) as shown in Figure 2. The frame of reference used here will 
assume that the airfoil is stationary and aligned with the x-axis and the freestream flow approaches the 
airfoil at an angle attack α with respect to the x-axis. 

S
a

S
∞

S
w

Figure 2. Problem Domain 

The airfoil surface is a solid wall with the condition that the surface is also a streamline. As a consequence, 
this places a Neumman boundary condition on the velocity potential that states that no flow is normal to 
the surface. 

\Φ · n = 0 (8) 

∂Φ 
∂n 

= 0 (9) 

The circulation along with well posed boundary conditions need to be specified in order for a unique 
solution to be found for lifting flows; therefore, a wake surface is introduced in order to correctly model the 
circulation.19 The Kutta condition states that the value of the circulation is chosen so that the flow leaves 
the trailing edge of the airfoil smoothly. This means that for an airfoil with a finite trailing edge angle, such 
as the NACA 0012 analyzed in this paper, the trailing edge is also a stagnation point. The wake can be 
modeled by a constant strength doublet distribution emanating from the trailing edge or equivalently a point 
vortex located at the trailing edge. The strength of the doublet distribution or equivalently the strength of 
the point vortex is calculated by applying the Kutta condition. It is commonly enforced by calculating the 
jump in potential between a point just above the trailing edge and a point just below the trailing edge of 
the airfoil.20 

µw = Γ = Φu − Φl (10) 

The velocity potential at the farfield boundary (Φob) is composed of a superposition of a uniform velocity 
potential and the velocity potential induced by the point vortex that is enforcing the Kutta condition.21 
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Φob = U∞x + V∞y + 
Γ 
2π 

θ (11) 

where Γ is the circulation strength and θ is an angle measured anti-clockwise from the wake cut plane. 
If the farfield boundary is sufficiently far away from the airfoil, the velocity can be considered the 

freestream value because the perturbation velocities decay as r → ∞ where r is the Euclidean distance 
from a point on the surface of the airfoil to a point on the farfield boundary. 

It has been demonstrated that a steady subcritical compressible flow can be modeled by a single scalar 
equation known as the full potential equation. By modeling an external aerodynamic problem with a wall, 
farfield boundary, and wake cut plane, a well posed problem is constructed that is capable of describing the 
scalar potential and density field along with the vector velocity field. The next section will describe the 
meshless method that has been formulated to solve this problem. 

III. Solution Algorithm 

The solution algorithm operates in an analogous manner to a standard finite difference solver. Figure 3 
outlines the six main steps that the solver performs. This section will discuss how each of these steps are 
evaluated to solve the full potential equation. 

Initialize Solution

Фn, Un,Vn, ρn, Γn

Generate Clouds

Calculate Derivative 

Coefficients

w1x, w1y, w2x, w2y

1

2

3

4

5

Update Solution

Фn+1, Un+1,Vn+1, ρn+1, Γn+1

Check Convergence

If not Converged, Repeat 

Steps 4 and 5

6
Post-Process

C
p

Figure 3. Iterative Procedure 

III.A. Cloud Generation 

The clouds for all the test cases were constructed from nodes generated by an unstructured mesh generator. 
While this point generation technique seems to eliminate the claim that this numerical technique is meshless, 
the main focus in this paper is the solution algorithm which does not depend on how the nodes are initially 
generated. For this algorithm to be a useful design tool, a point generation technique that does not require 
meshing of the problem geometry would be essential. Efforts have been made in this area by Löhner 
and Oñate22, 23 who developed an advancing front point generation technique which shows some promise for 
the eventual development of a fully integrated meshless point generator and solution algorithm. 

