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Abstract 

We describe the Dedekind cuts explicitly in terms of non-standard rational num

bers. This leads to another construction of a Dedekind complete totally ordered field 

or, equivalently, to another proof of the consistency of the axioms of the real numbers. 

We believe that our construction is simpler and shorter than the classical Dedekind 

construction and Cantor construction of such fields assuming some basic familiarity 

with non-standard analysis. 

1 Preliminaries: Ordered Fields and Infinitesimals 

We recall the main definitions and properties of totally ordered rings and fields. We also 
recall the basic properties of infinitesimal, finite and infinitely large elements of such fields. 
For more details and for the missing proofs, we refer the reader to (Lang [4], Chapter XI), 
(van der Waerden [8], Chapter 11) and Ribenboim [6]. 

1.1 Definition (Orderable Ring). Let K be a ring (field). Then: 

1. K is called orderable if there exists a non-empty set K+ ⊂ K such that: (a) 0  ∈ K+; 
(b) K+ is closed under the addition and multiplication in K; (c) For every x ∈ K 
either x = 0 or x ∈ K+ or − x ∈ K+. 

�n 22. A ring (field) K is formally real if, for every n ∈ N, the equation k=0 xk = 0 in K 
has only the trivial solution x1 = · · · = xn = 0. 
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1.2 Theorem. A field K is orderable i f f K is formally real.
 

Proof. For the proof we refer the reader to (van der Waerden [8], Chapter 11). 

The field of complex numbers C is non-orderable, because the equation x2 + y2 = 0 
has a non-trivial solution, x = i, y = 1, in C. The field of the real p-adic numbers Qp is 
non-orderable for similar reasons (see Ribenboim [6] p.144-145). 

1.3 Definition (Totally Ordered Rings). Let K be an orderable ring (field) and let the set 
K+ ⊂ K satisfy the properties given above. Then: 

1. We define the relation <K+ on K by x <K+ y if y − x ∈ K+. We shall often write 
simply < instead of <K+ if the choice of K+ is clear from the context. Then (K, +, ·, <), 
denoted for short by K, is called a totally ordered ring (field). 

2. Let K be a totally ordered ring (field) and let x ∈ K and A ⊂ K. (a) We define the 
absolute value of x by |x| =: max(−x, x); (b) We denote by UB(A) the set of the upper 
bounds for A; (c) We denote by supK(A) or, simply by sup(A), the least upper bound 
for A (if exists). 

3. A totally ordered ring (field) K is called Archimedean if for every x ∈ K, there exists 
n ∈ N such that |x| ≤ n. 

4. A totally ordered set (ring or field) K is Dedekind complete if every non-empty subset 
of K that is bounded from above has a supremum. 

1.4 Theorem (Rationals and Irrationals). Let K be a totally ordered field. Then: 

(i) K contains a copy of the field of the rational numbers Q under the order field embedding 

σ : Q → K defined by: σ(0) =: 0, σ(n) =: n · 1, σ(−n) =: −σ(n) and σ(m) =: σ(m) 
k σ(k) 

for n ∈ N and m, k ∈ Z. We shall simply write Q ⊆ K for short. 

(ii) If K \ Q is non-empty, then K \ Q is dense in K in the sense that for every a, b ∈ K, 
such that a < b, there exists x ∈ K \Q such that a < x < b. 

(iii) If K is Archimedean, then Q is also dense in K in the sense that for every a, b ∈ K 
such that a < b there exists q ∈ Q such that a < q < b. 

1.5 Definition (Infinitesimal, Finite and Infinitely Large). Let K be a totally ordered field. 
We define: 

I(K) =: {x ∈ K : |x| < 1/n for all n ∈ N},
 

F(K) =: {x ∈ K : |x| ≤ n for some n ∈ N},
 

L(K) =: {x ∈ K : N)(n < |x| for all n ∈ N}. (1)
 

The elements in I(K), F(K), and L(K) are referred to as infinitesimal (infinitely small), 
finite and infinitely large, respectively. We sometimes write x ≈ 0 if x ∈ I(K) and x ≈ y if 
x − y ≈ 0, in which case we say that x is infinitesimally close to y. 
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The next result follows directly from the above definition. 

