Asymptotic Functions and the Problem of Multiplication of Distributions*

T. D. Todorov

The asymptotic functions are a new type of generalized functions. But they are not functionals on some space of test-functions as the Schwartz distributions. They are mappings of the set of the asymptotic numbers (1, 3, 5, 6) into itself. On its part, the set of the asymptotic numbers is a totally-ordered set of generalized numbers including the systems of real and complex numbers, as well as infinitesimals and infinitely large numbers. Every two asymptotic functions can be multiplied. On the other hand, the Schwartz distributions have realizations, in a certain sense, as asymptotic functions. The motivations of this work are connected with some physical problems of quantum theory [18, 25].

Introduction

As soon as the book "Theorie des distributions" by L. Schwartz has appeared, it has been realized that the multiplication of distributions is not always possible. For example, the products

\[
\delta^n(x), \delta(x). P\left(\frac{1}{x}\right), \theta(x)P\left(\frac{1}{x}\right), \delta(x)(x), \left[P\left(\frac{1}{x^n}\right)\right]^n,
\]

having significance in the quantum theory [18, 22—26] cannot be satisfactorily defined. What is more, in the rare cases, when the multiplication is possible, it is not associative. The following well known example is given by Schwartz

\[
P\left(\frac{1}{x}\right)[x\delta(x)] \neq P\left(\frac{1}{x}\right) \cdot x \delta(x).
\]

Several papers have been written by mathematicians, as well as by physicists, in order to introduce in some way a natural operation of multiplication of distributions: a) The most popular approach is based on an approximation of distributions by regular sequences [7—12]. The exchange formula relating (formally) the product and the convolution [13, 15], as well as the point of view treating the distributions as boundary values of analytic functions [14, 15, 26] deliver us another base for introducing a multiplication. A typical feature of the approaches from this group is that the product (in the cases it exists) belongs to the space of distributions. Unfortunately, only

* Some of the results of this paper were reported by the author at the conference "Operatoren—Distributionen und Verwandte Non-Standard Methoden", Oberwolfach, Federal Republic of Germany, 2—8, July 1978.
a rather small number of products can be defined in these ways; b) In another
group of works [16—22] an enlargement of the space of distributions \mathcal{L}' is
performed and the product, in general, does belong to this larger space. The
methods used here involve either an axiomatic-algebraic technique [16, 17, 26]
or non-standard analysis [19—22]. However, the operation of multiplication in-
troduced in these works is not defined on the whole enlargement of \mathcal{L}', which
is the reason why the problem of associativity cannot be even formulated
(see, for example, [22]); c) In the third group of approaches the space of dis-
tributions is entirely abandoned. It is replaced by another space of generaliz-
ed functions similar, in a certain sense, to the distributions and a commuta-
tive and associative multiplication is introduced for any two generalized func-
tions. These approaches are based usually on a non-archimedean enlargement
of the system of real, as well as of complex numbers, and are connected first
of all with the non-standard analysis [19—22]. At first sight these methods are
more successful, because very strong results about the existence of multipli-
cation are established in their framework. They possess, in a certain sense, a
disadvantage, lying in the fact that comparatively few [19—24] numbers of
applications to the other branches of mathematics, as well as of physics, have
been performed up to now. It is not quite sure whether this kind of generaliza-
ed functions will turn out to be so interesting and so useful for both math-
ematics and physics, as the distributions are, although the latter cause well
known troubles.

The approach we use belongs to the third group of works. The asymptotic
functions are generalized functions similar to the distributions. However,
they do not coincide with the distributions, i.e. they are not functionals on
some space of test-functions. The asymptotic functions are mappings of the
set of asymptotic numbers A into itself. On its part, $A[1, 3, 5, 6]$ is a totally-
ordered set of generalized numbers, which includes isomorphically the field of
the real numbers \mathbb{R}, as well as infinitely small (infinitesimals) and infinitely
large numbers. Every two asymptotic functions can be multiplied (because
every two asymptotic numbers can be multiplied) and the distributions have
realizations, in a certain sense, as asymptotic functions.

The motivations of this work are, in fact, connected with some problems
in quantum theory [1, 2, 3, 4, 18, 23, 24, 25]. In a further work we intend to
probe the asymptotic functions instead of the distributions in some topics of
quantum theory and to make use of the existence of multiplication between
the asymptotic functions.

The present paper is organized as follows.

