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The advanced Computational Fluid Dynamics (CFD) techniques that address the 

current limitations of Cartesian-based Navier-Stokes CFD schemes are explored in 
current investigation. Three promising methods of implementing improved wall 

boundary conditions are applied: (1) the enhanced diamond path stencil approach, (2) 

the reformulated extended extrapolation boundary condition, and (3) the ghost cell 
method. Several initial testing cases have been conducted with all these three 

boundary conditions, including the flow past a circular cylinder, flow past a flat plate 

at different inclined angles and flow past an AGARD RAE2822 airfoil. All the 

results show the effectiveness of these boundary conditions in resolving both laminar 
and turbulent boundary layer. Among all these methods, the extended extrapolation 

boundary condition attains the better results than the other two methods. 

1. Introduction 
In traditional CFD simulations with the body fitted mesh, the mesh generation is a heavy burden and 

sometime is very difficult, especially for complex geometries. Beside that, the body fitted mesh is proven 

to be difficult in dealing with very sharp corners and singular points. Therefore, Cartesian mesh has 
gained great popularity recently because of the short grid generation time required for complex three 

dimensional configurations. The advantages of the Cartesian mesh over the body fitted mesh are obvious 

in automated flow simulation and adaptive mesh refinement. However, the Cartesian mesh encounters the 
problems in the viscous wall boundary treatment. Coirier and Powell [1] demonstrated that extreme 

oscillations exist near the cut cells due to the non-positivity of the stencils used in viscous flux 

reconstruction technique. A modified diamond path stencil method was used by Delanaye and Aftosmis 
[2] in viscous flux reconstruction. Effectiveness of the method has been demonstrated with the Cartesian 

mesh outside of the boundary layer and a body fitted mesh inside of the boundary layer. However, it is 

still not clear how this method works in resolving both laminar and turbulent boundary layer. In addition 

to the non-smoothness problems, the cut cells generated by the solid surface require very small time step 
because of the smaller area of these cells. The problem of arbitrarily small cut cells was addressed by 

Clarke et al [3] as well as by Gaffney and Hassan [4]. The technique used by these researchers is the cell 

merging technique. To elude the time restriction problem by the cut cell, a new viscous wall treatment 
method was developed by Marshall and Ruffin [5,6]. They used the extended extrapolation method to 
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compute the values at the cut cell centers directly. In this way, the time step is only determined by the 

regular non-cut cell size. Another boundary treatment approach was developed by Dadone et al [7] with 
the ghost cell method. In this method, the ghost cell values are computed by interpolation so that the 

viscous wall boundary condition can be satisfied. Even though the extended extrapolation method and 

ghost cell method can eliminate the time step restriction by the cut cell, these two methods rely more on 

the accuracy of the interpolation method. 

In the current investigation, we studied the issue of viscous modeling with Cartesian mesh based on three 

viscous wall boundary treatment, including the enhanced diamond path stencil method, reformulated 

extended extrapolation boundary condition and ghost cell method. The test cases used to validate these 
methods are as follows: (1) flow past a circular cylinder; (2) flow past a horizontal flat plate; (3) flow 

past a flat plate inclined 30 degree angle to horizontal x-axis; and (4) flow past AGARD RAE2822 airfoil. 

The results are compared to identify the effectiveness of each method in resolving both laminar and 
turbulent boundary layer. In next section, the viscous wall boundary treatment theory will be given. This 

will be followed by the numerical algorithm and simulation results. The conclusion will be given in last 

section. 

2. Theory of Boundary Treatment 
In current investigation, three wall treatments based on Cartesian methods for viscous modeling have 

been studied: (1) enhanced diamond path stencil method, (2) reformulated extended extrapolation 
boundary condition, and (3) ghost cell method. The theory of these methods will be introduced below. 

2.1 Enhanced Diamond Path Stencil Approach 

P+ C 

D R 

L 

n 

O 

P-

Figure 1. Schematic of standard and modified diamond control volume, standard diamond 

CV is shown by solid line and modified diamond CV is shown by dotted line. 

