

InterSymp-2010, Foc. Symp: Advances in Adaptive Planning Capabilities; Baden-Baden, Germany, 2-6 Aug 2010

A Method to Implement Location Transparency in a Web Service

Environment

Xiaoshan Pan, PhD.

xpan@cadrc.calpoly.edu

Collaborative Agent Design Research Center, Cal Poly, San Luis Obispo, CA

CDM Technologies, Inc., San Luis Obispo, CA

Abstract

Location transparency offers some significant benefits in the areas of middleware, Service-

Oriented Architecture (SOA) and Cloud Computing. However, methods for achieving location

transparency in a Web service environment are scarcely presented in the literature. This paper

introduces such a method by describing a design and HTTP protocol-based implementation of

location transparency. A number of benefits, including support for the creation of a virtual

platform and increased mobility, availability and scalability of services, are elaborated. Two

significant capabilities - performance-based load balancing and failover - are demonstrated as

part of the experimental results.

Key Words

Location Transparency; Web service; Service-Oriented Architecture; Cloud Computing; Virtual

Platform; Intelligent Routing; Load Balancing; Failover

1. Introduction

In a Service-Oriented Architecture (SOA) environment, location transparency offers some

significant benefits to service consumers, service providers and developers. When SOA is

implemented using Web service technology, location transparency can be achieved through the
1

construction of a SOA infrastructure where Web services execute and interact with each other.

Location transparency is an ability of a SOA infrastructure that enables service consumers and

service providers to operate independently of their locations — a service consumer can consume

a service without knowing where the provider is located, because the discovery of the location

takes place at run-time.

From the perspective of a service consumer, location transparency creates the impression of a

virtual platform, in which all services seem to reside within the same machine or programming

space, while in reality the services may be widely distributed over a network (e.g., Internet). This

also leads to the sense of a Cloud – “I send a request into the Cloud, and somehow it gets

processed and a useful response comes back to me!” Therefore one practical usage of virtual

platform is to enable a consumer to access remote services as though they were local (i.e.,

transparent access).

From the perspective of a service provider, location transparency offers advantages such as

increased mobility, availability, and scalability. Location transparency enables a service

consumer to break any dependency that it may have on a fixed location of a service provider.

1
A SOA infrastructure refers to a service run-time environment that provides capabilities such as routing, location

transparency, security, service mediation, and service orchestration to SOA based systems.

1

InterSymp-2010, Foc. Symp: Advances in Adaptive Planning Capabilities; Baden-Baden, Germany, 2-6 Aug 2010

The service provider can be freely relocated, bringing the advantage of mobility. In turn, this

allows a service provider to perform maintenance without causing service interruption by

switching on a backup instance of the service at a different location while the service in

production is taken off-line for maintenance. Additionally, when multiple providers of the same

service contract exist, location transparency offers opportunities for the SOA infrastructure to

perform load balancing and fault tolerance, which leads to increased service scalability. For

example, when demand for a service increases, more instances can be created (e.g., through

virtualization) and registered to the SOA infrastructure. When demand decreases, some service

instances are taken down to free up resources for other usage.

Another benefit of location transparency is that the service location is eliminated as a concern for

service consumer developers. Traditionally, the developers need the location and access details

of a service which usually are specific to a service provider hosted at a physical location. With

location transparency, a service provider is an abstract service contract (that can be implemented

by multiple providers), and the developers are free to focus on solving business domain problems

instead of making efforts to interface with (and later on be coupled with) a particular provider.

To achieve location transparency, binding the consumer with a provider must occur at run-time

(instead of at design-time). More importantly, the binding needs to be dynamic—the binding

should be changeable based on criteria such as the availability, performance, and service policy

of service providers at any particular point in time.

2. Location Transparency in the literature

The concept of location transparency is not new. It has been explored in the area of middleware
2

research. Stal (2002) described using a proxy design pattern to achieve location transparency in

a middleware:

The basic idea behind this pattern is to introduce a proxy component as an

intermediate layer between the client and the servant. The proxy resides within

the address space of the client and implements exactly the same interface(s) as the

servant… Using this approach, a client can remain oblivious to any details related

to distribution, such as the servant location or communication protocol uses

(p.72).

Fiege et al (2003) proposed to utilize publish/subscription mechanisms to achieve location

transparency, which is “necessary to make existing applications mobile,” and mobility is

essential to the success of mobile computing, such as mobile services and devices. Belle et al

(1999) described a naming and routing algorithm that could interconnect mobile entities and

route messages between them, while the locations of the involved entities are transparent to each

other.

