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Abstract 

Selection of neural network learning rates to obtain satisfactory per­
formance from neural network controllers is a challenging problem. 
To assist in the selection of learning rates, this paper investigates 
robotic system sensitivity to neural network (NN) learning rate. The 
work reported here consists of experimental and simulation results. 
A neural network controller module, developed for the purpose of 
experimental evaluation of neural network controller performance 
of a CRS Robotics Corporation A460 robot, allows testing of NN 
controllers using real-time iterative learning. The A460 is equipped 
with a joint position proportional, integral, and derivative (PID) 
controller. The neural network module supplies a signal to com­
pensate for remaining errors in the PID-controlled system. A robot 
simulation, which models this PID-controlled A460 robot and NN 
controller, was also developed to allow the calculation of sensitivity 
to the NN learning rate. This paper describes the implementation of 
three NN architectures: the error back-propagation (EBP) NN, mix­
ture of experts (ME) NN, and manipulator operations using value 
encoding (MOVE) NN. The sensitivity of joint trajectory error of 
three NN controllers to learning rate was investigated using both 
simulation and experimentation. Similar results were obtained from 
the robot experiments and the dynamic simulation. These results of 
state sensitivity to NN learning rate confirm that the MOVE NN is 
least sensitive to learning rate, implying that selection of suitable 
learning rates for this NN architecture for the system considered is 
accomplished more readily than other NN architectures. 

KEY WORDS—neural network control, robotic systems, 
sensitivity 

Robotic System Sensitivity to Neural 
Network Learning Rate: Theory, 
Simulation, and Experiments 

1. Introduction 

In the mid 1980s, interest in neural networks (NNs) grew when 
it was shown that nonlinear NN architectures could be trained 
to produce desired outputs. Rumelhart, Hinton, and Williams 
(1986) introduced the multilayer perceptron model using the 
error back propagation algorithm for training the weights of 
the model. Evidence was found that indicated NNs were ca­
pable of learning complex functions, which led to their use in 
applications including pattern recognition, function approxi­
mation, data fitting, and control of dynamic systems. Nonlin­
ear dynamic systems, including robots executing tasks repet­
itively, were shown to benefit from the use of NN controllers, 
i.e., Chen, Mills, and Smith (1996). The results from these 
and other experiments reported in the literature demonstrated 
a reduction in robot trajectory tracking error through the use of 
a feed-forward error back-propagation (EBP) NN controller. 

Within the literature, which addresses the application of 
NNs for robot control systems, considerable work has been 
reported that employs feed-forward EBP NNs. However, sev­
eral improvements to the EBP algorithm, as well as many new 
NN architectures and learning algorithms have been devel­
oped specifically for robot control applications. Three such 
NNs, discussed in this paper, are the EBP NN, mixture of 
experts (ME) NN (Jacobs and Jordan 1993), and manipulator 
operations using value encoding (MOVE) NN (Graham and 
D’Eleuterio 1990). 

When these NN control algorithms are implemented, se­
lection of a suitable NN learning rate must be made. This 
objective is typically achieved through the use of trial and er­
ror processes. A learning rate, when selected too large, may 
lead to overall system instability, while a learning rate that is 
too low will lead to a system that does not respond quickly 
to parameter changes that are to be learned, for example. 
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Investigation of the sensitivity of trajectory tracking error of 
the robot system under NN control to learning rate will pro­
vide insight into the selection of learning rates for robotic 
systems and the effect of nonoptimal learning rates on system 
performance. In our work, we have investigated the sensitiv­
ity of three different NN controller architectures to learning 
rate and have determined the sensitivity of these architectures 
to variations in learning rate. This knowledge will provide 
users of NN controllers with a body of quantitative informa­
tion, which may simplify the selection of learning rates for 
these NN architectures. For example, attempts to optimize 
the learning rate, to achieve better closed-loop performance, 
will be more efficient with knowledge of the sensitivity of 
performance to learning rate variation. Conversely, with cer­
tain NN architectures, the closed-loop system performance is 
more sensitive to learning rate, hence more care must be taken 
in selection of a suitable NN learning rate. While qualitative 
in nature, this work represents a first step toward a rationale 
for selection of NN learning rate. 

In this work, we first derive the dynamic models of a 
robotic manipulator controlled with a proportional, integral, 
and derivative (PID) joint position controller, augmented with 
an NN controller with real-time learning. The sensitivity 
equations that relate state sensitivity to NN controller learn­
ing rate are derived. Using a full dynamic simulation of our 
experimental robotic system including real-time NN learn­
ing, the sensitivity of the system state to NN learning rate is 
found. Comparison of these sensitivity results is then made 
with experimental results obtained using an NN robot control 
test-bed with real-time NN learning. 