The diamond path stencil technique of Delanaye et al. [2] was originally proposed and implemented for a 

hybrid mesh in two dimensions. We propose to apply this technique at the boundary to the viscous cells 

that are cut by the solid surface, thereby eliminating the body-oriented boundary layer mesh. A careful 
analysis of the positivity of the viscous flux stencil will be required because Delanaye et al. reported that 

instabilities were still present when the interface between the body oriented grid and the Cartesian grid 

was in the boundary layer region. Instead of using cell centroids as two of the diamond stencil points, we 
will select points so as to create a more regularly shaped diamond stencil. A modified diamond stencil is 

constructed by connecting the two vertices belonging to the edge of the Cartesian mesh with two 

equidistant point placed on either side of the edge thereby producing a regular-shape diamond as opposed 

to a distorted diamond produced by the standard diamond control volume. A schematic of the standard 
and modified diamond control volumes are shown in Figure 1, where the coordinates of the point P+ and 

P- are given by: 

r + r 
r

P 
= O D 

± d *n (1) 
± 2 
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where rO and rD are the position vectors of the vertices of the edge and d is the minimum distance 

between the midpoint of the edge and the centroids of the left and right neighbors. 

The next step is to obtain the values at the vertices of this control volume using interpolation and then 

using Gauss theorem to obtain the gradient at the mid-point of the edge. As these points require state 

vectors to be interpolated onto them, the interpolations must be carefully implemented, in order not to 

degrade overall solution accuracy. For this purpose, an interpolation scheme based on the pseudo-
Laplacian formula is used. Assuming the vertex to be surrounded by M cells, the value at vertex v can be 

obtained using 
M 

∑wiui 

i=1 u = 
M 

(2) 
v 

∑w
i 

i=1 

where wi’s are the weights associated with the interpolation given by
 

w =1+λ (x − x ) +λ ( y − y ) (3)
 
i x i v y i v 

I R − I R 
xy y yy x

λ =
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I I − I 2
 

xx yy xy 
(4) 

I R − I R 
xy x xx y
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I I − I 2
 

xx yy xy 
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I xx = ∑ (xi − xv )
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2I 

yy 
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− y
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) (5) 

i=1 
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xy 

= ∑(x
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− x

v 
)( y
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− y

v 
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i=1 

M 

R
x 

= ∑(x
i 
− x

v 
) 

i=1 
(6) 

M 

Ry = ∑(yi − yv ) 
i=1 

Once the values are obtained at the vertices, the Green-Gauss theorem is used to obtain the gradient at the 

centroid of the modified control volume, which by construction is the midpoint of the edge (point C in 
figure). The viscous term discretization is then based on these 1

st 
derivatives calculated at the mid-point of 

each edge, leading to a linearity preserving technique on arbitrary meshes. 

2.2 Reformulated Extended Extrapolation Boundary Condition Technique 

This method is based on an extension of a linear extrapolation technique developed by Marshall and 
Ruffin [5,6]. In their method, they used a linear extrapolation technique to obtain the state of the cut cell, 

see Figure 2. The state at point ‘c’ is used to determine the state at point ‘9’ (centroid of the cut/surface 

cell) using a one-dimensional interpolation relationship along the line w-c by making use of the boundary 
condition at the wall ‘w’. The state at point ‘c’ is constructed either from the state of the cell containing 

the point or by using distance weighted interpolation of the surrounding cells (1-9) explained in the 

previous section. Using the no-slip boundary condition at the wall and enforcing the condition that 
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tangential velocity decreases linearly to zero at the wall and normal velocity quadratically decreases to 

zero near the wall, we have 

⎡ ⎛ ⎞ ⎤ ⎛ ⎞δ9 δ9 u9 = ⎢u 
c 

− ⎜1− ⎟ (u 
c 
⋅ n) n⎥ ⎜ ⎟ (7) 

δ δ⎣ ⎝ c ⎠ ⎦ ⎝ c ⎠ 

where δ9 and δ 
c 
are the distances from point ‘w’ to points ‘9’ and ‘c’, respectively.
 

The pressure at point ‘9’ is determined using the normal momentum equation for a flat wall, which is
 

dp 
= 0 (8) 

dn 
Which when using 1

st 
order finite difference approximation yields 

p9 = pc (9) 

Similar relationship is obtained for temperature as well, for an adiabatic wall treatment, which is 

T9 = Tc (10) 
For an isothermal case a similar linear extrapolation procedure is used to compute the value at point ‘9’ 

δ9 
⎛ δ9 

⎞ 
T = T + 1− T (11) 9 c ⎜ ⎟ w

δ δ 
c ⎝ c ⎠ 

1 2 3 

4 5 6 

7 8 9 

c 

w 

δc 

δ9 

Figure 2. Schematic depicting wall treatment. 