The significance of location transparency also is emphasized by researchers from the SOA

community. Channabasavaiah et al (2004) claimed that “SOA is an architecture with special

properties, comprising components and interconnections that stress interoperability and location

transparency” (p.21). Berbner et al (2005) described location transparency as “services should

have their definitions and location information stored in a repository and be accessible by a

2
Middleware is a piece of computer software that sits in-the-middle between application software, connecting

software components or applications. Middleware aims to provide interoperability in support of a coherent

distributed architecture and simplify complex distributed applications.

2

InterSymp-2010, Foc. Symp: Advances in Adaptive Planning Capabilities; Baden-Baden, Germany, 2-6 Aug 2010

variety of clients that could locate and invoke the services irrespective of their location” (p.211).

Srinivasan and Treadwell (2005) regarded location transparency as a means of conforming to

one of the SOA principles – loose coupling, because it limits the coupling between services to

interface agreement solely, not to some specific service implementations. Keen et al (2004)

proposed an approach to use an Enterprise Service Bus (ESB) as an intermediary to “achieve

location transparency by decoupling the client and service invocation” (p. 248). Brown (2008)

mentioned a number of approaches to implementing location transparency in SOA, including:

•	 Proxy-based approach. Using this approach, “to the service user, the proxy

presents what appears to be the service’s interface…The proxy forwards all

incoming requests to the real service interface and forwards replies from the

service interface back to the service user through the proxy interface”(p.76).

•	 Message-based approach. This approach relies on an intermediary party – a

message service broker – to facilitate communications between service

consumers and service providers. “The message service interface is no longer

tied to a specific destination. Instead, the message service provides a generic

interface for sending and receiving messages regardless of the destination”

(p.71). A service request waits in a message queue until a service provider picks

it up and processes it. In so doing, the location of the service provider that

processes the message is entirely transparent to the service consumer.

•	 Content-based approach. This approach also utilizes an intermediary party – a

mediation service – to receive a service request and then forward the request to a

chosen service provider. In this case, the mediation service selects a service

provider for handling a request by examining the content of the request and

matching it with a provider.

In the Cloud Computing paradigm, location transparency is one of the obvious features that a

cloud provides. Mei et al (2008) talked about a “cloud user should not be aware of the distributed

storage of data… and it is the cloud’s responsibility to retrieve them for the user through location

transparency” (p.468). This claim is also true when applying to the other types of resources that a

cloud can provide, such as applications, platforms, and Web services. Vaquero et al (2009) listed

“access transparency for the end user” as one of the primary Cloud characteristics.

However, regardless of the significance of location transparency to the areas of middleware,

SOA, and Cloud Computing, how to implement location transparency in a Web service

environment is scarcely presented in the literature. To date, the closest publicly-available

documents on the subject are two patents, one by Loupia (2009) and the other by Chen (2009),

both of which have obscured technical descriptions.

This paper presents a method for implementing location transparency as part of the capabilities

of a SOA infrastructure in a Web service environment. To remain focused, the other aspects of

the SOA infrastructure, such as service mediation, service security, and service orchestration, are

not discussed. The rest of the paper is organized as follows: section 3 describes the design of a

mechanism to achieve location transparency utilizing a Service Registry and an Intelligent

Router; section 4 describes an HTTP protocol based implementation of location transparency;

section 5 presents some of the experimental results; and, section 6 provides conclusions.

3

InterSymp-2010, Foc. Symp: Advances in Adaptive Planning Capabilities; Baden-Baden, Germany, 2-6 Aug 2010

3.	 A design for location transparency

In this design, one primary component facilitating location transparency is a service registry. As

far as its implementation is concerned, a service registry can be a database, a directory service,

an XML file, or a UDDI
3

registry. A service registry provides a registration mechanism to

service providers, enabling service consumers to discover a service provider in the registry and

subsequently invoke the service provider. Figure 1 illustrates the basic idea of utilizing a service

registry to facilitate location transparency. Three steps are involved: 1) a service provider is

registered with a service registry; 2) a service consumer searches the service registry and

discovers the service provider; and 3) the service consumer invokes the service provider. A key

concept illustrated by this mechanism is that the binding between a service consumer and service

provider can take place at run-time.

Figure 1: A service registry facilitates location transparency

Figure 1 suggests that a service consumer must perform the following steps to achieve

location transparency at run-time:

1.	 Search a service registry for potential service providers;

2.	 Select a service provider if more than one is found (i.e., making routing decision);

and

3.	 Send a request to the selected service provider and receive a response.

Assuming that steps 1 and 2 are performed by two software components, a Service Locator and a

Router, respectively, we have Figure 2 below.

Figure 2: Service consumer embedded with a Service Locator and a Router.