(i) In Sec. 1 the most general notion of asymptotic function is introduced
(Definition (1.1)). This type of asymptotic functions are different from the
asymptotic functions introduced in [2] and [4], although the notion of asymp-
totic numbers (1, 3, 5, 6) is the common base idea for both types of asymp-
totic functions (see Remark (1.13)). (ii) In Sec. 2 a particular type of sets of
asymptotic numbers (subsets of A), called extended sets, are separated and
their properties are studied. These sets (of asymptotic numbers) will play the
role of domains of asymptotic functions of a particular type defined in Sec. 3.
(iii) In Sec. 3 a particular type of asymptotic functions, called extended asymp-
totic functions, are considered.

Our plan for the future is the following.

In a series of papers we are going to define two particular classes of
asymptotic functions: the class F of quasi-extended asymptotic functions and
the class $\Phi_{\mathcal{L}}$ of the so-called quasi-distributions. The asymptotic functions
of these two classes are very similar to the Schwartz distributions and at the
in these ways; b) In another space of distributions \(\mathcal{S} \) is along to this larger space. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions.

At first sight these methods are about the existence of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions. The algebraic technique \([16, 17, 26]\) operation of multiplication in whole enlargement of \(\mathcal{S}' \), which cannot be even formulated of approaches the space of distributions.

Key Words

- A — the set of the real asymptotic numbers \([5, \text{Sec. 1}]\)
- \(A^\infty \) — the set of the complex asymptotic numbers \([5, \text{Sec. 2}]\)

\[
a = \sum_{k=\mu} a_k s^k + o^\kappa
\]

\([5, \text{Sec. 6}]\). Here \(\mu, \nu \in \mathbb{Z} \cup \{\infty\} \), \(\mu \leq \nu \), \(a_k \in \mathbb{R} \) or \(a_k \in \mathbb{C} \); \(\kappa \) is the power and \(\nu \) is the order and \(\nu - \mu (\infty - n = \infty, n \in \mathbb{Z} \), and \(\infty - \infty = 0 \) is the relative order of \(a \).

Change of Terminology

In \([5]\) and \([6]\) we use the terms “accuracy of \(a \)” and “relative accuracy of \(a \)” respectively. In the present paper \(\kappa \) will be called the order of \(a \) (instead of accuracy) and \(\nu \) will be called the relative order of \(a \) (instead of relative accuracy). We apologize for changing the terminology.

\[
\mathcal{A}^0 = \{x + o^\kappa: x \in \mathbb{R}\}; \quad C^0 = \{c + o^\kappa: c \in \mathbb{C}\};
\]

\[
\mathcal{A}^\infty = \{x + o^\infty: x \in \mathbb{R}\}; \quad C^\infty = \{c + o^\infty: c \in \mathbb{C}\};
\]

Recall that \(\mathcal{A}^0 \) and \(\mathcal{A}^\infty \) are isomorphic to \(\mathcal{A} \) and \(C^0 \) and \(C^\infty \) are isomorphic to \(C \) \([5, \text{Theorem 20}]\).

\[
\mathcal{A}^\kappa = \left\{ \sum_{k=\mu}^\infty a_k s^k: \mu \in \mathbb{Z}, \ a_k \in \mathbb{R} \right\}
\]

\([5, \text{Definition 12, Sec. 6}]\);

\(\mathcal{A}_0^\kappa \) is the set of all infinitesimals (infinitely small asymptotic numbers). \([6, \text{Sec. 4}]\);

\(\mathcal{A}^\kappa \) is the set of all finite asymptotic numbers \([6, \text{Sec. 4}]\);

\(\mathcal{A}_\infty^\kappa \) is the set of all infinitely large asymptotic numbers \([6, \text{Sec. 4}]\). Recall that

\[
\mathcal{A}_0 \subset \mathcal{A}, \quad \mathcal{A} \cap \mathcal{A}_\infty = \emptyset, \quad \mathcal{A}_\infty = \mathcal{A} \cap \mathcal{A}_\infty;
\]

“\(f \) is an ordinary function” = “\(f \) is a complex-valued function of real variables”, i. e. \(f: X \rightarrow C \), where \(X \subseteq \mathbb{R} \) or \(X \subseteq \mathbb{R} \times \mathbb{R} \times \ldots \mathbb{R} \).

1. Asymptotic Functions

Definition (Asymptotic Function). Every mapping of the type

\[
f: D \rightarrow A^\kappa,
\]
where $D \subseteq A$ will be called an asymptotic function of one variable and it \(D \subseteq A \times A \times \ldots \times A \) (n-times), \(f \) will be called an asymptotic function of \(n \) variables. As usually, we shall often write \(f(a_1, a_2, \ldots, a_n) \) \(a \in D \) respectively, instead of (1.2).