As stated earlier, different criteria can be used to determine which points are selected to be a part of the 
local cloud. The current implementation applies a nearest neighbor search to determine the cloud support 
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points. Each cloud will contain a pre-determined amount of nearest neighbors instead of selecting clouds 
of constant area. Figure 4 depicts the typical point distributions for a circular cylinder and a NACA 0012 
airfoil. There is a higher density of points near areas where there are expected to be high gradients such as 
the leading and trailing edge of the airfoil. The nearest neighbor search criterion will ensure that the point 
clouds in regions of higher point density will encompass a smaller area than clouds near the farfield boundary. 
For the simple two dimensional test cases, this method is quick and simple to implement. For problems with 
a large amount of surface and domain points such as complex three-dimensional configurations, an oct-tree 
data structure could be implemented to speed up the nearest neighbor search. 

(a) Circle (b) NACA 0012 

Figure 4. Close-Up View of Point Distributions 

III.B. Derivative Coefficient Calculation 

Any order derivative of Φ can be discretized into an algebraic sum of its nodal values in the local cloud.24 

∂mΦ0 

∂ dm 
∼= 

ns 
i=1 

w md 
i ΔΦi (12) 

ΔΦi = Φi − Φ0 (13) 

where m is the order of the derivative, d is the Cartesian direction, and ns is the number of support points 
in the cloud. For example, the estimate for the second y derivative at node 0 in the cloud shown in Figure 
1 (m = 2, d = y, ns = 6) would be 

∂2Φ0 

∂ y2 
∼= 

6 
i=1 

w 2x 
i ΔΦi (14) 

The truncated Taylor series between the cloud center Φ0 = Φ(x0, y0) and the cloud support points 
Φi = Φ(xi, yi) can be expressed in compact form as: 

Φi = Φ0 + 
r 

q=1 

q 
m=0

 
∂q Φ 

∂ xq−m∂ ym 

Δxq−mΔy m 

(q − m)!m!

 
(15) 

where r is the highest order term retained in the Taylor series. The r derivatives of Φ can be determined 
by applying a least squares minimization of Equation (15) for the ns support nodes in the cloud. It can be 
shown that the solution to the least squares problem results in an expression that relates the derivatives of 
Φ only in terms of the node spacing in the cloud.25 

{d} = C{Φ} (16) 
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where {d} is an r × 1 vector containing the derivatives of Φ0 at the cloud center, C is an r × nf matrix 
that results from the least squares minimization problem, and Φ is an nf × 1 vector containing Φi − Φ0 at 
each of the nf cloud support points. The sequencing of the derivatives in Equation (15) was chosen so that 
the first five entries in the {d} vector are 

∂Φ0 
∂ x 

∂Φ0 
∂y 

∂2Φ0 
∂ x2 

∂2Φ0 
∂ x∂y 

∂2Φ0 
∂ y2

 T 
(17) 

With this sequence chosen, the derivative coefficients in Equation (12) can now be expressed as rows of 
the C matrix. As an example the derivative coefficients for the first y-derivative of Φ are 

w 1y 
i = C2,i (18) 

III.C. Solution Initialization 

For all of the test cases the solution will be initialized with the freestream conditions at every point on the 
boundary and in the domain. Therefore the potential will be Φ∞, the velocity components are U = U∞ and 
V = U∞, and the density ratio is ρ = 1 at every point. 

III.D. Solution Update 

The continuity equation and boundary conditions need to be discretized in order for the PDE to be expressed 
in an algebraic form which can then be solved for the solution update at the cloud center. A Dirichlet 
boundary condition will be enforced at the farfield boundary which will be modeled as a circle centered at 
the middle of the airfoil with a radius that is sufficiently far away. The total velocity potential at each point 
on the outer boundary will be expressed as:21 

Φob = Φ∞ + 
Γ 
2π 

θ (19) 

where Γ is the circulation strength and θ is an angle measured from a line extending horizontally from the 
trailing edge of the airfoil. After all the points have undergone one iteration, the circulation value is updated 
by enforcing the Kutta condition which is equal to the difference in velocity potential values between the 
closest points on the upper and lower side of the airfoil trailing edge. 