2.3 Ghost Cell Method 

In this technique, we enforce solid wall boundary condition using the ghost cell approach, which specifies 
the pressure, temperature and velocity components inside the solid surface. For example, in Figure 3, the 

primitive variables are assigned on nodes 15 and 16 so as to obtain the correct boundary condition on the 

wall. The state vector of cells touching the solid wall (cells 11, 12 and 14) is found using time integration 
of the flow cells (cells 1-10). The points B and D are the reference points of cells 16 and 15 respectively 

and the values are extrapolated onto cells 16 and 15 using the states at points B, D and the wall boundary 

points A and C. The location of the reference points B and D are determined by extending the normal 

from ghost cell center and body panel to a predetermined length (typically the length of the boundary cell 

diagonal), δ 
r 
. The primitive variables at the reference point are interpolated using surrounding neighbor 

points. A technique similar to the one used in the diamond-path stencil can be employed here as well. 

Once the vector state at the reference points is know, linear extrapolation is used to assign the values at 

the ghost cell. No-slip boundary condition for a viscous wall is enforced such that the tangential velocity 
is 
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� � 

� 

δ 
v =− g 

v (12) 
T ,g T ,ref 

δ r 

And the normal velocity, based on no penetration boundary condition, is given by: 

δ 
vN g =− g 

v (13) , N ,ref 
δ r 

The normal and tangential component of velocity is given by: 

v = (v .n)n (14) N ,ref ref 

v = v − v (15) 
T ,ref ref N ,ref 

And n is the normal vector of the surface panel. 

∂p ∂T 
For pressure and temperature, we use = 0 and = 0 , which leads to the following values at the 

∂n ∂n 
ghost cell: 

pref = pw = pg (16) 
Tref = Tw = Tg (17) 

where ref, w and g denote reference point, wall and ghost cell, respectively. 

Figure 3. Schematic to demonstrate the ghost cell method. 

3. Numerical Algorithm 
To implement the different viscous wall boundary condition with Cartesian-based method, we have 

developed a two dimensional, compressible, finite volume code. In this code, a second- or third-order 
reconstruction scheme is used to compute the inviscid flux. The VANLAB limiter is used to suppress the 

oscillation. A second order central difference scheme is used to compute the viscous flux in the regular 

cells, while the three boundary treatment methods presented in Section 2 are used for the boundary cells 
that are cut by wall surface. A forth order Runge-Kutta method is used for time integration. MPI parallel 

method was also implemented in this code. The characteristics inflow and outflow boundary conditions 

are used to eliminate the influence of the boundary effects. Three viscous wall boundary conditions 

presented in the last section have been tested and the preliminary results will be discussed in following 
sections. 

Cartesian mesh generation is very simple. In most cases, the square cells are preferred. For some 

boundary condition studied in this investigation, the rectangular cell may also be used, such as for the 
diamond path stencil method. However, for the reformulated extended extrapolation and ghost cell 

boundary conditions, the rectangular mesh may not work well, in particular where the aspect ratio is very 

high. For the diamond path stencil method, the cell cutting and merging are necessary. The detailed 
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discussion for boundary cell cutting and merging procedure will be presented in the relevant test cases 

below. 

4. Results and Discussions 

In this section, the initial test results for all three of the viscous boundary conditions discussed in previous 

sections are presented. The results will be discussed and compared with a Blasius theoretical solution 
and/or with experimental measurement. 

Flow Past a Cylinder 

To validate the code, we first performed an initial test for flow past a cylinder using the Enhanced 
Diamond Path Stencil Approach. Figure 4(a) shows the Cartesian mesh over the cylinder, and Figure 4(b) 

shows the distribution of cut-cells around the cylinder wall surface. Since the boundary cells are cut by 

the cylinder surface with various degrees of an angle, a special treatment is needed. As shown in Figure 

4(b), the outside part of the cutting cell forms a new irregular pentagon, trapezoidal, or triangle boundary 
cell. Because some of these cut cells are very small, they would significantly limit the time step and 

cause numerical instabilities during the computation. Therefore, in the present implementation, the 

triangle cells were merged with the outside regular non-cutting cells or with cut pentagon cells in the 
immediate proximity, forming a larger trapezoidal cell. Also, any trapezoidal cell with an area less than 

1/3 of a regular cell were merged with regular non-cutting cells that were contiguous to them. In this 

way, all boundary cells became trapezoidal cells. The Enhanced Diamond Path Stencil Approach was 
applied to all four faces of these trapezoidal cells in order to compute the velocity gradient and the 

viscous flux. 

