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FINITE-STATE MARKOV CHAINS OBEY BENFORD'S LAW* 

ARNO BERGERt, THEODORE P. HILL!, BAHAR KAYNAR§, AND AD RIDDER~ 

A sequence ofreal numbers (xn) is Benford if the significands, i.e., the fraction parts in the floating-point 
representation of (x ), are distributed logarithmically. Similarly, a discrete-time irreducible and aperiodic fin 

nite-state Markov chain with transition probability matrix P and limiting matrix P' is Benford if every com
ponent of both sequences of matrices (pn - P') and (pn+1 - pn) is Benford or eventually zero. Using recent 
tools that established Benford behavior for finite-dimensional linear maps, via the classical theories of uniform 
distribution modulo 1 and Perron-Frobenius, this paper derives a simple sufficient condition ("nonresonance") 
guaranteeing that P, or the Markov chain associated with it, is Benford. This result in turn is used to show that 
almost all Markov chains are Benford, in the sense that if the transition probability matrix is chosen in an 
absolutely continuous manner, then the resulting Markov chain is Benford with probability one. Concrete 
examples illustrate the various cases that arise, and the theory is complemented with simulations and potential 
applications. 
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1. Introduction. Benford's law (BL) is the widely known logarithmic probability 
distribution on significant digits. Its most familiar form is the special case of leading 
significant digits (base 10), namely, 

(1) 

where for each x E ~+, the number Dl (x) is the first significant digit (base 10) of 
x, i.e., the unique integer dE{1,2, ... ,9} satisfying 10kd:::;x<lOk(d+1) for 
some, necessarily unique, k E Z. Thus, for example, Dl (30122) = Dl (0.030122) = 

D1(3.0122) = 3, and (1) implies that 

lP'(Dl = 1) = log102 ~ 0.301, lP'(Dl = 2) = log10 (3/2) ~ 0.176, etc.; 

see also Table 1 below. 
In a form more complete than (1), BL is a statement about joint distributions of the 

first n significant digits (base 10) for any n E N, namely, 
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TABLE 1 
Empirical frequencies of Dl for the first 1000 terms of the sequences (2n), (n!) and the Fibonacci numbers 

(Fn), as compared with the Benford probabilities given by (1). 

Dl (2n) (n!) (Fn) Benford 

1 
2 
3 
4 
5 
6 
7 
8 
9 

0.301 
0.176 
0.125 
0.097 
0.079 
0.069 
0.056 
0.052 
0.045 

0.293 
0.176 
0.124 
0.102 
0.069 
0.087 
0.051 
0.051 
0.047 

0.301 
0.177 
0.125 
0.096 
0.080 
0.067 
0.056 
0.053 
0.045 

0.30103 
0.17609 
0.12494 
0.09691 
0.07918 
0.06695 
0.05799 
0.05115 
0.04576 

where d1 E {I, 2, ... , 9} and dj E {O, 1,2, ... , 9} for j :2: 2, and D2 , D3 , etc., represent 
the second, third, etc., significant digits (base 10). Thus, for example, 
D2(30122) = D2(0.030122) = D2(3.0122) = 0, and a special case of (2) is 

lP'((Dl' D 2 , D3 ) = (3,0,1)) = lOglO (1 + 3~1) ~ 0.00144. 

Formally, for every n E N, n:2: 2, the number Dn(x), the nth significant digit (base 10) 
of x E ~+, is defined inductively as the unique integer dE {O, 1,2, ... , 9} such that 

for some (unique) k E Z. 
The formal probability framework for BL is described in [13], [14]. The sample space 

is ~+, and the a-algebra of events is generated by the (decimal) significand (or mantissa) 
function s: ~+ --+ [1,10), where S(x) is the unique number such that x = 10kS(x) for 
some k E Z. Equivalently, the significand events are the sets in the a-algebra generated 
by the significant digit functions D1 , D2, D3 , etc. The probability measure on this sample 
space associated with BL is 

lP'(S:::; t) = loglOt \It E [1,10). 

It is easy to see that the significant digit functions Dl and D2, D3 , etc., are well defined 
{1,2, ... ,9}- and {O, 1,2, ... , 9}-valued random variables, respectively, on this prob
ability space with probability distributions as given in (1) and (2). 

Note. Throughout this article, all results are restricted to decimal (base 10) signifi
cant digits, and accordingly log always denotes the base 10 logarithm. For notational 
convenience, Dn(O) := 0 for all n E N. The results carryover easily to arbitrary bases 
bEN \ {I}, as is evident from [2], where the essential difference is replacing lOglO by 10gb 
and the decimal significant digits by the base b significant digits. 
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BL is now known to hold in great generality, e.g., for classical integer sequences such 
as (2n), (n!) and the Fibonacci numbers (Fn), iterations of linearly dominated or power
like maps, solutions of ordinary differential equations, products of independent random 
variables, random mixtures of data, and random maps (e.g., see [1], [4], [5], [9], [14]). 
Table 1 compares the empirical frequencies of Dl for the first 1000 terms of the sequences 
(2n), (n!), and (Fn)' This illustrates what it means to follow BL and also foreshadows the 
discussion in section 5. 

The main contribution of this article is to establish BL in finite-dimensional, time
homogeneous Markov chains and to suggest several applications, including error ana
lysis, in numerical simulations of n-step transition matrices. Concretely, given the 
transition matrix P of a finite-state Markov chain (i.e., P is a row-stochastic matrix), 
a common problem is to estimate the limit P* = limn-+oopn. The two main theoretical 
results below, Theorems 12 and 17, respectively, show that under a natural condition 
("nonresonance") every component of the sequence of matrices (pn - P*) and 
(pn+l - pn) obeys BL and that this behavior is typical, i.e., it occurs for almost all 
Markov chains. Several potential applications of the results are discussed, including the 
estimation of roundoff errors incurred when estimating P* from pn and possible (partial, 
negative) statistical tests to decide whether data comes from a finite-state Markov 
process. 

2. Benford Markov chains and main tools. The sets of natural, integer, ra
tional, positive real, real, and complex numbers are symbolized by N, Z, Q, ~+, ~, 
and C, respectively. The real part, imaginary part, complex conjugate, and absolute 
value (modulus) of a number z E C is denoted by ffiez, 'Jmz, Z, and Izl, respectively. 
For z =1= 0, the argument arg z is the unique number in (-:rr,:rr] that satisfies 
z = Izl el arg z. For ease of notation, arg 0 := 0 and log 0 := O. The cardinality of the finite 
set A is #A. Throughout this article, the sequence (a(I), a(2), a(3), ... ) is denoted by 
(a(n)). Thus, for example, (a n)=(a1 ,a2,a3, ... ) and (pn+l_pn) = (P2_pl, 
p3 _ p2, p4 _ p3, ... ). Boldface symbols indicate random(ized) quantities; e.g., X de
notes a random variable or vector and P a random transition probability matrix. 

