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This work presents a new inviscid wall boundary condition technique for embedded Cartesian grid schemes. 
This scheme eliminates the time step restrictions associated with the arbitrarily small control volumes that can 
result when the surface cuts the Cartesian control volumes. The cells adjacent to the surface are removed from 
the control volume formulation and are instead solved via an interpolation technique which utilizes the wall 
boundary conditions to build the interpolating functions. Two different interpolation techniques are presented, 
one without considering wall curvature and one considering wall curvature. Results are compared to a two-
dimensional airfoil case and a three-dimensional wing case. 

Nomenclature 
Cd	 Drag coefficient 
Cl	 Lift coefficient 
Cp	 Pressure coefficient 
cp	 Specific heat at constant pressure 
CFL	 Courant-Friedrichs-Levy condition number 
Kw	 Wall curvature constant combining curvatures 

and tangential velocity direction 
Kηξ 	  Curvature of the surface along the ξ -direction 
Kηζ 	  Curvature of the surface along the ζ -direction 
M	 Mach number 
n Normal vector from surface 
p Pressure 
R	 Gas constant 
T	 Temperature 
u	 Velocity vector 
u	 Velocity vector component 
x,y,z	 Cartesian coordinate directions 
γ	 Specific heat ratio 
δ	 Distance along surface normal 
λ	 Velocity direction in the ξ -ζ plane 
ξ , η , ζ	 Geodesic coordinate system for surface 

curvature formulation 

Subscripts 

ξ , η , ζ	 Vector component in given geodesic 
coordinate direction 

c Property at interpolation point along 
surface normal 

t	 Vector property tangential to wall 
w	 Property at wall 
0	 Stagnation properties 
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Surface cell centroid property in wall 
boundary condition development 
Freestream conditions 

Introduction 

CARTESIAN grids have been gaining popularity in 
the past several years because of the short grid gen­

eration times required for complex three dimensional 
configurations.1 This has motivated a number of re­
searchers to develop inviscid, embedded grid Cartesian 
solvers that utilize the cut cell methodology to model the 
surfaces.2–4 

The problem of arbitrarily small cut cells was ad­
dressed as far back as Clarke et al.5 as well as Gaffney 
and Hassan6 in order to avoid the time stepping prob­
lems with the CFL restriction associated with these cut 
cells due to the small areas and volumes of these cells. 
The technique used by these researchers, and the pre­
dominant technique currently used, is the cell merging 
technique. The cell merging technique finds cut cells 
that are below a specified size criteria (typically below 
50% of the full Cartesian cell size). These cells are then 
merged with neighboring full cells to create surface cells 
that are larger than the full Cartesian cells, see figure 1. 
In this case the surface cuts through a collection of cells, 
numbered 1–5. Cell 1 turns into a cut cell (numbered 
1 in the resulting merged cells) while cells 2 and 3 are 
merged together into the cell numbered 2 since cell 3 is 
too small after the cut. Flow cell 4 remains a fl ow cell 
and cell 5 turns into a cut cell. 

While the cell merging technique eliminates the ex­
tremely small cell sizes in the explicit time stepping 
schemes, it does not eliminate the cut cells that are 
above the specified threshold size. Thus the time step 
will still be constrained by 1/2 of the full Cartesian 
cell size. In addition, this adds more complexity map­
ping the Cartesian cells to the computational control 
volumes which can have adverse affects on the finite vol­
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Solid surface overlayed Resulting Merged 
Cartesian Cells Cells 

Fig. 1 Example of Merge Cell Creation 

ume scheme. As an example, figure 1 shows that the 
treatment of the merged cell 2 results in a refinement-
like interface between cell 2 and cells 4 and 5 which can 
cause problems for both inviscid as well as viscous cases. 

This research presents an alternative treatment to 
the surface cells that avoids these issues. First, a brief 
overview of the Cartesian grid solver used for this work 
is presented. This is followed by a development of the 
pertinent details of the boundary condition develop­
ment for both the fl at wall assumption and the curved 
wall assumption. Next is the presentation of the results 
for the test cases which is followed by the conclusions of 
the work. 

Cartesian Solver Description 
The Cartesian grid solver used for this work is 

NASCART-GT, an unsteady, three-dimensional solver 
developed at Georgia Tech. A summary of the features 
will be presented here, see Marshall7 for a detailed de­
scription. 