(1.3) Remark. Corresponding to the above definition, the values of the asymptotic functions are asymptotic numbers. Let \(\mu(a) \), \(\nu(a) \) and \(\lambda(a) \) be the power, the order and the relative order of \(f(a) \), respectively for some \(a \in D \). It is clear that \(\mu \), \(\nu \) and \(\lambda \) are mappings of the following type:

\[
\begin{align*}
\mu : D & \rightarrow \mathbb{Z} \cup \{\infty\}, \\
\nu : D & \rightarrow \mathbb{Z} \cup \{\infty\}, \\
\lambda : D & \rightarrow \mathbb{N}_0 \cup \{\infty\} = \{0, 1, 2, \ldots, \infty\}.
\end{align*}
\]

(1.7) Definition (Algebraic Operations). The algebraic operations: addition, subtraction, multiplication and division between two asymptotic functions \(f \) and \(g \) defined on \(D \) and \(E \), respectively (where \(D, E \subseteq A \) or \(D \subseteq A \times A \times \ldots \times A \) will be introduced by means of their values (i. e. just like the ordinary functions are added, subtracted, multiplied and divided). In other words

\[
\begin{align*}
(f \pm g)(a) &= f(a) \pm g(a), \quad a \in D \cap E, \\
(f \cdot g)(a) &= f(a) \cdot g(a), \quad a \in D \cap E, \\
(f \div g)(a) &= f(a) / g(a), \quad a \in D \cap E \setminus E_0,
\end{align*}
\]

where

\[
E_0 = \{a : a \in E, \ g(a) \neq 0\}.
\]

(1.12) Remark. It is clear that every two asymptotic functions (for which \(D \cap E \neq \emptyset \) can be added (subtracted) and multiplied (since every two asymptotic numbers can be added and multiplied). As we know, the set of the real numbers \(\mathbb{R} \) is isomorphically embedded in the set of real asymptotic numbers \(A \) \([5, \text{Theorem 20}] \) and the set of the complex numbers \(C \) is isomorphically embedded in the set of the complex asymptotic numbers \(A^* \). In other words, \(\mathbb{R} \subseteq A \) and \(C \subseteq A^* \) (and \(\mathbb{R} \subseteq C \), as well as \(A \subseteq A^* \), of course) Consequently, the set of all ordinary functions (we mean the complex-valued functions of real variables) is isomorphically embedded in the set of all asymptotic functions (of the above-mentioned type).

The notion of asymptotic functions was introduced for the first time by Christov as equivalence classes of sequences of ordinary functions \([2, 4] \). The notion of asymptotic function just introduced (1.1) is obviously different from that one given in \([2] \) and \([4] \). There exists a connection between these two types of asymptotic functions, but this will become clear only when analytic operations are introduced (which will be done in a next paper).

(1.13) Lemma. Let \(M \) be a set (a subset) of asymptotic functions and let \(M \) be closed with respect to the algebraic operations addition, multiplication, or addition and multiplication. Then \(M \) has the same algebraic properties as \(A \) and \(A^* \) have (we mean the identities \([5, \text{Theorem 6}] \), which are valid in \(A \) and \(A^* \) are valid in \(M \), too). In particular, the set of all asymptotic functions has the same algebraic structure as \(A \) and \(A^* \) have \([5]\).

Proof. The theorem follows directly from the fact that the asymptotic functions are \(A^* \)-valued functions.
2. Asymptotic Extension of Subsets of R.

As it is known, the ordinary functions (as well as the distributions) are interesting first of all because of their analytic operations: differentiation, integration, Fourier-transformation, convolution and so on. That is why we must introduce somehow the analytic operations for just defined asymptotic functions. But there are some difficulties connected with this problem since A (as well as A^*) is a non-archimedean set (containing infinitesimals) and consequently A (and A^*) is not Dedekind completed. What is more, A (and A^*) is also disconnected [6, Theorem 44]. These features are typical not only for the asymptotic numbers but also for any non-archimedean extensions of the real or complex numbers [19]. So, we cannot introduce the analytic operations by the standard way (by a given measure, the set of the measurable functions and so on). We shall introduce the analytic operations in another way: We are going to separate some very special classes of asymptotic function (closely connected with the ordinary functions) in which classes the analytic operations can be naturally defined. The domains of the asymptotic functions of these particular classes cannot be arbitrary subsets of A. This section is devoted to these rather special subsets of A, called extended sets, because they are obtained as asymptotic extension of ordinary sets of real numbers.

(2.1) Definition (Asymptotic Extension of Open Subsets). Let X be an open subset of R. The set of all real asymptotic numbers $a \in A$ for which

$$\{ s: a(s) \in X \} \in \mathcal{E}$$

for all $a \in A$ where \mathcal{E} is the filter defined in [6] will be called asymptotic extension of X and will be denoted by X_{as}.

