AN EMBEDDING OF SCHWARTZ DISTRIBUTIONS IN THE ALGEBRA OF ASYMPTOTIC FUNCTIONS

MICHAEL OBERGUGGENBERGER

Institut für Mathematik und Geometrie Universität Innsbruck A-6020 Inssbruck, AUSTRIA michael@mat1.uibk.ac.at

and

TODOR TODOROV

Mathematics Department California Polytechnic State University San Luis Obispo, California 93407, USA ttodorov@oboe.calpoly.edu

(Received October 28, 1996 and in revised form June 21, 1997)

ABSTRACT. We present a solution of the problem of multiplication of Schwartz distributions by embedding the space of distributions into a differential algebra of generalized functions, called in the paper "asymptotic function," similar to but different from J. F. Colombeau's algebras of new generalized functions.

KEY WORDS AND PHRASES: Schwartz distributions, nonlinear theory of generalized functions, asymptotic expansion, nonstandard analysis, nonstandard asymptotic analysis

1991 AMS SUBJECT CLASSIFICATION CODES: 03H05, 12J25, 46F10, 46S20

1. INTRODUCTION

The main purpose of this paper is to prove the existence of an embedding $\Sigma_{D,\Omega}$ of the space of Schwartz distributions $\mathcal{D}'(\Omega)$ into the algebra of asymptotic functions ${}^{\rho}E(\Omega)$ which preserves all linear operations in $\mathcal{D}'(\Omega)$. Thus, we offer a solution of the problem of multiplication of Schwartz distributions since the multiplication within $\mathcal{D}'(\Omega)$ is impossible (L. Schwartz [1]).

The algebra ${}^{\rho}E(\Omega)$ is defined in the paper as a factor space of nonstandard smooth functions. The field of the scalars ${}^{\rho}C$ of the algebra ${}^{\rho}E(\Omega)$, coincides with the complex counterpart of A. Robinson's asymptotic numbers—known also as "Robinson's field with valuation" (see A Robinson [2]) and A. H. Lightstone and A. Robinson [3]). The embedding $\Sigma_{D,\Omega}$ is constructed in the form $\Sigma_{D,\Omega} = Q_{\Omega} \circ D * \Pi • *$ where (in backward order): * is the extension mapping (in the sense of nonstandard analysis), • is the Schwartz multiplication in $\mathcal{D}'(\Omega)$ (more precisely, its nonstandard extension in * $\mathcal{D}'(\Omega)$), * is the convolution operator (more precisely, its nonstandard extension), o denotes "composition," Q_{Ω} is the quotient mapping (in the definition of the algebra of asymptotic functions) and D and Π_{Ω} are fixed nonstandard internal functions with special properties whose existence is proved in this paper.

Our interest in the algebra ${}^{\rho}E(\Omega)$ and the embedding $\mathcal{D}'(\Omega) \subset {}^{\rho}E(\Omega)$, is due to their role in the problem of multiplication of Schwartz distributions, the nonlinear theory of generalized functions and its applications to partial differential equations (M. Oberguggenberger [4]), (T. Todorov [5] and [6]). In particular, there is a strong similarity between the algebra of asymptotic functions ${}^{\rho}E(\Omega)$ and its generalized scalars ${}^{\rho}\mathbb{C}$, discussed in this paper, and the algebra of generalized functions $\mathcal{G}(\Omega)$ and their

generalized scalars $\overline{\mathbb{C}}$, introduced by J. F. Colombeau in the framework of standard analysis (J. F. Colombeau [7], pp. 63, 138 and J. F. Colombeau [8], §8.3, pp. 161-166). We should mention that the involvement of nonstandard analysis has resulted in some improvements of the corresponding standard counterparts; one of them is that ${}^{\rho}\mathbb{C}$ is an algebraically closed field while its standard counterpart $\overline{\mathbb{C}}$ in J. F. Colombeau's theory is a ring with zero divisors.