By comparing the results obtained using the above pro­
cedure for three different NN architectures, i.e., EBP, ME, 
and MOVE, it is found that the MOVE NN exhibits markedly 
lower joint trajectory error sensitivity to NN learning rate. 
This implies that a successful choice of learning rate for the 
MOVE NN architecture can more readily be achieved than 
with either the EBP or ME NN architectures. The MOVE 
NN will operate successfully over a wider range of learning 
rates than either the EBP or ME NN controllers. Second, 
when selection of NN learning rate is undertaken, the fact 
that the MOVE NN controller is least sensitive to learning 
rate, when compared to either EBP or ME controllers, makes 
selection of a suitable learning rate a simpler task. This al­
lows for easier implementation of the MOVE NN compared 
to EBP and ME NNs. 

In Section 2, three NN controllers implemented are de­
scribed. Section 3 describes the NN-robot control test-bed 
module and the experimental robot. Section 4 introduces the 
NN learning rate sensitivity equations and describes how they 
are implemented in a dynamic simulation. Experimental re­
sults are presented in Section 5, and finally conclusions are 
given in Section 6. 

2. Neural Networks 
In the following, we briefly outline relevant details of three 
NN controllers that were implemented experimentally on the 
robot system and in simulation. A more detailed descrip­
tion of the algorithms can be found in the corresponding 
references. 

2.1. Error Back-Propagation 

Feed-forward networks trained with EBP have been the focus 
of considerable work reported in the literature. EBP has ex­
hibited slower learning times when compared with other NN 
learning algorithms (Graham and D’Eleuterio 1991; Jacobs 
and Jordan 1993). Due to its wide use in research and en­
gineering applications, EBP was selected as the baseline for 
comparison with the other types of NNs being investigated. 

The EBP algorithm is composed of two main steps that 
are repeated iteratively. The steps are (1) a forward pass to 
produce values for the NN outputs and (2) a backward pass 
to adjust the weights so as to achieve desired outputs from 
the network. The weight adjustment rule is given in eq. (1) 

tbelow. At the n time step, the change in the weight wig that 
connects neuron I to neuron j is given by 

∂J (n) 
�wij (n) = −λ , (1)

∂wij 

where 
J (n) ≡ Cost Function, J (n) ∈ �1; 
wij ≡ Connection weight, wij ∈ �1; 
�wij ≡ Change in connection weight, �wij ∈ �1; and 
λ ≡ Learning rate, λ ∈ �1. 

A full description and mathematical details of the algorithm 
can be found in Haykin (1994). 

2.2. Mixture of Experts 

The motivation to use ME NNs for the NN module came 
from the work reported by Jacobs and Jordan (1993). In this 
work, robot simulations illustrated ME NNs with both a faster 
learning time and lower joint errors than EBP feed-forward 
networks. The principle of “divide and conquer” is used as 
the basis of this NN architecture. The intention is to divide 
a complex problem into several smaller problems that are 
more easily solved (see Rueckl, Cave, and Kosslyn 1989). 
In a ME NN, a different NN is used for different regions of 
the output. This is accomplished automatically by the NN 
learning algorithm. 

The ME NN is composed of several feed-forward NNs 
connected in parallel with the output from each summed to 
produce the output from the system. Each of the feed-forward 
NNs is an “expert” and will learn its portion of the task accord­
ingly. A gating network is used to determine the proportion of 
each expert’s output used in the system’s output. The gating 
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network itself is also a feed-forward NN whose inputs are the 
same as the experts. 

Illustrated in Figure 1 is the network topology for the ME 
algorithm. Experts 1 through 3 are feed-forward NNs. Learn­
ing is similar to that of EBP in that there are forward and back­
ward passes through the NN. However, additional weights in 
the gating network must also be trained. Eqs. (2a) and (2b) 
are the learning rules used to adjust the weights in the expert 
networks and the gate network, respectively. A full descrip­
tion of the algorithm along with mathematical details can be 
found in Jacobs et al. (1991). 

�wij k (n) = λhi (n)ei (n)xj (2a) 

�aij (n) = λ (hi (n) − gi (n)) xj , (2b) 

where 
�wij k (n) ≡ Change in the ij th connection weight from 

expert network i, �wijk(n) ∈ �1; 
�aij (n) ≡ Change in the ij th connection weight from gate 

network, �aij (n) ∈ �1; 
λ ≡ Learning rate, λ ∈ �1; 
hi(n) ≡ Probability that ith expert generates a desired 

response, hi ∈ �1; 
gi(n) ≡ Gate function output for ith expert, gi ∈ �1; 
ei(n) ≡ Error resulting from output of the ith expert, ei 

∈ �n×1; and 
xj (n) ≡ Input signal j , xj ∈ �1. 