1.6 Lemma. Let K be a totally ordered ring. Then: (a) I(K) ⊂ F(K); (b) K = F(K) ∪ 
L(K); (c) F(K) ∩ L(K) = ∅. If K is a field, then: (d) x ∈ I(K) i f f 

x 
1 ∈ L(K) for every 

non-zero x ∈ K. 

1.7 Theorem. Let K be a totally ordered field. Then F(K) is an Archimedean ring and 
I(K) is a maximal ideal of F(K). Moreover, I(K) is a convex ideal in the sense that 
a ∈ F(K) and |a| ≤ b ∈ I(K) implies a ∈ I(K). Consequently F(K)/I(K) is a totally 
ordered Archimedean field. 

Here are some familiar properties of ordered fields expressed “in terms of infinitesimals”. 

1.8 Theorem (Archimedean Property). Let K be a totally ordered ring. Then the following 
are equivalent: (i) K is Archimedean. (ii) F(K) = K. (iii) L(K) = ∅. If K is a field, then 
each of the above is also equivalent to I(K) = {0}. 

Notice that Archimedean rings (which are not fields) might have non-zero infinitesimals. 
Indeed, if K is a non-Archimedean field, then F(K) is always an Archimedean ring, but it 
has non-zero infinitesimals (see Example 1.10 below). 

1.9 Corollary. Every Dedekind complete totally ordered field is Archimedean. 

Proof. Let D be a Dedekind complete totally ordered field and suppose (to the contrary) 
that D is non-Archimedean. Then L(D) = ∅ by Theorem 1.8. Thus N ⊂ D is bounded from 
above by |λ| for any λ ∈ L(D). Let α ∈ K be the least upper bound of N. Then there exists 
n ∈ N such that α − 1 < n implying α < n + 1, a contradiction. 

1.10 Example (Field of Rational Functions). Let R(t) be the field of rational functions in 
one variable with real coefficients. We supply R(t) with an ordering given by f < g in R(t) 
if there exists n ∈ N such that g(t)− f(t) > 0 in R for all t ∈ (0, 1/n). Notice that R(t) is a 
non-Archimedean field: t, t2, t + t2, etc. are positive infinitesimals, 1+ t, 2+ t2 , 3+ t + t2, etc. 
are finite, but non-infinitesimal, and 1/t, 1/t2 , 1/(t + t2), etc. are infinitely large elements of 
R(t). 

2 Existence of a Dedekind Complete Field 

In this section we present a proof of the existence of a Dedekind compete totally ordered 
field based on the saturation principle from non-standard analysis (Lindstrøm [5], p. 49). 
For another non-standard proof based on the concurrence theorem, we refer to (Davis [2], 
p. 53). For the classical proofs of the same result due to Dedekind and Cantor, we refer 
to Rudin [7] and Hewitt & Stromberg [3], respectively. We also mention a more recent 
proof of the existence of a Dedekind complete field in Banaschewski [1], based on a form of 
completeness introduced by Hilbert. 

1. Let ∗Q be the non-standard extension of the field of the rational numbers Q in a 
polysaturated non-standard model with a set of individuals Q (Lindstrøm [5], p. 51). 
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Let F(∗Q) and I(∗Q) denote the sets of the finite and infinitesimal elements of ∗Q, 
respectively (Definition 1.5). Notice that card(F(∗Q))/I(∗Q)) < κ since F(∗Q)/I(∗Q) 
is an Archimedean field by Theorem 1.7. We denote by χ : F(∗Q) → F(∗Q)/I(∗Q) 
the canonical homomorphism. We also let A+ = {α ∈ F(∗Q) : α > 0 and α  ≈ 0}. 

2. We define D = {Cα : α ∈ F(∗Q)}, where Cα = {q ∈ Q : q < α}. We observe that 
Cα = Cβ i f f α ≈ β. Consequently, card(D) < κ. We convert D into a totally ordered 
set (chain) under the ordering: Cα < Cβ if α < β and α  ≈ β (or if β − α ∈ A+, for 
short). We also observe that the mapping q → Cq from Q into D is an injection which 
preserves the usual order in Q. We define a monad-like function M : D → P(∗Q) by 
M(x) = {α ∈ F(∗Q) : Cα = x}. Here P(∗Q) stands for the power set of ∗Q. 