(a) Cartesian mesh and wall boundary	 (b) Boundary cell cutting and merging 

Figure 4. The Cartesian mesh and boundary cell cutting and merging. 

Figure 5(a) shows a subsonic flow past the circular cylinder at Mach number 0.5 and Reynolds 

number 1.4×10 5 . The flow pattern and vortex shedding were captured correctly. Figure 5(b) shows the 

pressure distribution on the upper half of the cylinder surface. Comparison with experimental 

measurement [34] shows reasonable agreement. The separation location is predicted correctly. 
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(a) Streamline and contours (b) Comparison of pressure on wall 

Figure 5. Flow past a circular cylinder modeled by using diamond boundary condition. 

Flow Past a Horizontal Flat Plate 

Next, we applied all three boundary treatment techniques to the simulation of flow past a flat plate that 
was aligned with horizontal x-axis. The upper and lower surfaces of the plate cut all of cells in the same 

proportion of cell volume. The grid was stretched in the boundary layer in order to resolve the viscous 

boundary layer. Figure 6(a) shows the mesh distribution. The distance from the plate’s upper and lower 

surfaces to the center of the cell adjacent to either surface is 2×10
-5 

. The simulation was performed with 

Mach number 0.5 and Reynolds number 1.0×10
6
. The two-dimensional RANS equation was solved with 

the Spalart-Allamars turbulence model. The flow was tripped at x = 0.4 with the trip term enforced in the 

Spalart-Allamars model. Figure 6(b) shows the boundary layer contour with the extended extrapolation 
boundary method. 

(a) Mesh distribution over a flat plate	 (b) Boundary layer on the flat plate 

Figure 6. Flow past a flat plate aligned with the horizontal x-axis. 

The skin friction distribution along the flat plate and the turbulent boundary-layer profile at x = 0.5 are 

shown in Figures 7(a) and 7(b), respectively. For all three boundary treatment methods, the skin friction 

shown in Figure 7(a) agrees well with the Blasius laminar skin friction up to x = 0.4. Then, due to the 
tripping at x = 0.4, the skin friction increases sharply before following the experimental results [51] for 

the turbulent boundary layer skin friction distribution. Even though all methods predict the reasonable 

skin friction in both laminar and turbulent regions, the extended extrapolation method gives a better 

agreement with the experimental measurement. Figure 7(b) indicates that while all three boundary 
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treatments predict the turbulent boundary layer velocity profile [52] correctly, the extended extrapolation 

boundary method better resolves the log-layer. 
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(a) Skin friction distribution	 (b) Streamwise velocity profile 

Figure 7. Comparison with experimental results. 

Flow Past a Flat Plate Inclined 30 Degrees to the Horizontal Axis 

Next, we performed the calculation for a flow past a flat plate (0.5 in length) inclined at a 30 degree angle 

to the horizontal x-axis. In order to obtain the Blasius flow over the plate, the incoming flow passes over 

the plate in the direction that parallels to the plate upper and lower surfaces. The flow was simulated with 
all three boundary conditions. Figure 8(a) shows the Cartesian mesh around the flat plate, and Figure 8(b) 

shows the boundary cell cut and merge. In this case, the boundary cuts the cells in an arbitrary portion of 

the cell volume. For this test case, we chose the Reynolds number as Re=5000 and the Mach number as 

Ma=0.5. The laminar boundary layer was simulated and the skin friction was compared to the Blasius 
theoretical solution. Because a finite plate thickness must be maintained in the simulation, the influence 

of viscosity will cause the flow to separate at the leading edge corners. To overcome this problem, 

inviscid flow was simulated in the region where x < 0.02. 