NASCART-GT is an unsteady, three-dimensional em­
bedded grid Cartesian solver of the full Navier-Stokes 
or Euler equations without body forces and a perfect 
gas thermodynamic model. This work utilizes the in­
viscid solution functionality of NASCART-GT, and this 
description will focus on the inviscid functionality. The 
governing equations are solved using Roe’s approxi­
mate Riemann solver coupled with a MUSCL data re­
construction technique for the inviscid fl uxes. A pres­
sure based limiter is applied to the reconstruction to 
dampen oscillations in high gradient regions. The over­
all accuracy of the scheme is as high as third order 
accurate in space. 

The time integration is performed using a Hancock 
two-stage predictor-corrector scheme which is second 
order accurate in time. In order to accurately cap­
ture high gradient regions, a solution adaption scheme 
is used. The solution adaption scheme uses a combina­
tion of the velocity divergence and velocity gradient as 
a coarsening/refining metric. 

Since no ghost-cells are used at the surface cells, the 
MUSCL data reconstruction limiter is used to avoid 
creating a computational stencil with cells that are inte­
rior to the body. This has the effect of possibly lowering 
the order of accuracy of the data reconstruction for 
some cells. 

One limitation in the current version of NASCART­
GT is that the size of the cells along a solid surface must 
be the same size. This is in order to limit the instabilities 
in the viscous modeling cases.8 There is no reason for 
this limitation to be present in the inviscid cases, and it 
will be removed in future versions of NASCART-GT. 

Wall Boundary Condition Development 
The wall boundary condition development presented 

here removes the surface cells from the finite volume 
formulation discussed above. Instead, the state for these 
cells is determined from an interpolation of the sur­
rounding cells with the wall boundary conditions as 
additional constraints. 

The formulation of the surface cell properties utilizes 
the state at a point normal to the surface which can be 
based on the surrounding cells, see figure 2. The state at 
point ’c’ is constructed by using a distance weighted in­
terpolation of the of the surrounding cells (in this case 
cells ’1’ through ’9’). The distance weighted interpo­
lation places an additional restriction on the cells sur­
rounding the surface cell. All of the cells neighboring 
the reference cell and the reference cell itself must be at 
the same refinement level as the surface cell. 
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δ 
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wδ9 
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Fig. 2 Example Configuration for Solid Boundary Treatment 

Using the state at point ’c’, the state at the centroid 
of the surface cell, labeled ’9’, (or the wall location, la­
beled ’w’) can be developed by using one-dimensional 
relationships along the line Bw. The specifics of the 
state reconstruction relationship depends on whether 
the wall curvature is to be considered. 

Flat Wall Development 

The inviscid formulation is separated into two cases, 
one if the fl ow at point ’c’ is subsonic and another if it 
is supersonic. 

Subsonic Case The surface cell velocity is first deter­
mined by an interpolation procedure along the line Bw 
from point ’c’ to the wall utilizing the surface tangency 
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wall boundary condition. The resulting relationship is 

δ9u9 = uc − 1− (uc · n)n (1)
δc 

where δc and δ9 are the distances from point ’w’ to 
points ’c’ and ’9’, respectively. This has the effect of 
holding the tangential velocity constant and linearly de­
creasing the normal velocity to zero at the wall. 

With the velocity determined at point ’9’, the temper­
ature can be found by using the adiabatic relation 

γ − 1
T0 = Tc 1 + M2 (2)c2 

γ − 1
U2T9 = T0 − 92cp 

and the pressure can be found by using the isentropic 
relation ( ) γ 

γ − 1 1−γ 

p9 = p0 1 + M9
2 (3)

2 
This has the effect of correcting the thermodynamic 
properties for the velocity changes associated with the 
wall conditions. 

Supersonic Case The supersonic case is split into 
two separate cases, one if the wall angle produces a 
shock and the other if it produces an expansion (or is 
parallel to the fl ow). If the wall produces a shock due 
to a positive wall angle, then the following standard 
oblique shock relations are used, see Anderson9 for the 
derivations 

Mn,c = Mc sinβ 

(γ + 1)M2 
ρ9 = ρc

n,c 

(γ − 1)Mn
2 
,c + 2 

2γ ( ) 
p9 = pc 1 +

γ + 1 
Mn

2 
,c − 1

M2 2 
n,c + γ−1Mn

2 
,9 = (4)2 

γ−1 Mn
2 
,c − 1 

p9 ρcTn,9 = Tc pc ρ9 

M9 = Mn,9 csc (β − θ) 

M2 sin2 β − 1ctanθ = 2cotβ 
M2 (γ + cos2β )+ 2c 

where β is the oblique shock angle and θ is the wall 
angle. One additional correction is to the velocity mag­
nitude at ’9’. The subsonic formulation from above is 
is used to calculate the velocity direction at ’9’, and the 
velocity magnitude from the oblique shock relations is 
used for the final velocity magnitude. 

