Background

Controlled Flight Into Terrain (CFIT) is the #1 cause of fighter pilot fatalities and accounts for 25% of destroyed fighter aircraft. To prevent CFIT, Automatic Ground Collision Avoidance Systems (Auto-GCAS) utilizes Digital Terrain Elevation Data (DTED) stored onboard a plane to determine potential recovery maneuvers. Auto-GCAS has been successfully tested on the F-16 in a small area at Edwards AFB/Dryden Flight Research Center.

The military is interested in worldwide Auto-GCAS for F-22 and F-35 to maximize fighter and pilot safety, but because of current computer hardware limitations, worldwide DTED must be compressed for storage. This lead to research of DTED compression algorithms such as: thinning of data, binary/quad-tree tip-tilt, regular and irregular triangle networks, and fractals. Previous research, as indicated in the graphs above, found that binary-tree tip-tilt compression sub-samples DTED to a lower resolution and constructs regular rectangular slopes arranged in a regular pattern. Then the error is calculated by checking against the original DTED. Where the error is above a given tolerance, rectangular divisions are made and the process is repeated.

Materials and Methods

Binary-tree tip-tilt compression sub-samples DTED to a lower resolution and constructs regular rectangular slopes arranged in a regular pattern. Then the error is calculated by checking against the original DTED. Where the error is above a given tolerance, rectangular divisions are made and the process is repeated.

The truth data is 1 Arc Second National Elevation Data (from 35.1652°N to 35.2228°N and from -117.499°W to -117.306°W) and comes in a matrix of elevation posts. The test data is the compressed version of our truth data covering roughly the same geographical area. It is recorded in rows that contain the corners of the planes. Since the data sets come in different formats, it must be determined which plane contains each elevation post. Once this is determined, the difference or error is found by subtracting the height of the plane from the height of the elevation post. This will result in a matrix of error values that is the same size as the original DTED.

Since the data sets come in different formats, it must be determined which plane contains each elevation post. Once this is determined, the difference or error is found by subtracting the height of the plane from the height of the elevation post. This will result in a matrix of error values that is the same size as the original DTED.

Discussion

The error values are largely dependent on the shape of the terrain as can be seen by comparing the two color plots. Wherever there is a quick change in elevation, the errors are high.

1% of the terrain is being underestimated. Compression algorithm is not supposed to be underestimating so this raises concerns. Requires further investigation of spatial distribution to see if certain areas are causing issue.

Future Areas of Interest

The following are research ideas to provide further information and improvements to Binary-Tree Tip-Tilt compression:

- Assess the horizontal accuracy of the DTED after compression
- Explore different sub-sampling techniques and determine the most efficient/most accurate
- Analyze how the error of the original DTED propagates through compression and decompression

Preliminary Results

Descriptive Statistics of Error Values

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Error</td>
<td>6.658 meters</td>
</tr>
<tr>
<td>Absolute Mean Error</td>
<td>6.684 meters</td>
</tr>
<tr>
<td>Standard Error</td>
<td>9.803 meters</td>
</tr>
<tr>
<td>Percentage of Points Underestimated</td>
<td>1.096%</td>
</tr>
</tbody>
</table>

References


Acknowledgements

A special thanks to the staff of STAR (Russ Billings, Victoria Costa, and Yvonne Campos) and to the staff of NASA (John Ryan, Loyd Hook, Mark Skoog, and arahKate Thomas). This material is based upon work supported by the S.D. Bechtel, Jr. Foundation and by the National Science foundation under Grant No. 952013 and Grant No. 0733758. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the S.D. Bechtel, Jr. Foundation or the National Science Foundation.