
1

ICDM: Integrated Cooperative Decision Making - in Practice

Leonard Myers

CDM Technologies, Incorporated

Abstract

Multi-agent systems provide an attractive architec-
ture for the implementation of complex systems. Much
of the research is focussed on complete automation of
the decision making process as a means of duplicat-
ing human abilities f o r working with new problems and
environments. There as also a need for systems that
employ the human as an agent and rely on human abil-
ities for common sense and deep thought. The CAD
Research Center a t Cal Poly and CDM Technologies
have significant experience in building systems of the
latter t ype that assist human users in solvang complex
problems in planning, design and economacs. This
experience has generated a set of guidelines and a
software development framework that have collectively
been identified as ICDM. This paper presents a brief
history of major applications built with the ICDM
framework, and proposes some basic precepts.

Introduction

Making decisions is central to the course of action in
any dynamic system. Much of the research in comput-
erized decision making is intended to produce systems
that can duplicate the decisions made by humans, par-
ticularly in the solution of complex problems. Such
problems, commonly encountered in planning, design,
economics, and management situations, are character-
ized by a set of distinctive attributes that do not lend
themselves to a strictly sequential solution approach.
These characteristics include many related variables,
some of which are largely undefined, and dynamic
changes in both solution requirements and strategies
throughout the decision making process. The com-
plexity of such decision making environments is not.
due to a high level of difficulty in any one area but the
multiple relationships that exist among the many is-
sues that impact the desired outcome. Since a decision
in one area will tend to influence several other areas
there is a need to consider many factors at the same

Jens Pohl

California Polytechnic State University

time. This concurrency requirement places a severe
burden on the human cognitive system and provides
a strong incentive for computer-based assistance.

The models for decision making are typically a
group of humans, such as a committee, board, or soft-
ware development team, or the human brain, which
may also be described in terms of member compo-
nents. Commonly the components are called ’agents’
and the focus of the research is on how the agents
reason. A primary interest in the research is to make
agents sufficiently independent to provide potentially
important and unique contributions to the solution of
a problem; yet, to see that these contributions are ef-
ficiently refined into a coherent response.

Multi-agent systems may provide an environment
which is hostile to an individual agent. For exam-
ple, a war game may support common cornmunica-
tion between friend and foe agents, but the content of
messages from a foe may be neither friendly nor reli-
able. Similarly, a multi-agent system that simulates a
world-wide financial market must presume that agents
are not necessarily working for the common good of
the market players, but are likely to favor their own
interests.

On the other hand, it is useful to develop systems in
which the agents do cooperate to promote the common
good of the system. These are ‘friendly’ cooperative
systems. Further, within the set of friendly coopera-
tive systems there is great variation in decision making
facilities.

ICDM (Integrated Cooperative Decision Making)
is a name used to reference the general guidelines and
software framework employed by CDM Technologies
and the Cal Poly CAD Research Center for the devel-
opment of particular multi-agent applications.

1.1 History of ICDM

ICDM is the result of experience gathered during
the development of a variety of applications using sev-
eral multiple expert system platforms. A brief history
will show how the ICDM guidelines and framework

608
1063-6730194 $4.00 0 1994IEEE

evolved. Then the key ideas will be stated and dis-
cussed.

1.2 PEBBLE

The implementation ideas for ICDM began with
the development of the PEBBLE (Parallel Execution
of Blackboard-Linked Experts) system [12]. Expert
systems written in the PEBBLE language can inter-
act with a data-blackboard housed in shared memory.
PEBBLE was implemented on a parallel processing
(multi-CPU) system, in order to permit expert sys-
tems to execute simultaneously. A required control
expert developed for each PEBBLE application posts
facts to the data-blackboard that identifies the cur-
rent state of the problem solution and triggers actions
within other experts.