DEFINITION 1. A sequence (xn) of real numbers is Benford ("follows BL'') if 

#{J" < n: S(lx"l) < t}
limn -+oo - J - = log t \It E [1,10). 

n 

The central theme of this paper is the Benford behavior of finite-state Markov 
chains. The theory uses three main tools: the classical theory of uniform distribution 
modulo 1 (see, e.g., [18]), recent results for BL in one- and multidimensional dynamical 
systems ([1], [2]), and the classical Perron-Frobenius theory for Markov chains; see, 
e.g., [6], [24]. Here and throughout, the term uniformly distributed modulo 1 is abbre
viated as u.d. mod 1. The relationship between uniform distribution and BL is clarified 
by the following proposition. 

PROPOSITION 2 (see [9]). A sequence (xn) of real numbers is Benford if and only if 
(log IXnl) is u.d. mod 1. 

An immediate consequence of Proposition 2 is the following useful fact. 
PROPOSITION 3 (see [1], [2]). 

(i) 	 Let a, b, a, f3 be real numbers with a =1= 0 and la I > 1f31. Then (aa n + bf3n) is 
Benford if and only iflog lal is irrational. 

(ii) 	 If (xn) is Benford, then, for all a E ~ and k E Z with ak =1= 0, the sequence 
(ax~) is also Benford. 
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Propositions 2 and 3 are fundamental tools for analyzing BL in the setting of multi 
dimensional dynamical systems. While the results in [2] do not apply directly to the 
Markov chain setting, the first part of the theory established below nevertheless relies 
heavily on those ideas, thereby adapting them to the case of row-stochastic matrices. 

Example 4. 
(i) 	 The sequences (2n), (0.2n), (3 n), (0.3 n), (0.01· 0.2n + 0.2·0.01 n) are 

Benford, whereas (Ion), (0.1n), (yTOn), (0.1 . 0.02n + 0.02 ·0.1n) are not. 
(ii) 	 The sequence (0.2n + (-0.2)n) is not Benford, since all odd terms are zero, 

but (0.2n + (-0.2)n + O.03 n) is Benford-although this does not follow 
directly from Proposition 3(i). 

For every integer d > 1, denote the set of all row-stochastic matrices of size d x d by 
P d, and let PEPd be the transition probability matrix of a Markov chain. All Markov 
chains (or their associated matrices P) considered hereafter are assumed to be finite
state (with d > 1 states), irreducible, and aperiodic. Let Ill, ... , Ils> s :::; d, be the distinct 
(possibly nonreal) eigenvalues of P, with corresponding spectrum a(P) = {Ill, ... ,Ils}; 
i.e., a(P) is the set of all distinct eigenvalues. Accordingly, the set a(P)+ = 

{Il E a(P): :smll :2: O} forms the "upper half' of the spectrum. The usage of a(P)+ refers 
to the fact that nonreal eigenvalues of real matrices always occur in conjugate pairs, so 
the set a(P)+ includes only one of the conjugates. Without loss of generality, throughout 
this work the eigenvalues in a(P) are labeled such that 

Furthermore, the column vectors Ul, ... , Us and VI, ... , Vs denote associated sequences 
of left and right eigenvectors, respectively. The third main tool in this paper is the 
classical Perron-Frobenius theory of Markov chains, and the following proposition 
summarizes some of the special properties of transition probability matrices for ease 
of reference; see, e.g., [23] for details. 

PROPOSITION 5. Suppose PEPd is irreducible and aperiodic. Then III = 1 > Illcl for 
all t = 2, ... , s, and there exists a P* E P d such that 

(i) 	 limn-+oopn = P*; 
(ii) 	 for every n E N, 

(3) 

where each Cc is a d x d-matrix whose comronents c~,j) are polynomials in n 
with complex coefficients and degrees k~"J < d. 

The analysis is especially straightforward if all eigenvalues are simple, i.e., if 
#a(P) = d. In this case, for every n E N, 

d 	 d 

(4) 	 pn - P* = L Il')Bc and pn+l - pn = LIl')(llc -l)Bc 
c=2 c=2 

holds with the d-1 matrices Bc = vcuj/vjuc E C dxd . Next is the key definition of 
this paper. 

DEFINITION 6. A Markov chain, or its associated transition probability matrix P, is 
Benford if each component of(pn - P*) and (pn+l - pn) is either Benford or eventually 

zero. 
Remark 7. The proof of Theorem 12 below will make it clear that requiring only the 

components of (pn - P*) to be either Benford or eventually zero would result in an 
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equivalent definition. The more symmetric wording in Definition 6 merely reflects the 
fact that (pn - P*), although of obvious theoretical importance, may not always be 
available in practice, whereas (pn+l - pn) is. 

The following examples illustrate the notions of Benford and non-Benford Markov 
chains. As will be observed later, the moduli of the eigenvalues as well as a specific ra
tional relationship between them playa crucial role, similar to the results in [2]. 

Example 8 (a Benford Markov chain). Let 

0.9 0.0 
0.1]p= 0.6 0.3 0.1 . 

[ 0.1 0.0 0.9 

The eigenvalues of P are Al = 1, A2 = 0.8, and A3 = 0.3, and 

0.5 0 0.5]
P* 	= 0.5 0 0.5 . 

[ 0.5 0 0.5 

The three eigenvalues are distinct, which leads to 

0.5 	 0 
-0.5] [ 0pn _ P* = 0.8n 0.5 0 -0.5 + 0.3n -1 

[ -0.5 0 0.5 0 

as well as 

0.1 ] [0 0 0]pn+l _ pn = 0.8n [=~:~ ~ 0.1 + 0.3n 0.7 -0.7 0 . 
0.1 	 0 -0.1 0 0 0 

As can be seen directly, in both cases the components (1, 2) and (3, 2) are zero for all n, 
whereas by Proposition 3(i) all other components follow BL. Hence, the Markov chain 
defined by the transition probability matrix P is Benford. 

Example 9 (a non-Benford Markov chain). Let 

0.0 0.1 
0.9]p= 0.1 0.3 0.6 . 

[ 0.1 0.1 0.8 

The eigenvalues of P are Al = 1, A2 = 0.2, and A3 = -0.1. The three eigenvalues are dis
tinct, and 

-1 +] (-O.l)n
7 + 11 

-1 

as well as 
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0.1 o
-0.1] [-1-0.7 0.7 + (-O.l)n 0.1 o -~.1].

