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[1] A spatially explicit life cycle water analysis framework is proposed, in which a 
standardized water footprint methodology is coupled with hydrologic modeling to assess 
blue water, green water (rainfall), and agricultural grey water discharge in the production of 
biofuel feedstock at county-level resolution. Grey water is simulated via SWAT, a watershed 
model. Evapotranspiration (ET) estimates generated with the Penman-Monteith equation and 
crop parameters were verified by using remote sensing results, a satellite-imagery-derived 
data set, and other field measurements. Crop irrigation survey data are used to corroborate 
the estimate of irrigation ET. An application of the concept is presented in a case study for 
corn-stover-based ethanol grown in Iowa (United States) within the Upper Mississippi River 
basin. Results show vast spatial variations in the water footprint of stover ethanol from 
county to county. Producing 1 L of ethanol from corn stover growing in the Iowa counties 
studied requires from 4.6 to 13.1 L of blue water (with an average of 5.4 L), a majority 
(86%) of which is consumed in the biorefinery. The county-level green water (rainfall) 
footprint ranges from 760 to 1000 L L-1. The grey water footprint varies considerably, 
ranging from 44 to 1579 L, a 35-fold difference, with a county average of 518 L. This 
framework can be a useful tool for watershed- or county-level biofuel sustainability metric 
analysis to address the heterogeneity of the water footprint for biofuels. 

Citation: Wu, M., Y. Chiu, and Y. Demissie (2012), Quantifying the regional water footprint of biofuel production by incorporating 
hydrologic modeling, Water Resour. Res., 48, W10518, doi:10.1029/2011WR011809. 

1. Introduction 
[2] Biofuel production has been increasing as a result of 

policy for energy security, environmental benefits, and an 
improved rural economy. In 2010, global biofuel produc­
tion increased by 17% and reached an all-time high of 105 
billion liters, driven by a combination of factors, such as 
high oil prices, a global economic rebound, and new laws 
and mandates in several countries. The United States pro­
duced 49 billion liters of ethanol, mainly from starch feed­
stock, accounting for 47% of the world total. Cellulosic-
based biofuel is projected to increase, with an estimated 
one billion short tons of feedstock becoming available by 
2030 [U.S. Department of Energy, 2011]. Other biofuel 
resources have also been explored [Wigmosta et al., 2011]. 
In this context, the water-bioenergy nexus is increasingly 
important. Because water resources vary regionally and 
water use in biofuel production is feedstock and technology 
dependent, it is vital to address the impacts of biofuel pro­
duction on water resources with spatial resolution [Phong 
et al., 2011 ; Georgescu et al., 2011] and across the product 
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life cycle. Doing so will improve our understanding of the 
complexity of the energy-water nexus, identify critical 
issues in the biofuel supply chain as they relate to water 
quantity and water quality, and support the planning of sus­
tainable biofuel production. 

[3] Conceptually, the biofuel water footprint during the 
crop growing and refinery conversion stages can be parti­
tioned into three compartments, including green water, 
blue water, and grey water (Figure 1). Green water repre­
sents rainwater used to support crop growth through evapo­
transpiration (ET) ; blue water represents surface water and 
groundwater use by crop through ET and in the production 
of fuels, energy, and other goods. Grey water is defined as 
the volume of freshwater that is required to assimilate the 
load of nutrients/chemicals on the basis of water quality 
standards established by the U.S. Environmental Protection 
Agency (EPA). Chapagain and Hoekstra [2004] proposed a 
water footprint accounting methodology for products, coun­
tries, and regions. The method is currently being incorporated 
into an ISO standard (http ://www.iso.org/iso/iso_catalogue/ 
catalogue_tc/catalogue_detail.htm ?csnumber¼43263). His­
torically, a number of studies have attempted to estimate 
biofuel water requirements across the major stages of the 
biofuel supply chain [Mishra and Yeh, 2011  ;  Scown et al., 
2011 ; Wu et al., 2009, 2011 ; Gerbens-Leenes et al., 2009  ;  
Gerbens-Leenes and Hoekstra, 2009  ;  Chiu et al., 2009  ;  
Evans and Cohen, 2009  ;  King and Webber, 2008]. The feed­
stock analyzed by these researchers includes grain, sugar 
crops, agricultural residue, herbaceous grass, and forest 
wood. Although the studies share a similar objective of 
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Figure 1. Schematic representation of the system boundary for the biofuel water footprint analysis.
 

quantifying the biofuel water footprint, they show vastly 
wide variations of results because of differences in terms of 
scale, system boundaries, analysis matrices, assumptions, 
and methodologies. 

