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Abstract 

The usual E, δ-definition of the limit of a function (whether pre
sented at a rigorous or an intuitive level) requires a “candidate L” 
for the limit value. Thus, we have to start our first calculus course 
with “guessing” instead of “calculating”. In this paper we criticize the 
method of using calculators for the purpose of selecting candidates for 
L. We suggest an alternative: a working formula for calculating the 
limit value L of a real function in terms of infinitesimals. Our for
mula, if considered as a definition of limit, is equivalent to the usual 
E, δ-definition but does not involve a candidate L for the limit value. 
As a result, the Calculus becomes to “calculate” again as it was orig
inally designed to do. 

1 Introduction 

Let f : X → R be a real function, where X ⊆ R and r ∈ R be a non-trivial 
adherent (accumulation) point of X. Recall that a real number L is called 
the limit of f as x tends to r, in symbols, limx→r f(x) =  L, if  

(∀E ∈ R+)(∃δ ∈ R+)∀x ∈ X)(0 < |x− r| < δ  =⇒ |f(x) − L| < E). 

This is the so-called E, δ-definition of limit. It is sometimes attributed to 
Cauchy but it appears historically for the first time in John Wallis’s “Arith
metica Infinitorum” (The Arithmetic of Infinites) in 1655. In the next 250 


 



years following Wallis’s work, this definition was rejected and rediscovered 
many times until it was finally accepted by the mathematical community 
in the beginning of the 20th century. We should mention that at that time 
most of the results in Calculus were already discovered through infinitesi
mals. Contemporary mathematicians might be puzzled by the fact that it 
took so long for the mathematical community to accept such a “nice and rig
orous” definition, especially taking into account that its alternative in terms 
of infinitesimals was commonly viewed as “certainly non-rigorous” (although 
practically efficient). We can detect at least three more obvious reasons for 
this amazing phenomena in the history of calculus: 

1. In the period “from Leibniz to Weierstrass”, not only infinitesimals, 
but also real numbers, did not have a rigorous mathematical foundation. 
Thus, although the E, δ-definition makes perfect sense even in the framework 
of the rational numbers, this definition is completely fruitless without the 
completeness of the reals. We can proudly declare now that the obstacles 
related to the completeness of the real numbers belong to the past. Sadly, 
we can not be so proud about points 2 and 3 below. 

2. The E, δ-definition of limit is shockingly complicated due to the in
volvement of three non-commuting quantifiers ∀, ∃, ∀. In the formulation for 
existence of a limit the quantifiers become four: ∀, ∃, ∀, ∀. As a result, a real 
analysis course resembles a collection of exercises in mathematical logic rather 
than a rigorous version of calculus. The gap between the elementary calculus 
and real analysis widens and some students understandably wonder whether 
these two branches of mathematics have anything in common. Considerable 
efforts have been made to present the E, δ-definition in a more digestible and 
human-like form mostly by using geometric language (L. Gillman, R.H. Mc-
Dowell [3] and S. Lang [6]). It is almost a public secret, however, that most 
mathematicians think and do research in terms of infinitesimals and use the 
E, δ-definition of limits only to present the final version of their work in a 
socially acceptable form. 

While acknowledging the importance of the above two factors for the 
unusually slow and late acceptance of the E, δ-definition in the history of 
calculus, we would like to focus our attention on another unpleasant feature 
of the E, δ-definition : 

3. The E, δ-definition of limit does not give any clue as to how to calculate 
the limit value L. At least this is true in the framework of the class of all 
functions (all polynomials or all rational functions, etc.), that is, functions 
with arbitrarily large derivatives. And this is exactly the situation in a typical 


 



first calculus course. Thus, we have to guess a reasonable value for L and 
then prove or disprove the truthfulness of our guess with the help of the E, δ
definition. If the graph of the function is known (or, for the contemporary 
mathematician, if it is already on our computer screen), then the value of 
L can be reasonably guessed. Notice, however, that in this case we hardly 
need the concept of limit. In a numerical analysis course we probably would 
restrict our discussion to the class of functions with bounded derivatives (and 
given bound) and try to localize L within a given interval. But how to find L 
in a calculus course for freshmen who, presumably, do not know either what 
“limit” is, nor what “derivative” is, let alone the class of “functions with 
bounded derivatives” ? 

We sometimes are tempted to evaluate f for finitely many points different 
from r and try to guess the value of L assuming that there exists some 
pattern in the behavior of the function (J. Stewart [9], p. 50-61). Suppose, 
for example, that f(r + 10−10) = 1.99999999999. Maybe the correct limit of 
f (as x approaches r) is  L = 2 ? This guess is rooted in the following two 
myths: 

Myth 1: 10−10 is a “small number”. More generally, “there are numbers 
in R which are small and others which are large”. For example, 1010 is “cer
tainly a large number”. Indeed, we never use “millimeters” to measure the 
distance between two cities, nor do we count our annual income in “cents”. 
By changing the units of measurement (to suit our convenience) we always 
try to stay away from numbers such as 10−10 or 1010 . The usage of different 
units for measurement explains the origin of this myth which, of course, has 
nothing to do with mathematics. 

Myth 2 : This myth originates in our experience as high-school students. 
It says that : “The integers are more likely to be the correct answers than 
are the fractions”. Thus, we somehow prefer to believe that L = 2,  not  
L = 1.999999999998, is the correct answer. 

Unfortunately, the values of a function f at finitely many points do not 
determine uniquely the limit of the function. We have to use even stronger 
language : The evaluation of a given function at finitely many points (differ
ent from the limit point r) is completely and totally irrelevant to both the 
value of the limit L and to the concept of limit in general. Here is the precise 
negative statement: 

Lemma 1 (Do not Guess !): Let f : X → R, X  ⊆ R, be a real function and 
r ∈ R be a non-trivial adherent (accumulation) point of X. Let  P (xi, yi), i = 


 



1, 2, ..., m, be finitely many (distinct) points in the plane R2 such that xi ∈ 
X, xi  r and also such that xi = implies yi = yj . Let  L ∈ R be an =	 xj 

arbitrarily chosen real number (or even ±∞). Then there exists a polynomial 
f : X → R (or, a rational function g ) such that f(xi) =  yi, i  = 1, 2, ..., m, 
and limx→r f(x) =  L (or, limx→r g(x) =  ±∞, respectively). 

Proof: : Choose a polynomial f of degree m and solve the linear system of 
equations f(xi) =  yi, i  = 1, 2, ..., m, f(r) =  L, for the coefficients in f . The  
system has always at least one solution and we have limx→r f(x) =  L, since  
f is continuous at r. _ 

In Section 2 we intend to show that if we use an arbitrarily chosen non-zero 
infinitesimal dx (instead of the increment 10−10 in our earlier example), then 
the value f(r + dx) uniquely determines the limit L. In Section 3 we present 
several examples from calculus to demonstrate how our method works in 
practice. For those readers who remain skeptical toward the practical merits 
of our approach, we remind them that all inventions of what we call today 
“calculus” have historically been discovered by means of infinitesimals. The 
reader who is interested in the history of calculus (C.H. Edwards, Jr. [2] 
and A. Robinson [8], Chapter X) will certainly observe that our method 
for calculating limits - if applied to calculating derivatives - is similar to the 
original Leibniz-Euler infinitesimal method. This explains the phrase: “Back 
to Classics” in the title of our article. 

