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Abstract 

This paper presents initial steps towards developing 
autonomous navigation capabilities for cooperating 
underwater robots. Specifically, Simultaneous Local­
ization and Mapping, or SLAM , capabilities are in­
vestigated for a group of micro vehicles each equipped 
with a single downward facing camera and an Inertial 
Measurement Unit (IMU). To verify the approach, 
simulations of the multi-robot SLAM running in a 3D 
environment were conducted, where vehicles in close 
proximity of one another exchange maps to improve 
localization. 

Introduction 

This research is motivated by applications involving 
the use of cooperating underwater robots for bio­
logical sampling in near-shore water environments. 
Lakes and oceans provide us with some of our most 
valuable resources. To manage and conserve these re­
sources requires understanding them, which can only 
be accomplished through directed sampling stud­
ies. In particular, near-shore water environments are 
complex systems - both in their diversity and dy­
namics - that require spatial and temporal surveys 
over large areas. Multi-robot systems offer several 
potential advantages, including the ability to simul­
taneously sample such larger areas. 

Enabling autonomous navigation in multi-robot 
systems is key to making them practical. Simulta­
neous Localization and Mapping (SLAM), provides 
a means for autonomous vehicles to navigate in pre­
viously unknown environments. SLAM constructs a 
map of the environment, while at the same time pro­
viding a position estimate of the robot within the 
map. 

To enable autonomous navigation, the SLAM al­
gorithm must be scalable and real-time capable. 
Constant-time implementation is critical, so that an 
arbitrary number of robots and landmarks can be 
added to the map without the implementation grow­
ing to be intractable. Furthermore, the SLAM algo­
rithm cannot be run on a single centralized server or 
robot. Underwater communication is unreliable and 
limited in range, forcing decentralized control and 
SLAM, with only periodic exchanges of map infor­
mation. 

In this paper, the proposed approach is to merge 
world models from multiple vehicles using a method 
similar to fusing multiple measurements with the 
Kalman filter. This approach was originally demon­
strated with data from land vehicles [1] [2], which 
extended the Sparse Extended Information Filter 
(SEIF) [3] from single robot implementation to mul­
tiple robots. The approach was shown to be scalable, 
be real-time capable, and function well when decen­
tralized within ad hoc communication networks. 
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To validate this approach, simulations were con­
ducted in which multiple underwater vehicles success­
fully carried out 3D SLAM and map merging. The 
simulation included a full modelling of the vehicle 
dynamics, but assumed landmarks were easily iden­
tified. In order to implement this functionality on a 
robot, a vision system is required to select landmarks, 
identify previously observed landmarks and compute 
their position relative to the craft. 

What follows is a brief review of related litera­
ture, an explanation of the SLAM implementation, 
a description of how landmarks are identified for the 
SLAM algorithm, results including simulations, con­
clusions and future work. 

2 Background 

SLAM - Simultaneous Localization and Mapping ­
addresses the problem of using a robot to map an 
environment, while at the same time localizing the 
robot within that map. For the most part, SLAM has 
been addressed for single ground-based robot systems 
and is traditionally implemented using a Kalman Fil­
ter approach [4]. 

2.1 Underwater SLAM 

Unlike ground-based mobile robots, SLAM for under­
water vehicles has only recently been investigated. 
The first instance of running SLAM on underwa­
ter robots appears in [5], where point features, or 
landmarks in from the natural environment, were ex­
tracted through sonar. Sonar is also used in [6] to 
verify a constant time SLAM algorithm. The SLAM 
implementation in [7], uses a sensor fusion (sonar and 
vision) before feature extraction to make the algo­
rithm more robust. 

Another approach is to drop transponders at un­
known locations, and use these transponders as land­
marks in the SLAM algorithm. In [8], ranges to 
transponders were used to estimate the vehicle and 
transponder locations. 

2.2 Multi-robot SLAM 

This research concerns SLAM for multi-robot sys­
tems, where robots can cooperatively map the en­
vironment and localize themselves. 

For ground-based rovers, several approaches have 
been taken to this problem. Some approaches as­
sume known starting positions [9]. This assumption 
was not required for the approach taken in [1], which 
was also shown to be scalable, be real-time capable. 
In related work [10], the issue of low-bandwidth com­
munication is taken into consideration by only ex­
changing those landmarks that result in the highest 
information gain. 

Other approaches include [11], where the Set 
Membership SLAM, or SM SLAM, is extended to 
multi robot case. In this case, measurement noise 
and motion error are not assumed to be Gaussian 
distributions, but are instead viewed as unknown but 
bounded errors. An example of performing multi-
robot SLAM using vision is found in [12]. 