These other expert systems, called domain experts,
read each fact immediately after it has been posted
to the data-blackboard and execute rules in parallel
whenever their conditions are satisfied. The use of
multiple CPUs in PEBBLE makes it unnecessary to
explicitly schedule the execution of domain experts.
The multiple CPUs quickly produce a rich set of re-
actions to trigger facts placed on the data-blackboard
and provide a simple setting for control.

The primary lesson learned from PEBBLE was that
the use of multiple CPUs with fast communication can
eliminate programming concerns for scheduling pro-
cess execution, which was the primary task of early
blackboard systems This permits application devel-
opers to concentrate on problem-level, as opposed to
machine-level, events. Experience in writing PEBBLE
applications helped to formulate patterns by which
large problems can be partitioned into domains and
rule strategies for cooperation between those domains.

1.3 MARBLE

MARBLE (Multiple-Accessible Rete Blackboard-
Linked Experts) [ll]is a major extension of PEBBLE.
In order to provide a more robust environment for
programming rule-based expert systems, the CLIPS
(’C’ Language Integrated Production System) is used
in MARBLE to replace the PEBBLE language and
inference engine [13]. The graph-based inference en-
gine developed for PEBBLE makes it possible for the
rules in all experts to directly reference shared mem-
ory. However, the CLIPS expert system shell is in-
tended for single CPU execution. Use of the CLIPS
shell and the very nature of the Rete network [6] it
implements makes a single shared factlist impractical.

Therefore, MARBLE imposes a new paradigm for the
data-blackboard.

In MARBLE the data-blackboard is distributed. A
CLIPS shell runs in shared memory on each CPU. In
addition, each shell is associated with a shared mem-
ory structure called an ‘action descriptor’ (AD). The
action descriptor provides pointers, buffers, as well as
status and action request flags that are used for com-
munication between the shells. In addition to provid-
ing the actual communication data, flags are used as
semaphores to guarantee reliable access and use of the
data in all possible events within the parallel environ-
ment.

To post a fact to the data-blackboard, an expert
invokes a function to place the address of the buffered
fact into its AD. A control expert that constantly mon-
itors the shared memory ADS manages the process of
copying the request information into the ADS of all ac-
tive experts, which then assert the fact into their own
factlists. In effect, all of the experts share what is on
the data-blackboard, even though they have their own
copies. The implementation supports assertion, dele-
tion, and modification of facts. Further, the logic is
verified by a dynamic event state-transition diagram,
to ensure that communication actions are finished be-
fore the information can be destroyed and to prevent
deadlocks from occurring.

The distributed data-blackboard in MARBLE de-
mands consideration of potential problems when an
action requested by a domain expert is out of phase
with respect to a data-blackboard fact. Thus, a prob-
lem might occur if a particular domain expert requests
that a blackboard fact be modified, while in parallel
the control expert asks for deletion of the fact. The
domain expert might receive the request for deletion
of the fact from control immediately after it has rec-
ommended the modification. On the other hand, this
need not be a problem at all! When the domain ex-
pert receives the deletion request, it will simply delete
the fact, and the modification request will be ignored
by control when it discovers that no fact exits.

The potential for problems, such as the one de-
scribed above, forces MARBLE application develop-
ers to consider how they are going to determine when
a decision should be made. Here, this will be refered
to as the ‘timeliness’ problem. MARBLE guarantees
the integrity of the actions it is requested to perform
with respect to the data-blackboard. It very loosely
synchronizes the order in which the domain experts
and the control expert can deal with data-blackboard
facts. No expert can execute more than one local rule
before processing all communication actions that are

609

pending.
Different applications developed in MARBLE use

different approaches to deal with the timeliness prob-
lem. These applications demonstrate that the expert
systems for some problems can be written so that
timeliness is of little concern. Such systems are pri-
marily forward-driven by discrete transitions in re-
sponse to specific facts on the blackboard. The black-
board facts define the state of the system and are
rarely deleted, although they are frequently modified.
Time is involved only in terms of how long it takes for
a transition to occur. Under these circumstances the
system may simply wait for certain facts to be gener-
ated. (This is not unusual when the monotonicity of
systems such as DENDRAL [7] is recalled.)