This article is written for calculus teachers who are looking for alternatives 
to the conventional methods for teaching limits. We shall try to keep the 
exposition at the level of rigor in which complex numbers are defined: as√ 
“expressions of the form x+iy”, where x and y are real numbers and i = −1. 
A more advanced (but still accessible) introduction to Infinitesimal Calculus 
is presented in Section 5 of this paper, where the reader will find precise 
definitions and complete proofs. 

2	 Preliminaries: Standard Part Mapping and 
Hyperreal Numbers 

We introduce the concept of infinitesimal and study the basic properties of 
hyperreal (nonstandard) numbers. We also study the operation known as 
the standard part mapping which is, in a sense, an algebraic counterpart of 
the concept of limit applied to numbers rather than to functions. 


 



 

 

Definition 1 (Infinitesimals, Finite and Infinitely Large Numbers): 
(i) A number  dx is called infinitesimal, in  symbols,  dx ≈ 0, if  |dx| < 1/n 

for all n ∈ N. If  x − y is an infinitesimal, we say that x and y are infinitely 
close, in symbols, x ≈ y. 

(ii) A number  x is called finite if |x| ≤ n for some n ∈ N. 
(iii) A number  x is called infinitely large if n <  |x| for all n ∈ N. 
(iv) If x and y = 0  are finite numbers, then the numbers of the form 

x/y are called hyperreal (or nonstandard) numbers. The set of all hyperreal 
(nonstandard) numbers will be denoted by *R. 

We denote by I(*R), F(*R) and  L(*R) the sets of thy infinitesimal, 
finite and infinitely large numbers in *R, respectively. 

It is clear that all real numbers are finite and zero is the only infinitesimal 
in R. Also R has no infinitely large numbers. The following rules follow 
directly from the above definition: 

Theorem 1 (Properties): 
(i) finite ± finite = finite, finite × finite = finite. 
(ii) infinitesimal ± infinitesimal = infinitesimal. 
(iii) infinitesimal × infinitesimal = infinitesimal. 
(iv) infinitesimal × real = infinitesimal and, more generally, infinitesimal 

× finite = infinitesimal. 
(v) positive infinitely large + positive infinitely large = positive infinitely 

large. 
(vi) positive infinitely large × positive infinitely large = positive infinitely 

large. 
(vii) 1/non-zero infinitesimal = infinitely large number. 

infinitesimal finite infinitely large Warning: Numbers of the forms: , , , “positive  
infinitesimal finite infinitely large 

(negative) infinitely large - positive (negative) infinitely large” are always well 
defined provided that the denominators (if any) are non-zero. However, they 
can be of any type: infinitesimal, finite (real) or infinitely large. For example, 
let dx be a non-zero infinitesimal, in symbols, dx = 0, dx  ≈ 0. Then dx2/dx 
is infinitesimal, dx/dx is a real number (and that is 1), dx/dx2 is infinitely 
large, both (2 + dx)/(2 + dx)2 and (2 + dx)2/(2 + dx) are finite, dx−1/dx−2 

is infinitesimal and dx−2/dx−1 is infinitely large. Finally, 1/dx − 1/dx2 is 
infinitely large, (1/dx + dx) − 1/dx = dx is infinitesimal and (1/dx + 5)  − 
1/dx = 5 is finite (actually, real). 


 



 

Remark 1 The level of rigor of Definition 1 is similar to the level of rigor of 
the definition of complex numbers as “expressions of the form x+ iy, where  x√ 
and y are real numbers and i = − 1 ”. It is clear that our definition ”hangs 
on” the existence of a non-zero infinitesimal (just as the existence of complex √ 
numbers “hangs on” the existence of i = − 1). On the other hand, it is 
clear that if there exists one non-zero infinitesimal dx, then there are infinitely 
many infinitesimals: 2dx, 3dx, 4dx, dx2, dx3, etc. are also infinitesimals. 

Axiom 1: There exists a non-zero infinitesimal dx, in symbols, dx = 0, dx  ≈ 
0. 

Remark 2 The above definition together with Axiom 1 is a folk-like version 
of the statement: Let *R be a proper totally ordered field extension 
of R. We are simply trying to avoid fancy terminology. Recall that every to
tally ordered proper field extension of R is a non-Archimedian field, hence, it 
contains non-zero infinitesimals and infinitely large numbers. Strictly speak
ing, not any proper totally ordered field extension *R of R is adequate for 
the needs of Calculus. We also need that *R is a “non-standard extension” 
of R which means that *R satisfies two additional axioms. The first ax
iom (Transfer Principle) says, roughly speaking, that every function f in Rd 

(d ∈ N) has an extension *f in *Rd such that the mapping ∗ preserves the 
equivalence between the equations and inequalities in R and *R, respec
tively (where the right and left hand sides of these equations and inequalities 
are considered as real functions and their ∗ -extensions, respectively). For 
example, we have − 1 ≤ sin x ≤ 1 ⇐⇒ x = x in R. Hence, by the Transfer 
Principle, it follows − 1 ≤ *sin x ≤ 1 ⇐⇒ x = x in *R. In other words, the 
range of *sin x is the set { y ∈ *R | −  1 ≤ y ≤ 1 } . We should mention that 
the concept of “nonstandard extension of a field” is in sharp contrast to the 
concept of an “algebraic extension of a field” (where the equivalence between 
some polynomial equations is, by design, violated in the extended field). An 
important consequence of the Transfer Principle is that *R is a real closed 
field, meaning that every polynomial equation of odd degree with coefficients 
in *R has a solution in *R. The second axiom (Saturation Principle) is a 
sort of completeness which implies, in particular, that every nested sequence 
of open intervals in *R has a non-empty intersection. For a more detailed 
exposition of nonstandard analysis by means of these two Principles we refer 
to the Keisler’s Calculus textbook and its companion, written for calculus 
instructors (H. J. Keisler [4]-[5]). Both axioms (especially the Transfer Prin
ciple) are so natural that only an experienced mathematician will realize that 


 



 

they are, actually, needed in Calculus. The situation is similar to the role of 
the Axiom of Choice in Real Analysis. It is well known that Real Analysis 
can not survive without the Axiom of Choice but it is completely possible to 
teach Real Analysis without even mentioning this axiom. 

If the reader still does not feel comfortable with the definition of hyperreal 
numbers, presented above, he/she should refer (now or later) to Section 5 at 
the end of this paper. We resume our discussion on teaching calculus. It is 
clear that if r is a real number and dx is an infinitesimal, then r + dx is a 
finite number. Due to the completeness of R, the reverse is also true: 

Theorem 2 (Asymptotic Expansion): Every finite number x in *R has an 
asymptotic expansion of the form x = r + dx for some real number r ∈ R 
and some infinitesimal dx ≈ 0. 

