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Abstract— Electroplated Ni/Au over Cu is a popular metal­
lization for printed circuit board finish as well as for component 
leads, especially wire-bondable high-frequency packages, where 
the gold thickness requirement for wire bonding is high. The 
general understanding is that less than 3 wt% of Au is acceptable 
in SnPb solder joints. However, little is known about the effect 
of Au content on the reliability of SnAgCu solder joints. The 
purpose of this paper is to determine the acceptable level of 
Au in SAC305 solder joints. Three different package platforms 
with different Au thicknesses were assembled on boards with two 
different Au thicknesses using a standard surface mount assembly 
line in a realistic production environment. The assembled boards 
were divided into three groups: as-built, isothermally aged at 
125 °C for 30 days, and isothermally aged at 125 °C for 
56 days. All boards were then subjected to accelerated mechanical 
reliability tests including random vibration and drop testing. 
The results show that solder joints with over 10 wt% Au are 
unacceptable. If Cu is available to dissolve in the solder joint, 
then an Au content under 5 wt% will not significantly degrade 
the reliability of the solder joint. When Ni layers are present 
on both the board and the component sides of the interface, 
this limits the ability of Cu to dissolve into the solder joint, and 
hence an Au content under 3 wt% is acceptable. The failure 
mechanism for solder joints with high Au content is fractures 
through the AuSn4 intermetallic compound. Additional findings 
confirmed that there is a danger of placing parts near high-stress 
areas and that a high level of voiding reduced reliability. 

I. INTRODUCTION 

ELECTROPLATED Ni/Au over Cu is a popular metal­
lization for printed circuit board (PCB) surface finish 

as well as for component leads. The Ni layer functions as 
a diffusion barrier layer. The Au layer is used to: 1) protect 
the Ni layer from oxidation and corrosion; 2) enhance the 
soldering wettability; and 3) improve wire bondability in some 
applications. 

During the soldering process, Au dissolves into the molten 
solder very quickly. It has been reported that molten Sn can 
erode a nominally 25-μm-thick layer of Au in 10 s at 235 °C 

[1] and the dissolution rate of Au in Sn40Pb (60 wt% Sn 
and 40 wt%  Pb)  solder is as high as 4.2 μm/s at 252 °C 
[2], [3]. At such a rapid dissolution rate, all Au in a PCB and 
component lead, which has typically less than 0.8 μm of Au,  
will be dissolved in a typical lead-free reflow profile where 
the time above liquidus is generally 30–90 s. When the solder 
joint solidifies, a brittle AuSn4 or (Au, Ni)Sn4 intermetallic 
compound (IMC) is formed in the solder joint. The presence 
of brittle AuSn4 or (Au, Ni)Sn4 IMC in the solder joint raises 
concerns about reliability. 

The current understanding about the failure mechanism of 
“Au embrittlement” is as follows: when the solder joint solidi­
fies during the soldering process, brittle AuSn4 or (Au, Ni)Sn4 
IMC is formed in the bulk solder joint. After aging, the AuSn4 
migrates to the Ni interface and forms a continuous layer 
of (Au, Ni)Sn4 IMC over the Ni3Sn4 IMC layer. The weak 
interface between (Au, Ni)Sn4 and Ni3Sn4 results in brittle 
interfacial failure [4]. The driving force for the migration of 
AuSn4 is a reduction of energy by mixing. Gold seeks Ni so 
that AuSn4 becomes a Ni-saturated (Au, Ni)Sn4 compound [4]. 
It has been reported that the thickness of the Ni layer has a 
significant effect in Au embrittlement as well. Alam et al. [5],  
[6] found that a thin layer of Ni facilitates the diffusion of Cu 
into the (Au, Ni)Sn4–solder interface and changes the (Au, 
Ni)Sn4 layer to a (Au, Cu, Ni)6Sn5 layer. They explained that 
the elimination of the brittle layer of (Au, Ni)Sn4 IMC over 
the Ni3Sn4 layer prevents cracks from propagating along the 
interface between (Au, Ni)Sn4 and Ni3Sn4. Though a thin Ni 
layer has this benefit, in practice, a thin Ni layer may limit 
the shelf life and solderability of PCB. 