Differences in the PEBBLE and CLIPS-MARBLE
capabilities force the application programmer to think
of different ways to accomplish the same ojective. The
differences also generate ideas for the implementation
of new facilities. In general, the differences in language
call attention to the influence that representation has
on process.

Experience with MARBLE shows that the black-
board concept is a useful model for agent communi-
cation even when the blackboard data is distributed
among the agents. The greater convenience in using
MARBLE naturally leads to the development of more
complex applications. The greater complexity of ap-
plication in turn generates more interaction and a need
for more types of interaction between agents.

1.4 ICADS-DEMO1

ICADS-DEMO1 is the first of several working mod-
els of ICADS, an Intelligent Computer-Assisted De-
sign System [15]. It demonstrates a design system in
which the user orchestrates the evolution of a build-
ing design solution with assistance from the computer.
Emphasis is placed on the early design stages during
which conceptual solution strategies are formulated
and the framework for the entire design process es-
tablished.

ICADS-DEMO1 is designed as a distributed CPU
implementation of MARBLE, a multi-agent environ-
ment wi th a single coordination expert. Socket com-
munication code replaces the use of shared memory
for communication between the CPUs, which may
be heterogeneous [17]. Otherwise, the concept of
the distributed data-blackboard is the same. Specif-
ic‘ally, ICADS-DEMO 1 comprises: an existing com-
mercial computer-assisted drawing system; a Geome-
try Interpreter (GI) capable of formulating architec-
turally meaningful geometric objects from point/line

data schemas; relational databases incorporating pro-
totypical building type information, site and neigh-
borhood descriptions, and various reference data; an
Expert Design Advisor consisting of six domain ex-
perts that automatically monitor the evolving design
solution; and a Coordinator responsible for finding val-
ues that are compatible with the suggestions from the
domain experts. The primary task of the system as
a whole is to provide dynamic checking of constraints
and dynamic generation of inferred results in the do-
main areas of knowledge about building design.

The size and complexity of the ICADS-DEMO1 ap-
plication motivated the development of a protocol for
CLIPS facts within a generic frame representation [l].
It also required the inclusion of the human user as the
primary authority for resolving inconsistencies among
the domain agents. The introduction of the user as an
agent prompts the important, but subtle, reidentifica-
tion of the MARBLE control agent as a ‘coordination’
agent. (This helps emphasize that ICADS-DEMO1 is
an assistant to the user and not an autonomous de-
signer.) Further, the resolution of difference between
agents in DEMO1 is so complex that it requires new
resolution strategies [19].

ICADS-DEMO1 provides many types of problems
in producing decisions that converge to system solu-
tion. In particular: it requires a philosophy for treat-
ing the user as an agent; it focuses attention on de-
termining when differences in domain suggestions are
significant; it requires a method for preventing infinite
cycles of resolution; and, it motivates a concern for the
scalability of a single coordinator in a multi-agent en-
vironment.

1.5 ANT-FARM

ANT-FARM is a series of projects used to study
various communication and coordination methods for
a multi-agent environment [a] . Execution of the sys-
tem produces a realistic graphic portrayal of ant be-
havior. Currently there is a single nest from which
ants emerge. Each ant is implemented as an agent
with the same instinctive behavior facilities. The ac-
tion of an ant is somewhat random, except for response
behavior that is triggered by the recent presence of
ants in the near vicinity. Scent and food excitement
levels are dynamically adjusted with respect to time
and decrease with distance. As ants discover a source
of food and find their way back to the nest, the path
from nest to food and back becomes easier for the
ants to determine. Within a few minutes of opera-
tion, there is a fairly regular line of ants between the
nest and food. The instincts are modeled from the

610

literature on ant behavior and produce a very realistic
result.