Figure 2 implies that the Service Locator and the Router are part of a service consumer’s internal

logic, which may seem legitimate from the point of view of a single service consumer. However,

3
UDDI refers to Universal Description, Discovery and Integration, a platform-independent, XML based registry

for services to list themselves on the Internet. It enables businesses to publish service listings and discover each

other and define how the services or software applications interact.

4

InterSymp-2010, Foc. Symp: Advances in Adaptive Planning Capabilities; Baden-Baden, Germany, 2-6 Aug 2010

embedding these components inside a service consumer becomes problematic when multiple

service consumers are involved. As illustrated in Figure 3, the Service Locator and the Router

are implemented twice (i.e., Service Consumer A contains one implementation and the Service

Consumer B contains the other), while the two implementations are technically identical. This

introduces an implementation-redundancy issue, which is not only inefficient but also can

quickly turn into a maintenance problem – just imagine hundreds of service consumers having to

implement the Service Locator and the Router individually. Furthermore, from a design

perspective, the focus of a service consumer is to work with business functions offered by a

service provider, not finding service providers and making routing decisions.

Figure 3: Redundancy implementation problem.

The SOA design disciplines advocate modularization of concerns in support of service

reusability (Erl, 2008). Therefore a natural solution to the implementation redundancy problem,

highlighted in Figure 3, is to make the Service Locator and the Router into separate modules that

can be reused by any service consumer that would like to take advantage of location

transparency. Let us call this reusable module an Intelligent Router (see Figure 4). This Router is

considered intelligent because it knows how to locate a service provider dynamically, given a

service request as its input.

Figure 4: Utilizing an Intelligent Router to provide location transparency.

Compared to Figure 3, the design illustrated in Figure 4 simplifies the implementation of a

service consumer. Furthermore, through the use of an Intelligent Router, location transparency is

made available to both service consumers and service providers without them being concerned

5

InterSymp-2010, Foc. Symp: Advances in Adaptive Planning Capabilities; Baden-Baden, Germany, 2-6 Aug 2010

with the implementations. Subsequently, the concept of a Virtual Platform is materialized (see

Figure 5).

Figure 5: Creating a Virtual Platform through the use of an intelligent router and a service registry.

In Figure 5, all service providers may be dispersed throughout a network, implemented using

different technologies, hosted in different environments, and removed/added to the registry at

different times. However, from the perspective of a service consumer, all service providers

appear as residing within the same machine, and all activities occurring in the machine are

transparent to the service consumer. More importantly, when changes take place on the service

providers’ side, such as physical relocation of or update to a service, there is no need to make

changes to the service consumers provided that the same service contracts are preserved.

4. An implementation of location transparency

The implementation described in this section assumes that Web services SOAP
4

or RESTful
5

services utilizing the HTTP protocol to transport messages, as they are currently the primary

vehicles to implement SOA in the industry.

As discussed in the previous section, the core implementation of location transparency consists

of two components: Service Registry and Intelligent Router. The Service Registry is well

understood in the SOA community. For examples, ebXML
6

and UDDI are two industry

initiatives that support the construction of a Service Registry. However, the concept of an

Intelligent Router has not been fully entertained by researchers. Of the two sub-components of

an Intelligent Router, the Service Locator component is relatively straightforward to construct,

4	
SOAP, or Simple Object Access Protocol, is a specification for exchanging structured information in the

implementation of Web services. It relies on Extensible Markup Language (XML) as its message format, and

other application layer protocols such as Remote Procedure Call (RPC) and Hypertext Transfer Protocol

(HTTP) for transporting messages.

5
REST, or Representational State Transfer, is a style of software architecture for distributed hypermedia systems.

A RESTful Web service requires developers to use HTTP methods explicitly. Service contents are treated as

resources that can be accessed and managed using the four basic HTTP methods – GET, POST, PUT, and

DELETE.

6	
ebXML refers to Electronic Business using Extensible Markup Language and is a family of XML-based

standards to provide an open, XML-based infrastructure that enables the global use of electronic business

information in an interoperable, secure and consistent manner. The capabilities that it provides include

publication and discovery of services electronically.

6

InterSymp-2010, Foc. Symp: Advances in Adaptive Planning Capabilities; Baden-Baden, Germany, 2-6 Aug 2010

because a registry such as UDDI has a well-designed API that supports service publication and

discovery. It is the Router component that poses a real challenge.

The Router must not only make intelligent routing decisions on the fly but also must act as a

faithful middle-man between a service consumer and a service provider. From the point of view

of a service consumer, the Router is a service provider, and from the point of view of a service

provider, the Router is a service consumer. To perform this task, the Router must achieve

content-based routing, meaning the content of a service request must be examined before a

routing decision is made.