2.3. Manipulator Operations Using Value Encoding 

The MOVE NN was chosen for investigation based on 
the large decrease in trajectory tracking error obtained by 
Graham and D’Eleuterio (1990). Originally based on the 
CMAC (cerebellar model articulation controller) (Albus 
1975), MOVE incorporates input discretization with the learn­
ing capabilities of an NN. As the underlying basis of the net­
work architecture, the CMAC structure acts as a preprocessor 
that activates output units based on the value of the input sig­

nal. The signals from the CMAC output units are used as the 
inputs to a single-layer EBP NN. An extension to MOVE has 
been made, in the work reported here, to include two networks 
running in parallel as in the ME network. The result is a net­
work that benefits from the input discretization of CMAC, the 
learning capabilities of EBP and the modularity of ME. 

Figure 2, illustrating the CMAC technique of encoding the 
input signals, shows how the CMAC structure is incorporated 
into a control system. The grid structure facilitates the CMAC 
input-output mapping. In this figure, the two input states to be 
encoded are q and q̇. The current values of the input states qi 
and q̇j will activate one element in each of five separate grids, 
with each grid offset with respect to the others. The grids are 
composed of units called course cell units. Once the course 
cell units are activated, the CMAC portion of the forward 
propagation of the network is complete. As shown in Figure 3, 
the output from each of the coarse cell units is connected to 
a unit in the next layer of the network. These units are called 
granule cell units. To reduce the memory required, a number 
of course cell units are randomly connected, i.e., hashed in 
such a way that several course cell units are connected to one 
granule cell unit. The output from the granule cell units is set 
to 1 if any of the connecting coarse cell units are activated, or 0 
otherwise (i.e., logical OR statement). The granule cell units 
are used as neurons in a feed-forward artificial NN. Every 
granule cell is connected to the output cell unit. The outputs 
from the granule cell units are all weighted and summed to 
produce the final value from the output unit. 

The weights connecting the granule cells to the output unit 
of the network are variable. Learning of the network occurs 
by adjusting the value of the variable weights over time so 

Fig. 2. Cerebellar model articulation controller (CMAC) 
encoding technique. 

Fig. 1. The mixture of experts neural network architecture. 
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∫ 

Fig. 3. Manipulator operations using value encoding (MOVE) neural network topology. 

as to obtain a desired output. The weight adjustment rule is 
given as 

�wij (n) = λ 
�i,j (n) ∑ ∑ J (n), (3) 

�i,j (n) 
j i 

where 
�wij (n) ≡ Change in connection weight, �wij (n) ∈ �1;
 
λ ≡ Learning rate, λ ∈ �1;
 
�i,j (n) ≡ Activated granule cell output, �i,j (n) ∈ �1;
 
and
 
J (n) ≡ Cost Function, J (n) ∈ �1.
 
Since only the weights in the final layer of the network are
 

adjusted iteratively, when compared with EBP and ME archi­
tectures that contain many more weights, a reduced learning 
time is obtained. A full description of the algorithm, including 
mathematical details, can be found in Graham and D’Eleuterio 
(1990). 

3. Development of a Neural Network Control 
Test-Bed Module 

Almost all industrial robots employ joint level PID position 
controllers. Given this fact, it was determined that a generic 
NN module controller to be used in conjunction with the PID 
controllers already being used in industrial robots would be 
developed. Details of this development are found in Chen 
et al. (1998). The NN module structure is illustrated in Fig­
ure 4. Due to the modular structure of the software, different 
NNs are readily implemented with this system. 

In this development, we consider a joint-level PID-
controlled robot. The open-loop dynamics of a rigid link 
robot with n actuated joints is expressed as 

M(q)  q̈ + h(q, ˙ (4)q) = τ, 

where 
n×1;q ≡ Joint position, q ∈ �
n×1;q̇ ≡ Joint velocity, q̇ ∈ �

Fig. 4. Block diagram of a robot with a proportional, integral, 
and derivative (PID) and neural network controller. 

n×1;q̈ ≡ Joint acceleration, q̈ ∈ �
n×1;τ ≡ Torque input signal, τ ∈ �
n×M(·) ≡ Inertia matrix, M(·) ∈ � n; and 

h(·, ·) ≡ Coriolis, centripetal and gravitational term, 
n×nh(·, ·) ∈ � . 