(ii) Let $X_i, i=1, 2, \ldots, n$ ($n \in N$) be open subsets of R and let

$$X=X_1 \times X_2 \times \ldots \times X_n.$$

The set of all n-tuples (a_1, a_2, \ldots, a_n) where $a_k \in A$, $k=1, 2, \ldots, n$ for which

$$\{ s: (a_1(s), a_2(s), \ldots, a_n(s)) \in X \} \in \mathcal{E}$$

for all $a_k \in A$, $k=1, 2, \ldots, n$ will be called an asymptotic extension of X and will be denoted also by X_{as}; (iii) A subset D of A (or of $A \times A \times \ldots \times A$) for which there exists an open subset X of R (or X is of the type of (2.3)) such that $D=X_{as}$ will be called an extended set.

(2.5) Remark. For the sake of convenience we shall remind the definition of the filter \mathcal{E} [6, Definition 2]: \mathcal{E} is the set of all subsets E of $(0, 1)$, which contains an interval of the type $(0, \varepsilon)$, where $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$. As any filter, \mathcal{E} possesses the following (filter) properties:

$$\emptyset \notin \mathcal{E},$$

$$(2.6) E, F \subseteq \mathcal{E} \implies E \cap F \subseteq \mathcal{E},$$

$$(2.7) E \subseteq \mathcal{E} \subseteq (0, 1) \text{ and } \mathcal{E} \subseteq \mathcal{E} \implies F \subseteq \mathcal{E}.$$
The following Lemma replaces the expression "for all \(a \in A \) in the above definition by the more simple one "there exists \(a \in A \)." It will help us to construct the asymptotic extensions of concrete open subsets of \(R \).

Lemma. Let \(X \) be an open subset of \(R \). Then: (i) \(\emptyset \in X \) if and only if \(X = \emptyset \); (ii) \(X \in X \) if and only if \(X = X \); (iii) \(O \in X \) for some \(n \in N \) if and only if \(X \in O \) (and consequently, \(X \in A \)); (iv) Let \(X \in A \) and \(a \in A \). Then \(a \in X \), if and only if the following two conditions (denoted by \(a \) and \(b \)) are valid:

1. \(a = -x \in \emptyset \) for all \(x \in X \), where \(X \) is the closure of \(X \);
2. \(\exists a \in A \) for which (2.2) holds.

Remark. The conditions \(a \) are equivalent to the following two conditions (denoted by \(a^* \) and \(a^{**} \), respectively):

1. \(a \in \{ o^+ : n \in N \} \);
2. \(a \in \{ x + o^- : x \in X \}, \quad n = 0, 1, \ldots, \infty \} \).

Proof. (i) and (ii) are obvious. Let us consider (iii).

If \(X = \emptyset \), then \(\emptyset \in X \), of course, since \(X \in X \), corresponding to (ii). Let \(o^+ \in X \) for some \(n \in N \), i.e. (2.2) holds for all \(a \). In particular, for \(a^+ \), where \(x \) is any real number (we mean \(\lim_{s \to 0} x^+ = 0 \) for any \(x \in \emptyset \)), (2.2) implies \(x \in X \) for any \(x \in \emptyset \), i.e. \(X = \emptyset \); (iv) \(a \in X \), i.e. (2.2) holds for all \(a \). We must show only the condition \(a \) (which, on its part, is equivalent to \(a^* \) and \(a^{**} \)) since \(b \) follows obviously from \(a \). If \(a \) is infinitely large, i.e. \(a \in A \), then (3.2) holds obviously. Corresponding to [6, Theorem 36, (iv)], \(a \) can be represented in the form \(a = x_0 + h \) where \(x_0 \in \emptyset \) and \(h \in \emptyset \) are uniquely determined by \(a = x_0 + h \) and \(h = a - x_0 \) [6, Definition 10]; So, (2.2) reduces to (2.10)

\[
\{ s : x_0 + x(s) \in X \} \in \emptyset
\]

for all \(x \in h \). If \(h \in \emptyset \), then \(a^{**} \) holds obviously. Let \(h \in \emptyset \). Then we must show that \(x_0 \in X \). Indeed, we can put \(x = x_0 \) in (2.10), where \(x_0(s) = 0 \) (since \(h \in \emptyset \)) and we shall obtain \(x \in X \). Let now \(a \) and \(b \) be valid (or, which is the same, let \(a \) and \(b \) be valid); It is necessary to consider the cases \(a \in \Omega \), \(a \in \Omega \), and \(a \in \Omega \) separately, where \(\Omega \) and \(\Omega \) are the sets of infinitely large negative and positive asymptotic numbers, resp. Let \(a \in \Omega \) and let \(a = x_0 + h \) be the representation we have talked about; In this case \(b \) reduces to (2.10)