2.1 Theorem. D is a Dedekind complete totally ordered set. 

Proof. Let A ⊂ D be a set bounded from above by some C ∈ D and let B =: UB(A) 
stand for the set of upper bounds of A in D. If A is finite or C ∈ D, then sup(A) exists 
since sup(A) = max(A). Suppose that A is an infinite set and C ∈/ A and observe 
that the family of open intervals {(α, β)} has the finite intersection property. Cα∈A, Cβ ∈B 

Next, we have to select a subfamily of cardinality at most κ which still has the finite 
intersection property. By the axiom of choice, there exists a function ϕ : A → ∗Q 
such that ϕ(a) ∈ M(a) for all a ∈ A. Similarly, there exists ψ : B → ∗Q such that 
ψ(b) ∈ M(b) for all a ∈ B. The family {(ϕ(a), ψ(b))} is of cardinality less than a∈A, b∈B 

κ and by the saturation principle (Lindstrøm [5], p. 49), there exists γ ∈ F(∗Q) such 
that ϕ(a) < γ < ψ(b) for all a ∈ A and all b ∈ B. Thus sup(A) = Cγ. 

3. We define addition and multiplication in D by Cα + Cβ = Cα+β and CαCβ = Cαβ, 
respectively. We observe that D is a field with zero 0 =: C0 and unit 1 =: C1, and 
with additive inverse −Cα = C−α and multiplicative inverse C−1 = α Cα−1 . 

2.2 Theorem. Also D is a totally ordered field. 

Proof. Let D+ = We have C0  ∈ D+ since 0 / Also, D+{Cα ∈ D : Cα > 0}. ∈ A+. 
is closed under the addition and multiplication in D since A+ is closed under the 
addition and multiplication in ∗Q. Finally, suppose that Cα = 0, i.e. α  ≈ 0. We have 
either α > 0 or α < 0 by the trichotomy of the order in ∗Q. The latter implies either 
Cα > 0 or Cα < 0. 

2.3 Remark (Uniqueness of the Operations). Recall that every Dedekind complete ordered 
set (chain) D, which contains a copy of the ordered set (Q, <), determines uniquely the 
algebraic operations in D which convert D into a totally ordered field by the formulas: 

(i) If Cα, Cβ ∈ D, then 

Cα + Cβ = supD{p + q : p, q ∈ Q, p < α and q < β}; −Cα = supD{q ∈ Q : q < −α}. 

(ii) If Cα, Cβ > 0, then CαCβ = supD{pq : p, q ∈ Q+, p < α and q < β} and 

Cα 
−1 = supD{q ∈ Q+ : q < α−1}. 
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(iii) We also let (−Cα)(−Cβ) = CαCβ and (−Cα)Cβ) = −(CαCβ). 

In fact, we do not need these formulas for our construction; our definitions of addition 
and multiplication in D, presented in # 3 above, are simpler. 

2.4 Remark (Why polysaturation ?). The above arguments hold for any c +-saturated non
standard model, where c = card(R) (Lindstrøm [5], p. 49). We prefer to use a polysaturated 
non-standard model only to avoid even mentioning R or its cardinality c. 

2.5 Remark (Original Dedekind Cuts). Our result shows that D consists exactly of the usual 
(original) Dedekind cuts. Thus our construction can be viewed as a “explicit parametric 
description of the Dedekind cuts in terms of ∗Q”. 

2.6 Corollary (Another Complete Field). F(∗Q)/I(∗Q) is a Dedikind complete totally 
ordered field. 

Proof. F(∗Q)/I(∗Q) is a totally ordered field by Theorem 1.7 and it is easy to see that the 
mapping Cα → χ(α), from D to F(∗Q)/I(∗Q), is an order field isomorphism. 

We should mention that a direct proof of the Dedekind completeness of F(∗Q)/I(∗Q) 
based on the concurrence theorem appears in (Davis [2], p. 53). 
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