Less than 3 wt% of Au is considered to be acceptable in 
SnPb solder joints. A comprehensive study was conducted by 
Glazer et al. [7]. They investigated the effect of Au content on 
the long-term reliability in the defined service environment of 
SnPb solder joints between a plastic quad flat pack component 
and a PCB with Ni/Au finish and concluded that 3.0 wt%  of  
Au is acceptable. However, little is known about the effect 
of Au content on the long-term reliability of SnAgCu solder 
joints. The objective of this paper is to fill this void. 

There are two differences between a eutectic SnPb solder 
and a SnAgCu solder on the dissolution of Au and their effect 
on the reliability of solder joints. One is the high-Sn content 
effect. The Sn content in Sn3.0Ag0.5Cu solder is 96.5 wt%  
and that in eutectic SnPb solder is 63 wt%. Intuitively, a solder 
with higher Sn content should be able to take more Au to form 
AuSn4 IMC. Chang et al. [8] also found that the migration 
kinetics of AuSn4 to the solder–pad interface during thermal 



aging in high-Sn solders was slower compared to that in 
eutectic PbSn. The other is the Cu effect in the SnAgCu solder. 
Shiau et al. [9] showed that 0.5 wt% of Cu can reduce the Ni 
consumption rate in solder joints with an Ni/Au surface finish. 

In this paper, we report on a comprehensive study regarding 
the effect of Au content on the long-term reliability of SnAgCu 
solder joints in three different package platforms on PCBs 
with an Ni/Au surface finish. First, the Au content in the final 
solder joint is calculated based on the measured solder paste 
volume and the measured Au thickness in the PCB surface 
finish and/or the component surface finish. The assembled 
boards were divided into three groups: one without any thermal 
treatment, one isothermally aged at 125 °C for 30 days, 
and the third group aged at 125 °C for 56 days. All three 
groups were subjected to long-term mechanical reliability 
testing including random vibration and mechanical shock. The 
reliability test plan was based on Agilent’s typical industrial 
instrument operation environment. The reliability data are 
reported. Furthermore, the failure locations and mechanisms 
are presented. 

II. METHODOLOGY 

A. Component, Test Vehicle, and Assembly Process 

The test vehicle is shown in Fig. 1. The PCB employed 
has six layers and is made of Nelco N4000-12. The board 
finish is electrolytic Au over Ni. There are two different Au 
thicknesses: a flash Au finish with 0.08–0.38-μm Au over 
5-μm Ni, and a thick Au finish with 2–2.54-μm Au over 
5-μm Ni. Five types of components were assembled on the 
test vehicle. All components were daisy-chained. The package 
information is summarized in Table I. There are nine quad flat 
no-lead 5 (QFN5) packages, nine QFN6 packages, nine TOPS 
packages, six FP I packages, and six FP II packages per board. 
All components have underbelly pads. 

The assembly process was done using a standard surface 
mount assembly line in a realistic production environment. 
The solder paste used is Sn3.0Ag0.5Cu (SAC305) Type 3 
with no-clean flux and a metal content of 88% by weight. 
The stencil used is electroformed Nickel, laser cut with 
a foil thickness of 0.1 mm (4 mils) and 1:1 aperture to 
pad ratio. The volume, area, and height of solder paste on 
each pad of each board were measured by a solder paste 
inspection system. The reflow process was done in nitrogen 
and the reflow profile is shown in Fig. 2. After assembly, 
the resistance of every daisy chain was measured and doc­
umented. All solder joints were inspected using 2-D X-ray. 
Any defects related to the assembly such as missing wire 
bonds in the component, insufficient solder, or bent leads were 
documented. 

B. Reliability Testing 

The assembled PCBs were randomly divided into three 
groups as shown in Table II. The boards in Group 1 were 
not subjected to thermal aging. The boards in Group 2 were 
subjected to isothermal aging at 125 °C for 30 days. The 
boards in Group 3 were subjected to isothermal aging at 
125 °C for 56 days. The isothermal aging at 125 °C for 0 h, 

Fig. 1. Test vehicle. 