Under the standard assumption of fast actuator dynamics, 
the input torque τ signal is given by the following PID control 
law: 

τ = KP (qd − q) +KI 

t ∫ 

0 

(qd − q)dt 
(5) 

+KD( ̇qd − q̇) = TPID, 

where 
n×1;qd ≡ Desired joint position, qd ∈ �
n×1;q̇d ≡ Desired joint velocity, q̇d ∈ �

n×n;KP ≡ Proportional gain matrix, KP ∈ �
n×KI ≡ Integral gain matrix, KI ∈ � n; and 

n×nKD ≡ Derivative gain matrix, KD ∈ � . 
An NN signal ν is added to the control law to compensate 

for trajectory tracking errors, as given below. 

t 

τ = KP (qd − q) +KI (qd − q)dt 
(6)

0 

+KD(q̇d − q̇) + v. 
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∫ 

∫ 

Let the error e and control error �ν be defined below: 

e = qd − q (7) 

�v = M(q)  ̈ q) − v.q + h(q, ˙ (8) 

With eqs. (6), (7), and (8), the closed-loop error dynamics 
of the system are 

t 

�v = KP e + KI edt + KDe.˙ (9) 

0 

If the NN can learn to compensate for the nonlinear dy­
namics in (8), i.e., �ν → 0, then the closed-loop dynamics 
becomes 

t 

0 = KP e + KI edt + KDe.˙ (10) 

0 

Selection of appropriate gains will lead to asymptotic tra­
jectory tracking. 

3.1. Robot Experiment Hardware 

Experiments utilized a CRS Robotics Corporation A460 robot 
and a transputer-based C500 controller. The robot has 6 de­
grees of freedom and uses permanent magnet DC motors to 
activate harmonic drive gears. Table 1 lists the CRS A460 
robot kinematics and dynamics parameters. 

Each NN software module is programmed in C lan­
guage, then compiled and downloaded to a Texas Instruments 
TM320C40 Digital Signal Processor (DSP). Real-time exe­
cution of NN learning, weight update, and the PID controller 
occurs at 500 Hz. A more detailed description of the hardware 
and software setup can be found in Chen et al. (1998). 

Two host 486 PCs act as the user interfaces for the DSP and 
robot controller, respectively. These PCs initiate experiments, 
and control software execution, data recording, and selection 
of experimental parameters. Figure 5 illustrates the system 
hardware configuration. 

Fig. 5. Robot experimental hardware configuration. 

3.2. Robot Experiment Software 

Figure 6 illustrates the system software architecture. The DSP 
host enables a user to compile and download any type of NN 
to the DSP. Matlab software is used for the front-end of the 
programming and enables NN parameter selection as well as 
the generation of initial weights. 

The NN module consists of procedures written in C for 
(a) network output generation and (b) learning algorithms, 
i.e., weight adjustments. The DSP communication module 
sends and receives data to and from the C500 communication 
module. The DSP communication module must (a) establish 
communication with the C500, (b) send NN output signals to 
the C500 to provide the compensating torque signal, and (c) 
receive the actual and desired values of joint position, velocity, 
and acceleration from the C500. 

The DSP execution manager supervises the execution of 
procedures in the DSP. It ensures a proper schedule for real-
time execution. The procedures include (a) NN output gen­
eration, (b) NN learning, (c) communication with the C500 
controller, and (d) data recording. 

The C500 host allows the user to select parameters for 
the PID controller and experiment execution. Important se­
lections include robot trajectory, PID gains, maximum robot 
velocity and accelerations, and the number of trials in an ex­
periment. Experiment execution and termination are also con­
trolled via the C500 host. 

The C500 communication module works with the DSP 
communication module to carry out data transfer. Its responsi­
bilities include (a) establishing communication with the DSP; 
(b) sending actual and desired values of joint position, veloc­
ity, and acceleration; and (c) receiving the NN output signals 
from the DSP. The user control program contains the PID 
control algorithm. Modifications were made to include the 
addition of the NN compensating torque signal into the con­
trol scheme. 

The C500 execution manager acts in a supervisory role 
coordinating activities of other software modules while in­
corporating the real-time NN communication and execution. 
A detailed description of the software flow chart can be found 
in Chen et al. (1998). 