In addition to a variety of experiments in driving
the ant agents from parallel, distributed, and single
CPU platforms, ANT-FARM serves to demonstrate
how the appearance of cooperative behavior can take
place without making the agents aware of their contri-
butions to the rest of the system. Similar to research
in autonomous agents reported by Brooks [3] , Wilson
[18], Meyer [9], and Maes [8], the ANT-FARM expe-
rience demonstrates how clever encoding of basic ac-
tions can achieve behavior goals that are not explicitly
identified.

1.6 ICODES

ICODES (Integrated Computerized Deployment
System) refers to a continuing project which is cur-
rently in a proof-of-concept working system form [4].
It is a comprehensive system that will help both novice
and experienced ‘stowers’ to plan the loading of cargo
onto ships. Like the ICADS prototypes, ICODES fea-
tures interactive graphics within a framework of mul-
tiple expert systems that can either monitor the man-
ual stowing of cargo or automatically stow a subset
of the entire cargo list. Cargo icons are automatically
displayed within the ship drawing or dragged into po-
sition by the user. The user selects the actions to be
performed and can limit the automatic operations to
alternate between manual and assisted actions. Vi-
olations generated by manual actions are presented
graphically and a rich set of query and report facili-
ties are supported. Manual actions can undo any of
the assisted actions.

The implementation of ICODES required new
ICDM facilities. In addition to a richer frame repre-
sentation than that employed in DEMO1, more flex-
ible communicatioin between agents is employed. A
new programmer-friendly distributed communication
package based on the independently developed Mer-
cury Message System [16] is being developed. Specifi-
cally, the access agents that determine whether a given
cargo item can be driven, pulled or lifted into a ship
compartment benefit from direct communication with
each other. Only the result of their discussion needs to
be known by other agents. As a result the framework
for ICODES is more characterized as a multiple agent
architecture than specifically a blackboard system.

1.7 Object-Agents

The newest research in the CAD Research Center is
associated with the concept of ‘object-agents’ [lo]. In

this work there is not necessarily a data-blackboard.
The agents are more like those in standard coopera-
tive, distributed computing systems [5], but with one
significant difference. In the object-agent applications,
the implementation of software objects in languages
such as C++ is enhanced with code that permits ob-
jects to act as agents.

Currently the ICDM framework from the ICADS
prototypes is being used to support experimentation
with object-agent applications to architectural design
[14]. The basic ideas collectively called ICDM con-
tinue to provide the guidelines for the behavior of
objects in an agent environment. Hopefully this ap-
proach will make it easier to incorporate as agents ob-
jects that have been previously defined in languages
such as C++. If so, a significant increase in produc-
tivity could be realized when existing object systems
are extended into a cooperation paradigm.

2 ICDM Guidelines and Framework

The following guidelines are based on what was
found to work well in the applications that the CAD
Research Center has implemented in recent years.
They are presented for consideration particularly by
others who are considering the implementation of
multi-agent systems that can work efficiently in large
systems. Human agents are expected to provide the
common sense reasoning and deep reasoning that may
be required when the system has a problem. The sys-
tem agents themselves use strong specific inferencing.
One warning is appropriate. Context is essential! A
particular precept may be inappropriate if the goals
or implementation environment are substantially dif-
ferent from the applications listed above.

1. Model objects with natural language.

Generate an object model of the application in
which a complete vocabulary of words natural to the
application is embedded. In particular, identify every
item or attribute that must be known in order to de-
scribe a solution to the problem. The communication
among agents must be within the common vocabulary.
Of course, the agents may use local domain words to
make inferences or compute values for the common
vocabulary, but the local words should not be com-
municated to other agents. Generally, the common
vocabulary consists of what the system must be able
to report to its users and what must be communicated
between agents.