TABLE I 

SUMMARY OF PACKAGES 

Package 
Type 

Number of 
Packages 
per Board 

Package Size 
and Type 

Lead 
Material 

Lead 
Finish 

QFN5 9 
5 mm  × 5 mm  

Quad flat no lead Cu Matte Sn 

QFN6 9 
6 mm  × 6 mm  

Quad flat no lead Cu Matte Sn 

TOPS 9 
10 mm × 10 mm 
RF laminate, open 

cavity, no lead 
Cu 

0.28–0.46-μm 
Au over 

3.8–8.5-μm 
Ni 

FP I 6 
6.4 mm × 6.4 mm 

Ceramic, open 
cavity, flat leads 

Kovar 
1–2-μm Au  

over 1–5-μm 
Ni 

FP II 6 
10.2 mm × 9.7 mm 

Ceramic, open 
cavity, flat leads 

Kovar 
1–2-μm Au  

over 1–5-μm 
Ni 

30 days, and 56 days was to simulate a reliability life of 0, 7, 
and 14 years when devices operate at 60 °C. 

All boards were subjected to mechanical reliability testing. 
Each mechanical reliability test cycle includes: 1) random 
vibration at power spectral density (PSD) of 0.002868 g2/Hz 
(0.275 m2/s3), 5–120 Hz for 50 minutes, and 2) mechanical 
shock at 250 G, 2.3-ms duration for 10 drops. Random vibra­
tion is chosen instead of sinusoidal vibration because it has 
been shown that random vibration more closely represents the 
true environment [10]. In the vibration testing, it is important 
to select two key parameters: frequency range and PSD level, 
because the reliability of solder joints on a board is mainly 
determined by these two parameters. It is advised that the test 
frequency range should include the natural frequency of the 
test board, because at this frequency, the board will experience 
the highest displacement, which generates highest stresses on 
solder joints. The natural frequency of the test vehicle was 
measured at 61 Hz. The acceleration level of this random test 
is 0.57 G root mean square (RMS), which is calculated by the 
square root of the area under the random vibration curve, or 

0.002868 G2/Hz × (120 − 5)Hz. The acceleration level of 
0.57 Grms is around two times the typical vibration profile 
(in the range between 0.20 and 0.35 Grms) that products 
experience in transport as specified [11]. 
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U22 PIN10 2.00 25% −1.77 49% 87.09 81% 65.71 12% 236.12 −54% 
AT1 PIN23 2.51 57% −2.12 26% 84.63 64% 73.78 41% 242.62 18% 
AT1 GND 2.33 45% −2.19 20% 84.79 65% 75.15 46% 242.83 20% 
U18 GND 2.47 54% −2.42 5% 86.34 76% 74.67 44% 241.56 6% 
Delta 0.51 0.65 2.46 9.44 6.71 

Fig. 2. Reflow profile used in this paper. 
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Cross-sectioning & SEM/EDX Mechanical Reliability 

Flash Au Thick Au Flash Au Thick Au 

Group 1: 
no aging 

1 1 6 6 

Group 2: 
thermal 

aging for 
30 days at 

125 °C 

1 1 5 6 

Group 3: 
thermal 

aging for 
56 days at 

125 °C 

1 1 5 6 

(a) (b) 

Fig. 3. Setup of the random vibration and the drop test. (a) Random vibration 
setup. (b) Drop test setup. 

a range of 5–8 for fatigue exponent [12]. Thus, our estimation 
is more conservative. The vibration for 500 mins in this paper 
simulates the real vibration life of 

Equation (1) is used to estimate the vibration fatigue 
life [10] 

T1Gb = T2Gb (1)1 2 

where T is life time, G is the acceleration in RMS, and b is 
the fatigue exponent. In this paper, we assume the fatigue 
exponent b is equal to 4 for leadless or flat lead parts at a 
printed circuit assembly level. Note that the vibration fatigue 
exponent for aluminum leads has been specified as 6.4 [10]. 
Military standard MIL-STD-810G specifies 7.5 and mentions 

( r
G2 

b 

T1 = T2 = 500 × 24 = 8000 minutes = 133 hours. 
G1 

The setups for the random vibration and the drop tests 
are shown in Fig. 3. The board was placed in a horizontal 
orientation with components facing in a downward direction, 
which results in maximum board deflection. All boards were 
subjected to 10 cycles of random vibration, or 500 mins total, 
and 100 drops. 