3 SLAM 

The technique presented in [1] enables the merging of 
multiple world maps that consist of landmark state 
estimates and associate covariance. The technique is 
an extension of the Sparse Extended Information Fil­
ter (SEIF) work presented in [2], which was designed 
for a single robot implementation and then extended 
to multiple robots in cite [1]. In both [1] and [2], the 
SLAM algorithms were implemented for a 2D envi­
ronment, (i.e. using a truck in a city park). Here the 
system has been extended to 3D, an obvious require­
ment for operating in the underwater environment. 

Much like the typical Kalman Filter, this approach 
uses a Motion Update to predict the new location 
of the vehicle and a Measurement update to correct 
this predicted estimate at every time step. Unlike the 
Kalman Filter approach, a Sparsifiction step is used 
to reduce the algorithm run time. Also, additional 
map merging step is taken if vehicles have the ability 
to communicate. In summary, each individual vehicle 
iterates on Algorithm 1 shown below. 



Algorithm 1 Multi-Robot SLAM Algorithm for 
each individual vehicle. 

1. Loop on t 
2. Motion Update 
3. Measurement Update 
4. Sparsification 
5. If communication with other vehicle exists 
6. Merge Maps with other vehicle 
7. end Loop 

Within Algorithm 1 landmarks are not described 
with position mean µ and variance σ, but with a com­
bination of their inverses. That is, at some time step 
t, landmarks are defined by the state information ma­
trix Ht and information vector bt. 

Ht = Σ−1 
t (1) 

bt = µ T 
t Ht (2) 

If m and n are the number of robots and features re­
spectively, each with 6 degrees of freedom, then state 
vector b ∈ �6m+6n and corresponding information 
matrix Ht ∈ �(6m+6n)x(6m+6n). 

3.1 Motion Updates 

Robot motion updates the robots current position. 
This step differs from standard SLAM, which treats 
the environment as static (i.e. only the robots po­
sition changes). Here, links between features are es­
tablished. Re-observation strengthens links between 
these features, while noise reduces the strength of the 
link between the robots pose and feature positions. 

The estimated robot motion Δ̂t is combined with 
the previous estimate of the information vector bt−1 

to calculate the predicted state vector ̄  bt. As shown in 
Equation 4, the predicted state vector is also a func­
tion of the previous information matrix Ht−1, the 
motion error covariance matrix Ut, and the Jacobian 
of the pose transition function At. Similarly, the in­

¯formation matrix Ht is also updated. 

¯ Ht = f(Ht−1, Ut, At) (3) 

¯ ˆbt = f(bt−1, Δt,Ht−1, Ut, S, At) (4) 

3.2 Measurement Updates 

The measurement update uses current measurements 
zt with variance Z to correct the predicted state es­
timates as follows: 

Ht = H̄ 
t + CtZ

−1CT (5)t 

bt = ¯ bt + (zt − ẑt + CT µt−1)T Z−1CT (6)t t 

In equations 5 and 6, ẑt represents the measure­
ment that is expected given the current state esti­
mate. The measurement Jacobian Ct is defined by: 

∂h ∂h 
Ct = [ 0...0 0...0 ] (7)

∂xt ∂yt 

In equation 7, h is the measurement function, xt is 
the robot pose variable, and yt is the feature position 
variable. It is noted that Ct is sparse, which means 
that updates are only conducted on the fields which 
are affected by the current robot pose and the cur­
rently observed features. This allows for a scalable 
algorithm that can be run in real-time. 

3.3 Sparsification 

As more features are observed, the existing links be­
tween all previously observed features would remain 
continuously active. In order to preserve the constant 
time nature of this algorithm, sparsity constraints 
are made on the information matrix. For this im­
plementation, features are deactivated as they leave 
the robots field of view. That is, their links to other 
features or robots are removed. 

3.4 Merging Maps 

In the Kalman filter, the inverses of variances σ are 
additive. In this implementation, information matri­
ces are directly additive. In the Kalman filter, means 
are additive, but they are weighted by a Kalman gain, 
which is essentially the ratio of their variances. In this 
case, bt is already scaled by variances, which makes 
information vectors directly additive. With Ht and bt 

directly additive, maps from multiple robots are eas­
ily merged. As long as feature correspondence can 
be achieved, measurements of these feature positions 
can be added directly. 