611

2. Create object or frame representations.

The representation must be efficient for computa-
tion, inferencing, and communication. Preferably it
should be possible to easily translate the representa-
tion into a relational database format. Minimize the
amount of information that must be transmitted in or-
der to make a suggestion for the value of a single item
or attribute. Provide a ‘source’ slot or attribute to
identify the source agent of the transmission, provide
a ‘type’ slot or attribute to identify whether the value
is a suggestion or the current solution value. (The set
of attributes whose type slots are marked as current
solution values identifies the state of the system solu-
tion at any point in time.) Do not permit any attribut,e
to receive a current solution type from more than one
source agent. If necessary, create new attribute names
to maintain this sole source precept.

3. Provide robust communication facilities.

Agents can translate the common representation
into other internal forms, but the requirement of corn-
mon communication makes it possible to dynamically
link agents.

4. Minimize communication bottlenecks.

Partition the common communication. There is no
need for every agent to receive all of the common vo-
cabulary. Develop a mechanism by which agents iden-
tify the input they can use and constrain communica-
tion to this set. There are a variety of architectures
with which this can be achieved. It is best to pro-
vide agent-to-agent as well as broadcast (to all agents)
communication. A router built within the communi-
cation hub for each CPU in the system could handle
the messages between the agents it hosts. For exter-
nal agents, the same router can communicate directly
with the hubs on their CPUs. Each agent can register
an ‘input template’ to identify its input values with
its hub.

In a single CPU system there is simply one hub
and all routing takes place within it. In a multiple
CPU system the assignment of agents to CPUs must
take into consideration the expected frequencies of
their communication with other agents. Also in mul-
tiple CPU systems, broadcasts can be performed by a
single hub-to-hub message to each of the other hubs
which then distribute the information to the agents
they host, in accordance with the input templates.

5. Group units of communication.

In order to activate the best response in an agent, it
is often necessary to prohibit the agent from reacting
to individual message information in the order it is re-
ceived. Instead, the sender can group the information
units together and expect the receiver to react only
after the group has been received. In a rule-based sys-
tem this makes it possible to write rules that respond
to many possible combinations of input and use pri-
orities to select the best of all the rules activated by
grouped input.

6. Make decisions correctly.

Make decisions at the lowest level possible. Be sure
that all necessary input will be available to the extent
possible. Refrain from making a decision when insuffi-
cient information is available. Instead, let the absence
of a decision be available to the system explanation
facilities that can help the user correct the problem,
or make a decision for the agent. Capture arid analyze
the reasons for inadequate agent suggestions. Often,
an agent simply requires input that it has been denied.

7. Generate feed forward waves.

Suggestions and decisions should feed forward in
terms of setting the system solution attributes. Of
course, there are many occasions when new actions
within the system will generate values for previously
unassigned attributes or new values for previously as-
signed attributes. These new values should also feed
forward and form a new wave of response within the
system.

The vocabulary and the agents should be designed
to generate forward dependencies. The ‘line of com-
mand’ management practice, still used in many Amer-
ican institutions, is simply not efficient. However, cur-
rent bottom-up and top-down communication prac-
tices are effective if the top-down information proceeds
all the way to the bottom and the response is returned
through the natural bottom-up activities. Some cir-
cumstances may permit a breaking of the feed forward
directive, but such deviations from the general rule
should be implemented only after careful considera-
tion. In most cases the need for breaking the directive
can be eliminated by moving some decisions to lower
levels, or by introducing new information to lower level
decision makers, or by delaying a lower level decision
until more information is received. These actions will
usually allow better decisions to be made at lower lev-
els.

612

8. Prevent repetition of cyclic behavior. 10. Maximize simultaneous response.

It is likely that ‘making waves’ can result in a sit-
uation where one or more successive waves produce a
current solution attribute that will cycle through the
same set of values. This is easily detected and pre-
vented. A count field and a limit field may be included
in the representation of the attribute. Whenever the
coordinating agent that is authorized to set the cur-
rent value of the attribute makes a change in its value
field, it can also update the count field and check the
limit field. If the limit has been exceeded, help can
be requested from a human agent. The application
should include friendly, interactive facilities to help the
human user understand the problem and gather suf-
ficient information to make a decision. Furthermore,
the user may select a reset of the count field or main-
tain its value. If the count is reset then, depending on
the actions of the user, it is of course possible that the
cycle will repeat. If the limit violation is retained, it
can be used to prohibit further changes.