0.1 -0.1 0.1 o -0.1 

The first column of B2 is zero; hence for that column the relevant eigenvalue is 
A3 = -0.1. Since log 0.1 is rational, no component in the first column of either sequence 
(pn _ P*) and (pn+l - pn) follows BL; i.e., P is not Benford. 

3. Sufficient condition that a Markov chain is Benford. To analyze the be
havior of the sequences (pn - P*) and (pn+l - pn) associated with a Markov chain, a 
nonresonance condition on P will be helpful. Recall that real numbers Xl, ... , Xk are 
rationally independent (or Q-independent) if I:J=l qjXj = 0, where ql, ... , qk E Q 
implies that qj = 0 for all j = 1, ... , k; otherwise Xl, ... , Xk are rationally dependent. 

DEFINITION 10. A stochastic matrix P is nonresonant if every nonempty subset A = 

{Ail' ... , Aik} ofa(P)+ \ {Ad with IAill = ... = IAik I = L satisfies #(A n ~) :::; 1, and the 
numbers 1, log L and the elements of 2~ arg A are rationally independent, where 

A Markov chain is nonresonant whenever its transition probability matrix is. A stochas
tic matrix or Markov chain is resonant if it is not nonresonant. 

Notice that for P to be nonresonant, it is required specifically that the logarithm of 
the modulus of every eigenvalue other than Al = 1 is irrational; in particular, every non
resonant P is invertible. The matrix in Example 8, for instance, is nonresonant. 
Theorem 12 below asserts that nonresonance is sufficient for P to be Benford. There 
is a close correspondence between Definition 10 of a nonresonant matrix and the notion 
of a matrix not having 10-resonant spectrum, as introduced in [2]. The main difference is 
that the eigenvalue Al = 1 is excluded in Definition 10, whereas every stochastic matrix 
has 10-resonant spectrum. Also, it is worth pointing out that prior to [2] solutions of 
certain linear recurrence relations have been studied for their conformance with BL, 
e.g., second-order relations with a pair of nonreal eigenvalues in [22] and relations with 
integer coefficients and various restrictions on the eigenvalues in [19]. (See also [15] and 
the references therein.) Note that none of these results apply to stochastic matrices, 
i.e., in the setting of Definition 10. 

Example 11 (examples of resonant matrices). 
(i) Two real eigenvalues of opposite sign. Let 

0.6 0.4 0.0]
P= 0.8 0.0 0.2 . 

[ 0.0 0.6 0.4 

The eigenvalues of P are Al = 1 and A2,3 = ±yD.2. Notice that 
log IA21 = log IA31 = - ~ log 5 is irrational. With A = {yD.2, - yD.2}, clearly 
#(A n ~) = 2; hence P is resonant. From 

if nis even,(pn _ p*)(l,l) = 0.2A~ + 0. 2A3= { ~.4(yD(2)n 
if nis odd, 

it is clear that P is not Benford either. 
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(ii) Eigenvalues with rational logarithms. Let 

0.0 0.1 0.9]
P = 0.5 0.1 0.4 . 

[ 0.3 0.3 0.4 

The eigenvalues are Al = 1 and A2.3 = -0.25 ± 0.05zy15. Since log IA2.31 = 

-0.5 is rational, the matrix P is resonant. 
(iii) 	 Eigenvalues with rational argument. Let 

0.3 	 0.3 
0.4]P = 0.3 0.5 0.2 . 

[ 0.1 0.7 0.2 

The eigenvalues are Al = 1 and A2.3 = ±0.2z. Note that log 10.2zl = 

-1 + log 2 is irrational, but 2~ arg(0.2z) = i is rational. Thus P is resonant. 
(iv) 	 Eigenvalues leading to rational dependencies within {I, log L} U 2~ arg A. 

Let 

0.2 0.1 	 0.0 0.0 0.1 0.0 0.6 
0.1 0.1 	 0.1 0.1 0.2 0.0 0.4 
0.1 0.1 	 0.1 0.1 0.1 0.2 0.3 
0.0 0.2 	 0.3 0.0 0.2 0.0 0.3P= 
0.1 0.2 	 0.1 0.1 0.0 0.1 0.4 
0.2 0.0 	 0.2 0.1 0.1 0.0 0.4 
0.1 0.2 	 0.2 0.0 0.0 0.0 0.5 

The characteristic polynomial 1/1 p of P factors as 

1/Ip(A) = (A - 1)(A2 + O.U - 0.01)(A2 - 0.01(2 - Z))(A2 - 0.01(2 + z)), 

which implies that 

a(P)+ \ {Ad = 20 
1 {-(v5 + 1), v5 -1, -2~,2~}. 

Clearly, the logarithms of the absolute values of the two real eigenvalues are irrational. 
4The four nonreal eigenvalues all have the same modulus L=fo-51/ (different 

from the two real eigenvalues), and log L = -1 + i log 5 is irrational. Let A = 

fo-{ -~, y'2+1:}. Notice that arg(2=f1) = =f arctan ~, so 

~ arg A = {~- ~ arctan ~,~ arctan ~} =: {X3' X4}.
2n 2 4n 2 4n 2 

Since 

-1 . 1 + 0 . log L + 2 . X3 + 2 . X4 = 0, 

the elements of {I, log L} U 2~ A are ((Jl-dependent, and hence P is resonant. 
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The first main theoretical result of this paper is as follows. 
THEOREM 12. Every nonresonant irreducible and aperiodic finite-state Markov 

chain is Benford. 
The proof of Theorem 12 makes use of the following lemma. 
LEMMA 13. Let mEN and assume that 1, Po, PI, ... , Pm are Q-independent, (zn) is 

a convergent sequence in re, and at least one of the 2m numbers CI, ... , C2m E re is non

zero. Then, for every a E JR;., the sequence 

(5) (npo + a log n + log I~nl) 

is u. d. mod 1, where 

Proof. The proof follows directly as in the proof of [2, Lemma 2.9], which considers 

log Ime~nl in (5). D 
Proof of Theorem 12. By Proposition 5(i), limn-+oopn = P* exists for the Markov 

chain defined by P. Fix (i, j) E {I, ... , dP. As the analysis of (pn+ I - pn) (i,j) is com
pletely analogous, only (pn - p*)(i,j) will be considered here. For notational conveni

ence, for every n E N denote the component (i, j) of pn - P* by Pn- If Pn as given 
by (3) is not equal to zero for all but finitely many n, let (J E {I, ... , s} be the minimal 
index such that C~i,j) =:j:. O. As in [2, p. 224], to analyze (3), distinguish two cases. 