3.5 Landmark Extraction 

SLAM algorithms require stationary landmarks 
within the environment to compute relative position 
estimates. Landmark position estimates are obtained 
by fusing the relative sensor measurements with in­
ertial sensor measurements and control input infor­
mation. In the system presented, the relative sensor 
measurements will be obtained via a vision system. 
A downwards facing camera selects interesting fea­
tures as landmarks and outputs their position rela­
tive to the vehicle. Matching of each feature to a 
list of previously observed features in the database is 
conducted to allow correlated updates. 

4 Results 

4.1 Simulations 

To verify the approach taken in [1] to underwater 
multi-robot SLAM, a Matlab Simulation was con­
ducted. This simulation allowed for an environment 
containing a variable number of observable marine 
features and a variable number of identical robots 
to explore this region. Each robot was run indepen­
dently, through a series of waypoints. 

4.1.1 Underwater Vehicle 

The ANGUS002 Remotely Operated Vehicle (ROV) 
was used for this simulation due to the availability 
of a Matlab Dynamic Model. The ROV is equipped 
with 6 thrusters. The model takes into consideration: 

•	 Vehicle thrusters - including the non-linear forces 
generated by propellers when they are driven in 
reverse. 

•	 Buoyancy and center of gravity 

•	 Hydrodynamic drag 

•	 Ocean current 

4.1.2 Vehicle Controller 

Within each simulation, the Autonomous Under­
water Vehicle (AUV) was commanded to navigate 

through a series of way-points. A multi-modal con­
troller, that switches between a forward travel mode 
and a station-keeping mode, was implemented to 
track the way points. It is important to note that 
the controller was not operating using the output of 
the SLAM system. In order to be fully autonomous, 
a robot would be required to generate its trajectory 
based on its map. Though the method of operation 
here is different, we are only concerned with the er­
rors between the estimated and true trajectories, in 
order to evaluate the operation of the selected SLAM 
algorithm. 

4.1.3 Vision System 

To simulate landmark recognition, positions of tar­
gets on the sea floor were provided to the simulator 
as a list. As the robot travels through its environ­
ment, a model of a downward facing camera system 
was used to detect these targets. The camera model 
takes into account: 

• range to target
 
• orientation of the camera
 

•	 field of view of the camera 

The measurement function h was simply a co­
ordinate transformation which translated the land­
mark positions in the world-frame into positions in 
the vehicle frame. When merging models it was as­
sumed that landmarks were easily identified and dis­
tinguished from one another, thus eliminating the 
correspondence problem for the sake of simplicity. 
The simulation used a noise model with a constant 
standard deviation σ2 = 0.1 for measurement error. m 

4.1.4 Positioning Sensors 

Each vehicle was equipped with a Global Position­
ing System (GPS) unit and an Inertial Measurement 
Unit (IMU). Vehicles were able to take a GPS read­
ing prior to submerging, so their initial positions were 
available. Though this is not required for this algo­
rithm, it simplified the map merging step. 

Once below the surface, the readings of an IMU 
were simulated and used as the sole method to esti­
mate vehicle motion. The IMU provided linear ac­



celerations and orientation angles. The orientation 
angles are relative to the gravity vector and magnetic 
North, so these readings we not subject to drift. The 
accelerations, however, were subject to an additive 
White Gaussian noise with a standard deviation of 
7mg or σ2 = 4.5806 × 10−5 . A depth pressure sen­a 
sor enables the elimination of drift in the Z-axis, but 
both the x- and y-axes of the vehicle are subject to 
long term drift. 

An algorithm which is functional without a dynam­
ics model can be beneficial in applications where a 
model is unavailable. Dynamics models can be diffi­
cult to obtain accurately, and external disturbances 
are often unmodeled. For this simulation, the vehi­
cle dynamics were not used for the motion prediction 
stage of the SLAM algorithm. In future experiments, 
using this prediction with the acceleration measure­
ments will most likely improve performance. 

4.1.5 Communication 

For the purposes of this simulation, it is assumed 
that vehicles are only able to communicate with one 
another when in close proximity. When vehicles are 
in range of one another, they are able to swap in­
formation regarding the position and description of 
landmarks in the environment. The availability of 
communication prompts a map merging in the simu­
lation system for all robots in range. The simulations 
conducted during this research used a communication 
radius of rc = 2m. 

4.2 Simulation Results 

In order to evaluate the performance of the selected 
algorithm, several simulation scenarios were con­
structed. It was desired to look at the performance: 

• without SLAM 

• with SLAM 

– without map merging 

– with map merging 

∗ at the end of the mission 
∗ once, each time within range 
∗ frequently, when within range 

Figure 1: Simulation: Trajectories of the 4 robots 
tracking waypoints 

The metric used to evaluate the positioning perfor­
mance under these situations is position error with 
respect to time. In the case of the robot position, 
the trajectory error is examined, and, for landmark 
location, the measured location is compared to the 
actual position. 