4. Sensitivity Functions and the Development of 
a Neural Network/Robot Control Simulation 

The system sensitivity function (Frank 1976) provides a mea­
sure of how a closed-loop system will behave given a variation 
in a system parameter. In this section, we introduce the sen­
sitivity equations for the PID-controlled robot system with an 
NN compensator. The sensitivity equations of robot joint tra­
jectory tracking error with respect to NN learning rate are then 
derived. Details of the numerical solution of the sensitivity 
equations are given. 
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Table 1. CRS A460 Robot Data 

Link 
Twist 
α (deg) 

Length 
a (in) 

Offset 
d (in) 

Angle 
θ (deg) 

1 
2 
3 
4 
5 
6 

+90 
0 

−90 
+90 
−90 

0 

0 
a2 = 12.125 

0 
0 
0 
0 

0 
0 
0 

d4 = 12.125 
0 
0 

θ1 
θ2 
θ3 
θ4 
θ5 
θ6 

Fig. 6. Robot experimental software architecture. 

4.1. Sensitivity Functions 

The state sensitivity is defined as the change of a state value 
relative to the change of a system parameter (Frank 1976). 
The sensitivity function ς is defined as below. 

∂z  
ς = , (11)

∂α  

where 
ς ≡ Sensitivity of state z to parameter α, ς ∈ Rn×1; 
z ≡ System state, z ∈ Rn×1; and 
α ≡ A system parameter, α ∈ R1. 
Consider a system with r parameters given by 

ż = f (z, α, t). (12) 

The sensitivity function of the system is given by partial 
differentiation of (12) with respect to the system parameter 
α as 

∂ż ∂f ∂z  ∂f = + , (13)
∂α  ∂z ∂α  ∂α  

where 
∂ż z n×1;≡ Sensitivity derivative, ∂ ˙ ∈ �
∂α  ∂α  

∂f n×≡ Jacobian matrix, ∂f ∈ � n;
∂z  ∂z 
  
∂z 
  ≡ Sensitivity, ∂z  ∈ �n×1; and 
∂α  ∂α 
  
∂f n×1
≡ System parameters, ∂f ∈ � .
∂α  ∂α  

From eq. (11), the sensitivity function dynamics are ex­
pressed as 

∂ ∂z  ∂ż
ς̇ = = . (14)

∂t ∂α  ∂α  

Substituting eq. (14) into eq. (13) yields the sensitivity 
equation 

ς̇ = fzς + fα, (15) 

where 
n×1;ς̇ ≡ Sensitivity derivative, ς̇ ∈ �

≡ ∂f n×n;fz ≡ Jacobian matrix, fz ∈ �
∂z 
  

ς ≡ Sensitivity, ς ∈ �n×1; and
 
fα ≡ ∂f n×1
≡ System parameters, ∂f = fα ∈ � .

∂α  ∂α  

4.2. The System State Model 

Simultaneous solution of eq. (15) and the system dynamics 
given by (12) will yield the sensitivity of the closed-loop 
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∫ 

∫ 

system with respect to any parameter α. To solve these equa- Hence, the weight dynamics are represented as 
tions, a robot simulation developed with Simulink was used 
(i.e., Liu and Mills 1998). Here, we present a derivation of the    

λ̃δ1y1model, including the robot dynamics and weight dynamics of   ˜ 
the system.  λδ2y2      .   Using a first-order approximation, the weight dynamics,  .   .   given in eqs. (1), (2), and (3), are expressed as ˜ λδsys 1    ˜ λδ1y1    wij (n) − wij (n − 1) 1 ˜  λδ2y2ẇij ≈ = �wij , (16)    

�T �T  .    .  ẇ = . = f (λ,  y).  (20)    ˜ 1 λδsyswhere �T ≡ Neural network update period, �T ∈ � .  2  .  . The dynamics of the ij th weight of an NN trained with  .   EBP is  ˜   λδ1y1    ˜   λδ2y2   ∂J     .   ẇij = −λ̃ , (17)  .   . ∂wij 
λ̃δsys l 

where 
wij ≡ Weight connecting the ith and j th neuron, ẇij From eqs. (4) and (6), the robot dynamics are expressed as 

∈ �1; 
∂J  ≡ Cost function derivative with respect to the weight 
∂wij T 

∂J  wij , ∈ �1; and 
∂wij M(q)  ̈ q) = KP (qd − q) +KIq + h(q, ˙ (qd − q)dt 

λ̃ ≡ Modified learning rate (i.e., divided by �T ), λ̃ ∈ �1. (21) 
Using the delta function δj as described in Haykin (1994) and 

0 

the neuron output yj , eq. (17) can be rewritten as +KD(q̇d − q̇) + v. 