A traditional network router works in a very different way, which relies on a pre-defined routing

table to perform its job, where the routing table is a set of fixed routing decisions, that contains

lists of address mappings instructing the network router where to forward a message. In so doing,

the content of a message never needs to be looked at.

With content-based routing, a router must: first, examine an incoming service request to extract

information regarding what service contract the request applies to; second, search a service

registry to discover any service providers who have implemented that service contract and where

they are located; third, decide on a provider; fourth, create a new service request based on the

original request; and finally, forward the service request to the chosen service provider. In

principle, when the Intelligent Router constructs a new request from the original one, the payload

of the request remains unchanged, with only the address information (i.e., addressee and return

address) altered. However, there are cases where the Intelligent Router must modify the payload

such as encrypting or decrypting the request or injecting security information into the message.

One such example is illustrated in Figure 6.

Figure 6: When performing ‘content-based’ routing, an Intelligent Router needs to construct a new request

out of the original one.

In Figure 6, after the Intelligent Router (i.e., “Mr. B”) receives a request from a Service

Consumer (i.e., “Mr. A”), it makes the following modifications to the request:

•	 The address information of the request is changed from “From Mr. A To Mr. B”

to “From Mr. B To Mr. C”. “Mr. C” is the service provider chosen by the Router.

7

InterSymp-2010, Foc. Symp: Advances in Adaptive Planning Capabilities; Baden-Baden, Germany, 2-6 Aug 2010

•	 The new request is encrypted using HTTPS, while the original request is not

encrypted. This encryption step is necessary because the chosen Service Provider

mandates that an incoming request be encrypted.

Similarly, when a response is received from the Service Provider, the Intelligent Router needs to

construct a new response accordingly and forward it to the Service Consumer. All of the work

that the Intelligent Router performs is transparent to both the Service Consumer and the Service

Provider, and the Service Consumer and the Service Provider are not aware of each other’s

existence.

The following sections describe the implementation of a Service Registry and an Intelligent

Router. The latter is composed of two sub-components: a Service Locator; and, a Router.

3.1.Service registry

The implementation discussed in this section uses OpenUDDI
7

as its service registry.

OpenUDDI offers the following Application Programming Interfaces (API):

•	 Publish. This API allows a service provider to register a service with the registry

so that the service can be discovered by a service consumer. In addition, this API

allows a service provider to modify an existing entry in the registry.

•	 Inquiry. This API allows a service consumer to discover service providers that

can satisfy its needs.

At a minimum, to publish a service instance to UDDI, a service provider must submit the

following information to the UDDI registry through the Publish API: 1). Service provider’s

name, description and POC; 2). Service interface’s name, description, contract (e.g., WSDL),

and type; and, 3). Service instance’s name, description, and physical end-point. An example is

given as the follows.

Service provider:

Name: Omega Cooperation

Description: A software company that works on the Singularity technology

POC: Dr. Omega, omega@singularity.com, Tel.: 1800.344.3444

Service interface:
Name: Singularity Search Interface

Description: A Web search interface into the Singularity knowledge base

Service contract: available at https://www.singulariry-inc.com/search?WSDL

Service type: SOAP-HTTP-Stateless

Service instance:
Name: Singularity Search Service

Description: A Web service that implements the Singularity Search Interface

End-point: https://192.34.43.01:443/search-service/

Once the above information is submitted, the UDDI registry assigns a unique provider-key,

interface-key, and service-key to the service provider, the service interface and the service

instance, respectively. A service provider can modify the above information through the same

API later on. For example, if the service provider would like to bring down the “Singularity

7
OpenUDDI is a high performance UDDI v3 compliant service registry implementation. More information about

OpenUDDI is available at: http://openuddi.sourceforge.net/

8

InterSymp-2010, Foc. Symp: Advances in Adaptive Planning Capabilities; Baden-Baden, Germany, 2-6 Aug 2010

Search Service” at the location https://192.34.43.01:443 for maintenance without interrupting the

consumers, the provider could do the following:

1.	 Activate a copy of the “Singularity Search Service” at another location, for example,

https://84.32.45.03:443 – which is hosted at a different location.

2.	 Modify the UDDI entry such that the End-point of the service is

https://84.32.45.03:443/search-service.

3.	 Bring down the service at https://192.34.43.01:443 and perform the maintenance.

Through the use of the Intelligent Router (introduced in the following section), the service

requests previously hitting the service located at 192.34.43.01:443 would be routed to the new

location at 84.32.45.03:443. Note that this location change is transparent
8

to the service

consumers of the “Singularity Search Service” (see Figure 7). It is also worth noting that

although the above scenario is easily achievable for stateless services more effort is required to

accomplish the same for stateful services. To guarantee no service interruption to service

consumers when working with a stateful service, the service consumer needs to detect a possible

termination of a stateful interaction and re-send the stateful request(s) to the Intelligent Router.