A Neumann boundary condition is enforced at the airfoil surface. Since the total velocity potential is 
being determined instead of the perturbation potential, this boundary condition can be simply expressed as 

∂Φ 
∂n 

= 0 (20) 

Instead of focusing on the specifics surrounding boundary condition enforcement, it will be assumed for 
the time being that there is an implicit way to ensure that both the farfield and wall boundary conditions 
are being correctly enforced and all of the flow variables at points located on these boundaries can be 
determined by solving the discretized form of the continuity equation. Therefore the remainder of this 
section will specifically focus on how the continuity equation is discretized. 

Since all the test cases involve subcritical compressible flows, the full potential equation in non-conservative 
form will be solved. 

ρ 
∂2Φ 
∂x2 

+ 
∂2Φ 
∂ y2 

+ 
∂ ρ 
∂ x 

∂Φ 
∂x 

+ 
∂ρ 
∂ y 

∂Φ 
∂y 

= 0 (21) 

This equation can be discretized using the derivative coefficients determined from subsection III.B. 

ρn 
0 

� 
ns 

i=1 

w 2x 
i (Φn 

i − Φn 
0 ) + 

ns 

i=1 

w 2y 
i (Φn 

i − Φn 
0 ) 

� 

+ 

ns 

i=1 

w 1x 
i (ρn 

i − ρn 
0 ) 

ns 

i=1 

w 1x 
i (Φn 

i − Φn 
0 ) + 

ns 

i=1 

w 1y 
i (ρn 

i − ρn 
0 ) 

ns 

i=1 

w 1y 
i (Φn 

i − Φn 
0 ) = 0 (22) 

The goal is to re-arrange the terms in this algebraic equation to determine the updated (n + 1) value of 
the velocity potential. In order to put Equation (22) in a more compact form let: 
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ns 
1xρx = w (ρn − ρ0 

n) (23)i i 
i=1 

ns 
1y (ρn − ρnρy = w 0 ) (24)i i 

i=1 

ns   ns ns 
2x 2y 1x 1yρn w + w (Φn − Φn 

0 ) + ρx w (Φn − Φn 
0 ) + ρy w (Φn − Φn 

0 ) = 0 (25)0 i i i i i i i 
i=1 i=1 i=1 

Equation (25) can then be split up into terms associated with the cloud center and terms associated with 
values at the cloud support points. 

ns   
ρn Φn2x 2y 1x 1yw + w + ρxw + ρxw = 0 i i i i 0 

i=1 

ns   
2x 2y 1x 1yρn w + w + ρxw + ρxw Φn (26)0 i i i i i 

i=1 

The updated value (Φn+1) can now be determined by solving Equation (26) for Φ0.0 

ns   
2x 2y 1x 1yρn Φn w + w + ρxw + ρxw0 i i i i i 

Φn+1 i=1 
0 = ns (27)  

2x 2y 1x 1y[ρn w + w + ρxw + ρxw ]0 i i i i 
i=1 

Now that the value of the velocity potential has been updated, the velocity components and density can 
also be updated. The x and y components of the velocity are determined by numerically calculating the 
gradient of the velocity potential. 

ns   
Un+1 1x − Φn+1 = w Φn (28)0 i i 0

i=1 

ns   
V n+1 1y − Φn+1 = w Φn (29)0 i i 0

i=1 

Once the velocity values are determined, the density ratio at the cloud center can be updated. 

1 
γ−1 

ρn+1 γ − 1 2
   2 

= 1 + M∞ 1 − |\Φn+1 ) (30)0 02 

III.E. Convergence Estimation 

The convergence criteria for this algorithm will be defined as the maximum change of the velocity potential 
between the current and the previous iteration step for all the points on the boundaries and in the domain.     {Φ}n+1

E = max( − {Φ}n| (31) 
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IV. Neumann Boundary Condition Enforcement 

In order to satisfy the Neumann boundary condition on the surface, an extension of the Taylor series 
least squares problem addressed in Subsection III.B was implemented. This technique, given the name 
Constrained Hermite TLS (CHTLS), allows for the no normal flow boundary condition to be implicitly 
satisfied by adding information about the directional derivative of the velocity potential at boundary points. 