A set of waypoints was created for each of the 
robots. The approximate desired trajectories for each 
of the 4 robots used for this simulation are shown in 
Figure 1. The robots’ trajectories are at different 
depths to avoid collision. 

4.2.1 Without SLAM 

Without a SLAM algorithm running, the vehicles 
have only the readings of their IMUs to go on. Due 
to the double integration of IMU readings, and the 
noise present with the acceleration readings, vehicle 
positions can drift quite severely and position errors 
only grows with time. Figure 2(a) shows the actual 
position as a solid line and the estimated position 
as dots for the 4 robots. The error for each of the 
position estimates is shown in Figure 2(b). 

4.2.2 SLAM Without Merging 

Next, several landmarks are placed on the bottom of 
the marine environment. Figure 3 depicts the paths 
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Figure 2: The robot trajectory and position error 
with time for a all robots using only IMU measure­
ments for position determination. The actual trajec­
tory is shown as a solid line in the first plot, with 
measurements as ’.’. The second plot shows an error 
measurement for each robot with respect to time. 

followed by robots and the landmarks below from 
a 3D viewpoint. As can be seen in Figure 4, the 
positioning performance is greatly increased. Robot 
position error does not grow unbounded with time, 
and the return to a known location eliminates errors 
which have accumulated. 

When landmarks are not available, for example 
during times of low visibility in a marine environment 
or in regions where a descriptive scene is not present, 
position uncertainty will grow. Figure 5 shows the 

Figure 3: Simulation: 3D view of 4 robot trajectories 
above simulated landmarks (shown as ”o”). 

confidence ellipses for robot 1. The uncertainty and 
error grow as the robot looses visibility of all land­
marks, and decreases once a known landmark is lo­
cated. 

4.2.3 Merging After Completion 

Thus far, only the robot position has been examined. 
Turning to the environment features, it can be seen 
that combining the measurements of multiple robots 
is better than each robot on its own. An example 
of a set of measurements from 3 robots running in­
dependently is shown in Figure 6. Here, each robot 
determines its best guess as to the location of the 
landmark. Using the certainty of each robot’s esti­
mate, the measurements are fused at the completion 
of the run, reducing the overall error. 

In the example shown in Figure 6, the error is re­
duced to approximately 15cm from the actual posi­
tion. Although robot 2 (shown with ’+’) was able 
to take many measurements of the position of the 
landmark, with no landmarks along the approaching 
segment of its path, it had a large uncertainty in its 
position estimate. This is taken into consideration 
during the merge and this estimate is not weighted 
strongly during the final merge. 



−2 0 2 4 6 8 10 12 14 16 18
−12

−10

−8

−6

−4

−2

0

2

x [m]

y 
[m

]

Known landmark enters view

(a) Actual and Measured Trajectories 

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time [s]

er
ro

r 
[m

]

Known landmark enters view 

(b) Position Error wrt Time 

Figure 4: The robot trajectory and position error 
with time for all robots using running SLAM, using 
IMU readings and the measurements to landmarks in 
the environment. 

4.2.4 Merging At First Visibility 

In this simulation, robots are equipped with an un­
derwater communication system, so they can ex­
change map information while exploring, as well as 
at the end of the mission. These exchanges occur 
when robots come within a given range of one an­
other. Figure 7 gives an overview of this situation. 

Several beneficial characteristics resulting from 
communication can be observed. First, consider the 
communication between robot 1 and robot 4. It 
can be seen that measurements of the landmark at 
(5.0, 0.8) are exchanged at t = 113.25s, leading to a 
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Figure 5: Simulation: The estimated trajectory of all 
4 robots, and the confidences ellipses for robot 1. 
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Figure 6: Simulation: The results of combining maps 
at the completion of the simulation. The actual fea­
ture location is shown as an ’*’, while measurements 
from robot 1 are shown as ’x’, robot 2 as ’+’ and 
robot 4 as ’o’. Each robot’s final estimate is shown 
as a triangle and their combined estimate as a star. 
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Figure 7: The robot trajectory and position error 
with time for all robots using running SLAM, with 
robots merging each time a robot first comes within 
range. ’*’s along the x-axis represent a merge be­
tween 2 robots 

correction of robot 1’s position. This does not reduce 
the position error to zero, since the estimate of this 
landmark location by robot 4 contains some error. 