Case 1. Illu I > Illu+ll. In this case Ilu is a dominant eigenvalue, and it is real since 
otherwise its conjugate would be an eigenvalue with the same modulus. Equation (3) can 
be written as 

where, since k~i,j) is the degree of C~i,j), 

(i,j) 
:= 

l' 
Cu lmn -+oo 

and si,j(n) --+ 0 as n --+ 00 because Ilu is a dominant eigenvalue. Therefore, 

log IPn I= n log Illu I+ k~i,j) log n + log Ic~i,j) I+ 1] n' 

with 1] n = log 11 + Si,j (n) e-m arg Au / c~i,j) I. Since 1] n --+ 0 and log Illu I is irrational, the 
sequence (Pn) is Benford by Proposition 2 and the fact that (xn + a log n + f3) is u.d. 
mod 1 whenever (xn) is (e.g., [2, Lemma 2.8]). 

Case 2. Illu I = Illu+ll = ... = lilT I =: IIlI for some r > (J. Here several different eigen
values of the same magnitude occur, such as, e.g., conjugate pairs ofnonreal eigenvalues. 
Let Mi,j) be the maximal degree of the polynomials C~,J), t = (J, ••• ,r. As in Case 1, 
express (3) as 

= Illln kl'.]) ( (i,j) (Ilu)n+ ... + (i,j) (IlT)n + r .. ( ))
Pn n Cu IIlI CT IIlI <;",J n , 

(i,j) l' C(i,j) ((' f 'th (i,j) -I- 0 f t 1 tfl flwere clf := If E \G or '" = (J, ••• , r, WI CIf T or a eas one,", 
and si,j(n) --+ 0 as n --+ 00. Consequently, 

h lmn -+oo 
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Write At' as At' = IAI el arg At for t = (J, ••• ,i, and hence 

Since P is nonresonant, Lemma 13 applies with m = i - (J + 1 and Po = log IAI, 
PI = 2~ arg A", ... ,Pm = 2~ arg AT' Thus (Pn) is Benford. D 

Example 14 (the general two-dimensional case). Let 

p = [1- x x] 
y 1- y 

with x, y E (0, 1). By Feller [12, p. 432]' 

pn = _1 [ y x] + (1 - x - y) n [x -y x] ,(6) 
x+ Y Y x x+ Y -y 

from which it is clear that Al = 1, A2 = 1 - x - y, and 

P* =_1 [y x] 
x+ Y Y x . 

It follows from (6) that each component of (pn - P*) and (pn+l - pn) is a multiple of 
(A~). By Theorem 12, the Markov chain with transition probability matrix P is Benford 
whenever log 11 - x - yl is irrational. On the other hand, by Proposition 3(i) P is not 
Benford if log 11 - x - y I E Q. Thus for d = 2, nonresonance is (not only sufficient but 
also) necessary for P to be Benford. For d :2: 3, this is no longer true, as the next example 
shows. 

Example 15 (a resonant Benford Markov chain). Let 

0.4 	 0.5 0.1] 
p 	= 0.4 0.3 0.3 . 

[ 0.6 0.1 0.3 

The eigenvalues are Al = 1 and A2,3 = ±0.2z. With A = {0.2z}, therefore 2~ arg A_=
{H c Q; hence P is resonant. However, spectral decomposition shows that B3 = B2, 
i.e., B2, B3 are conjugates, and each component of B2 has nonzero real and imaginary 
part. Thus for every (i, j) E {I, 2, 3F, 

if n is even, 

if n is odd, 

and (pn - p*)(i,j) is Benford. Similarly, since each component of 5B2 - ZB2 has nonzero 
real and imaginary part, (pn+l - pn)(i,j) is Benford as well. 

Remarks on general Markov chains. 
(i) 	 Theorem 12 cannot be applied to Markov chains that fail to be irreducible. 

However, every finite-state Markov chain can be decomposed into classes of 
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recurrent and transient states. Hence, the transition probability matrix P can 
be block-partitioned as 

PI 0 0 0 
0 P2 0 0 0 

P= 

0 0 Pr 0 
B(l) B(2) B(r) A 

where PI' P2, ... , P r are the transition probability matrices of the T" disjoint 
recurrent classes and B(1), B(2), ... , B(r) denote the transition probability 
matrices from the collection of transient states into each recurrent class. 
As n --+ 00, 

pn
I 0 0 0 

0 pn
2 0 0 0 

pn = 

0 
Lhl 

) 

0 
L~) 

pnr 
L~) 

0 
An 

P*I 0 0 0 
0 P*2 0 0 0 

--+ 
0 0 P*r 0 
SB(1) P*

I 
SB(2)p*

2 
SB(r)p; 0 

where LW) = I:e:::6 At'B(j) P'Ft'-1 for j = 1,2, ... , T" and S = I:~o Ak. 
Theorem 12 can be applied separately to the matrices Pj associated with 
the recurrent classes. Consequently, if PI, P 2, ... , P r are Benford, then 
the corresponding components of P are also Benford. Additionally, if A 
is nonresonant, then that part follows BL as well. The only remaining parts 
are formed by the sequences (LW)) and depend on the (nonautonomous) sum
mation of the powers of A. Their Benford properties are beyond the scope of 
this paper; see, e.g., [5]. 

(ii) 	 For an irreducible Markov chain that is not aperiodic but rather periodic with 
period p > 1, Definition 6 still makes sense, provided that P* is understood as 
the unique row-stochastic matrix with P* P = P*. However, such a chain can
not be Benford since for every ( i, j) E {I, ... , dP one can choose 
k E {O, ... , p - I} such that 

I(pn - p*)(i,j) I = (p*)(i,j) > 0 \In E N\ (k+ pN). 

Similarly, each component of (pn+l - pn) equals zero at least (p - 2) / p of 
the time and thus cannot be Benford either whenever p :2: 3. The distribution 
of significands of (pn+l - pn)(i,j) observed in this situation is a convex com
bination of BL and a pure point mass; see [5, Corollary 6]. Only in the case 
p = 2 is it possible for each component of (pn+l - pn) to be either Benford or 
eventually zero. 
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(iii) 	 Although this paper deals with finite-state Markov chains only, it is worth 
noting that chains with infinitely many states may also obey BL in one way or 
the other. For a very simple example, let 0 < p < 1 and consider the homo
geneous random walk on Z with 

p2 if j = i-I, 

p(i,j) = 2p(1 - p) if j = i, 
(1- p? if j = i + 1,{ 
o otherwise. 