The use of forced values set by a user is generally
an action encouraged only to permit continuation of
the currently executing system. The system should
log the forced incident and this record should be used
to provide a more permanent improvement.

9. Isolate the consideration of alternatives.

Even when good decisions are made by a system,
it is often desirable to ask ‘What if?’ types of ques-
tions. The isolation of alternative computational se-
quences helps to minimize the use of system resources.
In particular, the performance of expert system infer-
ence engines is typically degraded by large increases
in facts. Thus it may be preferable to use multiple
engines, rather than a single engine that uses pattern
matching to focus attention on one alternative.

Explicit facilities for handling alternatives should
be provided. For example in SARDINE [lo], a system
that the CAD Research Center is currently developing
as part of an ICDM-Kernel project, the design calls for
a duplicate ICDM environment across a distributed
network by managing forked copies of the common
processes. Any copy can be executed with different ac-
tions to explore alternatives, but the forked processes
that are not part of the executing copy are asleep and
use few system resources. If the system resources per-
mit, it might even be desirable to concurrently execute
more than one copy of the whole system.

The use of multiple agents with properly selected
domains can maximize the suggestions to be used in
making a decision in a small amount of time. Long
running algorithms may require new formulations that
will provide intermediate values that can be shared
with other agents to detect problems at an early stage.

11e Also generalize decision making.

A major emphasis of cooperative multi-agent com-
puting research is the development of strategies for
making decisions in general. Specifically, the inten-
tion is to produce mechanisms that will provide so-
lutions to many problems, including ‘new’ problems
that were not identified when the agents were cre-
ated. Often, the low-level decisions made by an agent
are separated from the high-level decisions that are
made for the whole system. The low-level, or ap-
plication domain, decisions are characterized by the
use of application-specific information. The high-level,
or system, decisions are characterized by more gen-
eral decision making strategies that do not depend on
application-specific information.

The same guidelines and framework that have been
described for low-level decisions apply to high-level de-
cisions. However, the domains of high-level agents
may include vocabulary items that are not usually
identified with the application itself.

3 Summary

The ICDM framework and its implementation in
the various applications described in this paper, are
indicative of the authors’ conviction that decision sup-
port systems in which human users and computer-
based agents work in partnership are highly desirable.
The decision making activity presumes an element of
the unknown, a problem that has to be solved through
a decision making process that cannot be completely
predefined because of incomplete information and dy-
namic information changes. Under such conditions,
the ability of the human partner to apply intuition is
a welcome and necessary complement to the logical
capabilities of the computer-based agents.

In order to build large interactive cooperative sys-
tems a number of guidelines are necessary in order to
drive implementation decisions. The guidelines pre-
sented in this paper have been successfully used in
a series of working applications developed over many
years of work.

613

References

[l] H. Assal and L . Myers, “Implementation of a
Frame-Based Representation in CLIPS,” Proc.
Farst CLIPS Users Conference, Johnson Space
Center, NASA, Houston, TX, August 13-15, 1990.

[2] W. Bock, A Szmulatzon of the Food Gathenng Be-
havzor of Ants, Senior Project, Computer Science
Dept., Cal Poly, San Luis Obispo, CA, 1994.

[3] R.A. Brooks, “Intelligence without Reason - Com-
puters and Thought Lecture,” Proc. IJCAI-91,
Sydney, Australia, 1991.

[4] CAD Research Center, ICODES: Integrated Com-
puterzzed Deployment System, Final Report of
Stage(l) , prepared for Naval Civil Engineer-
ing Laboratory and Military Traffic Management
Command, US Department of Defense (contract
CAD Research Center, College of Architecture and
Environmental Design, Cal Poly, San Luis Obispo,
CA, March, 1994.