If the wall angle produces an expansion (or is paral­
lel to the fl ow) then the same subsonic velocity relations 
are used to calculate the velocity vector. To calculate 
the thermodynamic properties, the standard Busemann 

surface pressure coefficient relation, see Berten10 for 
details, is used to determine the pressure by 

2 (γ + 1)Mc 
2 − 4Mc 

2 + 4
Cp = √ θ + θ 2 (5)

Mc 
2 − 1 2(Mc 

2 − 1)2 

ρcU2 
cp9 = pc + Cp2 

where again θ is the wall angle. From the isentropic 
relations, the temperature at ’9’ is calculated from ⎡ ⎤ ( ) γ−1 

2 p0 γ 

M2 = ⎣ − 1⎦ (6)9 γ − 1 p9 

U2 
T9 = 9
 

γRM9
2
 

Curved Wall Development 
While the basic model does address the time step 

limitation associated with the cut cell sizes mentioned 
above, some deficiencies of the basic model have been 
addressed with the curved wall model. Specifically, uti­
lizing the surface curvature to ease the grid refinement 
criteria around regions of high curvature, and utiliz­
ing the governing equations to develop the interpolation 
relationships. The surface curvature modification re­
quires the governing equations to be transformed into 
geodesic coordinates in order to incorporate the surface 
curvature terms. See Marshall7 for the derivation de­
tails associated with the Euler equations in both two-
and three-dimensions for geodesic coordinates. The net 
result of this treatment is that the surface curvature 
is needed along the two coordinates along the surface 
(ξ and ζ ). The curvature of the surface along the ξ ­
direction is denoted as Kηξ  and along the ζ -direction is 
denoted as Kηζ  . See figure 3 for an example surface. 

1 

3 

4 

2 

0 
ζ 

η 

ξ 
Kηζ 

Kηξ 

Fig. 3 Example Surface for Curvature Calculation 

The normal momentum equation in the geodesic for­
mulation is 

∂ p 
= ρ Kηξ  uξ 

2 +Kηζ  uζ 
2 (7)

∂η  [ ( ) ( ) ]
∂uη 1 ∂uη ∂uη 1 ∂uη− ρ + uξ +uη + uζ∂ t hξ ∂ξ  ∂η  hζ ∂ζ  

where the h terms are the differential length elements 
associated with the geodesic coordinate formulation. 
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Applying equation (7) to the surface and utilizing the 
boundary conditions for the Euler fl ows (i.e. uη = 0, 
∂uη ∂uη= 0, = 0 and ∂uη = 0) yields ∂ t ∂ξ  ∂ζ  

∂ p 
= ρ Kηξ  uξ 

2 + Kηζ  u2 (8)ζ∂η  

As with the fl at wall boundary conditions, the inviscid 
formulation is separated into two cases, one if the fl ow 
at point ’c’ is subsonic and another if it is supersonic. 

Subsonic Case The surface cell state calculation 
starts with the assumption that the normal velocity de­
creases linearly and that the magnitude of the velocity 
does not change between points ’c’ and ’9’. Further, 
it is assumed that the tangential velocity vector does 
not change directions with respect to the surface co­
ordinates between points ’c’ and ’9’. The following 
expresses these criteria 

uζ ,ctan λc = 
uξ ,c 

δ9uη,9 = uη,cδc 

= Uc 
2 − u2 (9)ut,9 η,9 

uξ ,9 = ut,9 cosλc 

uζ ,9 = ut,9 sin λc 

where uξ , uη and uζ are the velocity components in the 
geodesic coordinate directions, ut is the tangential ve­
locity and λ is the angle made by the tangential velocity 
and the ξ -direction. 

To develop the temperature relation, the adiabatic 
condition is used to get the following 

γ − 1
T0 = Tc 1 + M2 (10)c2 

γ − 1
U2T9 = T0 − 92cp 

Notice that this has the effect of holding the tempera­
ture constant since the velocity magnitudes are the same 
between points ’c’ and ’9’, thus Tw would also be equal 
to Tc. 