[4] Several studies focus on irrigation water withdrawal 
[Chiu et al., 2009 ; Scown et al., 2011 ; Evans and Cohen, 
2009], while others examine consumptive irrigation water 
use for crops [Gerbens-Leenes et al., 2009 ; Mishra and 
Yeh, 2011 ; King and Webber, 2008 ; Wu et al., 2009, 2011 ; 
Gerbens-Leenes and Hoekstra, 2009], which excludes the 
portion of irrigation water that is returned to the resource. 
In a recent publication, Mishra and Yeh [2011] include 
both water withdrawal and consumption assessments. That 
work provides a detailed examination of the water transport 
and delivery process in California in the United States, 
where water loss in the process is a key factor in the overall 
water consumption of the state. Few studies examined both 
blue and green water use [Gerbens-Leenes et al., 2009 ; 
Evans and Cohen, 2009 ; Mishra and Yeh, 2011]. 

[5] Embedded water use for the production of biofuel is 
addressed in several analyses [King and Webber, 2008 ; 
Scown et al., 2011] for a full life cycle assessment (LCA). 
Refinery coproduct water use allocation has been consid­
ered for corn ethanol [King and Webber, 2008 ; Gerbens-
Leenes and Hoekstra, 2009 ; Scown et al., 2011 ; Wu et al., 
2011], cellulosic ethanol [Scown et al., 2011], and sugar 
cane and sugar beet ethanol [Gerbens-Leenes and Hoek­
stra, 2009]. Water allocation between the grain and residue 
feedstocks has been considered in two studies [King and 
Webber, 2008 ; Gerbens-Leenes et al., 2009]. Grey water is 
covered only in two analyses by Gerbens-Leenes and 
Hoekstra [2009] and Evans and Cohen [2009]. As a result 
of the fundamental differences in approach described above, 
the estimated water use per liter of biofuel production varies 
significantly (even for one specific biofuel produced from a 

similar region), making it difficult to compare the water 
footprint estimate among these studies. 

[6] Another source of uncertainty is from estimates of 
ET. Historically, water vapor transfer methods have been 
used to conduct field- or plot-scale in situ measurements of 
ET (such as Eddy covariance, Bowen ratio) and compo­
nents of evaporation (such as soil evaporation, rainfall 
interception loss, sap flow). Alternatively, water budget 
measurements (such as soil moisture depletion, evaporation 
pan) are often used [Schilling, 2007 ; Logsdon et al., 2009]. 
For regional- and landscape-scale measurements, large-scale 
measurements of evaporation (such as remote sensing and 
more recently satellite imagery) are frequently performed, 
which offer broad spatial and temporal coverage [Bastiaans­
sen et al., 1998a, 1998b ; Allen et al., 2011 ; Zhang et al., 
2010]. However, in the life cycle water analysis, water foot­
print accounting relies on Penman-Monteith method to esti­
mate reference ET and couple it with crop parameters to 
derive crop ET. Validation of ET was rarely performed. 
Nevertheless, recent work began to explore the potential of 
using remote sensing techniques for estimating the water foot­
print of crops [Romaguera et al., 2010]. How well the esti­
mated ET in water footprint represents field conditions across 
various regions has not been fully addressed. In addition, cur­
rent water footprint analyses are based mostly on high-level 
political boundaries (e.g., country or state) such that spatial 
variations within a state are not explicitly represented. 

[7] The key gap in water footprint analyses exists in grey 
water. Its evaluation rarely considers hydrogeologic condi­
tions, which play a key role in water resource and water 
quality. For example, nitrogen loading, a key component in 
grey water, was, for the most part, estimated by assigning a 
fixed fraction of fertilizer applied to the crop for the entire 
analyzed area, which may underestimate or overestimate 
the loadings caused by fertilizer use in different geological 
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Figure 2. Analytical framework for estimating green, blue, and grey water footprint of biofuels in the 
feedstock production stage. The hydrologic model SWAT is used to simulate agricultural grey water. 

areas [Chiu and Wu, 2012]. As in LCA and other analysis 
areas, data monitoring and availability presents a challenge 
to water foot printing, especially for agricultural grey water, 
either not available or not measured systematically over 
long periods across various locations. Watershed modeling 
to simulate grey water would be one option to address this 
issue. 

[8] This study seeks to develop an integrated analytical 
framework to quantify the water footprint of conventional, 
cellulosic, and advanced biofuel with spatial resolution at 
the county level. The primary objectives are to establish a 
water footprint of green, blue, and grey water for biofuel 
by incorporating hydrological modeling into the water foot­
print methodology. Another objective of this work is to 
refine the estimates of ET and the blue water use by verify­
ing them against field data. Our intent is to include spatial 
variability and fill the grey water data gap in the analysis 
through consideration of watershed climate, hydrological, 
and soil conditions, thereby improving the fidelity of the 
water footprint analysis. 

2. Methods 
[9] The system boundary of water footprint covers feed­

stock production, feedstock preparation and transport, and 
feedstock conversion in biorefinery (Figure 1). Note that 
the blue and grey water use has occurred throughout the 
entire production life cycle, while green water use is only 
limited to the feedstock production. 