When a cloud contains nodes that belong to the surface, additional terms are added to the least squares 
minimization problem. The specific details on the formulation of the CHTLS method can be found in the 
companion paper written by the authors.25 Constraining the TLS problem to ensure that the Neumann 
boundary condition is enforced results in a modified form of Equation (16). 

{d} = F{Φ} + G{h} + {H}h0 (32) 

The vector {h} contains the directional derivative observations at the points where they are enforced in a 
least squares sense and h0 is the directional derivative constraint at the point of interest. For potential flows 
the directional derivative is ∂Φ 

∂ n , which for a solid wall is zero, allowing G and {H} to be dropped. As with 
the normal TLS method the derivative coefficients are entries within the F matrix. As an example, the 
derivative coefficients for the first y-derivative of Φ are 

w 1y 
i = F2,i (33) 

V. Results 

The TLS method was applied to solve a variety of non-lifting and lifting subcritical compressible cases. 
The first two cases are non-lifting flows over a circular cylinder and a NACA 0012 airfoil. In order to examine 
how well the method can solve lifting flows, the flow over a NACA 0012 at a two degree angle of attack was 
also modeled. 

Section III.B showed that a truncated Taylor series evaluated at the cloud support points is used to 
determine the derivative coefficients. This Taylor series can keep an arbitrary number of terms with a 
higher number of terms corresponding to a higher order estimation. For example Equation (15) with r = 2 
corresponds to the Taylor series that retains the second order terms. 

ΔΦi = Δxi 
∂Φ0 

∂ x 
+ Δyi 

∂Φ0 

∂ x 
+ 

Δx2 
i 

2 
∂2Φ0 

∂ x2 
+ ΔxiΔyi 

∂2Φ0 

∂ x∂y 
+ 

Δy2 
i 

2 
∂2Φ0 

∂ y2 
+ O(Δx 3 

i , Δy 3 
i ) (34) 

Sridar and Balakrishnan12 proved theoretically that the order of the leading truncation error term for the 
estimate of the pth derivative of a function is hr+1−p where h is the characteristic length in the Taylor series 
expansion and r is the highest order of the terms kept in the Taylor expansion. The numerical experiments 
conducted in the companion paper25 have shown that the CHTLS method retains the same order of accuracy 
properties when evaluating derivatives on clouds that contain boundary nodes. Therefore a set of derivative 
coefficients using r = 2 were used to estimate first derivatives in Equation (27) while another set of derivative 
coefficients using r = 3 were used to estimate second derivatives. These selections of r would ensure that all 
of the derivatives required would be second order accurate. 

V.A. Circular Cylinder 

The first case that will be examined is the sub-critical (M∞ = 0.375) flow over a circular cylinder. The 
suction peak velocity for several node distributions was compared to the analytical solution (Vmax = 2.260) 
calculated by van Dyke.26 The node distribution, which has 100 nodes uniformly distributed on the cylinder 
surface, was constructed using ICEM CFD and is shown in Figure 5. The farfield boundary was chosen to 
be a circle with radius 20 measured from the circular cylinder center. The domain nodes were grown off the 
surface distribution to the farfield boundary using a 1.15 growth ratio. These metrics are summarized in 
Table 1. 
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(a) Complete View (b) Mid View 

(c) Close-Up View 

Figure 5. Cylinder Node Distribution 
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Table 1. Baseline Distribution Metrics 

Number of Boundary Nodes 100 

Farfield Boundary Radius 20 

Cell Growth Ratio 1.15 

Total Number of Nodes 2084 

Number of Support Points 18 

The analytical solution for the peak velocity on a circular cylinder in compressible potential flow was 
developed by van Dyke using a Janzen-Rayleigh series expansion. This expansion involves a set of 29 terms 
and integer powers of M2 

∞. 26 

Vmax = U∞ 

29 

n=1 

qn(M2 
∞)n−1 (35) 