This paper is a generalization of some results in [9] and [10] (by the authors of this paper, respectively) where only the embedding of the tempered distributions $\mathcal{S}'(\mathbb{R}^d)$ in ${}^{\rho}E(\mathbb{R}^d)$ has been established. The embedding of all distributions $\mathcal{D}'(\Omega)$, discussed in this paper, presents an essentially different situation. We should mention that the algebra ${}^{\rho}E(\mathbb{R}^d)$ was recently studied by R. F. Hoskins and J. Sousa Pinto [11].

Here Ω denotes an open set of \mathbb{R}^d (d is a natural number), $E(\Omega)=C^\infty(\Omega)$ and $\mathcal{D}(\Omega)=C^\infty_0(\Omega)$ denote the usual classes of C^∞ -functions on Ω and C^∞ -functions with compact support in Ω and $\mathcal{D}'(\Omega)$, and $E'(\Omega)$ denote the classes of Schwartz distributions on Ω and Schwartz distributions with compact support in Ω , respectively. As usual, \mathbb{N} , \mathbb{R} , \mathbb{R}_+ and \mathbb{C} will be the systems of the natural, real, positive real and complex numbers, respectively, and we use also the notation $\mathbb{N}_0 = \{0\} \cup \mathbb{N}$. For the partial derivatives we write ∂^α , $\alpha \in \mathbb{N}_0^d$. If $\alpha = (\alpha_1, ..., \alpha_d)$ for some $\alpha \in \mathbb{N}_0^d$, then we write $|\alpha| = \alpha_1 + ... + \alpha_d$ and if $x = (x_1, ..., x_d)$ for some $x \in \mathbb{R}^d$, then we write $x^\alpha = x_1^{\alpha_1} x_2^{\alpha_2} ... x_d^{\alpha_d}$. For a general reference to distribution theory we refer to H. Bremermann [12] and V. Vladimirov [13].

Our framework is a nonstandard model of the complex numbers \mathbb{C} , with degree of saturation larger than card(\mathbb{N}). We denote by ${}^*\mathbb{R}$, ${}^*\mathbb{R}_+$, ${}^*\mathbb{C}$, ${}^*E(\Omega)$ and ${}^*\mathcal{D}(\Omega)$ the nonstandard extensions of \mathbb{R} , \mathbb{R}_+ , \mathbb{C} , $E(\Omega)$ and $\mathcal{D}(\Omega)$, respectively. If X is a set of complex numbers or a set of (standard) functions, then *X will be its nonstandard extension and if $f:X\to Y$ is a (standard) mapping, then ${}^*f:{}^*X\to {}^*Y$ will be its nonstandard extension. For integration in ${}^*\mathbb{R}^d$ we use the *-Lebesgue integral. We shall often use the same notation, $\|x\|$, for the Euclidean norm in \mathbb{R}^d and its nonstandard extension in ${}^*\mathbb{R}^d$. For a short introduction to nonstandard analysis we refer to the Appendix in T. Todorov [6]. For a more detailed exposition we recommend T. Lindstrom [14], where the reader will find many references to the subject.

2. TEST FUNCTIONS AND THEIR MOMENTS

In this section we study some properties of the test functions in $\mathcal{D}(\mathbb{R}^d)$ (in a standard setting) which we shall use subsequently.

Following (J.F. Colombeau [7], p. 55), for any $k \in \mathbb{N}$ we define the set of test functions:

$$A_k = \left\{ \varphi \in \mathcal{D}(\mathbb{R}^d) : \varphi \text{ is real-valued}, \ \varphi(x) = 0 \text{ for } ||x|| \ge 1; \right.$$

$$\int_{\mathbb{R}^d} \varphi(x) dx = 1 \text{ and } \int_{\mathbb{R}^d} x^{\alpha} \varphi(x) dx = 0 \text{ for } \alpha \in \mathbb{N}_0^d, \ 1 \le |\alpha| \le k \right\}. \tag{2.1}$$

Obviously, $A_1 \supset A_2 \supset A_3 \supset ...$ Also, we have $A_k \neq \emptyset$ for all $k \in \mathbb{N}$ (J.F. Colombeau [7], Lemma (3.3.1), p. 55).