With the temperature and velocity determined, the 
pressure relation can be developed by assuming a lin­
ear profile for the pressure curve along Bw and using 
equation (8) for the slope of the pressure curve at the 
wall. To start, the equation for the pressure curve can 
be found to be 

∂ p ∣ 
p = pw + δ (11)

∂η  w 

U2 ( )w= pw 1 + Kηξ  cos2 λc + Kηζ  sin2 λc δ
RTw 

where p is the pressure at a point δ distance away from 
the wall along Bw. Since the conditions at ’c’ as well as 

the temperature and velocity at the wall are known, the 
wall pressure can be solved to get 

RTwpw = pc (12)
RTw +U2Kwδcw

Kw = Kηξ  cos2 λc + Kηζ  sin2 λc 

where Kw is the combined curvature effects in the ξ - and  
ζ -directions. With the wall pressure found, the pressure 
at ’9’ can be found to be 

U2 
wp9 = pw 1 + Kwδ9 (13)

RTw 

and the boundary condition development is complete. 
Supersonic Case The supersonic case is again split 

into two separate cases, one for a shock and the other 
for an expansion (or parallel fl ow). The shock case uses 
the oblique shock relations developed above to deter­
mine the velocity direction and thermodynamic condi­
tions and the subsonic relations are used to determine 
the velocity direction. For the expansion or parallel 
fl ow case, the Busemann relations from above are used 
to determine the thermodynamic quantities while the 
subsonic relations are used to determine the velocity 
components. 

Results 
The following cases demonstrate the effectiveness of 

the new inviscid wall boundary conditions presented 
above. The first case is a transonic NACA-0012 airfoil 
fl ow. This is followed by a transonic ONERA M6 wing 
fl ow.  

NACA-0012 Airfoil 
This test case is a NACA-0012 airfoil in a M∞ = 0.85 

fl ow at an angle-of-attack of α = 1.00◦. The computa­
tional boundaries are approximately 10 chords around 
the airfoil. Solutions are presented on a computational 
domain with a root grid dimension of 88x80 and 6 lev­
els of refinement. In addition, solution adaption is 
performed every 200 iterations starting after 1000 it­
erations. Both solutions converged in approximately 
20,000 iterations using local time-stepping. The final 
grids for the fl at wall solution consists of 13,384 cells 
and 13,321 cells for the curved wall solution. Also, 
a curvature maximum of 40.0 is imposed in order to 
limit the large pressure gradients that can result near 
the leading edge. Figure 4 shows the final grid for the 
curved wall solution. Notice that the solution adap­
tion has refined cells near the leading edge where the 
fl ow is going through rapid accelerations and near the 
shocks. The results from this case are compared with 
the AGARD Advisory Report results11 which presents 
general results from several researchers as well as de­
tailed results for a 320x64 (20,480) cell structured grid 
solution. 

Figures 5 and 6 show the surface pressure coefficient 
comparison between the NASCART-GT solutions and 
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Fig. 6 NACA-0012 Lower Surface Pressure Coefficient 

Fig. 4 Final Computational Domain for NACA-0012 Flow 

the AGARD solution for the upper and lower surfaces, 
respectively. The curved wall solution does a better job 
of capturing the rapid accelerations with only slight dif­
ferences at the leading edge. The upper surface shock 
locations are missed by approximately 0.025 chords aft 
and 0.035 chords aft for the curved wall and fl at wall 
solutions respectively. For the lower surface the curved 
wall solution is slightly fore of the reference data, while 
the fl at wall solution is slightly aft. 
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Fig. 5 NACA-0012 Upper Surface Pressure Coefficient 

Figures 7 and 8 show the Mach contours for the fl at 
wall and curved wall solutions, respectively. Figure 9 
shows the Mach contours from the AGARD reference. 
All three figures use a ΔM = 0.05 for the contours. Both 
wall boundary conditions do an excellent job of cap­
turing the fl ow features throughout the computational 
domain. 

Finally, table 1 shows the lift and drag coefficients 
for the fl at wall and curved wall cases as well as the 
AGARD committee results. In addition, the scatter 
associated with the various computed results by the 
AGARD researchers is also provided. The fl at wall 

Fig. 7 Mach Contours for NACA-0012 Flat Wall 

boundary condition solution performs slightly better 
than the curved wall boundary condition solution for 
the lift coefficient with a 10.9% over-prediction versus 
11.8% for the fl at wall solution, with each result within 
the scatter of the AGARD data. The curved wall bound­
ary condition does a much better job at predicting the 
drag coefficient and is over the AGARD data by ¡0.1%. 
However, the fl at wall boundary condition over-predicts 
the drag by 34%, but is close to the AGARD range. This 
is due to the inability of the fl at wall to capture the lead­
ing edge suction peaks. 

fl at wall curved wall AGARD11 (scatter) 

Cl 0.4007 0.3974 0.3584 (0.0589) 
Cd 0.07748 0.05855 0.0580 (0.0126) 

Table 1 NACA-0012 Lift and Drag Results 
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proximately 270,000 cells with 20,357 surface cells. For 
this case, the fl at wall boundary condition is used. Fig­
ure 10 shows the final grid for this case. 