\[
\{ s : x_0 + x(s) \in X \} \in \emptyset
\]

for some \(x \in h \) and consequently, \(x \in X \) (since \(\lim_{s \to 0} x_0(s) = 0 \) if \(x \in X \), then (2.10) will be valid for \(x \in h \) (since \(X \) is open), i.e. \(a = x_0 + h \in X \). If \(x \in X \) (i.e. \(x \in X \)), then the condition \(a \) (for \(x = x_0 \)) will imply \(h \in \emptyset \), i.e. \(h \) can be represented in the form \(h = r s^+ + d s^- \), where \(r \in \Omega \), \(r \neq 0 \) and \(A \) is an infinitesimal. In the case \(r < 0 \), (2.10) will imply \(X \supseteq (x_0 - \varepsilon, x_0) \) for some \(\varepsilon \in \emptyset \), \(\varepsilon > 0 \) and in the case \(r > 0 \), (2.10) implies \(X \supseteq (x_0, x_0 + \varepsilon) \) for some \(\varepsilon \in \emptyset \), \(\varepsilon > 0 \). In both cases we obtain:

\[
\{ s : x_0 + x(s) \in X \} \in \emptyset
\]

for all \(x \in h \), i.e. \(a = x_0 + h \in X \). Let \(a \in \Omega \), i.e. \(a \) can be represented in the form \(a = r s^+ + d s^- \) for some \(r \in \emptyset \), \(r < 0 \) and some infinitesimal \(A \). In the same
eseion "for all a, b in the above statements a, b". It will help us to const.
en subsets of R.
set of R Then: (i) $\varnothing = \varnothing$ and $X_{\varnothing} = A$ if and only if $X = R$; \varnothing (and consequently, $X_{\varnothing} = A$); only if the following two condi.

equivalent to the following two con.

1, ..., ∞.

As (ii), corresponding to (ii). Let $a \in \Omega_{\varnothing}$. In particular, for $a(s) = x$, $x < 0$ for any $x \in \Omega$ (2.2) implies $a = x_0$ and $x \in \Omega$ and X_{\varnothing} implies $a \in \Omega_{\varnothing}$, i.e., (2.2) holds for all a, b. We its part, is equivalent to a^\ast and X_{\varnothing} implies a^\ast, i.e., $a \in \Omega_{\varnothing}$, then $a^{\ast \ast}$ holds ob-
ding to [6, Theorem 36, (iv)], a is an element of Ω_{\varnothing} and $h(\Omega_{\varnothing})$ are uniquely
finition 10); So, (2.2) reduces to $\in \Omega$

y. Let $h \in \varnothing$. Then we must show $x_0(s) = 0$ (since $h(\varnothing)$)
valid (or, which is the same, let a^\ast). consid the cases $a \in \Omega$, $a \in \Omega_{\varnothing}$ and $a \in \Omega_{\varnothing}$ and Ω_{\varnothing} and $d = x_0 + h$ be the re-
ese b) reduces to $\in \Omega$

in $\chi_0(s) = 0$. If $x_0 \in X$, then (2.10) $a < 0$
$\chi_0(s) < 0$. If $x_0 \in X$ (i.e.
will imply $h(\Omega_{\varnothing})$, i.e. h can be re-
N, $r \in \varnothing$, $r \neq 0$ and A is an infinit-
$\in \Omega_{\varnothing}$ for some $\varepsilon(\varnothing)$, $\varepsilon > 0$) for some $\varepsilon(\varnothing)$, $\varepsilon > 0$. In both
e. a can be represented in the some infinitesimal A. In the same

way we conclude that X contains an interval of the type $(-\infty, \ell)$ for some $\ell \in \Omega_{\varnothing}$ and consequently, b) implies (2.2) for all a, b. The case $a \in \Omega_{\infty}$ is treated in the same way. The proof is finished.

(2.14) Some Examples. If x_1, $x_2 \in \varnothing$ and $x_1 < x_2$, then

(2.15) $\{r \in \varnothing : x_1 < r < x_2\}_{\varnothing} = \{a : a < x_1, a - x_1 \in \Omega\}$

(2.16) $\{r \in \varnothing : r < x_1\}_{\varnothing} = \{a : a < x_1\}$

(2.17) $\{r \in \varnothing : x_1 < r\}_{\varnothing} = \{a : a < x_1, a - x_1 \in \Omega\}$