2.1. Consumptive Use of Green and Blue Water 

2.1.1. Consumptive Green and Blue Water Use in 
Feedstock Production 

[10] Figure 2 presents the analytical framework devel­
oped in this study for estimating the green, blue, and grey 
water footprint of biofuels in the feedstock production 
stage. Both feedstock green water and blue water are esti­
mated through crop ET, which indicates the crop’s water 
demand that is satisfied by irrigation (blue) and rain-fed 
water (green). Several steps are taken for green water and 
blue water calculations (Figure 2). Consumptive green water 
for feedstock is computed from effective rainfall, while con­
sumptive blue water is estimated from the differential of ET 

and effective rainfall. The resultant consumptive blue water 
is then verified against irrigation survey data by adjusting an 
irrigated area factor at the county level. 

[11] The effective rainfall Peff is obtained by applying the 
definition and method proposed by the U.S. Department of 
Agriculture (USDA) Natural Resources Conservation Serv­
ice (NRCS) [Kent, 1972  ;  NRCS, 1997], which accounts only 
for precipitation available for crop consumptive use. It is 
assumed that there is no further runoff or deep percolation of 
the precipitation after an effective rainfall. 

[12] A reference ET (ETo) was estimated by using the 
Penman-Monteith equation [Allen et al., 1998]. A set of 
monthly crop coefficients Kc for each crop over the entire 
growing season was collected from the literature. Crop ET 
was calculated from the ETo and Kc at each location. The 
calculated ET values were further verified with measure­
ments gathered by field instrumentation and remote sens­
ing, as well as on the basis of values derived from satellite 
imagery data for this area. The monthly crop-specific ET 
value is summed to annual ET, together with the effective 
rain and crop-harvested area, to obtain the green and initial 
blue water use. Detailed calculations equations of con­
sumptive green and blue water are presented in the auxil­
iary material.1 

[13] The calculated crop blue water requirement is veri­
fied with irrigation survey data. The volume of actual an­
nual consumptive irrigation is calculated on the basis of the 
crop-specific state-level irrigation withdrawal data survey 
reported in the Farm and Ranch Irrigation Survey (FRIS) by 
the USDA [2003, 2008] and the irrigation returning flow for 
each state estimated by the U.S. Geological Survey (USGS ; 
Water use in the United States for years 1985, 1990, 1995, 
http ://water.usgs.gov/watuse/, accessed September 2011). 
The differential between the total irrigation water with­
drawal and the irrigation returning flow contributes to con­
sumptive crop irrigation, which includes water used by the 
crop through ET and water losses through conveyors and 
irrigation application equipment. As presented in Figure 2, 
the actual consumptive irrigation derived from USGS and 

1Auxiliary materials are available in the HTML. doi :10.1029/ 
2011WR011809. 
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USDA data were compared with the calculated initial esti­
mate of consumptive irrigated ET (ETIRG). By using a water 
balance, a state-level calibration factor fcb has been deter­
mined (equation (1)). Of the irrigation water lost through 
the conveyance and irrigation application, generally 
between 0.12% and 2.5% of the total water loss is evapora­
tive [Mishra and Yeh, 2011]. The nonevaporative loss dur­
ing the conveyance and irrigation application eventually 
returns to the hydrosystem through surface runoff and soil 
percolation to shallow groundwater and becomes part of the 
returning flow RF in equation (1). 

IRGw - LIRG - LCV - RF ¼ ETIRG x fcb ¼ BWc (1) 

where IRGw is the reported irrigation withdrawal volume 
(L), RF is the irrigation flow returning to the water body 
(L), LIRG is the evaporative water loss from irrigation appli­
cation (L), LCV is the evaporative water losses from convey­
ance (L), fcb is the state-level calibration factor (unitless), 
and BWc is the blue water consumption (L). 
2.1.2. Blue Water Use in Feedstock Transport and 
Refinery Conversion 

[14] Feedstock is harvested and stored before shipment 
to the biorefinery. Grains are stored in silos, and agricul­
tural residue and perennial grass are baled and field dried. 
During the process, the water requirement is nearly zero. In 
a biorefinery, feedstock is converted to biofuel via bio­
chemical, thermochemical, or physical chemical processes. 
At present, a majority of corn ethanol plants built in the 
Midwest source groundwater because of its consistent qual­
ity. Process water consumption is primarily from cooling 
and heating requirements and varies with feedstock conver­
sion technologies employed for biofuel production [Wu 
et al., 2009]. Generally, water use in a biorefinery for pro­
ducing conventional biofuel from starch (e.g., corn, wheat, 
sorghum) and oil seeds (e.g., soybeans) is well documented 
[Keeney and Muller, 2006 ; Keeney, 2007 ; Pradhan et al., 
2011 ; Wu et al., 2009]. Cellulosic biofuels, however, are 
still in the early development stage ; therefore, water figures 
associated with large-scale production are lacking. Using 
ASPEN Plus process simulation tool, Humbird et al. [2011] 
reported that 5.4 L of water is required to produce one liter 
of cellulosic ethanol from corn stover and switch grass via 
a biochemical process at an ethanol yield of 329.5 L per 
dry metric ton (DMT). Fuel blending and transportation to 
a refueling station consumes minimal water and was there­
fore not included in this study. 