Figure 7: A service provider ‘swaps’ out a service instance without causing interruption to the service

consumers.

3.2.Intelligent router

The Intelligent Router is composed of two sub-components: a Service Locator and a Router.

Given a service request as the input, the former performs run-time queries to the OpenUDDI

registry to discover service providers. The latter makes a routing decision, forwards the request

to the chosen provider, and handles error conditions in the process.

8
In order to maintain total continuity of the service, it is assumed the one of the following conditions is true: 1).

the service is stateless, meaning the service does not maintain the state information of its consumers; or, 2). the

service is stateful, however all state information is replicated when the copy of the service is activated.

9

InterSymp-2010, Foc. Symp: Advances in Adaptive Planning Capabilities; Baden-Baden, Germany, 2-6 Aug 2010

3.2.1. Service locator

The Service Locator utilizes the UDDI Inquiry API to discover a service provider. A service

request coming from a service contains a URL (Uniform Resource Locator), which is structured

as follows:

[Protocol]://[IP or DNS Name]:[Port]/[Resource URI]

An actual example would be:

https://192.34.43.01:443/search-service/

Where “https” is the Protocol, “192.34.43.01” is the server IP, “443” is the Port, and “/search­

service/” is the Resource URI (Uniform Resource Identifier).

In this implementation, a service consumer is not restricted to using Resource URI in the URL. It

can send a service request to the Intelligent Router using any of the following URL formats:

1. https://router/search-service/ � using a URI to identify a service

2. https://router/interface-key-23432/ � using an interface-key to identify a service

3. https://router/service-key-10009/ � using a service-key to identify a service

The Service Locator will resolve #1 and #2 above to discover the service instances that match the

URI “/search-service/” and the interface-key “interface-key-23432”. However, #3 above will

match to exactly one service instance because each service-key is uniquely assigned to a service

instance in UDDI.

Assume that there are two service instances (implementing a same service contract that has the

key “interface-key-23432”) registered with the following end-points:

1. https://192.34.43.01:443/search-service

2. https://84.32.45.03:443/search-service

Then a service request sent to either “https://router/search-service/” or “https://router/interface­

key-23432/” will cause the Service Locator to find both service instances. Another Service

Locator function is to sort service instances based on their performance metrics such that a more

responsive service instance would show up higher in the list. The Service Locator obtains its

service metrics by sending the testing packets, and determining up or down status along with

service responding times. A more sophisticated performance metric may be obtained if the

service has a service API allowing the Service Locator to collect detailed information about the

usage of CUP, heap space, physical memory, and virtual memory of the machine where the

service is hosted.

3.2.2. Router

The Router performs two functions: choosing a service instance if multiple instances are found

by the Service Locator; and, forwarding a service request onto a chosen service instance. If a

stateful service is involved, then the Router will ensure that the service requests with the same

stateful session are routed to the same service instance. The Router accomplishes this by

10

InterSymp-2010, Foc. Symp: Advances in Adaptive Planning Capabilities; Baden-Baden, Germany, 2-6 Aug 2010

maintaining a cache in memory to keep track of any stateful communication between consumer

and provider
9
.

The following procedure describes the logic performed by the Router:

PROCEDURE: Router Logic

1. Receive a service request R from a service consumer C;

2. IF R is engaged in a stateful communication with an end-point E
3. THEN GOTO #14;

4. ELSE GOTO #6;

5. END IF;

6. Invoke the Service Locator and receive a list of service end-points L;

7. IF L is empty

8. THEN send a 404 error response to consumer C, END;

9. ELSE

10. FOR each end-point E in L
11. Establish connection with E
12. IF the connection fails,

13. THEN GOTO #10;

14. ELSE Construct a new request based on the original request;

15. Forward the new request to E;

16. Receive a response from E;

17. Construct a new response based on the original response;

18. Send the new response back to the consumer C, END;

19. END IF;

20. END FOR;

21. END IF;

Although the above procedure is generic in the sense that it is applicable to most types of

services in a SOA environment, the implementation of steps #14 through #18 must be protocol-

specific. The following elaborations are specific to the HTTP protocol.

The general form of a HTTP request is as follows:

[HTTP Method] [URI] [Protocol/Version]

[HTTP Headers]

[Message Body]

Figure 8 depicts a sample HTTP request message.

9
At the time of registration, a service must specify whether it is a stateful. When the Service Locator finds a

service instance for a service consumer, it informs the Router if the service instance is stateful. Therefore, the

Router is able to determine whether the consumer and the service instance are engaged in stateful

communication.