0.3 

0.015 

Y
 

0.2 

Y
 

0 

0.005 

0.01 

0 

0.1 

0 

X 
0.2 0.4 

-0.005 

-0.005 0 

X 
0.005 0.01 0.015 0.02 

(a) Flat plate mesh (b) Boundary cell cut and merge 

Figure 8. Flat plate inclined an angle of 30 degrees with horizontal axis. 

Figure 9 shows the velocity contour, streamline and velocity vectors on the upper surface of the flat plate 

with the extended extrapolation boundary condition. It can be seen that the Blasius boundary layer was 

well simulated in the middle portion of the plate. Figure 10 shows the skin friction captured with all three 

boundary conditions on the upper surface of the plate, as well as the theoretical Blasius skin friction. For 
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all three boundary treatments, the skin frictions show reasonable agreement with the Blasius theoretical 

solution. Figure 10(b) presents the skin frictions in log-log scale; accordingly, the linear relation is shown 
in the middle portion of the plate for all three boundary conditions. However, the extended extrapolation 

boundary condition achieves the best agreement with the theoretical solution, and with much less 

oscillation. The ghost cell method and the enhanced diamond method present larger oscillations, and the 

enhanced diamond method presents the worst skin friction among all three methods. By decreasing the 
mesh cell size by half, better agreements were obtained with all three methods. Nonetheless, the ghost cell 

and enhanced diamond methods still present some oscillations. 

X 

Y
 

0 0.05 0.1 0.15 

0.05 

0.1 

0.15 

(a) Streamwise velocity contour and streamlines (b) Velocity vectors 

Figure 9. Velocity contour and vectors for a flow over a flat plate 

inclined an angle of 30°°°° to x-axis. 
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X 

(a) Skin friction comparison	 (b) Skin friction in log-log scale 

Figure10. Skin friction over a flat plate inclined an angle of 30°°°° to x-axis. 

Flow Past the AGARD RAE2822 Airfoil 

Next, we computed the flow past the AGARD RAE2822 airfoil. Figure 11(a) shows the Cartesian mesh 
around the airfoil. Figure 11(b) shows the boundary cell cutting and merging. In this simulation, we 

chose the Reynolds number as Re=1.0×10
5 

and the Mach number as Ma=0.676. The incoming flow is at 

an angle of attack of 1.92° to x-axis. Figure 12 shows the velocity and pressure contours, as well as the 
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streamlines in the flow field with the extended extrapolation boundary treatment. Figures 13(a) and 13(b) 

show the pressure coefficient captured by the extended extrapolation boundary treatment and ghost cell 
boundary treatments respectively on the airfoil surface. With both the extended extrapolation and ghost 

cell boundary treatments, the simulations achieved good agreement with the experimental measurement. 

By decreasing the mesh cell size, better agreement was obtained. To fully resolve the viscous flow at 

high Reynolds number, mesh refinement need to be used to refined the mesh along the surface interface. 
Cartesian mesh has great advantage in implementing adaptive mesh refinement (AMR) technology, which 

has made Cartesian method a powerful tool in simulating viscous flow with complex geometry 

configuration. The AMR method will be implemented in our future research on Cartesian method. 

(a) RAE2822 mesh (b) Boundary cell cut and merge 

Figure 11. RAE2822 mesh and boundary cell cut. 

(a) Velocity contour and streamlines (b) Pressure contour 

Figure 12. Velocity and pressure contour over RAE2822 airfoil. 
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(a) Extended extrapolation BC                          (b) Ghost cell BC 

Figure 13.  Pressure coefficient over RAE2822 airfoil. 

5. Conclusions 
In this investigation, the wall boundary treatments for viscous modeling based on Cartesian methods have 

been studied. Some preliminary results have been generated, and the effectiveness of the three proposed 

boundary treatments for resolving viscous boundary layer is demonstrated.  The quantitative comparison 
of the present calculation with the Blasius theoretical solution (for the flat plate) and with experimental 

measurement (for the cylinder and the AGARD RAE2822 airfoil) demonstrates that the proposed 

Cartesian-based approaches is capable of resolving both laminar and turbulent boundary layers.  Among 
all three viscous boundary treatment methods, the extended extrapolation method attains the best viscous 

boundary simulation, in which smaller oscillations in pressure and smoother skin frictions on the surface 

have been observed.  Adaptive mesh refinement method will be implemented in our future research to 
resolve the turbulent boundary layer on the surface which intercepts the Cartesian mesh with arbitrary 

angles. 
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