Clearly, this Markov chain is irreducible and aperiodic. It is (null-) recurrent if 
p = ~ and transient otherwise. For all (i, j) E Z2 and n EN, 

and an application of Stirling's formula shows that (pn)(i,j) is Benford if and 
only if log( 4p (1 - p)) is irrational. For all but countably many p, therefore, 
(pn)(i,j) is Benford for every (i, j). Note that one of the excluded values is 
p = ~,i.e., the recurrent case. For recurrent chains virtually every imaginable 
behavior of significant digits or significands can be manufactured by means of 
advanced ergodic theory tools; see [3] and the references therein. 

4. Almost all Markov chains are Benford. The second main theoretical objec
tive of this paper is to show that Benford behavior is typical in finite-state Markov 
chains. Indeed, if the transition probabilities of the chain are chosen at random and 
in an absolutely continuous (a.c.) manner, then the chain almost always, i.e., with prob
ability one, obeys BL. To formulate this more precisely, the following terminology will 
be used. 

DEFINITION 16. A random (d-state) Markov chain is a random d x d-matrix P, de
fined on some probability space (Q, F, lP') and taking values in Pd' A random Markov 
chain P: Q --+ P d is a. c. if its distribution on P d is a. c. w. r. t. Le b ,the normalized 
d(d -I)-dimensional volume on P d C ~dxd, that is, iflP'(P E A) = 0 

P d
holds for A C P d 

whenever LebpJA) = O. 
With this terminology, it is the purpose of the present section to illustrate and prove 

the 	following theorem. 
THEOREM 17. Every a.c. random Markov chain is Benford with probability one. 
Before giving a full proof for Theorem 17, the special case of a random two-state 

chain will be examined to show how the absolute continuity of P allows the application 
of Theorem 12. The case d = 2 is especially transparent since the eigenvalues are ex
plicitly given by simple expressions, unlike for the general case where the eigenvalues 
are only known implicitly and the implicit function theorem has to be resorted to. 

Example 18. Consider the random two-state Markov chain 

[1-X X]

P= Y l-Y' 

and assume that the joint distribution of (X, Y) on [0,1F is a.c. (Equivalently, P is 
a.c. on P 2 .) Each of the four entries of P is strictly positive with probability one, so 
the chain is irreducible and aperiodic with probability one. Since P is random, the sec
ond-largest eigenvalue is the random variable Z = 1 - X - Y, by Example 14. Since Pis 
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a.c., Z is a.c. as well, and hence the probability that Z is in any given countable set is 
zero. But this implies that the probability of log IZI being rational is zero, which in turn 
shows that with probability one, P is nonresonant and hence Benford by Theorem 12. 

Similarly to the analysis of Newton's method in [4], a key property in the present 
Markov chain setting is the real-analyticity of certain functions, notably the eigenvalue 
functions. Recall that a function f: U --+ C is real-analytic whenever it can, in the neigh
borhood of every point in its domain U (a connected open subset of ~c for some t :2: 1), 
be written as a convergent power series. Clearly, every real-analytic function is Coo, i.e., 
has derivatives of all orders. An important property of real-analytic functions not shared 
by arbitrary C-valued Coo-functions defined on U is that the zero-locus of f is a nullset 
unless f vanishes identically on U. Although this is probably a well-known fact, no spe
cific reference is known to the authors. Since this fact plays a crucial role in the proof of 
Theorem 17 below, a proof is included for the reader's convenience. With Leb]Rc denoting 
the t-dimensional volume on ~c, it reads as follows. 

LEMMA 19. Let f: U --+ C be real-analytic and N f := {x E U: f(x) = O}. Then 

either LeblI!.c(Nf) = 0 or N f = U. 
Proof. Assume N f =1= U. Ift = 1 , then N f is at most countable [21, Theorem 10.18]' 

and hence Leb]Rl (Nf) = O. For t :2: 2, proceed by induction: Given any set C C ~c and 
y E ~, define C y := {(X2, ... , xc): (y, X2, ... , xc) E C} C ~C-I. By Fubini's theorem, 

Leb]Rc (Nf) = r dXI dX2 ... dxc = dX2 ... dXc) dXIr (1JN j J]R (Nj )Xl 

= r Leb]Rc-l((Nf)x )dXI.
J]R 1 

~otice that (Nf)Xl = NJ, where f: UX1 --+ C is the real-analytic function with 
f(X2, :.. .. ,xc) =f(XI,X2, ... ,xc)· If Leb]Rc-l(NJ) > 0, then, by the induction assump
tion, f must vanish identically on some connected component V of UX1 . (Note that 
UX1 may not be connected.) Fix any (X2, ... , xc) E V. Since N f =1= U, it can be assumed 
that y 1-+ f(y, X2, ... , xc) does not vanish identically. It follows that Leb]Rc-l((Nf)xJ > 0 
for at most countably many Xl, and hence Leb]Rc (N f) = 0.. D 

Remark 20. As the proof of Lemma 19 shows, Leb]Rc can be replaced by any product 
of t atomless measures on ~ (and Leb]Rc then simply corresponds to the special case of 
each factor being Leb]Rl). 

The proof of Theorem 17 will be based on several preliminary facts. First, given 
a = (aI' ... , ad) E Cd, let Pa: C --+ C denote the polynomial 

By the fundamental theorem of algebra, Pa has exactly d zeroes (counted with multi
plicities). If Pa has a multiple zero, then a universal polynomial relation must necessarily 
be satisfied by a. For instance, if d = 2 and Pa has a double zero, then Q2(a) = 0, where 
Q2( a) = -ay + 4a2. The generalization to arbitrary d is classical (see, e.g., [8, 
Lemma 3.3.4]); for a proper formulation recall that the degree of a polynomial 
I:jCjX~l.J in d variables is defined as max {nl,j x + ... + nd,jx: Cj =1= O}. 

PROPOSITION 21. For every integer d > 1, there exists a nontrivial polynomial Qd in 
d variables, with integer coefficients and of degree 2d - 2, with the following property: 
Whenever Pa has a multiple zero, i.e., Pa(ZO) = Pa'(ZO) = 0 for some Zo E C, then 
Qd(a):= Qd(al, ... , ad) = O. 
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This fact will now be used to show that if a stochastic matrix Po is invertible and has 
distinct nonzero eigenvalues, then all stochastic matrices P sufficiently close to Po also 
are invertible and have distinct nonzero eigenvalues. In fact, these eigenvalues are 
real-analytic functions of P. To formulate this efficiently, for every Po E P d and 
£ > 0, denote by B£(Po) the open ball with radius £ centered at Po; i.e., B£(Po) = 

{P E Pi IP(i. j ) - Pg·
j
)I < dor all 1 :::; i,j:::; d}. Note that with this topology, P d is 

compact. 
LEMMA 22. Suppose Po E P d is invertible and has d distinct nonzero eigenvalues. 