11

InterSymp-2010, Foc. Symp: Advances in Adaptive Planning Capabilities; Baden-Baden, Germany, 2-6 Aug 2010

Figure 8: A sample HTTP request using SOAP.

The general form of a HTTP response is as follows:

[Protocol/Version] [Response Status]

[HTTP Headers]

[Message Body]

Figure 9 depicts a sample HTTP response message.

Figure 9: A sample HTTP response using SOAP

To implement step #14 and step #17 (i.e., constructing a new request and a new response), the

Router needs to make changes to the HTTP Headers portion of a message. For example, if the

service provider is hosted at “ProviderServer:9090,” then the header “Host” in Figure 8 must be

modified from “Router:8080” to “ProviderServer:9090,” so that the correct service host is

12

InterSymp-2010, Foc. Symp: Advances in Adaptive Planning Capabilities; Baden-Baden, Germany, 2-6 Aug 2010

reflected in the request. For a typical case, the HTTP headers for both a request and a response

need to be modified, including:

•	 Host – specifies the Internet host and port number of the resource being

requested;

•	 Location – is used to redirect the recipient to a location other than the one

specified in the Request-URI;

•	 Referer – allows the client to specify the URI of the resource from which the

Request-URI was obtained; and

•	 Server – is a Server response header field that contains information about the

software used by the origin server to handle the request.

The implementation of step #15 and step #16 (i.e., sending a request to a provider and receiving

a response) is relatively straight-forward. It requires the Router to write the service request to the

OutputStream and read the service response from the InputStream, respectively, of the socket

used by the Router to connect to a provider.

To implement step #11 (i.e., connecting to a provider), the Router establishes a connection with

the provider using a network socket
10

. For example, using the Java language, a HTTP connection

between the Router and a Provider can be created using the java.net.Socket class as shown in the

following code sample:

Socket remoteServer = new Socket();

remoteServer.bind(null);

remoteServer.connect(new InetSocketAddress(IP, PORT), TIMEOUT);

Where IP and PORT specify the network address of the provider, and TIMEOUT specifies the

waiting time before a connection is terminated, in case the connection cannot be established.

For creating an HTTPS connection in Java, the javax.net.ssl.SSLSocketFactory class should be

used to configure the Router with a proper server certificate and a certificate trust-store (to

support Secure Socket Layer security),:

SocketFactory socketFactory = SSLSocketFactory.getDefault();

Socket remoteServer = socketFactory.createSocket();

remoteServer.bind(null);

remoteServer.connect(new InetSocketAddress(IP, PORT), TIMEOUT);

Because the Router implementation described in this section does not need to examine the

message body of an HTTP request or an HTTP response (other than performing encryption and

decryption), the solution works generally for all HTTP-based messages (e.g., BlazeDS
11

messages).

10
A network socket is an endpoint of a bi-directional inter-process communication flow across a computer

network. Its address is identified by the combination of an IP address and a port number.
11

BlazeDS is a server-based Java remoting and Web message technology that enables developers to easily

connect to back-end distributed data and push data in real-time to Adobe Flex applications for responsive Rich

Internet Application experiences.

13

InterSymp-2010, Foc. Symp: Advances in Adaptive Planning Capabilities; Baden-Baden, Germany, 2-6 Aug 2010

5. Experimental results

The experiments described in this section involve using a stateless Web service and a stateful

Web service as test services. The first service, Compute_Prime_Stateless, has one operation:

Operation: computePrime

Input: a positive integer number

Output: a list of prime numbers and the server IP

This service is stateless because it does not need to maintain any state information about the

consumer of the service – the service receives an integer number and returns a list of prime

numbers within the range as defined by the integer. There is no correlation between two separate

service requests. In addition, the server IP that indicates the location of the server is returned for

the sake of the experiment. For example, if the input is “7”, then the service would return the list

“2, 3, 5, 7” and “192.168.2.1”, where the latter is the IP of the server that processes the request.

The second service, Compute_Prime_Stateful, has two operations:

Operation 1: sendInput

Input: an ID and a positive integer number

Output: none

Operation 2: compute

Input: an ID

Output: a list of prime numbers and the server IP

Figure 10: Experimental environment setup.

In order to utilize this service, a service consumer must send two consecutive requests to the

service. The first request contains an ID and an integer number. After the service receives the

request, it stores the ID and the number in its memory. The second request contains only an ID

that the service uses to retrieve the corresponding integer in memory and to compute the prime

numbers for that integer. If the ID does not exist in the memory, the service responds to the

14

InterSymp-2010, Foc. Symp: Advances in Adaptive Planning Capabilities; Baden-Baden, Germany, 2-6 Aug 2010

consumer with an error. This is a stateful service, because the service must keep track of the state

information across two separate service requests, and the two consecutive requests must be

processed by the same service instance.