Since this analytical solution only allows for a comparison at the velocity peak, a solution from the 
Ph. D. dissertation written by German27 was also used since it provides data for the entire distribution of 
Cp on the cylinder surface. German developed a Riemannian geometric mapping technique to determine the 
compressible flowfield by solving a panel method on an equivalent incompressible shape.28, 29 The method 
was extensively verified and showed that the peak velocity closely matched the analytical result determined 
by van Dyke. The results from the converged solution are presented in the figures below. The predicted 
pressure coefficient distribution, as shown in Figure 6, matches very closely with the results obtained by 
German27 and van Dyke.26 
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Figure 6. Upper Surface Pressure Coefficient for the Cylinder 
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Figure 7. Cylinder Convergence History 

V.B. Nonlifting NACA 0012 Airfoil 

The second case that was examined was the sub-critical flow over a NACA 0012 airfoil with a freestream 
Mach number of 0.72 at a zero angle of attack. The grid has 320 nodes on the airfoil surface, distributed using 
the biexponential bunching law in ICEM CFD. The biexponential scheme produces exponentially distributed 
nodes across the airfoil surface given the spacing and growth ratio at the leading and trailing edge of the 
airfoil. The growth ratio was held at 1.01 to keep the node spacing nearly constant for the leading and 
trailing edges. The off body nodes were grown with a 1.15 growth ratio for 0.5 chord lengths, then a 1.2 
ratio extended to the farfield boundary. The farfield boundary is a circle with a radius of 10 chord lengths 
measured from the airfoil center. These grid metrics produced a distribution with a total of 4228 nodes. The 
solution converged to an iteration tolerance of 10−8 in approximately 1500 iterations, similar to the cylinder 
problem. The predicted pressure coefficient distribution, as shown in Figure 9, matches very closely with 
the results obtained by Lock30 and German.27 The pressure coefficient distribution given by Lock can be 
considered a benchmark solution since the author states that the results are within one percent of the exact 
full potential solution. 

Table 2. NACA 0012 Baseline Distribution Metrics 

Number of Boundary Nodes 320 

Farfield Boundary Radius 10 

Cell Growth Ratio 1.15 - 1.2 

Total Number of Nodes 4228 

Number of Support Points 12 
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(a) Complete View (b) Far View 

(c) Mid View (d) Close-Up View 

Figure 8. NACA 0012 Node Distribution 
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Figure 9. Pressure Coefficient Distribution for Non-Lifting Case (M∞ = 0.72) 
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Figure 10. Non-Lifting Convergence History 

V.C. Lifting NACA 0012 Airfoil 

The last case that was examined was the flow over the NACA 0012 airfoil with a freestream Mach number 
of 0.63 at an angle of attack of 2◦ . These freestream conditions were chosen because the flowfield is still 
subcritical and the benchmark results are available in the AGARD report written by Lock.30 The results 
are shown for the solution of the full potential equation using the same node distribution as the non-lifting 
case. The pressure coefficient distribution matches quite well with the results provided by Lock with the 
largest disparity between the two solutions located near the suction peak as shown in Figure 11. The number 
of iterations required for the solution to converge was an order of magnitude larger than the two previous 
problems. This longer convergence time is attributed to the changing value in circulation as the Kutta 
condition is updated. Lock reports that the local Mach number reaches a maximum value of 0.983 which 
implies that the meshless algorithm can accurately model cases with nearly sonic conditions. 
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Figure 11. NACA 0012 Lifting Case Solution 
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VI. Conclusion 

The meshless method developed in this paper yielded accurate results for the subcritical compressible 
flowfield about two-dimensional geometries. These solutions were obtained by discretizing and solving the 
full potential equation which has the same fidelity as an Euler code for subcritical flows but with the 
added benefit of only requiring the solution of one variable. The CHTLS method yielded accurate results 
by implicitly satisfying the Neumann boundary condition for clouds containing nodes belonging to a wall 
boundary. The methods outlined in this paper have established the groundwork necessary for developing a 
meshless full potential aerodynamic analysis tool but there is still a variety of different topics that can still 
be explored such as extending the method to three dimensions and solving for transonic flowfields. 
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