Then there exist £ > 0 and d - 1 nonconstant real-analytic functions A2, ... , 
Ad: B£(Po) --+ C such that, for every P E B£(Po), 

(i) 	 I,A2(P), ... ,Ad(P) are the eigenvalues of P, and A2(P) ..... Ad(P) =f. 0; 
(ii) 	 Ai(P) =f.Aj(P) whenever i =f. j, unless Ai = i j on B£(Po). 

Proof. Note first that by the continuity of (P, z) 1-+ det(zIdx d - P) = 1/1 p( z), there 
exists (j > 0 such that every P E B 8(PO) is invertible and has distinct nonzero eigen
values. Thus the characteristic polynomial 1/1 p of P has d - 1 distinct nonzero roots 
different from 1. Let Zo be one of those roots. Since Zo is a simple root, 1/Ipo'(zo) =f. 0, 
so by the implicit function theorem [17, Theorem 2.3.5]' Zo depends real-analytically 
on the coefficients of 1/1 p which themselves are real-analytic (in fact polynomial) func
tions of the entries of P. More formally, there exist £ :::; (j and a real-analytic function 
g: B£(Po) --+ C with g(Po) = Zo such that 1/Ip(g(P)) = 0 for all P E B£(Po). Overall, 
there exist £ > 0 and d - 1 real-analytic functions A;: B£(Po) --+ C satisfying (i); note 
that Al == 1 by Proposition 5. To see that A2, ... , Ad are not constant on B£ (Po), suppose 
by way of contradiction that Ai(P) = Ai(PO) =f. 1 for some 2:::; i:::; d and all P E B£(Po). 
In this case, the real-analytic function P 1-+ 1/Ip(Ai(PO)) vanishes identically on B£(Po), 
and hence on all of Pd. Since I dxd E P d, this obviously contradicts 1/Ir (Ai(PO)) = 

d 	 • dxd. 
(Ai(PO) -1) =f. O. Consequently, none of the functlOns A2, ... ,Ad: B£(Po) --+ C IS 

constant. 
To show (ii), assume that Ai(Pl ) = Aj(Pl ) for some i =f. j and PI E B£(Po). Thus 

Ai(Pl ) E C \~, since if Ai(Pl ) were real, then Ai(Pl ) = Aj(Pl ), which is impossible be
cause the eigenvalues are distinct. Since all matrices in P d are real, their nonreal eigen
values occur in conjugate pairs. Hence, for all P sufficiently close to PI, the number 
Aj(P) is an eigenvalue of P which, by continuity, can only be Ai(P). Consequently, 
Ai and Aj coincide locally near PI and therefore, by real-analyticity, on all of 
B£(Po). D 

By means of the above auxiliary results, several almost sure properties of random 
Markov chains can be identified. 

LEMMA 23. If the random Markov chain P is a.c., then, with probability one, 
(i) 	 P is irreducible, aperiodic, and invertible; 

(ii) 	 P has d distinct nonzero eigenvalues; and 
(iii) P is nonresonant. 


Proof. 

(i) 	 Since Pis a.c., with probability one p(i.j) E (0,1) for all i and j, and P is 

irreducible and aperiodic. To see that P is almost surely invertible, note 
that P 1-+ det P is real-analytic on P d and clearly not constant, as P d 

contains both I dxd and the matrix whose components all equal ~. By 
Lemma 19, LebpJ{P E Pi det P = O}) = 0, and this in turn implies that 
lP'(det P = 0) = O. 

(ii) 	 There exist d nonconstant polynomial functions ql, ... , qd: P d --+ ~ such 
that 
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holds for all PEPd and ZE C; for example, q1 (P) = - 2:f=1 p(i,i) and 
qd(P) = (-l)d det P. Consequently, q(P):= Qd( q1 (P), ... , qd(P)) defines 
a nonconstant real-analytic (in fact, polynomial) map q: P d --+~, and 
since Zo is a multiple eigenvalue of P if and only if 1jJp(zo) = 1jJ/(zo) = 0, 
Proposition 21 implies that 

{P E P d: Phas multiple eigenvalues} c {P E P d: q(P) = O}. 

As before, lP'( q(P) = 0) = 0 by Lemma 19, showing that with probability one 
all eigenvalues of P are simple. 

(iii) 	 For every p E Q define the real-analytic auxiliary function <l> p: ~2 --+ ~ by 
<l>p(x) := (xI + ~ - 102P)2, and also 0: ~4 --+ ~ as 0(x) := (xi + x§ - x5
x~? By (i) and (ii), P almost surely satisfies the hypotheses of Lemma 22, 
so let Po, £, and 1l2 , ••• , Ild be as in Lemma 22, and define real-analytic func
tions <l>p,i and 0 i,j on B£(Po) as 

and, for all 2 :::; i, j :::; d, 

0i,j(P) := 0(Dlelli(P)' 'Jmlli(P)' Dlellj(P), 'Jmllj(P)) 

= (1Ili (P)1 2 - Illj (P)1 2)2. 

Finally, let Fp: B£(Po) --+ ~ be defined as 

d 

Fp(P) := II<l>p,i(P) . II 0i,j(P). 
i=2 2<;i<j: ),,,,)] 

The definition of Fp becomes transparent upon noticing that Fp (P) = 0 for 
some p E Q whenever P is invertible and resonant. Next, it will be shown that 
Fp does not vanish identically on B£(Po). To see this, note first that if 
P E B£(Po), then also (1- 8)P+ 8Idxd E B£(Po) for all sufficiently small 
8> O. Moreover, if <l>p,i(P) = 0 for some i = 2, ... , d, then 

<l>p,i((l- 8)P + 8Idxd ) = (((1- 8)Dlelli(P) + 8? + (1 - 8?'Jmlli(p)2 -102P ? 