Figure 10 illustrates the configuration of the experimental environment. A Service Registry and

an Intelligent Router are deployed to a server named Router. Four service providers are

registered with the Service Registry. Each service provider has a unique IP address and hosts a

Compute_Prime_Stateless service and a Compute_Prime_Stateful service. A service client sends

service requests to the Router server only. The Router server is responsible for locating service

providers to fulfill a service request. This configuration represents a Virtual Platform, because

from the perspective of the service consumer all service providers reside on the Router server.

For the first experiment, four service consumer machines were configured to invoke the

Compute_Prime_Stateless service concurrently. Each consumer machine sent out 1,000

consecutive requests (4,000 requests total), and each request caused a Compute_Prime_Stateless

service to compute and return prime numbers between 1 and 100,000, along with the IP of the

server that performed the computation. All consumers sent their requests to the following end­

point (where the Intelligent Router resides):

https://Router:443/Compute_Prime/Compute_Prime_StatelessService

The Router server received the requests and performed load-balancing – distributing the requests

to the four service providers based on their run-time performance scores. Table 1 shows the

distributions of the requests across the four providers.

Table 1: Distribution of 4,000 stateless service requests across four providers

Consumer
1

Consumer
2

Consumer
3

Consumer
4

Total

Provider 192.168.14.118 104 107 106 105 422

Provider 192.168.14.132 216 216 217 216 865

Provider 192.168.14.133 360 356 349 354 1287

Provider 192.168.14.139 320 321 328 325 1294

Similarly, the Computer_Prime_Stateful service was used for the second experiment. Each of the

four consumer machines sent out 1,000 pairs of requests to the Router machine at the following

end-point:

https://Router:443/Compute_Prime/Compute_Prime_StatefulsService

Each pair of requests consists of two consecutive requests that share the same HTTP session ID,

which allows the Router to deliver the two requests to the same provider. In so doing, stateful

interactions between consumers and providers are maintained. Table 2 shows the distributions of

4,000 pairs of stateful requests across the four providers.

Table 2: Distribution of 8,000 (i.e., 4,000 pairs) stateful service requests across four providers

Consumer
1

Consumer
2

Consumer
3

Consumer
4

Total

Provider 192.168.14.118 143 142 141 142 568

Provider 192.168.14.132 231 233 230 232 926

Provider 192.168.14.133 323 321 323 322 1494

Provider 192.168.14.139 303 304 306 304 1217

15

InterSymp-2010, Foc. Symp: Advances in Adaptive Planning Capabilities; Baden-Baden, Germany, 2-6 Aug 2010

The data shown in the Table 1 and the Table 2 leads to the following observations:

•	 Location transparency has been achieved for both the stateful and stateless

services in the experiments. As far as a service consumer is concerned, there was

only one provider and it resided on the server named Router. However, in the

experiment there were multiple providers, and each was hosted on a different

server.

•	 A performance-based load balancing capability has been achieved in these

experiments. The provider with IP 192.168.14.133 has the best run-time

performance, and the provider with IP 192.168.14.118 has the worst run-time

performance.

•	 Location transparency is a suitable strategy for making a service scalable. If the

demand of a service increases, more provider machines that host the service can

be stood up to meet the demands. To make an additional service instance

available to the consumers, the only configuration required is to register the

service instance with the Service Registry.

Another significant feature supported by location transparency is failover. Specifically at runtime

when multiple providers are available to support the same service contract, if one provider fails

to process a request, the subsequent requests can be routed to other providers. Moreover, if a

service consumer is configured to resend a stateless service request, or all requests involved in a

stateful session, when a server error is detected while processing the request, then subsequent

requests along with any failed requests can be recovered. In this way, it is possible to swap

service providers at runtime without causing service interruptions.

In the next experiment, using the same environment illustrated in Figure 10, two service

consumer machines were configured to send stateless requests (1,000 consecutive requests for

each consumer) and the other two service consumer machines were configured to send stateful

request pairs (1,000 pairs for each consumer) to the Router machine for processing. Each

stateless request or stateful request pair will cause a service provider to compute all prime

numbers between 1 and 100,000. In addition, the service consumers were configured to resend a

stateless request or stateful request pair if a server error was detected. To simulate server error

conditions, every 30 seconds a service provider was randomly chosen to disconnect from the

network and reconnect back to the network 10 seconds later. Table 3 lists the distribution of both

stateless and stateful requests that were successfully processed even though all the service

providers failed to respond occasionally. As the results indicate, no single request failed to be

processed even when error conditions took place.