2.2. Grey Water 

[15] Grey water is defined as the volume of freshwater that 
is required to assimilate the load of nutrients/chemicals on 
the basis of water quality standards established by the U.S. 
Environmental Protection Agency (EPA) safe drinking water 
standard in 1997 (http ://water.epa.gov/drink/contaminants/ 
basicinformation/nitrate.cfm#four). Several common chem­
icals are released from the biofuel supply chains, such as 
nitrogen, phosphorus, potassium, and lime, that result from 
fertilizer application during feedstock cultivation ; others 
are from the refinery, such as ammonia and sulfuric acid in 
biochemical conversion [Humbird et al., 2011]. Ammonia 
content in the refinery treated wastewater is practically nil 
as almost all of it goes to the brine and sludge, according to 

process simulation by Humbird et al. [2011]. Nitrogen in 
the feedstock production stage is the dominant nutrient that 
accounts for a majority of the grey water because of the 
large amount required for application. Among the nitrogen 
compounds discharged, nitrate is extensively monitored 
and tightly regulated by the U.S. EPA because of its water 
solubility and resultant detrimental health effects to infants. 
This study focuses on nitrogen and phosphorus. Nutrient 
loadings (nitrogen and phosphorus) were simulated by 
using a SWAT model [Neitsch et al., 2002]. Grey water 
was determined in accordance with Hoekstra et al. [2011]. 
Equation (2) presents the nitrate grey water calculation, 
which characterizes the relative proportion of the actual 
nitrogen input in the region (LNO3) to the allowable nitro­
gen level increase (NO3permit - CNO3). The allowable nitro­
gen level increase reflects the capacity of the ecosystem in 
the region to assimilate nitrate loadings. 

LNO3
GyW ¼ (2)-NO3permit CNO3 

where GyW is nitrate grey water (m3), LNO3 is the nitrate 
loading (kg yr-1) in water bodies as a result of nitrogen 
inputs, NO3permit 

is the nitrate concentration in ambient water 
quality standards set by the EPA (10 kg m-3), and CNO3 is 
the natural background nitrate concentration in the water 
stream in the region (kg m-3). 

[16] Phosphorus grey water is determined in a similar 
fashion. Nitrate is the largest component in the grey water 
because its loading far exceeds that of phosphorus. Thus, the 
resulting estimate of nitrate grey water volume also includes 
that of phosphorus. Similar to green and blue water, grey 
water during feedstock transport is negligible. 

2.3. Application of the Framework : A Case Study 

[17] To illustrate the method, a case study is presented in 
which the water footprint of cellulosic biofuels produced 
from corn stover was estimated for the counties of Iowa 
residing in the Upper Mississippi River basin in the United 
States (Figure 3). Iowa is ranked as the number one corn 
grower in the United States and is potentially the largest 
corn-stover-derived ethanol producer. The water footprint is 
estimated for a biorefinery located in Iowa, operating at 
2000 dry metric tons per day (DMT d-1) by 2017. Stover is 
harvested at 24% of total production. The Iowa-grown corn 
stover is converted to ethanol via a biochemical process with 
dilute acid pretreatment and enzymatic hydrolysis. The pro­
cess would generate 330 L ethanol/DMT of stover and use 
5.4 L of process water for each liter of ethanol produced, on 
the basis of an ASPEN plus process simulation [Humbird 
et al., 2011]. Water use figures presented here account for 
the net water use, which includes process water recycling. 

[18] Nitrate grey water is analyzed in this case study since 
the region is primarily an agriculture area and corn is the 
dominant crop. The input data ranges for the case are pre­
sented in Table 1. Feedstock harvest scheme, irrigation 
requirement, and blue and green water are presented in Table 
S1 in the auxiliary material ; monthly Kc values are listed in 
Table S2. 
2.3.1. SWAT Modeling 

[19] A SWAT model application for the Upper Missis­
sippi River basin (UMRB) at an eight-digit HUC watershed 
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Figure 3. Corn land area by county in the state of Iowa for the stover harvest case and its location in 
the Upper Mississippi River Basin in the United States. Latitude ranges from 37.28oN to 47.42oN ; longi­
tude ranges from 87.07oW to 96.67oW. 

scale was developed by Demissie et al. [2012] to simulate 
nitrogen/nitrate loadings for Iowa counties that reside in 
the UMRB (Figure 3). Twenty year climate data, soil infor­
mation, and crop management information and practices 
were incorporated into the model to simulate crop growth 
through water balance, nitrogen and phosphorus cycles, 
and carbon balance. Fertilizer application in the SWAT 
baseline model was simulated on the basis of nutrient 
requirements during the crop-growing season. A future sce­
nario was developed by using SWAT to simulate partial 
corn stover removal (24%) for 2017 [Wu et al., 2012]. 
Future crop yield was projected and fertilizer application 
rate was simulated by SWAT incorporating 30 year histori­
cal trends of fertilizer application rates [Wu et al., 2012]. 
Supplemental nitrogen fertilizer was applied to the field 
where stover was removed to compensate for the nutrient 