= 82 ((2 - 8)(Dlelli(P) -llli (P)1 2
) + 8(1 - Dlelli(P))r> 0, 

provided that 8 > 0 is small enough. (Recall that 1 - Dlelli(P) > 0 whenever 
P E B£ (Po).) Similarly, if 0i,j (P) = 0 for some 2 :::; i < j :::; d with Ili =j:. ~j and 
lli(P) =j:. 0, then a short calculation confirms that, for all 8 > 0 sufficiently 
small, 

Overall, Fp does not vanish identically on B£(Po). As every P E B£(Po) is 
invertible, 
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{P E B£(Po): P x is resonant} C U{P E B£(Po): Fp(P) = O}. 
pErQ 

Since Fp is real-analytic and nonconstant, {P E B£(Po): Fp(P) = O} is a 
Lebpd-nullset for every p E Q, and so is UPErQ{P E B£(Po): Fp(P) = O}. 
Analogously to (i) and (ii), therefore, lP'(Pis resonant) = O. D 

Proof of Theorem 17. Let the random d x d-matrix P be a.c. By Lemma 23, P is 
almost surely irreducible, aperiodic, and nonresonant. By Theorem 12, this implies that 
P is Benford with probability one. D 

COROLLARY 24. If the transition probabilities (i.e., the rows) of a random d-state 
Markov chain P are independent and a.c. on the standard d-simplex, then P is Benford 
with probability one. 

Remark 25. 
(i) 	 It is clear that without absolute continuity, Lemma 23 and Theorem 17 may 

fail. For example, for the conclusion of Lemma 23 to hold it is not enough to 
assume that the distribution ofP on P dis atomless; i.e., lP'(P = P) = 0 for every 
PEPd. As very simple examples show, under this weaker assumption, P may, 
with positive probability, be reducible and have multiple or zero eigenvalues. 
Even if Lemma 23(i) and (ii) hold with probability one, P may still be resonant 
and not Benford. To see this, consider the random three-state Markov chain 

X[X +4 36 - 2X]1 Y+4 36 - 2Y ,
P= 40 ~ +2 Z+2 36- 2Z 

where X, Y, Z are independent and uniformly distributed on [0,1]. With this, 
the distribution of P on P 3 is atomless yet concentrated on a Lebp3 -nullset. 
The eigenvalues of Pare 

Note that IA31 :::; 0.05 < A2' Clearly, P is resonant with probability one, and 
Lemma 23(iii) fails. Even more important perhaps, Theorem 17 fails as well 
since, as spectral decomposition shows, B2 =1= 0 with probability one, and hence 
lP'(Pis Benford) = O. 

(ii) 	 A careful inspection of the above arguments shows that Lemma 23 and 
Theorem 17 hold whenever the distribution of P on P d C ~dxd == ~d2 is such 
that lP'(f(P) = 0) = 0 for every real-analytic function f: ~d2 --+ C that does 
not vanish identically on Pd' Evidently, this property of P holds automati
cally if P is a.c. 

(iii) 	 With hardly any effort, the tools employed in the proof of Lemmas 22 and 23 
also yield a topological analogue of Theorem 17: Within the compact metric 
space P d, the matrices that are irreducible, aperiodic, invertible, and nonre
sonant form a residual set, that is, a set whose complement is the countable 
union of nowhere dense sets. Being Benford, therefore, is a typical property 
for PEPd not only under a probabilistic perspective but under a topological 
perspective as well. 

5. Some computational implications. For Markov chains with small state 
space, i.e., for small values of d, the limiting matrix P* is easy to compute explicitly. 
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In this case, an understanding of the behavior of significant digits in (pn - P*) and 
(pn+l - pn), however valuable in its own right, may be of limited practical use. On 
the other hand, for important applications that involve a very large state space, 
e.g., in computer science or theoretical biology [20], P* may be very costly or practically 
impossible to determine explicitly. In this case, P* typically is approximated using a 
variety of numerical algorithms. As detailed below, it is in situations like these that 
a proper understanding of the typical behavior of significant digits may be crucial also 
from a practical or computational point of view. 

As a concrete example, a Markov chain Monte Carlo (MCMC) method will be con
sidered. MCMC is a popular and powerful tool for generating samples from an arbitrary 
distribution [6, Chapter 7]. One of the most important advantages of MCMC is that it 
requires only specification of the target distribution up to a normalization constant, the 
determination of which often constitutes a challenging problem in itself. Historically, 
MCMC was motivated by computational problems in statistical physics that led to 
the idea of generating a Markov chain whose limiting distribution is equal to the target 
distribution. The most prominent MCMC algorithms are the Metropolis-Hastings and 
the Gibbs sampling algorithms, which both originated from the following Metropolis 
algorithm. 

Assume that a random variable X is to be generated that takes values in 
E = {I, ... , m}, according to the target distribution {ni}' where 

bi n· = i = 1, ... , m,, 	 B' 

with all bi positive, m large, and the normalization constant B = I:;!l bi difficult to 
calculate. The Metropolis algorithm constructs a Markov chain (Xn)nEN on o 
{I, ... , m} whose evolution relies on an appropriately chosen stochastic matrix 
Q = (%) in the following way: 

(i) 	 Given Xn = i, generate a random variable Y which satisfies lP'(Y = j) = qij 

for all j = 1, ... , m and is independent of X o, ... , X n- l . 

(ii) 	 Given Y = j, let fYij := min {~~~~;, I} and choose 

with probability fYij' 

with probability 1 - fYij. 

The Markov chain (Xn) thus defined has the transition probability matrix 

if j =j:. i, 
if j = i. 

To illustrate this through a simple specific example, consider the case of the matrix Q 
having identical rows, i.e., % = Pj for all i, j E E, where P = (Pi)iEE is a strictly positive 
probability distribution on E. With Wi := ndpi' the off-diagonal elements of Pare 

p(i,j) = Pj min { 1, :~} Vi, j E E: i =j:. j. 

Assume that the states of E are labeled in such a way that WI :2: W2 :2: ... :2: W m . In this 
case, the eigenvalues of P are easily seen to be III = 1 and 
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j= 2, ... ,m. 

Consequently, iflog ~'j is irrational for all j = 2, ... , m, then the Markov chain (Xn) is 
Benford, by Theorem 12, and so is the Metropolis algorithm. 

Why is it important to know whether an algorithm often, or even typically, gen
erates Benford distributed data? A most compelling reason has been put forth by Knuth 
in his classic text The Art of Computer Programming [16, pp. 253-255]: 

In order to analyze the average behavior of floating-point arithmetic algorithms (and in 
particular to determine their average running time), we need some statistical informa
tion that allows us to determine how often various cases arise ... [If, for example, the] 
leading digits tend to be small [that] makes the most obvious techniques of average error 
estimation for floating-point calculations invalid. The relative error due to rounding is 
usually ... more than expected. 

Thus for the problem of numerical estimation of P* from pn, it is important to study the 
distribution of significant digits of the components of (pn - P*) and (pn+l _ pn). 