In the special case $x_1 = 0$ and $x_2 = 1$ we obtain

(2.18) $(0, 1)_{\varnothing} = \{a : 0 < a < 1, a \in \Omega\}$

(2.19) $\{(a, b) : a, b \in \varnothing, a \leq a, b \in \varnothing\}$

(2.20) Theorem (X_{\varnothing}$ contains X). Let X be a non-empty open subset of R. Then X_{\varnothing} contains X properly in the sense of the isomorphisms $R^\infty \rightarrow R$ and $\Omega_{\varnothing} \rightarrow \Omega_{\varnothing}$ [5, Theorem 20]. Namely, $X^0 \subset X_{\varnothing}$ and $X_{\varnothing} \subset X_{\varnothing}$, where

(2.21) $X^0 = \{x + a : a \in X\}$

(2.22) $X_{\varnothing} = \{x + \varepsilon : \varepsilon(\Omega_{\varnothing})\}$

Moreover, if $a \in A$, then $a \in \Omega_{\varnothing} \cap X_{\varnothing}$ implies $a \in X^0$ and $a \in \Omega_{\varnothing} \cap X_{\varnothing}$ implies $a \in X_{\varnothing}$.

Proof. (i) Let $X \subset Y$ and $a \in X_{\varnothing}$, i.e. (2.2) holds for all a. Let us set

$E(a) = \{s : a(s) \in X\}$, $a \in a$

$F(a) = \{s : a(s) \in Y\}$, $a \in a$

Obviously, $X \subset Y$ implies $E(a) \subset F(a)$ and $a \in X_{\varnothing}$ implies $E(a) \subset F(a)$ for all a. Corresponding to (2.8), we obtain $F(a) \subset \Omega_{\varnothing}$ for all a and $a \in X_{\varnothing}$, (ii) $X \subset Y$ and $X \cap Y \subset Y$ imply $(X \cap Y)_{\varnothing} \subset X_{\varnothing}$ and $(X \cap Y)_{\varnothing} \subset Y_{\varnothing}$, respectively, correspond-
ning to (i), i.e. (X \cap Y)_{\varnothing} \subset X_{\varnothing} \cap Y_{\varnothing}$. Let $a \in X_{\varnothing} \cap Y_{\varnothing}$. We have $E(a), F(a) \subset \Omega_{\varnothing}$ for all a which implies $E(a) \cap F(a) \subset \Omega_{\varnothing}$ for all a, corresponding to (2.7). On the other hand,

$E(a) \cap F(a) = \{s : a(s) \in X \cap Y\}$, $a \in a$

which implies $a \in (X \cap Y)_{\varnothing}$ The theorem is proved.

(2.25) Remark. The facts worth keeping in mind from this section are:
the following: $R_{\varnothing} = A$; $(X \cap Y)_{\varnothing} = X_{\varnothing} \cap Y_{\varnothing}$; all exceptions (2.15—2.19). More spe-
ially, we are going to use in future the fact that $(0, 1)_{\varnothing}$ contains all positive

(2.26) $r \in \Omega_{\varnothing}, n \in \Omega, n \in \Omega \cup \{\varepsilon\}$, $n \leq r$, $r \in \Omega_{\varnothing}, r \neq 0$.

(2.27) Remark. The reader who knows the non-standard analysis (Robin-
son's theory of infinitesimals) [19—24] will probably observe that the notion of "asymptotic extension X_{\varnothing} of a set X" just introduced (2.1), is analogous,
to a certain degree, to the so-called "non-standard extension *_X of a set X" in the framework of the non-standard analysis. The lemma (2.11), as well as the theorems (2.20) and (2.24) have also counterparts in the nonstandard analysis. This analogy will continue in the future developments, too. For example, we are going to introduce the notions of "asymptotic extension of a given ordinary function" and "quasi-extended asymptotic functions" which will have analogs in the non-standard analysis.

3. Extended Asymptotic Functions

In this section we are going to consider a very special type of asymptotic functions which are obtained as an extension (continuation) of continuous ordinary functions (we mean complex-valued functions of real variables). These functions are called extended asymptotic functions.

(3.1) Definition (Extended Asymptotic Functions). (i) Let X be an open subset of R and $\varphi:X \to C$ be a continuous ordinary function defined on X. We shall say that an asymptotic function of the type $^*_X \varphi: D \to A^*$ is an asymptotic extension of φ if the following two conditions are valid: a) $X \subseteq D \subseteq X_{as}$ (2.1) and for every $a \in D$ the set (of functions):

$$a^* = \{\varphi(a) : a \in a\}$$

possesses an asymptotic cover asa^* [5, Definition 7]; b) if $a \in D$, then $^*_X \varphi(a)$ is (by definition) the asymptotic cover of a^*, i.e.