˜ẇij = λδj yj , (18) Isolating q̈ in eq. (21) yields 

where T 
yj ≡ The output of the j th neuron, yj ∈ �1 and −1q̈ = M (q)[KP (qd − q) +KI (qd − q)dt 
δj ≡ Delta function for the j th neuron, δj ∈ �1. (22)
Let the vector w ∈ �rxsxl represent the weights of the NN, 0 

as follows, +KD(q̇d − ˙ q) + v].q) − h(q, ˙
    
w11 

By assigning the state variables as below,    w12      .    .   .    n×1 x1 = q ∈ � wrs   1   n×1    x2 = q̇ ∈ � w11      ∫ tw12      .   n×1 w = . . (19) x3 = (qd − q)dσ ∈ � (23)   .     0wrs   2  .   .  ẋ1 = x2.       −1 w11  ẋ2 = M (x1)[KP (x1d − x1) +K1x3 +KD(x2d − x2)      w12     .   − h(x1, x2) + v(x1, x2, w)],  .   . 
wrs  ẋ3 = x1d − x1l 
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the system can now be expressed in block matrix form as 

        
ẋ1 0 In 0 x1 0  ̇x2 =  0 0 0 x2 + −M−1h 
ẋ3 −In 0 0  x3 0 

      
0 0 0 0 x1 

+ −M−1  −KP −KD KI
 x2 

0 0 0 0 x3     (24) 
0 0 

+ −M−1  KPx1d + KDx2d 

0 x1d     
0 0 

+ −M−1  v . 
0 0 

The overall system state model is defined with the state 
vector z, 

    
z1 x1    z2 x2    z = = , (25)    z3 x3 
z4 w 

to give 

        
ż1 0 In 0 0  z1 0 ˙   0 0 0 0   −M−1hz2 z2         = +        ż3 −In 0 0 0  z3 0 
ż4 0 0 0 0 z4 f (λ, y)  

      
0 0 0 0 0 z1 −M−1 −KP 0  −KD KI z2      +      0 0 0 0 0 z3 

0 0 0 0 0 z4     
0 0 −M−1  KP z1d + KDz2d    + (26)    0 z1d 

0 0 
    

0 0 −M−1  v    + ,    0 0 
0 0 

where f (λ, y) is defined in eq. (20). 

4.3. Robot Simulation Software 

The simulation of eqs. (15) and (26) was carried out us­
ing Simulink and Matlab with a fourth-order Runge-Kutta 
algorithm. 

5. Experiment and Simulation Results 

In this section, we calculate the sensitivity functions of the 
robotic system under NN control. We briefly discuss NN im­
plementation details, and the validity of the robot simulation 
is confirmed. Finally, sensitivity plots from experiments and 
simulations are given. 

5.1. Experiment and Simulation Neural Network 
Implementation 

A series of experiments was conducted to establish a base­
line performance for each of the three NN controllers imple­
mented. This required that a number of parameters, specific 
to each NN, i.e., learning rate, number of neurons in each 
layer, and so on, be tuned to achieve acceptable behavior. 

Experiments were conducted on a CRS Robotics Corpo­
ration 6-degree-of-freedom A460 industrial robot. The NN’s 
compensation signal was applied to only the first three joints 
of the robot. The rationale for this is based on the fact that the 
robot trajectory error is mainly due to trajectory tracking er­
rors of the first three joints. In the following, an “experiment” 
is defined as the consecutive execution of a number of trials, 
while a “trial” is defined as the execution of a commanded 
trajectory sequence once, by the robot. The trajectory input 
consists of a set of “way points” connected by smooth trajec­
tories generated from spline functions. These way points are 
listed in Table 2 with the joint trajectories plotted in Figure 7. 

A valid comparison of the three NNs implemented dictated 
that all experiments be conducted with certain parameters and 
inputs held constant. These parameters include, for example, 
the input trajectory, PID gains, and NN parameters, and are 
given in Tables 2 and 3. Additionally, within each set of trials 

Fig. 7. Input joint position trajectory for joints 1, 2, and 3. 
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∫ √ 

Table 2. Simulation and Experiment Robot Parameters 

Robot Experiment Parameter 

Maximum joint velocity (rad/s) 0.6
 
Robot trajectory way points (degrees) [0 0 0], [40 −40 −40], [0 0 0]
 
Proportional gains (for three joints) [5500 6500 7500]
 
Integral gains (for three joints) [2 2 2]
 
Derivative gains (for three joints) [60 60 60]
 

Table 3. Experiment and Simulation Neural Network Parameters 

Neural Network Experiment Parameter EBP ME MOVE 

Number of neurons in input layer 9 9 9 
Number of neurons in hidden layer 1 7 7 NA 
Number of neurons in hidden layer 2 5 5 1000 
Number of neurons in output layer 3 3 3 
Number of experts NA 2 2 
Number of grids in MOVE NA NA 5 
Number of cells per grid in MOVE NA NA 3 
Learning rate: λe 3E-8 2 6 
Output limits [40 40 40] [60 75 70] [55 65 75] 

NOTE: EBP = error back-propagation; ME = mixture of experts; MOVE = manipulator operations using value encoding. 

for a particular NN implementation, a number of parameters 
given in the following sections were also held fixed. 