Secondly, a benefit of indirect communication can 
be seen. As robot 2 begins to travel, it observes the 
location of a landmark at (9.2, 10.25). At t = 18.0s, 
it exchanges maps with robot 1. At t = 24s, robot 1 
and robot 3 exchange their maps, which now informs 
robot 3 of the position of the landmark at (9.2, 10.25). 
As this landmark comes into view, robot 3 is able to 
correct its position to reflect the observation initially 
made by robot 2, even though it has never directly 
communicated with robot 2. 

Figure 8: Simulation: The results of merging maps 
each time a new robot comes within communication 
range. The actual feature location is shown as an ’*’, 
while measurements from robot 1 are shown as ’x’, 
robot 2 as ’+’ and robot 4 as ’o’. Each robot’s final 
estimate is shown as a triangle and their combined 
estimate as a star. 

Figure 8 shows the result of intermediate map 
merging on landmark measurements. The measure­
ments are more clustered now, since the indepen­
dence between robot measurements is reduced as they 
exchange data. This means that errors which one 
robot accumulates will influence the others. At the 
same time, this exchange of data will help to reduce 
drift in the robots’ position estimates. 

4.2.5 Merging Several Times While Visible 

A simulation was conducted to determine the effect 
of continuously merging data with all other robots in 
range. A delay of 7.5 seconds was used to simulate 
data transfer time. The results are shown in Figure 9. 

Examining the landmark at (4.8, 5.3), it can be 
seen in Figure 10, as was discussed in Section 4.2.4, 
that the communication of the robot tends to clus­
ter measurements, eliminating the independence that 
was seen in Figure 6. The increased vehicle position 
accuracy, however, will lead to more accurate land­
mark estimates. 
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Figure 9: The robot trajectory and position error 
for all robots running SLAM, with robots merging 
several times with all robots in range. ’*’s along the 
x-axis represent a merge between 2 robots 

4.2.6 Summary 

In order to compare the results from each of the above 
algorithm modifications, Table 1 has been prepared. 
This table shows a drastic reduction in error when 
SLAM is used. Merging map data produces a fur­
ther improvement. Continuous merging yields and 
improvement in 2 robots, and reduction in 2 others. 
Further study should be conducted to determine the 
optimal merging rate. 

Figure 10: Simulation: The results of merging maps 
several times with all available robot within commu­
nication range. The actual feature location is shown 
as an ’*’, while measurements from robot 1 are shown 
as ’x’, robot 2 as ’+’ and robot 4 as ’o’. Each robot’s 
final estimate is shown as a triangle and their com­
bined estimate as a star. The final estimate is difficult 
to see, but is located at (4.93, 5.37). 

Table 1: RMS errors in robot position for each map­
ping algorithm 

RMS Error [m] 
Algorithm Robot 1 Robot 2 Robot 3 Robot 4 
IMU-only 
SLAM 
w/ 1 merge 
w/ > 1 merge 

2.3507 
0.5832 
0.3772 
0.2995 

2.6830 
0.6950 
0.2208 
0.4036 

1.6003 
0.4644 
0.2461 
0.1784 

2.5230 
0.3299 
0.2282 
0.3654 



5 Conclusions 

The proposed SLAM technique is ideally suited for 
multiple underwater vehicles. The technique requires 
infrequent data exchange between robots and does 
not require a central processor or map server, mak­
ing it ideal for underwater applications, where com­
munication is both limited in range and unreliable. 
Although, it does benefit from more frequent data 
exchange. The algorithm is constant-time, allowing 
for real-time implementations on ROVs or AUVs. 

Furthermore, although untested by this experi­
ment, the ability of this algorithm to fuse maps by 
correlating features without requiring knowledge of 
the vehicles starting locations allows arbitrary mo­
tion to be conducted, without absolute position mea­
surements. The ease with which maps are fused, re­
quiring only a simple coordinate transformation and 
matrix addition, significantly reduces computational 
complexity. 

6 Future Work 

Currently, the algorithm is being implemented on a 
VideoRay Micro ROV, (see Figure 11) for real world 
testing. The vehicle has a color camera that can tilt 
from horizontal to vertical (downward facing). Ori­
enting the camera in a downward facing configuration 
provides a means to obtain landmarks on the lake 
bottom. SIFT features [13] are being investigated as 
a means to extract landmarks from the vision sys­
tem. The ROV has been equipped with an O-Navi 
Falcon-MX IMU to provide inertial measurements. 
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