Proof: See Theorem 6 in the last section of this paper. _ 

Remark 3 (Completeness of R): H. J. Keisler [5], p.17-18) proved that the 
statement of the above theorem is, actually, equivalent to the order com
pleteness of R (if R is treated merely as a “totally ordered field”). It is 
worth noticing that the completeness of the real numbers in the form pre
sented above appeared (treated as an obvious fact) in the early Leibniz-Euler 
Infinitesimal Calculus - 150 years before Cauchy, Bolzano, Weierstrass and 
Cantor formulated the completeness of the reals in the forms known from 
the contemporary real analysis textbooks. What does all this mean ? Well, 
perhaps the theory of the real numbers at the time of Leibniz and Euler was 
not so non-rigorous after all; it only takes so long until we finally figure out 
how the creators of Calculus preferred to express the completeness of R. 

In addition to the above properties of the finite numbers we have the 
following uniqueness result: 

Lemma 2 (Uniqueness): Let r ∈ R and dx = 0. Then  r + dx = 0  implies 
both r = 0  and dx = 0. 

Proof: r + dx = 0  iff r = −dx. Hence, r = 0, since the zero 0 is the 
only infinitesimal in R. _ 

The above property justifies the following definition. 


 



 

Definition 2 (Standard Part Mapping): We define st : *R → R ∪ {±∞}  
by: 

(a) st(r + dx) =  r for r ∈ R, dx  ≈ 0; 
(b) st(1/dx) =  ±∞, dx  ≈ 0, for  dx > 0 and dx < 0, respectively. 

In the case of finite numbers, the above several results can be summarized 
in the following corollary: 

Corollary 1 (Asymptotic Expansion of Finite Numbers): Every finite num
ber x ∈ F(*R) can be presented uniquely in the form x = st(x) +  dx, where  
dx = x−st(x) is infinitesimal. We shall sometimes refer to the above formula 
as an asymptotic expansion of x. 

The next result follows immediately from the definition of ”infinitesimal”. 

Theorem 3 (Properties of st): Let x and y be finite numbers. Then we 
have: 

(i) x ≈ y iff  st(x) =  st(y). In  particular,  st(dx) = 0  for all in
finitesimals dx. 

(ii) st(r) =  r for all r ∈ R. 
(iii) Let x and y be not infinitely close. Then x <  y  iff  st(x) < st(y). 

Consequently, for arbitrary x and y, “x < y  implies st(x) ≤ st(y)” and  
“x ≤ y implies st(x) ≤ st(y)”. 

(iv) st(x ± y) =  st(x) ± st(y). 
(v) st(x y) =  st(x) st(y). 
(vi) st(x/y) =  st(x)/ st(y) whenever st(y) = 0. 
(vii) st(xn) =  ( st(x))n for all n ∈ N.√ y

n(viii) st( n x) =  st(x), n  ∈ N, where the condition x >  0 (implying 
st(x) ≥ 0 ) is required in the case of even n. 

Remark 4 (Field, Ring, Ideal): In the usual algebraic terminology the re
sults of the above theorem can be summarized as follows: The set of hyperreal 
numbers *R is a totally ordered non-Archimedean real closed field, the set 
of finite numbers F(*R) is a convex ring without zero-divisors (a totally 
ordered integral domain), the set of infinitesimals I(*R) is a convex maxi
mal ideal in F(*R) and the factor space F(*R) F/  I(*R) is isomorphic to 
R under st. 
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Remark 5 (Extended Real Line): If the standard part mapping st acts on 
infinitely large numbers, the result is either ∞ or −∞. In these cases we 
have to perform the usual legal and illegal operations in the extended real 
line R ∪ {±∞}: 

(a) Legal Operations: All Operations in R are legal. In addition, the 
following are also legal (E is a positive real number). 

∞ + ∞ = ∞, −∞ − ∞ = −∞, ±E + ∞ = ∞, ±E −∞  = −∞, 

∞×∞  = ∞, (−∞) × (−∞) =  ∞, (−∞) ×∞  = −∞,
 

± E ×∞  = ±∞, E  × (±∞) =  ±∞, −E × (±∞) =  ∓∞,
 

1/ ±∞  = 0, ln(∞) =  ∞, E−∞ = 0, e  ∞ = ∞.
 

(b) Illegal Operations include: 

1 0 ∞ ∞−∞, , , , 0 × (±∞), 00 . 
0 0 ∞

Here are several exercises with standard part: 

Example 1 (Exercises with st): In what follows r denotes a real number, 
and dx and dy are non-zero infinitesimals. 

1. st(dx) = 0. Similarly, st(3dx − 4dx2) = 0 since 3dx − 4dx2 is an 
infinitesimal. 

st(−3+dx−dx2)2. st( −3+dx−dx2 
) =  = −3/2.

2+2dx dy+dy3 st(2+2dx dy+dy3 )  √ √  √ √ √ √ 
3+dx− 3 st( 3+dx− 3) st( 3+dx)− st( 3) 03. Incorrect: st = = = ,

dx st(dx) st(dx) 0 

which is an illegal symbol. We disregard this calculation and try something 
else: Correct:     √ √ √ √ √ √ 

3 +  dx − 3 ( 3 +  dx − 3)( 3 +  dx + 3)
st = st √ √ 

dx dx ( 3 +  dx + 3)  
3 +  dx − 3 

= st √ √ 
dx ( 3 +  dx + 3)  

dx 
= st √ √ 

dx ( 3 +  dx + 3)  
1 st(1) 

= st √ √ = √ √ 
3 +  dx + 3 st( 3 +  dx + 3) 

1 1 1 
= y √ = √ √ = √ 

st(3 + dx) + st(  3)) 3 +  3 2 3 


 



, which is the correct answer. ( )−3+dx = (  st(−3+dx)4. Incorrect: st	 = −3/0, which is an ille
2dx+dx2 st(2dx+dx2) 

gal symbol in R ∪ {±∞}. As before, we have to disregard this calcu( ) ( )−3+dx 1 −3+dxlation and try something else: Correct: st = st  = ( ) ( ) 2dx+dx2 dx 2+dx 
1 −3+dxst 
dx st 

2+dx = ±∞ × (−3/2) = ±∞, depending upon whether dx is 
positive or negative, respectively. 

Remark 6 (Guide): The following guide might help us to decide “what to 
do next” when we calculate the standard part st(x) of a hyperreal number 
x: 

(a) Let x be a finite number initially presented in the form x = r + dx 
(or it can be easily presented in this form). Then in order to calculate st(x) 
we have simply to apply the definition of st, i.e. to ”drop the infinitesimal 
term dx”, st(x) =  st(r + dx) =  r. 

(b) Let x be a hyperreal number of unknown type (it might be a finite 
number but not presented in the form x = r + dx, or it might be an infinitely 
large number). To calculate st(x), we have to apply any of the properties 
of st, presented in Theorem 3, and/or any of the legal operations in the 
extended real line R ∪ {±∞}  (Remark 5). If the result of this calculation is 
a real number or a legal symbol in R ∪ {±∞}  (part (a) in Remark 5), then 
this is the correct answer for st(x). If at some stage of our calculations we 
obtain an illegal symbol in R ∪ {±∞}  (part (b) in Remark 5), we should 
stop, disregard the work done so far and start from the beginning a trying a 
different algebraic strategy. 