[5] E. Durfee, 	 Coordination of Distributed Problem
Solvers Kluwer Academic, Boston, 1988.

[6] C.L. Forgy, “Rete: A fast Algorithm for the Many
Pattern,” Artificial Intelligence, 19(1), 1982.

[7] 	R. Lindsay, B.G. Buchanan, E.A. Feigenbaum,
and J. Lederberg, DENDRAL, McGraw-Hill, New
York, 1980.

[8] P. Maes and R. Kozierok, 	 “Learning Interface
Agents,” Proc. AAAI-93: The Eleventh National
Conference on Artificial Intelligence, MIT Press,
1993.

[9] J.A. Meyer and A. Guillot, “Simulation of Adap-
tive Behavior in Animats: Review and Prospects,”
Proc. First International Conference on the Sim-
ulations of Adaptive Behavior, Meyer and Wilson
(eds.), MIT Press/Bradford Books, 1991.

[lo] L. Myers, J . Pohl, J . Cotton, J . Snyder, K. Pohl,
S. Chien, S. Aly, and T. Rodriguez, Object Repre-
sentation and the ICADS-Kernel Design, Techni-
cal Report, CADRU-08-93, CAD Research Center,
Design Institute, College of Architecture and En-
vironmental Design, Cal Poly, San Luis Obispo,
CA, January, 1993.

[l l] L. Myers, C. Johnson, and D. Johnson, “MAR-
BLE: A System for Executing Expert Systems

in Parallel,” Proc. Farst CLIPS Users Confer-
ence, Johnson Space Center, NASA, Houston, TX,
Aug.13-15, 1990.

[12] E. Myers, T. Cheng, D. Erickson, L. Nakamura,
T. Rodriguez, R. Russett, and T. Sipantzi, “PEB-
BLE: Parallel Execution of Blackboard-Linked Ex-
perts,” Proc. SURF Conference, Newport Beach,
CA, Sept, 1988.

[13] NASA, 	 CLIPS Archztecture Manual (Verszon
4.3), Artificial Intelligence Section, Lyndon
B.Johnson Space Center, TX, May, 1989.

[14] J . Pohl and 	L. Myers, “A Distributed Coopera-
tive Model for Architectural Design,” Symposzuni
on Knowledge-Based Systems for Archztectural De-
sign, Consiglio Nazionale Delle Ricerche, Rome,
Italy, May 13-14, 1993: in Knowledge-Based
Computer-Aided Architectural Design, (eds. Car-
rara and Kalay), Elsevier, Amsterdam, (pp.205-
242), 1994.

[15] J . Pohl, A. Chapman, L. Chirica, R. Howell, and
L. Myers, “Implementation Strategies for a Proto-
type ICADS Working Model,” Technical Report,
CADRU-02-88, CAD Research Unit, Design ln-
stitute, School of Architecture and Environmental
Design, Cal Poly, San Luis Obispo, CA, 1988.

[16] K. Pohl, 	 “MERCURY: A Real-Time Message
Management Facility for Distributed Coopera-
tive Computing Environments,” Proc. Advances
in Computer-Assisted Building Design Systems,
Focus Symposium: 4th International Symposium
on Systems Research, Informatics and Cybernet-
ics, Baden-Baden, Germany, August 2-5, (pp.155-
164), 1993.

[17] J . Taylor and L. Myers, “Executing CLIPS Ex-
pert Systems in a Distributed Environment,” Proc.
First CLIPS Users Conf., Johnson Space Center,
NASA, Houston, TX, August 13-15, 1990.

[18] S.W. Wilson, “The Animat Path to AI,” Proc.
First International Conference on the Simulations
of Adaptive Behavior, Meyer and Wilson (eds.),
M I T Press/Bradford Books, 1991.

[19] W. Wuilleumier, A High Level Strategy Approach
t o Knowledge Acquisition, Master Thesis, Com-
puter Science Dept., Cal Poly, San Luis Obispo,
CA, 1992.

614