Table 1. Summary of Major Inputs for Production of Feedstock 
and Biofuel 

Parameter Value 

Corn harvest areaa (ha) 11,952–119,666 
Stover harvestedb (DMT) 21,470–246,256 
Nitrogen fertilizer appliedc (kgN ha-1) 140–158 
Stover harvested in total stover produced (%) 24 
Ethanol yield in biorefinery (L ethanol/DMT) 330 
Refinery blue water used (L L-1 ethanol) 4.63 

aHarvested area at county level. 
bValue represents total stover harvested at county level. DMT denotes 

dry metric tons. The moisture content for stover is 15%. 
cValue represents the sum of fertilizer applied during the crop growth 

and supplemental fertilizer required to compensate for nutrient loss due to 
stover removal from the field. 

dNet water use, which is considered process water recycling. 

loss due to the stover harvest. Resultant subbasin level 
(HUC-8) nutrient loadings from the SWAT simulation were 
converted into a county basis by using the zonal statistic 
function in ArcGIS. The county-level natural background 
concentration of nitrate, nitrate loading, and grey water esti­
mate for the areas analyzed are presented in Table S3. 
2.3.2. Upstream Feedstock Input Allocation 

[20] Historically, it has been a conservation practice that 
when corn grain is harvested, the stover is left in the field 
for a majority of the corn-growing areas. The stover plays a 
role in providing ground cover, adding carbon and nutrients 
to the soil while excess stover can be used as feedstock. In 
this study, corn grain and residue (stover) can both serve as 
feedstock for biofuels. Therefore, corn grain and harvested 
stover would appropriate a fraction of blue water and green 
water associated with the corn growth. Similar to energy 
and GHG LCA, where upstream input to produce feedstock is 
allocated on the basis of mass (EcoInventory, http ://www. 
netgen.co.za/portfolio/ecoinventory-software/, and GREET, 
http ://greet.es.anl.gov/publications), water use for corn growth 
is shared between corn grain and harvested corn stover. Thus, 
the blue water and green water are first partitioned between 
grain and stover according to their mass ratio, which is 1 :1 
(grain to stover) at maturity [White and Johnson, 2003]. Since  
only a fraction of stover is harvested (24% of the stover, or 
12% of total aboveground biomass), grain and harvested sto­
ver initially bear the water burden of 50% and 12%, respec­
tively. The remaining fraction of blue and green water (38%) 
is further distributed among the grain and harvested stover 
on the basis of their mass fraction. When a portion of the 
corn stover is harvested, supplemental fertilizer would be 
required to compensate for the nutrient loss due to stover re­
moval. Therefore, in grey water calculations, fertilizer input 
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to grow corn is allocated between grain and stover on the ba­
sis of mass fraction, while the supplemental fertilizer is allo­
cated exclusively to stover. 
2.3.3. Refinery Coproduct 

[21] Biofuel production yields various coproducts, 
depending on the conversion processes in the biorefinery. 
These coproducts would share a water credit in the water 
footprint accounting. Methods dealing with coproduct in 
energy and emission LCA have been compared extensively 
for biofuel applications [Wang et al., 2011]. For attributional 
LCA, ISO 14,040 (http ://www.iso.org/iso/catalogue_detail ? 
csnumber¼37456) recommended the use of the system 
expansion method whenever possible in dealing with copro­
ducts. Since this study focuses on the heterogeneity of the 
water footprint under the current context, which is appropri­
ate for attributional LCA, we adopt the system expansion 
method for analyzing refinery coproduct. In the biochemi­
cal conversion process, the main coproduct would be bioe­
lectricity ; excess bioelectricity is generated for export at 
1.8 kWh per gallon of ethanol produced from corn stover 
[Humbird et al., 2011]. The bioelectricity would displace the 
electricity mix in Iowa. Blue water consumption for produc­
ing the electricity generation mix in Iowa is 0.5279 gal/kWh, 
as simulated from a power-water tool developed at Argonne 
National Laboratory [Wu and Peng, 2011]. The blue water 
credit associated with generating the displaced electricity is 
then determined. 
2.3.4. Data Source 