Remark 7 (Is the Algebra Familiar ?): The reader should not be surprised 
that the “algebra in the above examples sounds familiar” since both R and 
*R are real closed fields and, as we know, all real closed fields (Archimedean 
or not) obey the same laws of algebra. 

3	 Limits Using Infinitesimals: Our Working 
Formulas 

In this section we derive several formulas for calculating the limit value L of 
a real function in terms of infinitesimals. Our working formulas - if consid
ered as definitions - are equivalent to the E, δ-definitions of the corresponding 
limits in real analysis but they do not involve a candidate L for the limit 


 



value. Thus, we can start teaching a calculus course by “calculating” instead 
of “guessing and proving”. At the end of this section we summarize the main 
features of our method. 

Warning: The level of the following exposition is slightly higher than it is 
appropriate for teaching in class. To make it more accessible we recommend 
to following: 

(a) All details connected with the domain of the function should be 
skipped. They might be discussed later in the course when (and if) nec
essary. 

(b) The question of the existence of limits (which we discuss below) 
should be left aside or discussed when (and if) this question arises naturally 
in class. 

(c) The different types of limits should be presented in different sessions 
(not all at once as we have done below). 

(d) In the beginning the emphasis should be on those limits which have 
immediate geometric applications: the vertical and horizontal asymptotes. 
These limits are more important for the purpose of “sketching the curve” than 
the limits of the type limx→r f(x) =  L, where both r and L are real numbers 
(not ±∞). The latter, although of fundamental importance for calculus, 
have a more subtle meaning, mostly to support the theory of “continuity” 
and “derivatives.” 

Definition 3 (Limit): Let f : X → R, X  ⊆ R, be a real function and 
(a, r) ∪ (r, b) ⊆ X for some a, b, r ∈ R, a < r < b. Suppose that 

(1) st[f(r + dx)] = st[f(r + dy)] in R ∪ {±∞}, 
for all non-zero infinitesimals dx and dy. Then st[f(r + dx)] ∈ R ∪ {±∞}  
is called the limit of f as x approaches r, in  symbols,  

(2) lim f(x) =  st[f(r + dx)], 
x→r 

where dx in the latter formula is an arbitrarily chosen non-zero infinitesimal. 
We shall refer to (2) as our “working formula” for calculating limits through 
infinitesimals. 

Remark 8 (Existence of Limit): Notice that the condition (1) guarantees 
the existence of the corresponding limit value st(f(r + dx)) = L and the 


 



independence of our working formulae on the choice of dx. We do not need 
to check the condition (1) before applying (2). Rather, we should start with 
(2) and when the calculations are done and the value L is obtained, we should 
check whether the value L depends on the choice of dx. If the answer is “no”, 
then L is the desired limit value. If the value of L depends on the choice of 
dx (say, L might depend on the sign of dx), then the limit limx→r f(x) does  
not exist. As we already mentioned, it is preferable to skip the discussion of 
the existence of limit and focus on the working formula (2). 

Definition 4 (One Side Limits): 
(i) Let f : X → R, X  ⊆ R, be a real function and (r, r + E) ⊆ X for 

some r ∈ R and some E ∈ R+ and suppose that f has the property 

(3) st[f(r + dx)] = st[f(r + dy)] in R ∪ {±∞}, 
for all positive infinitesimals dx and  dy. Then st(f(r + dx)) ∈ R ∪ {±∞}  
is called the limit of f as x approaches r from the right, in symbols, 

(4) lim f(x) =  st[f(r + dx)], 
x→r+ 

where in the above formula dx is an arbitrarily chosen positive infinitesimal. 
(ii) Let f : X → R, X  ⊆ R, be a real function and (r − E, r) ⊆ X for 

some r ∈ R and some E ∈ R+. Suppose, in addition, that 

(5) st[f(r + dx)] = st[f(r + dy)] in R ∪ {±∞}, 
for all negative infinitesimals dx, dy. Then  st(f(r + dx)) ∈ R ∪ {±∞}  is 
called the limit of f as x approaches r from the left, in symbols, 

(6) lim 
− 
f(x) =  st(f(r + dx)), 

x→r

where dx in the last formula is an arbitrarily chosen negative infinitesimal. 
We refer to (4) and (6) as our “working formulas” for the right and 

left-sided limits, respectively. 

Remark 9 (Left and Right Limits): The comparison between the above 
definitions implies that limx→r f(x) exists  iff each of limx→r+ f(x) and  
limx→r− f(x) exists and limx→r+ f(x) = limx→r− f(x). In this case we have 

(7) lim f(x) = lim f(x) = lim 
− 
f(x). 

x→r x→r+ x→r


 



Definition 5 (Limit at Infinity): 
(i) Let f : X → R, X  ⊂ R, be a real function and (a, ∞) ⊂ X for some 

a ∈ R. Suppose that 

(8) st(f(1/dx)) = st(f(1/dy)) in R ∪ {±∞}, 

for all positive infinitesimals dx and dy. Then  st(f(1/dx)) ∈ R ∪ {±∞}  is 
the limit of f as x goes to infinity, in symbols, 

(9) lim f(x) =  st(f(1/dx)), 
x→∞ 

where dx is an arbitrarily chosen positive infinitesimal. 
(ii) Let f : X → R, X  ⊆ R, be a real function and (−∞, b) ⊂ X for 

some b ∈ R. Suppose that 

(10) st(f(1/dx)) = st(f(1/dy)) in R ∪ {±∞}, 

for all negative infinitesimals dx and dy. Then  st(f(1/dx)) ∈ R ∪ {±∞}  is 
the limit of f as x goes to minus infinity, in symbols, 

(11) lim f(x) =  st(f(1/dx)), 
x→−∞ 

where dx is an arbitrarily chosen negative infinitesimal. 
We refer to (9) and (11) as our “working formulas” for the limits at 

infinity, respectively. 

Remark 10 (Existence of Limit at Infinity): As in the case of the usual 
limit (Remark 8), the condition (8) or (10) guarantees the existence of the 
limit value st(f(1/dx)) = L and the independence of the result on the choice 
of dx. As before we should start with the calculation of L by (9) or (11), 
respectively, and when the calculations are over, we should check whether the 
value L depends on the choice of dx. If, not, then L is the correct answer. If 
L depends on the choice of dx, then the corresponding limit limx→±∞ f(x) 
does not exist. 

Remark 11 (Proper or Improper): If st(f(r + dx)) or st(f(1/dx)) is a real 
number, we say that the corresponding limits are proper. Otherwise (when 
a limit is ∞ or −∞), we say that the limit is improper. 


 



Remark 12 (Unification): We shall often unite the right and left limits in 
the working formulae: 

(12) lim 
± 
f(x) =  st(f(r + dx)), lim f(x) =  st(f(1/dx)), 

x→r x→±∞ 

where in both formulae dx is an arbitrarily chosen infinitesimal, positive or 
negative depending on the sign in r± or in ±∞, respectively. 

Theorem 4 (A. Robinson): The above definitions of different type of limits 
are equivalent to the corresponding E, δ-definitions. 