$$^*_X \varphi(a) = asa^*, \quad a \in D;$$

(ii) Let $X_n, k = 1, 2, \ldots, n$ be open subsets of R and let $\varphi:X \to C$ be a continuous ordinary function defined on X, where

$$X = X_1 \times X_2 \times \ldots \times X_n.$$

We shall say that an asymptotic function of the type $^*_X \varphi: D \to A^*$ is an asymptotic extension of φ if the following two conditions are valid: a) $X \subseteq D \subseteq X_{as}$ (2.10) and for every point $(a_1, a_2, \ldots, a_n) \in D$ the set (of functions):

$$a^* = \{\varphi(a_1, a_2, \ldots, a_n) : a_k \in a_k, \quad k = 1, 2, \ldots, n\}$$

possesses an asymptotic cover asa^* [5, Definition 7]; b) If $(a_1, a_2, \ldots, a_n) \in D$, then (by definition)

$$^*_X \varphi(a_1, a_2, \ldots, a_n) = asa^*;$$

(iii) The asymptotic functions obtained as an asymptotic extension of some continuous ordinary functions will be called extended asymptotic functions.

(3.2) Remark. It is clear that (i)-part of the above definition is a particular case of its (ii)-part for $n = 1$. On this point onwards, we shall consider the case $n = 1$ only, but all results established further can be easily generalized for $n > 1$.

(3.7) Remark. Let us remind [5, Definition 7], that the asymptotic cover asa^* of a subset a^* of A^* [5, Sec. 2] is an asymptotic number, i.e. $asa^*(A^*)$ which contains a^*, i.e. $a^* \subseteq asa^*$ and such that there is no other (different from asa^*) asymptotic number a' for which $a^* \subseteq a' \subseteq asa^*$. Let us recall fur-
The lemma (2.11), as well as parts in the nonstandard an-
velopments, too. For example, asymptotic extension of a given-
tic functions" which will have

The following three lemmas will help us to construct the asymptotic ex-
tensions of some ordinary functions.

(3.8) Lemma. Let \(\varphi(x) \), \(x \in X \) be an ordinary function differentiable any
umber of times on the open subset \(X \) of \(R \). Then \(\varphi_{as}(a) \) exists for
every finite asymptotic number of the type \(a = x + h \) where \(x \in X \) and \(h \) is an
infinitesimal. Moreover,

\[
\varphi_{as}(x+h) = \sum_{k=0}^{\infty} \frac{1}{k!} \varphi^{(k)}(x) h^k, \quad x \in X, \quad h \in \Omega_0.
\]

(3.10) Remark. The series on the right hand side of (3.9) is convergent
with respect to the interval topology of \(A \) [6, Sec. 5].

Proof. (3.9) is, in fact, a translation of the well-known formula for the
asymptotic expansion of \(\varphi(x+\varepsilon) \)

\[
\varphi(x+\varepsilon) \sim \sum_{t=0}^{\infty} \frac{\varphi^{(t)}(x)}{t!} \varepsilon^t
\]

in terms of the asymptotic number terminology. Notice that the series on the
right hand side of (3.11) is divergent (in general) with respect to the ordi-
nary topology of \(R \), in contrast to the series in (3.9) which is convergent
with respect to the topology of \(A \).

(3.12) Lemma. Let \(\varphi(x) \), \(x \in X \) be a continuous ordinary function defined
on the open subset \(X \) of \(R \) and let \(x \in \bar{X} \), where \(\bar{X} \) be the closure of \(X \).

(i) If there exists \(m \in Z \) for which

\[
\lim_{t \to 0} \frac{t^{-m} \varphi(x+t)}{x+t \in X} = 0,
\]

then the value \(\varphi_{as}(x+h) \) exists for all infinitesimals \(h \) for which \(x+h \in X_{as} \) and
the inequality (an estimate for \(\varphi_{as} \))

\[
\varphi_{as}(x+h) \leq o^{\mu h}, \quad x+h \in X_{as}
\]

holds, where \(\mu_h \) is the power of \(h \); (ii) Let, moreover, \(\varphi \) have an asymptotic
expansion of the type

\[
\varphi(x+\varepsilon) = \sum_{t=0}^{\infty} c_t \varepsilon^t + A_{\varepsilon}(\varepsilon), \quad \varepsilon \in \Omega, \quad x+\varepsilon \in X
\]

for all \(n \in Z \), \(n \leq \mu \), where \(\mu, \varepsilon \in Z \cup \{ \infty \} \), \(\mu \leq \nu \), \(\varepsilon \in C \) and

\[
\lim_{t \to 0} A_{\varepsilon}(\varepsilon) \varepsilon^t = 0.
\]

And let, finally, \(\varphi \) does not have an asymptotic expansion of the type (3.15)
by a higher order than \(\nu \). (The last is not a restriction in the case \(\nu = \infty \).)