[22] All of the required climate data used in this study 
were derived from the National Climate Data Center of the 
NOAA for the period from 1970 to 2000. Agricultural data 
of crop-harvested acreage were acquired from USDA 
national statistics (National Agricultural Statistics Service, 
Agricultural data of yield and crop-harvested acreage, avail­
able at http ://www.nass.usda.gov/, accessed January 2011 ; 
USDA Census of Agriculture, Agricultural data of crop irri­
gated acreage at county level, available at http ://www. 
agcensus.usda.gov/, accessed January 2011). The crop coef­
ficient Kc in estimating ET was compiled from the High 
Plains Regional Climate Center (http ://www.hprcc.unl.edu/ 
awdn/et/crop/crop_corn.txt, accessed February 2011), the 
Texas High Plains Evapotranspiration network [Marek et al., 
2006], and previous studies by Kiniry et al. [1999]. Irrigation 
withdrawal volume, state-level irrigated crop acreage data, 
and the evaporative loss from irrigation application and con­
veyance were collected from the 2003 and 2008 USDA Farm 
and Ranch Irrigation Survey [USDA, 2003, 2008]. County-
level irrigated acreage data were not available from FRIS, but 
data for the preceding year were available from the U.S. Cen­
sus. An assumption was made that, within a state, the distribu­
tion of irrigated acreage for a specific crop would remain the 
same in the following year (i.e., the relative proportion of the 
county-level irrigated acreage to the state total would remain 
unchanged). The irrigation flow returning to a water body 
was provided by USGS data for 1985–1995 (http ://water. 
usgs.gov/watuse). The background nitrate concentration CNO3 

was derived from the 1976–1997 USGS data set [Smith et al., 
2003]. The data set accounts for total nitrogen concentration 
at the eight-digit HUC watershed scale. The CNO3 was then 
determined by assuming a nitrate to total nitrogen ratio, 
fNO3-TN, and, therefore, a concentration ratio of 0.95, on the 
basis a watershed modeling study by Demissie et al. [2012]. 

3. Results and Discussions 
3.1. ET Verification 

[23] The estimated ET of corn during the growing season 
from this study agreed well, in general, with the values avail­
able in the literature and with the database obtained from soil 
moisture measurements, remote sensing data, and satellite-
based estimates for the area studied. Schilling [2007] deter­
mined ET by using soil moisture measurements and reported 
ET values ranging from 4.1 (July 2004) to 1.3 mm 
(August in 2004) at a cornfield in Jasper County, Iowa. 
Logsdon et al. [2009] reported the mean ET for corn as 4.0 
and 5.5 mm d-1 in July and August in 2006–2007 in central 
Iowa by using an instrument for recording soil moisture 
coupled with a heat flux calculation, whereas our estimate 
shows daily corn ET during July and August is 5.45 and 
3.7 mm, respectively, in the same area. Chávez et al. [2008] 

d-1reported a cornfield ET rate of 3.5 mm in June and 
6.5 mm d-1 in July among different sites near Ames, Iowa, in 
2002 by using a remote sensing method. Doraiswamy et al. 
[2001] also applied the remote sensing method to estimate 
ET and found corn ET ranging from 2 to 5.2 mm d-1 on aver­
age across Iowa from June to August in 1990. A surface 
energy balance algorithm for land (SEBAL) [Bastiaanssen 
et al., 1998a, 1998b ; Allen et al., 2011] has been developed 
to quantify ET by using satellite data. On the basis of the 
SEBAL heat flux data reported by Long and Singh [2012] 
near Ames, Iowa, and using the method introduced by Allen 
et al. [2011] to convert heat flux to ET, we estimate ET to be 
3.56 mm d-1. Figure 4 presents a comparison of the corn ET 
measurements from the literature with the estimates gener­
ated from this study in two counties in Iowa : Jasper County 
and Story County (where Ames is located), from which the 
above measurements were obtained. 

[24] In addition to the previous snapshot-oriented com­
parison, validation of the ET simulation was conducted for 
all the counties within the study boundary by using a sec­
ond satellite-imagery-derived ET database. Monthly data 
calculated by using satellite images via a heat- flux algo­
rithm and validated by ground measurements from 1983 to 
2005 by Numerical Terradynamic Simulation Group (NTSG) 
of University of Montana (http ://www.ntsg.umt.edu/data) are 
made available to estimate ET across the U.S. continent 
[Zhang et al., 2010]. Although the base years between the 
NTSG data set and our study are varied (1983–2005 versus 
1970–2000), the overlapped years are long enough to offset 
the rare extreme climate incidents and can represent normal 
weather conditions. Crop layer data (USDA, http ://nassgeo­
data.gmu.edu/CropScape/) are employed to extract monthly 
ET values from the NTSG database only over cornfields. As 
seen in Figures 4 and 5, estimates of corn ET determined 
from this study agree extremely well with data from satellite-
based estimates across more than 90 counties, while data for 
May, June, and September vary to some degree. ET values 
derived from the Penman-Monteith model appear to have 
wide variation from May to September, spanning from 10 to 
180 mm m-1, whereas values from the NTSG database have 
a narrower band,  varying from 60 to 130  mm  m-1. Despite 
the monthly temporal variation, the sum of growing season 
ET values from both data sets converges eventually, leading 
to seasonal differences of 7%. Given the validation results, 
the estimates of ET values from this study appear to provide 
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Figure 4. Comparison of monthly evapotranspiration for corn during June to August in selected 
counties in Iowa between the measured ET from the literature and this work. Color code represents the 
county location. 