The input to the NNs consisted of the position and veloc­
ity of the first three joints of the robot. The output of the NN 
consists of three signals, ν, as given in eq. (6). These com­
pensating signals, as seen in the following, lead to reduction 
in error beyond which the PID control can achieve. 

To provide a measure of the trajectory tracking perfor­
mance, the time averaged joint error norm for each trial is 
calculated according to the equation below, and it is plotted. 

T 
1 2 2 2E = e1 + e2 + e3dt,  T 

0 

where 
E ≡ Time averaged joint error norm, E ∈ �1; 
ei ≡ qid − qi ≡ Joint error, i = 1, 2, 3; 

n×1;q ≡ Joint position, q ∈ �
qd ≡ Desired joint position, qd ∈ �n×1; and 
T ≡ Trial Period, T ∈ �1. 

5.2. Neural Network Performance: Simulation 
and Experiment 

(27) 

Simulation studies were conducted to permit robot system 
sensitivity to be calculated without noise and uncertainty of 
our experiment, which can mask important results. Compar­
ison of experimental data with the simulations then allowed 
us to analyze the nature of our experimental results more eas­
ily. To undertake this task, experiments and simulations were 
conducted with identical PID and NN controller parameters. 

Robot simulations produced similar performance results to 
those obtained from the robot experimental results. Illus­
trated in Figure 8 are time-averaged joint error norm plots for 
the robot experiments and simulations using the EBP, ME, 
and MOVE NNs. All three plots show a similar reduction in 
joint error norm for the simulation and experiment. 

To provide insight into the effect of learning rate on the per­
formance of robotic systems with NN controllers, sensitivity 
calculations were carried out. To make a valid comparison of 
the sensitivity functions for the three NNs tested, the sensi­
tivity function, given by (11), is normalized as follows: 

∂z/‖z‖ λs 
ςnorm = = ς , (28)

dλ/λs ‖z‖
where 

n×1;ςnorm ≡ Normalized sensitivity, ςnorm ∈ �
ς ≡ Sensitivity, ς ∈ �n×1; and 
‖z‖ ≡ State norm, ‖z‖ ∈ �1. 
Simulation results of normalized sensitivity of joint 1 tra­

jectory tracking error to learning rate, λ, for EBP, ME, and 
MOVE systems, is shown in Figures 9 through 11. The joint 
error norm, E, given by (27), corresponding to each simu­
lation, is also plotted. These plots are representative of the 
dynamic behavior seen in joints 2 and 3. From these plots, it 
is noted that the joint 1 trajectory tracking error sensitivity to 
learning rate is the highest as the joint error norm decreases at 
the greatest rate. This is due to the fact that as the error in the 
system decreases most rapidly, during higher rates of change 
in the NN weights, small changes in learning rate will lead 
to greater changes in the system behavior, resulting in greater 
sensitivity. Hence, during the period in which the changes in 
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Fig. 8. Joint error norm for experimental and simulation results.
 
NOTE: MOVE = manipulator operations using value encoding.
 

Fig. 9. Normalized learning rate sensitivity versus joint error norm for an error back-propagation neural network, simulation 
results. 
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Fig. 10. Normalized learning rate sensitivity versus joint error norm for a mixture of experts neural network, simulation results. 

Fig. 11. Normalized learning rate sensitivity versus joint error norm for a manipulator operations using value encoding (MOVE) 
neural network, simulation results. 
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Fig. 12. Experimental and simulation results, �z versus time for error back-propagation. 

the weights are greatest, it would be anticipated that the sys­
tem state is most sensitive to variations in learning rate. From 
these plots, it is seen that the MOVE NN controller exhibited 
the least sensitivity to learning rate variation. 

The change in robot joint trajectory error state (�ze) re­
sulting from a change in learning rate (�λ) obtained from 
robot experiments is compared with results from the robot 
simulation sensitivity (�zS ). The simulation learning rate 
perturbation, �λs , corresponds to the experiment learning 
rate perturbation, but is normalized with respect to λe/λs , as  
shown below. 