Proof: : We refer the reader to Section 5 at the end of this paper. _ 

4 Exercises  on  Limits  

The main advantage of the formulas st(f(r + dx)) and st(f(1/dx))) over 
the standard E, δ-definitions of limx→r± f(x) and limx→±∞ f(x), respectively, 
is that st(f(r + dx)) and st(f(1/dx)) prescribe an algorithm for calculating 
the limits in terms of f and r only (without involvement of a candidate L 
for the limit value) : 

(a) Evaluate f at the point r + dx (or at  the  point 1/dx, respectively), 
where dx is an infinitesimal, positive or negative, depending on the sign in 
r± or in ±∞, respectively. 

(b) Calculate the standard part of f(r + dx) (or the standard part of 
f(1/dx), respectively), following the rules in Section 1. 

Let us write once again our working formulae: 

(13) lim f(x) =  st[f(r + dx)], 
x→r 

where dx is an arbitrary non-zero infinitesimal, and 

(14) lim 
± 
f(x) =  st[f(r + dx)], 

x→r

(15) lim f(x) =  st[f(1/dx)], 
x→±∞ 

where in the last two formulae dx is an arbitrary infinitesimal, positive or 
negative, depending on the sign in r± or in ±∞, respectively. 

Here are several examples of applications of our working formulae. The 
reader will observe that our method requires less sophistication in factoring 
and less dependence on the Squeeze Theorem. 


 



 

  
  

  
  

Example 2 limx→r x
n = st[f(r + dx)] = st[(r + dx)n] =  ( st(r + dx))n = rn . 

Example 3 limx→±∞(1/xn) =  st[f(1/dx)] = st(dxn) =  ( st(dx))n = 0.  

Example 4 limx→0± (|x|/x) =  st[f(dx)] = st(|dx|/dx) =  ±1, where dx is 
an arbitrary infinitesimal, positive or negative, respectively. Notice that 
limx→0(|x|/x) does not exist since limx→0+ (|x|/x) = limx→0− (|x|/x). 

Example 5 limx→±∞(|x|/x) =  st[f(1/dx)] = st(dx/|dx|) =  ±1 (where, 
again, dx is an arbitrary infinitesimal, positive or negative, respectively). 

Example 6 

4x + 1  4(−1 +  dx) + 1
lim = st[f(−1 +  dx)] = st 

x→(−1)± x + 1  −1 +  dx + 1 
  
−3 + 4dx
 

= st  = st(1/dx) × st(−3 + 4dx)
dx 

= (±∞) × (−3) = ∓∞, 

where dx is an infinitesimal, positive or negative, respectively. 

Example 7 

x3 + 4x2 + x − 6 
lim = st[f(1 + dx)] 
x→1 x − 1 

(1 + dx)3 + 4(1  +  dx)2 + 1 +  dx − 6 
= st  

1 +  dx − 1 
12dx + 7dx2 + dx3 

= st  
dx 

= st(12 + 7dx + dx2) =  12  

, where  dx is a non-zero infinitesimal. These calculations will appeal to those 
students who prefer to expand the expressions (1 + dx)3 and (1 + dx)2 (and 
collect the like-terms), rather than to factor the cubic function x3+4x2 −x−6. 
Notice that the above calculations not only produce the correct limit value 12, 
but also present a rigorous proof that 12 is, in fact, the limit of the function, 
since the final result does not depend on the choice of the infinitesimal dx. 

Here is another example of an improper one-sided limit: 


 



  
  
  
  
    

  
  
  
    

  

Example 8 

x3 − 9 
lim = st[f(2 + dx)] 
x→2± x3 + x2 − 7x + 2 
  

(2 + dx)3 − 9
 
= st  

(2 + dx)3 + (2 +  dx)2 − 7(2 + dx) + 2  
−1 +  12dx + 6dx2 + dx3 

= st  
9dx + 7dx2 + dx3 

−1 +  12dx + 6dx2 + dx3 

= st  
dx(9 + 7dx + dx2) 

1 −1 +  12dx + 6dx2 + dx3 

= st  × st 
dx 9 + 7dx + dx2 

= (±∞) × (−1/9) = ∓∞ 

, where  dx is a non-zero infinitesimal, positive or negative, respectively. As 
in the previous example, these calculations will appeal to those students who 
prefer to expand the expressions (2+dx)3 and (2+dx)2, rather than to factor 
the cubic function x3 + x2 − 7x + 2.  

Example 9 

x 
lim √ = st[f(1/dx)]

4 + 14 x→±∞ x


1/dx
= st  

4
y
|dx|
dx 

1/dx4 + 1  

1
 × √
= st 
  
4 1 +  dx4 

|dx|

dx
 

1
 × st √
= st 
  
4 1 +  dx4 

1
 
= (±1) ×
 

4
y

= (±1) × 1 =  ±1 

, where dx is an infinitesimal, positive or negative, respectively (notice that √ 

st(1 + dx4) 

we use the fact that
 4

dx4 = |dx|). 


 



  

    
  

Example 10 limx→±∞[sin(x)/x] =  st[f(1/dx)] = st(dx) × sin(1/dx)] = 
st(dx) × st[sin(1/dx)] = 0 × st[sin(1/dx) = 0, since st[sin(1/dx)] is a well 
defined (although explicitly unknown) real number in [-1, 1] (see Remark 2 
about the range of sin x). 

Remark 13 (No Need of the Squeeze Theorem): We believe that the cal
culations in the last example, based on the product rule for standard part 
st (Theorem 3), are shorter and simpler than the usual Squeeze Theorem 
arguments. Recall that the product formula for limits is non-applicable 
in the case of the function sin x/x since limx→∞ sin x does not exist in 
R (even as an improper limit). In contrast, we have st[dx sin(1/dx)] = 
st(dx) st[sin(1/dx)] since each of st(dx) and st[sin(1/dx)] exists in R, by  
Theorem 2 and Lemma 2. In general, the infinitesimal method for calculat
ing limits is less dependent on the Squeeze Theorem, and more rarely requires 
the use of inequalities, compared with the usual Weierstrass E, δ-method. We 
consider that feature of the Infinitesimal Calculus as an advantage over the 
conventional standard methods, taking into account that the students in 
calculus are rarely in love with inequalities. 

Although our text is devoted to limits only, we shall shortly mention the 
definitions of derivative and differential in terms of infinitesimals: 

Remark 14 (Derivative): We define the derivative by 

f(x + dx) − f(x)
f '(x) =  st  ,

dx 

where dx is an arbitrary non-zero infinitesimal. For example, 

3 3 ( )' (x + dx)3 − x x3 + 3x2dx + 3xdx2 + dx3 − x3x = st  = st  
dx dx
 

3x2dx + 3xdx2 + dx3 ( )

= st  = st  3x 2 + 3xdx + dx2 = 3x 2 . 

dx 

Similarly, we define differential by dy = f '(x)dx, where  dx is an infinitesimal. 
Thus, the Leibniz notation dy/dx = f '(x) holds “by the definition” of dy for 
all non-zero infinitesimals dx. 