In addition to the above we have the following result:

LEMMA 2.2. For any $k \in \mathbb{N}$

$$\inf_{\varphi \in A_k} \left(\int_{\mathbb{R}^d} |\varphi(x)| dx \right) = 1. \tag{2.2}$$

More precisely, for any positive real δ there exists φ in A_k such that

$$1 \leq \int_{\mathbb{R}^d} |\varphi(x)| dx \leq 1 + \delta.$$

In addition, φ can be chosen symmetric.

PROOF. We consider the one dimensional case d=1 first. Start with some fixed positive (real valued) ψ in $\mathcal{D}(\mathbb{R})$ such that $\psi(x)=0$ for $|x|\geq 1$ and $\int_{\mathbb{R}}\psi(x)dx=1$ (ψ can be also chosen symmetric if needed). We shall look for φ in the form:

$$\varphi(x) = \sum_{j=0}^k c_j \psi\left(\frac{x}{\epsilon^j}\right)$$

 $x \in \mathbb{R}$, $\epsilon \in \mathbb{R}_+$. We have to find c_j for which $\varphi \in A_k$. Observing that

$$\int_{\mathbb{R}} x^{i} \psi\left(\frac{x}{\epsilon^{j}}\right) dx = \epsilon^{(i+1)j} \int_{\mathbb{R}} y^{i} \psi(y) dy$$

for i = 0, 1, ..., k, we derive the system for linear equations for c_i :

$$\begin{cases} \sum\limits_{j=0}^k c_j \epsilon^j = 1, \\ \\ \left(\int_{\mathbb{R}} y^i \psi(y) dy\right) \sum\limits_{j=0}^k c_j \epsilon^{(\imath+1)j} = 0, \quad i=1,...,k. \end{cases}$$

The system is certainly satisfied, if

$$\begin{cases} \sum\limits_{j=0}^k c_j \epsilon^j = 1, \\ \sum\limits_{j=0}^k c_j \epsilon^{(1+1)j} = 0, \quad i = 1, ..., k, \end{cases}$$

which can be written in the matrix form $V_{k+1}(\epsilon)C = B$, where $V_{k+1}(\epsilon)$ is Vandermonde $(k+1) \times (k+1)$ matrix, C is the column of the unknowns c_j and B is the column whose top entry is 1 and all others are 0. For the determinant we have $\det V_{k+1}(\epsilon) \neq 0$ for $\epsilon \neq 1$, therefore, the system has a unique solution $(c_1, c_1, c_2, ..., c_k)$. Our next goal is to show that this solution is of the form:

$$c_{j} = \pm \frac{\epsilon^{\alpha_{j}}(1 + \epsilon P_{j}(\epsilon))}{\epsilon^{\beta}(1 + \epsilon P(\epsilon))}$$
 (2.3)

where P_j and P are polynomials and

$$\alpha_j = \sum_{q=1}^{k-1} q(k+1-q) + \sum_{m=j}^{k-1} (k+1-m)$$
 (2.4)

for $0 \le j \le k$, and

$$\beta = k + \sum_{q=1}^{k-1} q(k+1-q).$$

The coefficients $c_0, c_1, ..., c_k$ will be found by Cramer's rule. The formula for Vandermonde determinants gives

$$\begin{split} \prod_{m=1}^k \prod_{q=m+1}^{k+1} (\epsilon^q - \epsilon^m) &= \prod_{m=1}^k \left(\prod_{q=m+1}^{k+1} \epsilon^m (\epsilon^{q-m} - 1) \right) \\ &= \epsilon^\beta \prod_{m=1}^k \prod_{q=m+1}^{k+1} (\epsilon^{q-m} - 1) = \\ &\pm \epsilon^\beta (1 + \epsilon P(\epsilon)) \end{split}$$