Theorem 17 above shows that these components typically exhibit exactly the type 
of nonuniformity of significant digits alluded to by Knuth: Not only do the first few 
significant digits of the differences between the components of the successive n-step 
transition matrices pn and the limiting distribution P* as well as the differences between 
pn+l and pn tend to be small, but, much more specifically, they typically follow BL. 

This prevalence of BL has important practical implications for estimating P* from 
pn using floating-point arithmetic. One type of error in scientific calculations is overflow 
(or underflow), which occurs when the running calculations exceed the largest (or 
smallest, in absolute value) floating-point number allowed by the computer. Feldstein 
and Turner show that [11, p. 241], "[u]nder the assumption of the logarithmic distribu
tion of numbers [i.e., BL] floating-point addition and subtraction can result in overflow 
and underflow with alarming frequency ...." Together with Theorem 17, this suggests 
that special attention should be given to overflow and underflow errors in any numerical 
algorithm used to estimate P* from pn. 

Another important type of error in scientific computing is due to roundoff In es
timating P* from pn, for example, every stopping rule, such as "stop when n = 1000" or 
"stop when all components in (pn+l - pn) are less than lO- lO ," will result in some error, 
and Theorem 17 shows that this difference is generally Benford. In fact, justified by 
heuristics and by the extensive empirical evidence of BL in other numerical calculations, 
the analysis of roundoff errors has often been carried out under the hypothesis of a loga
rithmic statistical distribution (cf. [11, p. 326]). Therefore, as Knuth pointed out, a naive 
assumption of uniformly distributed significands in the calculations tends to underes
timate the average relative roundoff error in cases where the actual statistical distribu
tion is skewed toward smaller leading significant digits, as is the case for BL. To obtain a 
rough idea of the magnitude of this underestimate when the true statistical distribution 
is BL, let X denote the absolute roundoff error at the time of stopping the algorithm, and 
let Y denote the fraction part of the approximation at the time of stopping. Then the 
relative error is X /Y, and assuming that X and Yare independent random variables, the 
average (i.e., expected) relative error is simply lEX . lE(1 /Y). Thus if Y is assumed to 
be uniformly distributed on [1, 10), ignoring the fact that Y is Benford creates an average 
underestimation of the relative error by more than one third (cf. [4]). 
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In view of the relevance ofBL for large-scale computations involving Markov chains, 
it is important to also note that the speed of convergence to BL can vary considerably. 
This is apparent already from Table 1: The digit distributions of the sequences (2n) and 
(Fn) converge to BL faster than (n!). A possible explanation for this is suggested in 
[18, Chapter 2, Theorem 3.4]' where explicit bounds for rates of convergence to unifor
mity are found for (a n mod 1. These bounds depend on the continued fraction expansion 
of the irrational number a-the smaller the coefficients in this expansion, the faster the 
convergence. Both log 2 and log 1+2v5 appear to have very few large coefficients in their 
continued fraction expansion. Via Proposition 2, this translates into relatively fast 
convergence to BL. 

Similarly, the speed of convergence to BL for Markov chains may vary considerably, 
and the result for (an mod 1) mentioned in the previous paragraph suggests that this 
speed is determined by the continued fraction expansion of the logarithm of the moduli 
of the eigenvalues of P as well as of the elements of the sets 2~ arg A. The next example 
illustrates this. The reader should keep in mind that relatively little is known at present 
about the precise speed of convergence to BL (or uniformity) in higher-dimensional 
systems; see, e.g., [10]. 

Example 26 (different speeds of convergence to BL for Markov chains). 
(i) Let 

0.25 0.35 
0.40]P = 0.30 0.45 0.25 . 

[ 0.65 0.15 0.20 

The eigenvalues of P are Al = 1 and A2,3 = - do =f do J2I. Since log IA21 and 
log IA31 are irrational and different, P is nonresonant, and Theorem 12 implies 
that the Markov chain defined by P is Benford. Since IA21 > IA31, for the speed 
of convergence to BL it is important how well log IA21 is approximated by 
rational numbers. The first 50 coefficients of the continued fraction expansion 
of log IA21, 

loglA21 = [-1;2,4,8,1,5,1,6,3,1,2,2,1,1,2,1,1,2,1,66,5,1,1,2,1,3, 

1,2,1,1,3,1,3,2,3,2,7,3,86,1,1,1,1,1,26,3,1,5,3,1,5, ... ], 

do not exceed 86 and are mostly small numbers not showing rapid growth at 
all. A comparatively rapid initial approach to BL is therefore expected. 
This is confirmed experimentally by Figure 1, which shows, as a function 
of n, the LI-distance between the empirical frequencies for the significant di
gits of (pn+1 - p n )(2,1) and the Benford probabilities; the behavior of 
(pn - p*)(2,1) is very similar, as is in fact the behavior of all other 
components. 

(ii) Let 

0.8 0.1 
0.1]P = 0.3 0.3 0.4 , 

[ 0.4 0.0 0.6 

with eigenvalues Al = 1 and A2,3 = fa- ± do zy'3. The behavior of the significant 
digits is governed by the two irrational numbers log IA21 and 2~ arg A2. For 
instance, 
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n d=l n d 

-1 

-2 

-3 

-4 

-5 

.-----~----------~~, 

" , ,
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YYYI (ii) 

3 4 5 logn 

FIG. 1. Plotting the L1 -distance D. n between the empirical frequencies and the Benford probabilities for the 
first significant digits of(pn+1 - pn)(2.1) , with the transition probability matrices P from Example 26(i) and (ii), 
respectively. 

1 
--- arg A2 = [0;25,1,9,3,168,2,1,1,32,1,6,3,1,9, 1, 1,92,2,13,2,1,1,10,2,
2n 

5,1,3,1,1,1,1,3,1,2,7,1,5,1,1,4,1,3,14,3,10,1,1,3, 1,3, ... J. 

When compared with (i), the repeated early large coefficients in the contin
ued fraction expansion of 2~ arg A2 suggest a somewhat slower initial 
approach to BL. Again, this is confirmed experimentally by Figure 1. 

Finally, observe that Theorems 12 and 17 should make it possible to adapt the cur
rent plethora of BL-based goodness-of-fit statistical tests, e.g., for detecting fraud [7], to 
the problem of detecting whether or not a sequence of realizations of a finite-state sto
chastic process originates from a Markov chain, i.e., whether or not the process is 
Markov. By Theorem 17, conformance with BL for the differences (pn+1 - pn) is typical 
in finite-state Markov chains, so a standard (e.g., chi-square) goodness-of-fit to BL of the 
empirical estimates of the differences between pn+ I and pn may help detect non-Markov 
behavior. 
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