 



Summary: We summarize the properties of our working formulae (13)-(15): 
1. Our working formulae, if considered as definitions, are equivalent of 

the usual E, δ-definitions of the corresponding limits at any level of generality 
and rigor (see the next section). 

2. Our working formulae are free of a candidate, L, for the limit value. 
Hence we do not need to guess and check (because there is nothing to guess). 
Also, our working formulae “really work” in the sense that they produces the 
correct value of L, as demonstrated by the above examples. 

3. Our method requires less sophistication in factoring (Examples (7)
(8) and it is less dependent on the Squeeze Theorem compared with the 
conventional methods (Example (10) and Remark (13)). 

4. Under the assumption that “the limit exists”, our working formu
lae (13)-(15) are free of quantifiers, as opposed to the three non-commuting 
quantifiers “∀, ∃, ∀” in the  E, δ-definition of limit. On the other hand, each 
of the criterions for existence of limit ((1), (3), (5), (8), (10)) involves two 
commuting quantifiers “∀, ∀” only, as opposed to the four non-commuting 
quantifiers “∀, ∃, ∀, ∀” in its standard counterpart. Thus, our method is eas
ier to apply to rigorous proofs when (and if) the teacher decides to do rigorous 
proofs. In fact, in our method, the rigorous proof that “L is, actually, the 
correct limit value” coincides with the “calculation of L.” 

As a result, the Calculus becomes to “calculate” again, as it was originally 
designed to do. 

Remark 15 (Infinitesimals in Mathematica): Assume that you are already 
“addicted” to calculators and computers and that you are not planning to 
“quit” any time soon. Assume that your students have already purchased ex
pensive calculators and are eager to calculate “anything which comes along.” 
Assume that your university has already spent a lot of money on buying 
computers and the spending has to be somehow justified. And to complete 
the scenario assume, finally, that you have just won a generous grant from 
NSF for “using technology in teaching calculus.” Under these circumstances 
your dilemma will be “how to reconcile the computers with infinitesimals”? 
The good news is that computers are able to handle infinitesimals, and they 
actually work with infinitesimals anyway. Take, for example, “Mathemat
ica”. Have you ever thought about how Mathematica calculates limits ? It 
might occur to you that the computer evaluates the function f at finitely 
many points and announces one these values for the “correct answer” ? 
Or, perhaps, the computer has simply memorized the limits of all possible 


 



functions “you will ever ask it for”? The answer is “neither of the above.” 
Rather, Mathematica calculates the formal (Taylor) asymptotic expansion of 
f(r + dx) by the command “Series”, treating dx as a “formal variable” and 
truncates all terms in the series but the first by the command “/. dx → 0”. 
This procedure has very little to do with the E, δ-definition of limit and it 
is almost identical to the operation “taking the standard part” discussed in 
this article. The framework of these calculations is the field R((dx)) of for
mal Laurent series with real coefficients and formal variable, denoted by dx. 
Notice that the field R((dx)) is non-Archimedian and the formal variable, 
dx, if considered as an element of R((dx)), is a positive infinitesimal. So 
what ? Well, it means that Mathematica (believe it or not) calculates limits 
through infinitesimals in the framework of the field R((dx)). The formula 
st[f(x + dx)] = Series[f(x + dx), dx,  0, 1]/.dx → 0 can be used for calculat
ing the “standard part” of f(x + dx) in Mathematica if you decide to do so. 
The author of this article, however, is unable to see any pedagogical merits 
of this activity unless, perhaps, for the purpose of a better understanding of 
how Mathematica works. 

5 An Introduction to Infinitesimal Calculus 

Here we present a short introduction to the modern Infinitesimal Calculus 
known as well as A. Robinson’s Nonstandard Analysis. We would like to 
assure the reader that the usual background in real analysis is more than 
enough to follow this text. For more detailed exposition we shall refer to 
(H. J. Keisler [4]-[5]) and (T. Lindstr∅m [7]), where the reader will find more 
references to the subject. For a really short (although somewhat dense) expo
sition of both axiomatic and sequential approaches to nonstandard analysis 
we refer to T. Todorov [10], p. 685-688. We shall restrict our exposition to 
the nonstandard treatment of proper limits of the form limx→r f(x) only,  and  
leave the improper limits, as well as the limits at infinity, to the reader. All 
results in Section 2, follow as particular cases. 

Although the nonstandard analysis arose historically in a close connection 
with model theory and mathematical logic (A. Robinson [8]), it is completely 
possible to construct it in the framework of the standard analysis, i.e. as
suming only the properties of the real numbers (along with the Axiom of 
Choice). The method (due to W. A. J. Luxemburg), is known as the ultra-
power construction or constructive nonstandard analysis: 


 



1. Let N be the set of the natural numbers and P( N) be  the  power  set  
of N. Let  μ : P ( N) → {0, 1} be a two-valued finitely additive measure such 
that μ(A) = 0 for all finite A ⊂ N and μ( N) = 1. We shall keep μ fixed in 
what follows. 

Remark 16 (Existence of μ): To show that there exists a measure with 
these properties, it suffices to take a free ultrafilter U on N and define μ by 
μ(A) =  1  for  A ∈ U  and μ(A) =  0  for  A /∈ U . Recall that a non-empty set 
U of subsets of N is called a free ultrafilter on N if it satisfies the following 
four properties: (a) U is closed under intersection; (b) If A, B ⊆ N, then  
U : A ⊆ B implies B ∈ U ; (c) For any A ⊆ N exactly one of the following  
is true: A ∈ U  or N \ A ∈ U ; (d) A∈U A = ∅. Recall that the existence of 
free ultrafilters on N, follows from the Axiom of Choice (H. J. Keisler [5], p. 
49). We should mention that the familiarity with the theory of ultrafilters is 
not necessary for the understanding of what follows. 

The next properties of μ follow immediately from the definition: 

Lemma 3 (Properties of μ): Let A, B ⊂ N. Then:  
(a) μ(A ∪ B) = 1  ⇐⇒ [ μ(A) = 1  or μ(B) = 1 ]. In  particular,  for  any  

A ⊆ N exactly one of μ(A) = 1  and μ( N \ A) = 1  is true. 
(b) μ(A) = 1  for all co-finite sets A of N. In  particular,  μ( N) = 1. 
(c) μ(A ∪B) = 0  ⇐⇒ [μ(A) = 0  and μ(B) =  0]. 
(d) μ(A) =  μ(B) = 1  ⇐⇒ μ(A ∩ B) = 1. 
(e) A ⊆ B ⊆ N and μ(A) = 1  implies μ(B) = 1. 