The resistance of each daisy chain was measured by an 
Agilent 34970A data logger with three 34901A 20-channel 
multiplexers and one 82357B USB/GPIB interface. Note that 



Agilent data logger 34972A or 34980A can be used as well. 
The resistance measurement was done after each vibration test 
cycle (50 mins) or each drop-test cycle (10 drops). 

C. Failure Criteria 

Although solder joint reliability has been studied for over 
30 years, the failure criteria are still not well defined and the 
relationship between the crack area of an interconnection and 
the change in resistance of the interconnection has not been 
established. Thus, different researchers use different failure 
criteria, for example, a resistance threshold of 450 Q [13], 
an increase in resistance of 10 Q or greater [14], a resistance 
change of 5 Q [15], a resistance threshold of 100 Q or 20% 
increase in resistance if initial resistance is over 85 Q [16], 
and a resistance threshold of 1000 Q [17]. In a sense, all of 
these criteria are subjective, because at this time no scientific 
research has been done on the interconnection failure criteria. 
Henshall et al. [18] compared three different electrical failure 
criteria, 20% resistance rise, 500 Q, and hard open (infinite 
resistance), and concluded that the use of the IPC-9701A 
standard failure criterion of 20% resistance rise provides the 
most sensitive measure of failure among those studied. 

In this paper, the failure criterion is defined as an increase 
in resistance of 2 Q or more from initial resistance. Our 
principles for establishing this criterion are: 1) to detect solder 
joint failure as early as possible, and 2) no fault detection 
due to measurement error/variation. The initial daisy chain 
resistances in this paper are between 0.75 and 2.83 Q. We  
did a gauge repeatability and reproducibility (GR&R) study 
on the data acquisition system (Agilent data logger 34970A) 
and concluded that the 3 sigma of the data acquisition system 
was ±0.6 Q. The failure analysis based on the cross-section 
and scanning electron microscope (SEM) analysis confirmed 
that a full crack in the solder joint had occurred if the change 
in resistance was 2 Q. The details of this GR&R study and 
the relationship between the crack size and the change of 
resistance will be reported in a future paper. 

III. RESULTS AND DISCUSSION 

To compare the reliability of solder joints with different 
Au contents, it is important to calculate the Au content in 
the final solder joint. Since there is variation in Au thickness 
at different locations on a board, on different boards, and on 
different component leads, and since there is variation in solder 
paste volume of a package type on different pads and different 
boards, the mean and standard deviation of Au content were 
calculated. We also found that the SAC solder wetted the 
tops of gold-plated leads, increasing the gold that entered 
the solder joint. All Au on the wetting area of the PCB pad 
and the component was dissolved in the solder joint as verified 
by the SEM/energy dispersive X-ray (EDX) analysis. In this 
project, the calculation of the Au content is based on the 
measured solder paste volume and the measured Au thickness 
on the PCBs and on the components. 

TABLE III
 

AU CONTENT IN WEIGHT PERCENTAGE IN SOLDER JOINTS
 

QFN5 QFN6 TOPS FPI FPII 

Flash Au 

board 

Mean 0.5 0.5 2.5 15.0 11.8 

Standard 

deviation 

0.15 0.15 0.3 2.5 2.2 

Thick Au 

board 

Mean 4.2 4.0 5.5 16.0 13.7 

Standard 

deviation 

1.3 1.2 1.2 2.5 2.2 

The volume of solder paste on every pad of every board was 
measured by a solder paste inspection system. The Au coating 
thickness on the component and on the board was measured 
by an X-ray fluorescent system on sample locations. The 
Au content in the solder joint is calculated according to (2), 
where: 

Au weight in component = (area of component lead wetted 
by solder paste) × (Au thickness on component lead) × 
(density of Au); 

Au weight in PCB = (area of pad) × (Au thickness on 
PCB) × (density of Au); 

SnAgCu weight in paste = (measured solder paste vol­
ume) × (metal content in volume) × (density of SAC305). 