�ze = z(λe +�λ) − z(λe) (29) 

�zs = 
∂z  

∂λ  
�λs , (30) 

where 
z(·) ≡ Experiment system state as a function of λ, z(·) 

n×1;∈ �
�ze ≡ Change in experiment state z caused by perturba­

n×1;tion in λ, �ze ∈ �
�zs ≡ Change in simulation state z caused by perturbation 

n×1;in λ, �zs ∈ �
λe ≡ Learning rate used in experiment, λe ∈ �1; 
λs ≡ Learning rate used in simulation, λs ∈ �1; 
�λe ≡ Experiment learning rate perturbation, �λe ∈ �1; 
and 

�λs ≡ Experiment learning rate perturbation with respect 
to λs , �λe ∈ �1. 

Experimental and simulation results of the variation in tra­
jectory tracking error, denoted by �ze and �zS , respectively, 
for joints 1, 2, and 3, are illustrated in Figures 12 through 14 
for the EBP, ME, and MOVE NN controllers. We note that 

Fig. 13. Experimental and simulation results, �z versus time 
for mixture of experts. 
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Fig. 14. Experimental and simulation results, �z versus time for a manipulator operations using value encoding (MOVE) 
controller with λ = 80. 

in each set of plots, the dynamic behavior obtained from the 
simulation is very similar to the experimental results. This 
similarity confirms the validity of our simulations as a diag­
nostic tool in our work. 

Calculation of �ze and �zS allows a designer of an NN 
controller to predict the effect of variations in learning rate 
on overall system performance. Conversely, in the process of 
selection of a suitable learning rate for operation of an NN, 
low sensitivity to perturbations in the value of the learning 
rate indicates that the choice of learning rate is not critical to 
neural overall system behavior. 

From Figures 12 through 14, it is seen that the lowest 
sensitivity of joint trajectory tracking error to learning rate 
was achieved by the MOVE and ME NN controllers, i.e., the 
MOVE and ME �z values were the smallest when compared 
with those �z values obtained using EBP. 

6. Conclusion 

Learning rate sensitivity simulation results were shown to cor­
respond well with results obtained from robot experiments. 
The simulation of learning rate sensitivity proved to be a good 
predictor of actual system behavior. Simulations indicate that 
the MOVE NN exhibited the lowest joint trajectory error sen­

sitivity to learning rate when compared to the EBP and ME 
NN controllers. Experimental results, while similar to sim­
ulations, indicated that the MOVE and ME NN controller 
architectures resulted in similar sensitivity to learning rate, 
both lower than the EBP architecture. Differences in trajec­
tory tracking error sensitivity to learning rate, among three 
NN controller architectures, provide insight into both the se­
lection of learning rates for robotic systems and the effect of 
nonoptimal learning rates on system performance. 

Our experimental and simulation work supports two 
claims. First, the MOVE and ME NN will operate suc­
cessfully over a wider range of learning rates than the EBP 
NN controller. Conversely, with the EBP NN controller, the 
closed-loop system performance is more sensitive to learning 
rate; hence, more care must be taken in selection of a suitable 
NN learning rate. Second, when selection of NN learning rate 
is undertaken, the fact that the MOVE and ME NN controller 
is least sensitive to learning rate, when compared to the EBP 
controller, makes selection of a suitable learning rate a sim­
pler task. Hence, a wider range of appropriate learning rates 
can be used when using the MOVE and ME NNs as opposed 
to when using an EBP NN. While qualitative in nature, this 
work represents a first step toward a rationale for selection of 
NN learning rate. 
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The results of this paper provide a mechanism for the in­
vestigation of sensitivity of NN performance to learning rate 
variation, and specific results for three NN architectures. The 
benefits of the work presented are twofold. First, when ad­
justing learning rates, it is beneficial to know how sensitive 
the system performance is to the learning rate. For example, 
if it is known that the system performance is strongly depen­
dent on learning rate, then considerable care must be made 
in tuning this parameter. Our work clearly demonstrates that 
there is a variation in sensitivity to learning rate between NN 
controller architectures; hence, this aspect of controller de­
sign has merit. Second, knowing that one NN architecture 
has a lower sensitivity to learning rate variation allows more 
rapid tuning of learning rates, leading to cost savings during 
the tuning procedure. Selection of learning rates carried out in 
the absence of such sensitivity information may lead to costly 
tuning without substantial benefit, i.e., small changes made to 
learning rate that have little impact on performance, or con­
versely, use of an NN architecture that is strongly dependent 
on NN learning rate, leading to difficulties in learning rate 
selection. 
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