for some polynomial P, where

$$\beta = \sum_{m=1}^k m(k+1-m) = k + \sum_{m=1}^{k-1} m(k+1-m).$$

To calculate the numerator in (2.3), we have to replace the jth column of the matrix by the column B (whose top entry is 1 and all others are 0) and calculate the resulting determinant D_j . Consider first the case $1 \le j \le k-1$. By developing with respect to the jth column, we get

$$D_{j} = \pm \det \begin{pmatrix} 1, & \epsilon^{2}, & \dots & \epsilon^{2(j-1)}, & \epsilon^{2(j+1)}, & \dots & \epsilon^{2k} \\ 1, & \epsilon^{3}, & \dots & \epsilon^{3(j-1)}, & \epsilon^{3(j+1)}, & \dots & \epsilon^{3k} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1, & \epsilon^{k+1}, & \dots & \epsilon^{(k+1)(j-1)}, & \epsilon^{(k+1)(j+1)}, & \dots & \epsilon^{(k+1)k} \end{pmatrix}.$$

We factor out ϵ^2 , ϵ^4 , ..., $\epsilon^{2(j-1)}$, $\epsilon^{2(j+1)}$, ..., ϵ^{2k} and obtain:

The latter is a Vandermonde determinant again, and we have

$$\begin{split} D_{j} = & \pm \epsilon^{1 \cdot 2 + 2 \cdot 2 \cdot 2 + \dots + (j-1)2 + (j+1)2 + \dots k \cdot 2} \\ & \times (\epsilon - 1) \left(\epsilon^{2} - 1 \right) \left(\epsilon^{3} - 1 \right) \dots \left(\epsilon^{j-1} - 1 \right) \left(\epsilon^{j+1} - 1 \right) \dots \left(\epsilon^{k} - 1 \right) \\ & \times \left(\epsilon^{2} - \epsilon \right) \left(\epsilon^{3} - \epsilon \right) \dots \left(\epsilon^{j-1} - \epsilon \right) \left(\epsilon^{j+1} - \epsilon \right) \dots \left(\epsilon^{k} - \epsilon \right) \\ & \times \dots \\ & \left(\epsilon^{j-1} - \epsilon^{j-2} \right) \left(\epsilon^{j+1} - \epsilon^{j-2} \right) \dots \left(\epsilon^{k} - \epsilon^{j-2} \right) \\ & \times \left(\epsilon^{j+1} - \epsilon^{j-1} \right) \dots \left(\epsilon^{k} - \epsilon^{j-1} \right) \\ & \dots \\ & \left(\epsilon^{k} - \epsilon^{k-1} \right). \end{split}$$

Hence, factoring out $\epsilon^{(i-1)(k-i)}$ in the *i*th row above, we get $D_j = \pm \epsilon^{\alpha_j} (1 + \epsilon P_j(\epsilon))$ for some polynomials $P_i(\epsilon)$ and

$$\begin{aligned} \alpha_j &= 1 \cdot 2 + 2 \cdot 2 + \ldots + (j-1) \cdot 2 + (j+1) \cdot 2 + \ldots + k \cdot 2 \\ &+ 1 \cdot (k-2) + 2(k-3) + \ldots + (j-1)(k-j) \\ &+ (j+1)(k-j-1) + \ldots + (k-1) \cdot 1 \\ &= 1 \cdot k + 2(k-1) + \ldots + (j-1)(k-j+2) + (j+1)(k-j+1) + \ldots + (k-1) \cdot 3 + k \cdot 2 \\ &= \sum_{q=1}^{j-1} q(k+1-q) + \sum_{m=1}^{k-1} (m+1)(k+1-m) = \sum_{q=1}^{k-1} q(k+1-q) + \sum_{m=1}^{k-1} (k+1-m) \end{aligned}$$

which coincides with the desired result (2.4) for α_j , in the case $1 \le j \le k-1$. For the extreme cases j=0 and j=k, we obtain

$$lpha_0 = \sum_{m=0}^{k-1} (m+1)(k+1-m) = \sum_{q=1}^{k-1} q(k+1-q) + \sum_{m=0}^{k-1} (k+1-m)$$
 $lpha_k = \sum_{q=1}^{k-1} q(k+1-q)$

which both can be incorporated in the formula (2.4) for α_j . Finally, Cramer's rule gives the expression (2.3) for c_j .