2. Let RN be the set of all sequences of real numbers considered as a ring 
under the usual pointwise operations. Define an equivalence relation ∼ in RN 

by: (an) ∼ (bn) if  an = bn a.e. (where “a.e.” stands for “almost everywhere”), 
i.e. if μ({n | an = bn }) = 1. Then the factor space *R = RN/ ∼ 
defines a set of nonstandard real numbers (or hyperreals). We shall denote 
by (an) the equivalence class determined by the sequence (an). We also 
define the embedding R ⊂ *R by r → (r,  r,  r, . . .  ). In what follows we 
shall identify notationally a given real numbers r with its image in *R. 
The addition and multiplication in *R is inherited from RN . The order 
relation in *R is defined by: (an) ≤ (bn) if an ≤ bn holds a.e., i.e. if 
μ({n | an ≤ bn }) = 1. We define also |x| = max  {x, −x}. Notice that we 
define one specific nonstandard extension *R of the reals R which depends, 
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in general, on the choice of the measure μ. We should mention that the 
different fields of the form *R (corresponding to different measures μ) are  
not necessarily isomorphic to each other. We also have card(*R) =  card(R). 

Theorem 5 *R is a totally ordered non-Archimedean field containing R as 
a totally ordered subfield. 

Proof: *R is a ring since RN is a ring. To show that *R has no zero 
divisors, assume that (an)(bn) = 0  in  *R, i.e. μ({n | an bn = 0  }) =  1.  
Denote A = {n | an = 0  } and B = {n | bn = 0  } and observe that 
{n | an bn = 0  } = A ∪ B, since  R has no zero divisors. Hence either 
μ(A) = 1 or  μ(B) = 1, by Lemma 3, i.e. either (an) = 0, or  (bn) = 0,  
as required. To show that the non-zero elements in *R are multiplicative 
invertible, assume that (an) = 0  in  *R, i.e. μ({n | an = 0}) = 1.  Denote  
{n | an = 0  } = C and define (bn) ∈ RN by bn = 1/an if n ∈ C and anyhow 
(say, bn = 1)  if  n ∈ N \ C. We  have  C ⊆ {n | an bn = 1  } which implies 
μ({n | anbn = 1  }) = 1, by Lemma 3. Thus (an)(bn) = 1, as required. 
To show the trichotomy of the order relation, assume that (an) = (bn) and 
denote A = {n | an ≤ bn }. We  have  N \ A = {n | an > bn } and, thus, 
exactly one of μ(A) =  1 or  μ( N \ A) = 1 is true, by Lemma 3. That is 
(an) ≤ (bn) or (an) > (bn) which is equivalent to (an) < (bn) or (an) > (bn), 
as required, since (an) = (bn), by assumption. The rest of the properties of 
the totally ordered field can be proved similarly. The embedding R ⊂ *R is 
obviously field and order preserving. To show that *R is non-Archimedean, 
observe that m <  (n) in *R for any m in N, (where m is considered as an 
element of *R) since the set {n | m < n  } is co-finite, and hence, of measure 
1. _ 

Example 11 (1/n), (1/n2), (1/ ln n), (e−n) are positive infinitesimals (differ
ent from each other) and (n), (n2), (ln n), (en) are positive infinitely large 
numbers (also different from each other). The number (3+1/n) = 3+  (1/n)
is finite (but not real). Let us take the first example: for any m ∈ N, the  
set {n | 0 < 1/n < 1/m } is co-finite, hence, of measure 1. Therefore, 
0 < (1/n) < 1/m in *R, i.e. (1/n) is a positive infinitesimal. The rest of 
the examples are treated similarly. 

3. It is clear that R ⊂ F(*R), I(*R) ⊂ F(*R), R∩I(*R) =  {0}, F(*R)∩ 
L(*R) =  ∅ and F(*R) ∪ L(*R) =  *R. From the above definition it fol
lows easily that F(*R) is a totally ordered integral domain and I(*R) is  


 



a convex maximal ideal in F(*R). Hence, F(*R)/I(*R) is a totally or
dered field which is isomorphic to R as totally ordered fields. The canon
ical homomorphism st : F(*R) → R is called the standard part map
ping. Notice that st(an) exists for any bounded sequence (an) in  RN and 
st(an) = limn→∞ an for any convergent (an). Conversely, if (an) is a finite 
number, then st(an) = limn→∞ akn for some subsequence (akn ) of (an) such  
that μ({ kn | n ∈ N }) = 1. The following result follows immediately: 

Theorem 6 (i) Let x ∈ *R. Then  x ∈ F(*R) iff x = r + dx for some 
x ∈ R and some dx ∈ I(*R). 

(ii) If x ∈ F(*R), then the presentation x = r + dx is unique and r = 
st(x). In  particular,  st(r) =  r for any r ∈ R. 

(iii) The standard part mapping is order preserving in the sense that 
x ≤ y in F(*R) implies st(x) ≤ st(y) in R. 

4. Let X ⊆ R. Then the set *X = { (xn) ∈  *R | xn ∈ X a. e. } is called 
the nonstandard extension of X. For any X ⊆ R we have X ⊆ *X and 
X = *X iff  X  is a finite set. The above definition holds also in the case 
when X ⊆ Rd (d ∈ N). If X ⊆ R and Y ⊆ R, then  *(X × Y ) =  *X × *Y . 
In particular, we have *(Rd) = (*R)d, so we can write simply *Rd . 

Example 12 Let Q, Z, N, E, O, P, etc. be the sets of the rational, integer, 
natural, even, odd, prime, etc. numbers, respectively. Then the elements 
of *Q, *Z, *N, *E, *O, *P, etc. will be called nonstandard rational numbers, 
nonstandard integer numbers (hyperintegers), nonstandard natural numbers 
(hypernatural numbers), etc., respectively. The set of the infinitely large 
natural numbers, i.e. the infinitely large numbers in *N, will be denoted by 
N∞. We  have  *N = N ∪ N∞. If  a, b ∈ R, then  

*{ x ∈ R | a ≤ x ≤ b } = { x ∈ *R | a ≤ x ≤ b }, 

which will be denoted for short by *[a, b]. It follows that r + dx ∈ *[a, b] for  
all r ∈ [a, b) and all non-negative infinitesimal dx. Similarly, we have 

*{ x ∈ R | a < x < b  } = { x ∈ *R | a < x < b  }, 

which will be denoted for short by *(a, b). We have r + dx ∈ *(a, b) for all 
r ∈ (a, b) and all infinitesimal dx . 
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Theorem 7 (Adherent Point): Let r ∈ R and X ⊆ R. Then  r is a non
trivial adherent point of X iff  there exists dx ∈ *R such that dx = 0, dx  ≈ 0 
and r + dx ∈ *X (or, equivalently, iff there exists x ∈ *X such that r = x 
and r ≈ x). 

Proof: : (⇒) For any n ∈ N the set Xn = { x ∈ X | 0 < |x − r| < 1 }
n 

is non-empty, by assumption. Hence, by the Axiom of Choice, there exists 
(xn) in  RN such that xn ∈ Xn for all n ∈ N. Now,  dx = (xn) − r is the 
infinitesimal we are looking for. Indeed, we have 0 < |dx| < ( 1 ), hence 
dx = 0  and  dx ≈ 0, since ( 1 ) ≈ 0. Also r + dx = (xn) ∈ *X, since  

n 
xn ∈ Xnn 

for all n ∈ N. (⇐) We have  dx = 0, dx  ≈ 0, r  + dx ∈ *X for some dx ∈ *R, 
by assumption. Suppose m ∈ N and observe that 0 < |dx| < 1/m. We  have  
dx = (En) for some (En) in  RN. The  set  {n | 0 < |En| < 1/m, r + En ∈ X } is 
of measure 1, hence, it is non-empty. The latter means that r is a non-trivial 
adherent point of X. _ 

5. Let f : X → R be a real function, where X ⊆ R. Then the function 
*f : *X → *R, defined by *f((xn)) =  (f(xn)) for all (xn) ∈ *X, is called 
the nonstandard extension of f since *f(r) =  f(r) for all r ∈ X. The  above  
definition holds also in the case X ⊆ Rd (d ∈ N). 