Fig. 8 Mach Contours for NACA-0012 Flow Curved Wall 

Fig. 9 NACA-0012 Mach Contours from AGARD-AR-21111 

ONERA M6 Wing 

This test case is an inviscid fl ow around an ONERA 
M6 wing in a M∞ = 0.84 fl ow at an angle-of-attack of 
α = 3.06◦. The computational boundaries are 4 root 
chord lengths away in the x-, y- and z-directions. The 
solution is presented on a computational domain with a 
root grid dimension of 21x18x22 and 8 levels of refine­
ment. In addition, solution adaption is performed every 
200 iterations starting after 1000 iterations until 5000 it­
erations. The solution converged in approximately 8500 
iterations. The final grid for this case consists of ap-

Fig. 10 Final Computational Domain for ONERA M6 Flow 

The results from this case are compared with the re­
sults from AGARD Advisory Report (AGARD-AR-138) 
results12 and AGARD Advisory Report (AGARD-AR­
211) results.11 The AGARD-AR-138 data is experimen­
tal data performed for a very high Reynolds number, 
11.72x106, in order to minimize the displacement thick­
ness effects caused by the boundary layer. The AGARD­
AR-211 data is a collection of computational results 
from several researchers for an inviscid solution to this 
problem. 

A direction comparison of the NASCART-GT results 
with other inviscid solutions is difficult because other 
solution techniques are not limited to a single cell size 
throughout the entire solid surface as is NASCART­
GT. However, other inviscid solutions also predict the 
stronger shock location aft of the experimental location, 
for example Aftosmis et al.13 as well as the AGARD­
AR-211 computational results. Both having generally 
good agreement with the NASCART-GT locations. 

Figure 11 shows the surface pressure values at several 
span-wise locations for the NASCART-GT solution and 
the AGARD-AR-138 results. The leading edge suction 
peak is reasonably well captured, with some error intro­
duced near the tip. As is typical in inviscid solutions,13 

the upper surface shock locations are slightly aft of the 
experimental results due to the fact that the boundary 
layer effects are being neglected. For the inboard sec­
tions, figures 11a through 11d, there are two separate 
shocks on the upper surface that are present in the ex­
perimental results as well as in these results. However, 
the leading shock location is slightly aft of the expected 
location along the span-wise direction, causing the two 
shocks to merge closer inboard of the wing compared to 
the AGARD data. The lower surface shows nice agree­
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Fig. 12 ONERA M6 Upper Surface Mach Contours 
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Fig. 11 Span-wise ONERA M6 Surface Pressure Coefficients 

Figures 12 and 13 show the Mach contours on the 
upper surface of the wing for NASCART-GT and the 
AGARD-AR-211 results, respectively. Both figures use 
a ΔM = 0.05 for the contours. In these figures it is ap­
parent that there is a lambda-shock structure on the up­
per surface with NASCART-GT capturing both shocks. 
Again, it is clear that the two socks merge further in­
board. 

Figures 14 and 15 show the Mach contours on the 
lower surface of the wing for NASCART-GT and the 
AGARD-AR-211 results, respectively. Both figures use 
a ΔM = 0.05 for the contours. Here there is nice agree­
ment between the two results with only slight differ­
ences near the root and tip sections. 

Conclusions 
This paper presented an alternative treatment for the 

inviscid wall boundary condition for the cut cells in an 
embedded boundary Cartesian solver. This new treat­
ment eliminates the CFL time step limitation associated 
with the traditional cut cell treatments by removing 
these cells from the finite volume formulation. This 
time step improvement has been observed to decrease 
the number of time steps to reach steady state by 4 to 
5 times. While this boundary condition treatment re­
moves the formal conservative nature of the solver for 
these surface cells, preliminary experiments show that 
the non-conservativeness is very minimal.7 

Fig. 13 ONERA M6 Upper Surface Mach Contours from 
AGARD-AR-21111 
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