a reasonable blue and green water assessment for the study	 is primarily caused by climate because rainfall volumes, 
area. Further modeling effort would be needed to improve	 frequencies, and duration are not same among the counties 
monthly ET modeling.	 studied, on the basis of meteorological measurements (e.g., 

rain fall, humidity, wind) reported by NOAA. Even if the 
3.2. Water Footprint of Stover Ethanol same crop is grown in similar soil, climate differences will 

[25] Water footprints for Iowa-grown stover-based ethanol lead to different green water. The variation in blue water is 
reveal substantial spatial variability, both in intensity and dis- related to irrigation because there are still a few counties irri­
tribution of water type (blue, green, grey) at the county level gated (Table S3 and Figure 7) but not related to refinery as re­
(Figure 6). Variability of water footprint in the county level finery water use is process dependent, regardless of location. 

Figure 5. Temporal distribution of ET of satellite-based estimate from Numerical Terradynamic Simu­
lation Group (NTSG) of University of Montana and that estimated in our study using Penman–Monteith 
equation for corn in various counties in Iowa in growing season. The numbers in x-axis represent county 
FIPS (Federal Information Processing Standards, http ://www.itl.nist.gov/fipspubs/geninfo.htm). Solid 
line represents value from this study and dotted line indicates value from NTSG. 
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Figure 6. County-level distributions of (a) blue, (b) green, and (c) grey water footprints for 
corn-stover-based biofuel in Iowa ; counties with zero value indicate that no corn stover is harvested for 
biofuel. 

The spatial distribution of grey water is a result of many fac­
tors. The first factor is nitrogen loading, which varies with 
the crop yield, crop rotation, and fertilizer application rates 
(i.e., soybean does not need N fertilizer while corn does) ; cli­
mate (more rain fall could increase runoffs) ; the land topog­
raphy (slope) ; and placement of drainage tile. These factors 
change from county to county. The second factor would be 
the natural background of nitrate (CNO3), which was deter­
mined by the USGS in the 1960s (see Table S3 for CNO3 val­
ues). Together, they cause the spatial variability of grey 
water. On a land area basis, green water dominates the water 
footprint of corn-stover-derived ethanol in the Iowa counties 
studied. Growing one hectare of stover to produce ethanol in 
the studied counties harvests 577,000–673,000 L of green 
water (an average of 625,000 L) and requires 2800–9200 L 
of blue water with an average of 3700 L (Figures 6a and 6b). 
From a biofuel production perspective, to produce one liter of 
stover-based ethanol, from 760 L to 1000 L of green water 
and 4.6 to 13.1 L of blue water would be required. Geograph­
ically, the distribution of green water and blue water in the 
studied area complement each other (Figure 6), which is a 
combined result of soil moisture content, precipitation, and 
temperature. Iowa requires very minimal irrigation water for 
corn because the region receives plenty of rainfall during 
the growing season. From 1970 to 2000, Iowa received 
545 mm of rain per year on average, according to NOAA 

(http ://www.ncdc.noaa.gov), and only 0.6–0.8% of corn 
croplands require irrigation [USDA, 2003, 2008]. It has been 
projected that the climate in Iowa will become wetter in next 
50–100 years (Santa Clara University, The World Climate 
Research Programme’s Coupled Model Intercomparison 
Project Phase 3 (CMIP3) multimodel data set, at http :// 
gdo-dcp.ucllnl.org/downscaled_cmip3_projections/, accessed 
September 2011). Given the projected increased precipitation 
in Iowa, the cellulosic feedstock grown in the state would 
have a sufficient supply of green water. 

[26] The grey water footprint for corn-stover-based etha­
nol varies considerably, ranging from 44 to 1579 L, a 35-fold 
difference, with a county average of 518 L to produce one li­
ter of ethanol, which translates to 355,000 L per hectare of 
cropland. The spatial distribution of grey water closely 
resembles that of nitrogen loadings simulated by the SWAT 
model. Not surprisingly, spatial variation of grey water does 
not follow the pattern of green water or blue water (Figure 6) 
since it also reflects the natural background stream concentra­
tion of the targeted compound (in this case, nitrogen) in the 
region, which fluctuates significantly across the state [Smith 
et al., 2003]. Statistical analysis shows that the grey water is 
highly associated with the fertilizer application rate (correla­
tion coefficient ¼ 0.96), among other factors (e.g., crop type, 
soil, drainage tile, cover crop). Overall, results from this 
study shows the heterogeneous nature of the water issue and 
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Figure 7. Blue water footprints of ethanol produced from corn stover in the studied counties in the 
state of Iowa. The values include irrigation water, refinery water, and coproduct blue water credit. 

demonstrates the importance of increased resolution in the 
water footprint. 