Now, taking into account that $\psi \ge 0$, by assumption, and the fact that $|1+\epsilon P(\epsilon)| > |1-|\epsilon P(\epsilon)|| = 1 - \epsilon |P(\epsilon)| > 0$ for all sufficiently small epsilon, we obtain

$$\int_{\mathbb{R}^d} |\varphi(x)| dx \leq \sum_{j=0}^k |c_j| \epsilon^j \leq \sum_{j=0}^k \frac{\epsilon^{j+\alpha_j} (1+\epsilon|P_j(\epsilon)|)}{\epsilon^{\beta} (1-\epsilon|P(\epsilon)|)}$$

and this latter expression can be made smaller than $1 + \delta$ for sufficiently small ϵ if a) $j + \alpha_j - \beta > 0$ for $0 \le j \le k - 1$, and b) $k + \alpha_k - \beta = 0$. Now, b) is obvious, as for a), we have:

$$j + \alpha_j - \beta = j + \sum_{m=j}^{k-1} (k+1-m) - k = \frac{1}{2} (k-j)(k-j+1) > 0,$$

for $0 \le j \le k-1$. To generalize the result for arbitrary dimension d, it suffices to consider a product of functions of one real variable. The proof is complete. \square

3. NONSTANDARD DELTA FUNCTIONS

We prove the existence of a nonstandard function D in $^*\mathcal{D}(\mathbb{R}^d)$ with special properties. The proof is based on the result of Lemma 2.2 and the Saturation Principle (T. Todorov [6], p. 687). We also consider a type of nonstandard cut-off-functions which have close counterparts in standard analysis. The applications of these functions are left for the next sections.

LEMMA 3.1 (Nonstandard Mollifiers). For any positive infinitesimal ρ in *R there exists a nonstandard function θ in * $\mathcal{D}(\mathbb{R}^d)$ with values in *R, which is symmetric and which satisfies the following properties:

- (i) $\theta(x) = 0$ for $x \in {}^*\mathbb{R}^d$, $||x|| \ge 1$;
- (ii) $\int_{-\mathbf{p}d} \theta(x) dx = 1$;
- (iii) $\int_{\mathbb{R}^d} \theta(x) x^{\alpha} dx = 0$ for all $\alpha \in \mathbb{N}_0^d$, $\alpha \neq 0$;
- (iv) $\int_{-\mathbf{p}d} |\theta(x)| dx \approx 1$
- (v) $|\ln \rho|^{-1} \left(\sup_{x \in \mathbb{N}^d} |\partial^{\alpha} \theta(x)| \right) \approx 0$ for all $\alpha \in \mathbb{N}_0^d$;

where \approx is the infinitesimal relation in *C. We shall call this type of function nonstandard ρ -mollifiers.

PROOF. For any $k \in \mathbb{N}$, we define the set of test functions:

$$\begin{split} \overline{A}_k &= \Big\{ \varphi \in \mathcal{D}\big(\mathbb{R}^d\big) : \varphi \text{ is real-valued and symmetric,} \\ \varphi(x) &= 0 \text{ for } \|x\| \geq 1, \quad \int_{\mathbb{R}^d} \varphi(x) dx = 1, \\ \int_{\mathbb{R}^d} x^\alpha \varphi(x) dx &= 0 \text{ for } 1 \leq |\alpha| \leq k, \quad \int_{\mathbb{R}^d} |\varphi(x)| dx < 1 + \frac{1}{k} \Big\} \end{split}$$

and the internal subsets of * $\mathcal{D}(\mathbb{R}^d)$:

$$\mathcal{A}_k = \left\{ \varphi \in {}^*\big(\overline{A}_k\big) : |\ln \rho|^{-1} \bigg(\sup_{x \in {}^*\!\mathbf{R}^d} |\partial^\alpha({}^*\varphi(x))| \bigg) < \frac{1}{k} \text{ for } |\alpha| \le k \right\}.$$