For example, the FP I component lead is 0.254-mm 
(10-mil) wide and 0.152-mm (6-mil) thick, and the wetted 
length of the lead is 0.66 mm (26 mils). Thus, the area 
of component lead wetted by solder paste is 0.536 mm2 

(0.254 × 0.66 × 2 + 0.152 × 0.66 × 2). The mean and standard 
deviation of measured Au thickness on the component lead 
are 1.71 μm and  0.25 μm, respectively. Thus, the mean 
and standard deviation of Au volume on the component is 

39.15 × 10−4 mm and 1.32 × 10−4 mm3, respectively. The 
pad size  on PCB  is  0.66 × 0.41 mm. The mean and standard 
deviation of measured Au thickness on the PCB with flash 
Au are 0.098 μm and  0.029 μm, respectively. Thus, the 
mean and standard deviation of Au volume on the PCB are 

32.65 × 10−5 mm and 7.80 × 10−6 mm3, respectively. The 
mean and standard deviation of measured solder paste volume 
of the FP I component on the flash Au board are 0.028 mm3 

and 0.0028 mm3, respectively. Since the metal content is 
50% in volume, the mean and standard deviation of SnAgCu 
volume of the FP I component on the flash Au board will be 
0.014 mm3 and 0.0014 mm3, respectively. The density of Au 
is 19.32 g/cc and the density of SAC305 is 7.36 g/cc. Using 
the Monte Carlo simulation method, we get the Au content of 
FP I component on the board with flash Au with a mean of 
14.9 wt% and a standard deviation of 2.6 wt% . The calculated 
mean and standard deviation of Au content data in weight 
percentage are summarized in Table III. It shows that there is 
a wide range of Au content between these five package types 
on two types of boards. 

Au weight in component + Au weight in PCB 
wt%Au = (2)

SnAgCu weight in paste + Au weight in component + Au weight in PCB 



TABLE IV 

SUMMARY OF THE NUMBER OF COMPONENTS FAILED AFTER RANDOM 

VIBRATION AND MECHANICAL SHOCK TESTS 

Flash Au Board Thick Au board 

As-
built 

After 
thermal 
aging 
for 30 
days 

After 
thermal 
aging 
for 56 
days 

As-
built 

After 
thermal 
aging 
for 30 
days 

After 
thermal 
aging 
for 56 
days 

QFN5 0/54 0/45 4/45* 3/54* 3/54* 3/53* 

QFN6 6/54** 5/45** 5/45** 6/54** 5/54** 6/54** 

TOPS 0/54 1/45 0/45 2/54 7/54*** 2/54 

FP I 24/36 26/30 20/30 All daisy chains had open 
solder joints after assembly 

FP II 27/36 25/30 19/30 All daisy chains had open 
solder joints after assembly 

Notes: * all failed components of QFN5 are in location AT30, which is near 
the mounting hole. 
** all failed components of QFN6 are in location U18, which is near the 
mounting hole. 
*** these seven failed components of TOPS are in one board. X-ray images 
show that there are very large voids on many solder joints on the TOPS 
component. 

The number of components that failed after random vibra­
tion for 500 minutes and mechanical shock for 100 times is 
summarized in Table IV. The numerator in each cell refers 
to the number of failed daisy chains and the denominator 
refers to the total number of components in the reliability 
test. 