Table 3: Distribution of both stateless and stateful requests that were successfully processed when service

providers failed to respond occasionally

Stateless
Consumer

1

Stateless
Consumer

2

Stateful
Consumer

1

Stateful
Consumer

2
Total

Provider 192.168.14.118 200 205 239 239 883

Provider 192.168.14.132 451 458 384 390 1683

Provider 192.168.14.133 115 106 140 148 2566

Provider 192.168.14.139 234 231 237 223 925

Requests re-sent 10 12 12 14 48

16

InterSymp-2010, Foc. Symp: Advances in Adaptive Planning Capabilities; Baden-Baden, Germany, 2-6 Aug 2010

The data shown in the Table 3 demonstrates that a robust failover capability can be developed

based on location transparency. When the failover capability works together with the load

balancing capability, improved service availability can be achieved in a potentially unreliable

computing environment, characterized by fluctuating network connectivity and occasional server

failures.

6. Conclusions

Although the significance of location transparency is recognized in the areas of middleware,

SOA, and Cloud Computing research, methods for achieving location transparency in a Web

service environment are scarce. This paper presents such a method by describing a design and

HTTP protocol-based implementation of location transparency in a Web service environment. In

the design, the utilization of a service registry and an intelligent router is elaborated. An HTTP

protocol-based implementation is presented and some experimental results are discussed. The

benefits of location transparency demonstrated, include: 1) support for the creation of virtual

platforms; 2) increased mobility, availability and scalability for service providers; and, 3) the

elimination of service location as a concern for service consumers. In addition, two significant

capabilities are established through the use of location transparency and are demonstrated,

namely: performance-based load balancing; and, failover.

References:

Brown, P., Implementing SOA: Total Architecture in Practice. Addison-Wesley: Boston. 2008.

ISBN 0321504720.

Berbner, R., Grollius, T., Repp, N., Heckmann, O., Ortner, E., Steinmetz, R., “An Approach for

the Management of Service-Oriented Architecture (SOA) Based Application Systems.

Proceedings of the Workshop Enterprise Modeling and Information Systems Architectures

(EMISA 2005). October 2005, 208–221.

Belle, W., Verelst, K., and D’Hondt, T., “Location Transparent Routing in Mobile Agent

Systems—Merging Name Lookups with Routing,” Proc. 7th IEEE Workshop Future Trends of

Distributed Computing Systems (FTDCS 99), IEEE CS Press, Los Alamitos, Calif., 1999, pp.

207-212.

Chen, J., “Reroute of a Web Service in a Web Based Application,” Patent, Greenblum &

Bernstein PLC, 2009. Available at: http://www.faqs.org/patents/app/20090094314

Channabasavaiah, K., Holley, K., and Tuggle, E., “Migrating to a service-oriented architecture,”

white paper, IBM, April 2004.

Erl, T., SOA: Principles of Service Design. Prentice Hall: New York. 2008. ISBN0132344823.

Fiege, L., Gartner, C., Kasten, O., and Zeidler, A., "Supporting Mobility in Content-Based

Publish/Subscribe Middleware," in Proceedings of the ACM/IFIP/USENIX International

Middleware Conference (Middleware 2003). Rio de Janeiro, Brazil, 2003, pp. 103-122.

Keen, M., Acharya, A., Bishop, S., Hopkins, A., Milinski, S., Nott, C., Robinson, R., Adams, J.,

and Verschueren, P., “Patterns: Implementing an SOA using an Enterprise Service Bus”. IBM

Redbook, July 2004.

Liupia, D., “Method of Redirecting Client Requests to Web Services,” Patent, Hoffman Warnick

LLC, 2009. Available at: http://www.faqs.org/patents/app/20090019106

17

InterSymp-2010, Foc. Symp: Advances in Adaptive Planning Capabilities; Baden-Baden, Germany, 2-6 Aug 2010

Mei, L., Chan, W., and Tse, T., “A Tale of Clouds: Paradigm Comparisons and Some Thoughts

on Research Issues,” Asia-Pacific Services Computing Conference (APSCC '08), Yilan, Taiwan,

December 2008, 464-469.

Srinivasan, L., and Treadwell, J., “An overview of service-oriented architecture, web services

and grid computing,” November 2005. Available at: http://devresource.hp.com/drc/technical

papers/grid soa/SOA-Grid-HP.pdf.

Stal, M., “Web Services: Beyond Component-based Computing”. Communications of the ACM,

October 2002. Vol. 45, No. 10, pp. 71-76.

Vaquero, L., Rodero-Marino, L., Caceres, J., Lindner, M., “A break in the clouds: towards a

cloud definition,” SIGCOMM Computer Communication Review, 39 (2009), 137–150.

18