Then

\[
\varphi_{as}(x+h) = \sum_{k=0}^{\infty} c_k h^k + o^{*} h, \quad x \in X, \quad h \in \Omega_0, \quad x+h \in X_{as}.
\]
Proof. The above lemma follows immediately from [6, Theorem 41]. It is, in fact, a periphrasis of the notion of asymptotic expansion of a given function in our "asymptotic number language".

(3.18) Remark. The above Lemma (3.12) reduces to Lemma (3.8) in the following special case: \(x \in X \) and \(q^{(k)}(x) \), \(k = 0, 1, \ldots \) exist. In this case we have \(q^{(k)}(x) = c_k \). We wrote out Lemma (3.8) only for the sake of convenience. We are going to use Lemma (3.12) (but not Lemma (3.8)) only in the case \(x \notin X \setminus X \).

(3.19) Lemma. Let \(q(x) \), \(x \in X \) be a continuous ordinary function defined on \(X \), where \(X \) is an open subset of \(R \). Let \(X \) contain intervals of the type \((t, \infty)\) or \((-\infty, t)\) for some \(t \in \mathbb{R} \) (the case \(X = \mathbb{R} \) is included here). If there exists \(m \in \mathbb{Z} \) (respectively) such that

\[
\lim_{x \to \pm \infty} x^{-m} q(x) = 0
\]

then \(q_{\pm}(a) \) exists for every positive (or negative, resp.) infinitely large asymptotic numbers \(a \) and

\[
q_{\pm}(a) \subseteq o \cdot \pm
\]

holds, where \(\mu \) is the power of \(a \).

Proof. Elementarily; it is sufficient to put \(a = \pm r s^\mu + s^\mu h \) for some \(\mu \in \mathbb{Z} \), \(\mu < 0 \), \(r \in \mathbb{R} \), \(r > 0 \) and some infinitesimal \(h \), to replace any \(\alpha \Delta a \) (which can be represented in the form \(\alpha(s) = \pm r s^\mu + s^\mu \chi(s) \) for \(\lim \chi(s) = 0 \)) in (3.20) and use the definition (3.1).

Recall the definition of the asymptotic numbers [5, Definition 5]. The following lemma establishes a connection between this definition and the notion of asymptotic extension of a function.

(3.22) Lemma. Let \(q(x) \), \(x \in X \) be a continuous ordinary function defined on the open subset \(X \) of \(\mathbb{R} \) and let \(q_{\pm}(a) \), \(a \in D \) be an asymptotic extension of \(q \). Then

\[
q_{\pm}(a) = a \cdot (q(a) + o(a)) \quad a \in D
\]

for any \(\alpha \in a \), where \(\gamma(a) \) is the order of \(q_{\pm}(a) \).

(3.24) Corollary. Let \(a \in A^r \). Then

\[
a = a_{\pm}(s + o^\infty) + o^r
\]

for any \(a \in a \), where \(r \) is the order of \(a \).

Proof. (3.23) follows immediately from [5, Theorem 3].

(3.26) Remark. Recall [5, Sec. 6] that \(s + o^\infty \) is the asymptotic number defined as follows:

\[
s + o^\infty = \{ a : a \in A^r, a(s) = s + A(s), \lim_{s \to 0} A(s)/s^a = 0 \text{ for all } n \in \mathbb{Z} \}.
\]

Recall, as well, that \(s + o^\infty, l^\infty \). Moreover, corresponding to [5, Definition 12], the number \(s + o^\infty = sl^\infty \) can be denoted simply as \(r \), i.e.

\[
s + o^\infty = sl^\infty = s.
\]

(3.29) Remark. In the \(n \)-dimensional case (3.23) could be replaced by

\[
q_{\pm}(a_1, \ldots, a_n) = a \cdot q(a_1, \ldots, a_n) + o(a_1, \ldots, a_n) \quad (a_1, \ldots, a_n) \in D
\]

for any \(a_k \in a_n \), \(k = 1, 2, \ldots, n \).
It is expansion of a given function. We refer to Lemma (3.8) in the text. In this case we will use the notion of convenience for the sake of convenience.

Theorem likely sentence.

Proof. Follows directly from the fact that \(\phi \) is continuous and \(X \) is an open set, bearing in mind the isomorphism \(\mathbb{R} = \mathbb{R}_0 \) [5, Theorem 20], as well as Theorem (2.20).

Acknowledgement. I would like to thank Acad. Chr. Ya. Christov for proposing the subject of this work and for his critical remarks.

References