After examining the locations of the failed QFN5 and 
QFN6 components, we found that all of the failed QFN5 
components occurred at location AT30, and all of the failed 
QFN6 components were at location U18. AT30 is located at 
the lower left corner of the test vehicle shown in Fig. 1 and 
U18 is located at the upper left corner of the test vehicle. 
Both locations are near the mounting hole. This indicates that 
high strain during the board flexure in the drop and random 
vibration testing caused the failure of solder joints under these 
components. Excluding the components near the mounting 
holes, none of the QFN5 and QFN6 components failed in any 
of the test groups. Thus, we concluded that all QFN solder 
joints, which have Au content up to 5 wt%, are reliabile, and 
thermal aging at 125 °C for up to 56 days does not cause 
significant degradation in reliability. Note that Cu from the 
QFN component lead is present to diffuse into the solder joints 
in this case. 

After examining over 25 SEM images of failed solder joints 
for the QFN components, we found that the failure mode on 
flash Au boards is different from that on thick Au boards. The 
failure mode on flash Au boards was fracture in the Sn matrix 
at the bulk solder joint as shown in Fig. 4. The IMC near 
the component side is (Cu, Ni, Au)6Sn5 and has 32 wt% Cu, 
1 wt% Ni, 6 wt% Au, and 61 wt% Sn. The IMC near the 
board side is (Cu, Ni, Au)Sn, which could be a mix of (Cu, 
Au)6Sn5 and (Ni, Au)3Sn4, and has 22 wt% Cu, 8 wt% Ni, 
6 wt% Au, and 64 wt% Sn. 

There were two failure modes of the QFN components on 
thick Au boards. The first was fracture in the Sn matrix at the 
bulk solder joint and at the IMC near the component side or 

Fig. 4. Fracture in bulk solder of a QFN on a flash Au board, after thermal 
aging for 56 days. 

Fig. 5. Fracture in bulk solder joint and IMC near component side, a QFN 
on a thick Au board, as-built. 

Fig. 6. Fracture in AuSn4 IMC in the bulk solder, a QFN component on a 
thick Au board, after thermal aging for 56 days. 

near the board side in the as-built samples. The second failure 
mode is fracture through the AuSn4 IMC in the thermally aged 
samples. After thermal aging, smaller AuSn4 IMCs combined 
and became larger AuSn4 IMCs. Fig. 5 shows fracture in the 
bulk solder and at the IMC near the component side in an 
as-built sample, and Fig. 6 shows fracture in the AuSn4 IMC. 
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Fig. 9. X-ray image and an SEM image showing voids in the solder joints 
of a TOPS component on a thick Au board. 
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Fig. 7. Fracture in AuSn4 IMC in the bulk solder, a TOPS component on a 60.0% 
thick Au board, after thermal aging for 30 days. 
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Fig. 8. Fracture in the IMC near the board side, a TOPS component on a 
thick Au board, after thermal aging for 30 days. 

Fractures could begin at the middle of the bulk solder, the 
outside of the bulk solder, as well as the IMC interface near the 
board or the component. We can conclude that: 1) if the size 
of AuSn4 IMC is small enough, the failure mode is fracture 
in the Sn matrix of the bulk solder when the solder joint is 
under high strain, and 2) if the size of AuSn4 IMC is large 
enough, the failure mode is fracture through the AuSn4 IMC 
for solder joints under mechanical reliability testing. After 
further examining the location of failed solder joints on both 
flash Au boards and on thick Au boards, we found that it 
was always the solder joints closest to the mounting hole that 
failed. It is clear that high strain leads to the failure of these 
solder joints. 

For the TOPS components, it appears that the reliability of 
solder joints on the flash Au boards is better than that of solder 
joints on the thick Au boards since only one failed out of 
144 components on the flash Au board while 11 components 
failed out of 162 components on the thick Au boards. Note that 
seven failed components were on the same thick Au board. The 
SEM images in Figs. 7 and 8 demonstrate that the failure mode 
is fracture in the AuSn4 IMC in the bulk solder and in the IMC 
interface near the board side, respectively. In addition to a large 
amount of AuSn4 IMC in the bulk solder joint contributing to 

Fig. 10. Cumulative failure rate of FP I components on flash Au boards. 
TA0 represents as-built, TA1 represents thermal aging at 125 °C for 30 days, 
TA2 represents thermal aging at 125 °C for 56 days, and V1D10 in the x-axis 
represents 1 cycle (or 50 mins) of random vibration and 10 drops. 

the failure of solder joint, voiding is another factor. We noticed 
that there are large voids in solder joints on all failed TOPS 
components on the thick Au board, although not every failed 
joint had large voids. It will be interesting to investigate why 
the voids were specific to these parts and this gold content. 
An X-ray image and an SEM image in Fig. 9 clearly show 
the voids on one failed component. 