Theorem 8 (A. Robinson): Let r be a non-trivial adherent point of 
f : X → R, X  ⊆ R, be a real function and L ∈ R. Then  limx→r f(x) =  
L iff  *f(r + dx) ≈ L for all dx ∈ *R such that dx = 0, dx  ≈ 0 and 
r + dx ∈ *X. If the limit exists in R, then  limx→r f(x) =  st(*f(r + dx)). 

Proof: : (⇒) Let  E ∈ R+. By assumption, there exists δ ∈ R+ such that for 
all x ∈ X, 0 < |x − r| < δ  implies |f(x) − L| < E. Let  dx = 0, dx  ≈ 0 and  
r + dx ∈ *X for some dx ∈ *R. Notice that dx exists, by Theorem 7, since 
r is a non-trivial adherent point of X, by assumption. We have dx = (En)
for some sequence (En) in  RN . Next, we define the sets: 

Aδ = {n | 0 < |En| < δ  and r + En ∈ X } and BE = {n | |f(r + En) −L| < E  }. 
We have μ(BE) = 1, by Lemma 3, since Aδ ⊆ BE and μ(Aδ) = 1, by assump
tion. Recapitulating, we have |*f(r + dx) − L| < E  for all E ∈ R+, which  
means that *f(r + dx) ≈ L, as required. 

(⇐) Assume (on the contrary) that limx→r f(x) =  L is false. Thus, there 
exists E ∈ R+ such that the sets 

1 
Xn = { x ∈ X | 0 < |x − r| < and |f(x) − L| > E  }, 
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are non-empty for each n ∈ N. By the Axiom of Choice, there exists a 
sequence (xn) in  RN such that xn ∈ Xn for all n ∈ N. Define dx ∈ *R 
by dx = (xn) − r. We  have  0  < |dx| < ( 1 ) hence dx = 0  and  dx ≈ 0. 

n 
Also r + dx = (xn) ∈  *X and |*f(r + dx) − L| > E. The latter means 
that *f(r + dx) − L is a non-infinitesimal, a contradiction. The formula 
limx→r f(x) =  st(*f(r + dx)) follows directly from *f(r + dx) ≈ L after 
applying the standard part mapping to both sides and taking into account 
that st(L) =  L since L is a real number. _ 

In order to eliminate completely the “candidate” for limit L from our 
theory, we have to present a nonstandard characterization of the existence of 
a proper limit in terms of infinitesimals similar to the Cauchy convergence 
criterion: 

Theorem 9 (Existence): Let f : X → R, X  ⊆ R, be a real function and 
let r ∈ R be a non-trivial adherent point of X. Then the following are 
equivalent: 

(i) The limit limx→r f(x) exists in R. 
(ii) f is fundamental (or Cauchy) toward r in the sense that 

(∀E ∈ R+)(∃δ ∈ R+)(∀x, y ∈ X)[0 < |x−r|, |y −r| < δ  ⇒ |f(x)−f(y)| < E]. 

(iii) *f(x) ≈ *g(y) for all x, y ∈ *X such that x = r, y = r, x ≈ r and 
y ≈ r. 

(iv) *f(r + dx) ≈ *g(r + dy) for all dx, dy = 0, dx,  dy  ≈ 0 such that 
r + dx, r + dy ∈ *X. 

(v) st(*f(r + dx)) = st(*f(r + dy)) ∈ R (but never become ±∞) for all 
dx, dy = 0, dx,  dy  ≈ 0 such that r + dx, r + dy ∈ *X. 

(vi) (∃h ∈ I(*R+))(∀dx, dy ∈ *R) 

[r + dx, r + dy ∈ *X and 0 < |dx|, |dy| < h] =⇒ [*f(r + dx) ≈ *f(r + dy)] , 

where I(*R+) denotes the set of the positive infinitesimals in *R. 

Proof: : (i)  ⇔ (ii) is the Cauchy Criterion for existence of limits (Alan F. 
Beardon [1], Theorem 4.4.1, p. 57). 

(i) ⇒(iii): We have *f(x) ≈ L and *f(y) ≈ L for the same L ∈ R, by  
Theorem 8, hence, *f(x) ≈ *f(y), as required. 

(iii)⇔(iv) follows immediately by letting x = r + dx and y = r + dy. 
(iv)⇒ (vi) in a trivial way. 
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(vi)⇒(i) : We have h = (hn) for some sequence (hn) in  RN . Without loss 
of generality we can assume that hn > 0 for all n ∈ N. Now, suppose (for 
contradiction) that (i) fails, i.e. there exists E ∈ R+ such that An = ∅ for all 
n ∈ N, where  

An = { (x, y) ∈ X ×X | 0 < |x − r|, |y − r| < hn and |f(x) − f(y)| ≥ E }. 
Hence (by Axiom of Choice), there exists a sequence (xn, yn) in  X N × X N 

such that (xn, yn) ∈ An for all n ∈ N. We define the nonstandard numbers 
(xn), (yn) ∈ *X and observe that 

0 < |(xn) − r|, |(yn) − r| < (hn) and |*f(xn)) − *f((yn))| ≥ E, 

in *R , by the choice of (xn) and  (yn). Thus, *f((xn)) − *f((yn)) is a non-
infinitesimal, which contradicts (vi) for h = (hn), dx  = (xn) − r and dy = 
(yn) − r. 

(i)⇒(v) : We have st(*f(r + dx)) = L and st(*f(r + dy)) = L for the 
same L ∈ R, by Theorem 8, hence, st(*f(x)) = st(*f(y)) ∈ R, as required. 

(iv) ⇒ (v) : st(*f(r + dx)) = st(*f(r + dy)) ∈ R implies, in particular, 
that *f(r+dx) and  *f(r+dy) are finite numbers, thus, *f(x) ≈ *f(y) follows. 
_ 
Simplified Notation: For the purpose of teaching and explicit calculations 
we recommend the following simplified notations: 

(a) We shall skip the asterisks in front of *f , writing simply f . This  is  
perfectly justifiable since *f is an extension of f . 

(b) If X ⊆ R, then we shall sometimes write simply X meaning *X. For  
example, we shall write [a, b] meaning, actually, 

*[a, b] =  { x ∈ *R | a ≤ x ≤ b }. 
(c) Finally, we shall write (−∞, ∞) for  both  R and *R leaving the 

reader to figure out from the context which one we mean. 
(d) We prefer to use the terminology “hyperreal numbers” rather than 

“nonstandard numbers” (to avoid the shocking effect of the word “nonstan
dard”). 

(e) We preserve our rights to come back to the more precise *-notation 
when (and if) needed. 
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