3.3. Biorefinery Blue Water Use 

[27] Refinery water consumption is a key factor in deter­
mining the blue water footprint of the biofuel on a per liter 
fuel production basis. In fact, the blue water for stover etha­
nol in the studied corn-producing counties is dominated by 
biorefinery biochemical process water use. Of the 4.6–13.1 L 
of blue water, 86% is from biorefinery blue water use and 
only 14% is from irrigation, on average (Figure 7). As indi­
cated in Figure 7, coproduced bioelectricity in the biorefi­
nery plays an important role in the final water footprint 
accounting, providing on average 16% of the water footprint 
credit for the refinery blue water. 

[28] A biorefinery is often built in its corresponding 
feedstock-producing area with an established infrastructure, 
to reduce costs associated with feedstock transportation. The 
choice of feedstock and refinery location could have signifi­
cant impacts on the type and the intensity of the water foot­
print for cellulosic biofuel. Because a majority of water 
requirements in the water footprint are from the feedstock-
growing stage, and a biorefinery fed by local feedstock is 
seen as a first choice, the magnitude of the water footprint of 
a particular biofuel from a refinery would be largely defined 
by the regional climate, soil, and feedstock yield. For exam­
ple, the cellulosic ethanol produced from stover in biorefi­
neries located in some states with similar climates and 
where corn yield is lower would result in a larger water foot­
print on a per liter of fuel basis. Therefore, it is essential to 
take the water resource use into consideration during refinery 

site selection, to ensure proper decision making for water-
sustainable production. 

3.4. Limitation and Uncertainties 

[29] The limitation of this approach, however, is that it 
requires an intensive modeling effort to develop watershed 
models for each region of interest. The requirements of 
scale and resolution would add challenges because of the 
maximum data set limitation in the SWAT model and the 
need for increased resolution for watershed and large-scale 
coverage. While a SWAT model for an entire country is 
possible, it often comes at the cost of resolution. 

[30] Irrigation survey data were used to calibrate ET esti­
mations for the crops of interest. The advantage of this 
method is data availability ; the Crop Irrigation Survey is 
published by the USDA every five years. It is assumed that 
the data are representative of the state average. However, the 
survey data are highly dependent on the survey method, sam­
ple site selected, and the accuracy of individual reporting. In 
addition, the consumptive irrigation water use is estimated at 
the county level for this study, the data source of irrigation 
volume from the USDA irrigation survey is reported at the 
state level, and the irrigated acreage from the U.S. Census is 
available at the county level (which was not available in the 
irrigation survey). Thus, the irrigation water volume calibra­
tion has to be downscaled ; the county estimate of irrigation 
volume based on irrigation acreage is calibrated by state-level 
data and redistributed to the county level. During data proc­
essing, additional steps would introduce statistical error. 

[31] As for grey water, the data limitation lies in the N 
inputs value. SWAT has a crop growth model to calculate 
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N stress. In the ‘‘autofertilizer’’ modeling approach, N is 
added at the moment when and only when the crop needs N 
so that the N stress is practically zero, which is not realistic. 
For that reason, we adopt a field-value-based approach. Of 
course, this method requires a county-level fertilizer rate, 
which is lacking from the USDA survey. In this study, 
state-level data from the USDA were used as an initial 
input for SWAT model to generate a distributed value 
based on crop yield [Demissie et al., 2012]. 

4. Conclusions 
[32] A water footprint analysis framework with increased 

spatial resolution can improve biofuel water sustainability 
assessment in evaluating complex land conversion and 
feedstock production scenarios. This study shows that using 
a watershed modeling approach in water footprint analysis 
significantly improves the quality of estimates of the grey 
water footprint by accounting for physical, chemical, and bi­
ological reactions that are associated with nutrients and their 
bonds to region-specific soil, landscape, land cover, and 
hydrodynamics. Validation of the estimated ET with meas­
urements from plot- and field-scale data, remote sensing 
data, and data derived from satellite imaginary revealed that 
the ET values modeled from this study resemble seasonal 
ground conditions, although the representation of monthly 
variation is limited. In addition, verifying ET values associ­
ated with irrigation by using irrigation survey data improves 
the quality and fidelity of the blue water analysis. By com­
bining watershed modeling and water footprint life cycle 
analysis, the framework can be useful for conducting water-
shed- or county-level biofuel sustainability metric analysis 
to address the heterogeneity of the water footprint for vari­
ous second-generation and advanced biofuel pathways. 

[33] On the basis of the results, the following accomplish­
ments have been made and conclusions drawn : (1) A spa­
tially explicit water footprint analysis framework with 
improved grey water analysis for biofuel production has been 
introduced that incorporates SWAT watershed model into 
water footprint methodology to reflect hydrodynamics within 
a watershed. (2) Verification of the crop ET and irrigation 
estimate by using field data and remote sensing technology 
enhances the resolution of the assessment, thereby enabling 
an improved estimate of blue water footprint. (3) A case 
study demonstrated the feasibility of the framework, provid­
ing the blue, green, and grey water footprints of corn stover 
derived ethanol with spatial resolution at the county level. 
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