Note that one significant difference between the IMC in 
QFN solder joints and the IMC in TOPS solder joints is that 
more Cu was dissolved into the solder joint from the Cu lead of 
the QFN component, while limited Cu was dissolved from the 
TOPS lead due to the Ni finish. The detailed microstructural 
analysis of these components will be published in the Journal 
of Electronic Materials [19]. We conclude that if Ni layers 
exist on both the board side and the component side, which 
limits the available Cu to dissolve into the solder joint, an 
Au content less than 3% in weight is acceptable for SnAgCu 
solder. From the results of the QFN components, we conclude 
that if Cu is available to dissolve in the solder joint, an Au 
content of less than 5% in weight is acceptable for SnAgCu 
lead-free solder. 

For FP I and FP II components, all of the components on 
the thick Au boards failed (completely open or with very high 
resistance) immediately after assembly, while all components 
on the flash Au boards passed initial electrical test. About 
two-thirds of the components on the flash Au boards failed 
after the mechanical shock and random vibration testing. The 
cumulative failure rate of these 96 FP components on flash 
Au boards is shown in Figs. 10 and 11. It is clear that 
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Fig. 11. Cumulative failure rate of FP II components on thick Au boards. 
TA0 represents as-built, TA1 represents thermal aging at 125 °C for 30 days, 
TA2 represents thermal aging at 125 °C for 56 days, and V1D10 in the x-axis 
represents 1 cycle (or 50 mins) of random vibration and 10 drops. 

Fig. 12. SEM images of solder joints of an FP component on a flash Au 
board, after thermal aging for 56 days. 

solder joints started to fail after 1 cycle (50 mins) of random 
vibration. It was observed that many FP components on the 
thick Au boards fell off the boards during the mechanical 
reliability tests. Thus, solder joints with an Au content over 
10% are not acceptable. 

Fig. 12 shows the microstructures of a typical solder joint 
of a FP component. The entire solder joint consists of (Au, 
Ni)Sn4 IMC with around 18 wt% of Au, 4 wt% of Ni, 
and 78 wt% of Sn. The fracture is in (Au, Ni)Sn4 IMC in 
the bulk solder near the board side. It is expected that the 
microstructures of the entire solder joint are AuSn4 or (Au, 
Ni)Sn4 IMC, if the Au content is close to 20% in atomic 
fraction. Note that there is a Ni layer in the FP component, 
preventing diffusion of copper into the joint. 

IV. CONCLUSION 

A comprehensive study has been conducted investigating 
the effect of Au content on the reliability of lead-free solder 
joint. The results show that SAC305 solder joints with over 
10 wt% Au are unacceptable. If Cu is available to dissolve 
into the solder joint, then an Au content under 5 wt% will not 
significantly degrade the reliability of the solder joint. When 

Ni layers are present on both the board and component sides 
of the interface, limiting the ability of Cu to dissolve into 
the solder joint, an Au content under 3 wt% is acceptable. 
Additional findings confirmed the danger of placing parts near 
high-stress areas and that a high level of voiding reduced 
reliability. 

When the Au content in a solder joint is less than 3 wt%, 
AuSn4 IMCs are small and will not play a significant role. 
The failure mechanism of such a solder joint is fracture 
within the Sn matrix when the joint is subjected to a very 
high stress level. If the Au content is high or large AuSn4 
IMCs are present in a solder joint, the failure mechanism 
is fractures through the AuSn4 IMCs. Fractures through the 
AuSn4 IMCs were found in the bulk solder and/or near the 
solder–metallization interface. 
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