Obviously, we have $\overline{A}_1 \supset \overline{A}_2 \supset \overline{A}_3 \supset ...$ and $A_1 \supset A_2 \supset A_3 \supset ...$ Also we have $\overline{A}_k \neq \emptyset$ for all $k \in \mathbb{N}$, by Lemma 2.2. On the other hand, we have $\overline{A}_k \subset A_k$ in the sense that $\varphi \in \overline{A}_k$ implies $\varphi \in A_k$, since

$$\sup_{x \in \mathbb{R}^d} |\partial^{\alpha}(^*\varphi(x))| = \sup_{x \in \mathbb{R}^d} |\partial^{\alpha}\varphi(x)| = \sup_{x \leq 1} |\partial^{\alpha}\varphi(x)|$$

is a real (standard) number and, hence, $|\ln \rho|^{-1} \left(\sup_{x \in {}^{\bullet}\mathbb{R}^d} |\partial^{\alpha}({}^{\bullet}\varphi(x))|\right)$ is infinitesimal. Thus, we have $\mathcal{A}_k \neq \emptyset$ for all k in \mathbb{N} . By the Saturation Principle (T. Todorov [6], p. 687), the intersection $\mathcal{A} = \bigcap_{k \in \mathbb{N}} \mathcal{A}_k$ is non-empty and thus, any θ in \mathcal{A} has the desired properties. \square

DEFINITION 3.2 (ρ -Delta Function). Let ρ be a positive infinitesimal. A nonstandard function Din * $\mathcal{D}(\mathbb{R}^d)$ is called a ρ -delta function if it takes values in * \mathbb{R} , it is symmetric and it satisfies the following properties:

- (i) D(x) = 0 for $x \in {}^*\mathbb{R}^d$, $||x|| \ge \rho$,
- (ii) $\int_{\mathbb{R}^d} D(x) dx = 1$,
- (iii) $\int_{\mathbb{R}^d} D(x) x^{\alpha} dx = 0$ for all $\alpha \in \mathbb{N}_0^d$, $\alpha \neq 0$,

$$\begin{array}{ll} \text{(iv)} \ \int_{\mathbb{R}^d} |D(x)| dx \approx 1, \\ \text{(v)} \ |\ln \rho|^{-1} \bigg(\rho^{d+|\alpha|} \sup_{x \in \mathbb{R}^d} |\partial^\alpha D(x)| \bigg) \approx 0 \quad \text{for all} \quad \alpha \in \mathbb{N}_0^d. \end{array}$$

THEOREM 3.3 (Existence). For any positive infinitesimal ρ in * \mathbb{R} there exists a ρ -delta function.

PROOF. Let θ be a nonstandard ρ -mollifier of the type described in Lemma 3.1. Then the nonstandard function D in $^*\mathcal{D}(\mathbb{R}^d)$, defined by

$$D(x) = \rho^{-d}\theta(x/\rho), \quad x \in {}^*\mathbb{R}^d, \tag{3.1}$$

satisfies (i)-(v).

REMARK. The existence of nonstandard functions D in ${}^*\mathcal{D}(\mathbb{R}^d)$ with the above properties is in sharp contrast with the situation in standard analysis where there is no D in $\mathcal{D}(\mathbb{R}^d)$ which satisfies both (ii) and (iii). Indeed, if we assume that D is in $\mathcal{D}(\mathbb{R}^d)$, then (iii) implies $\widehat{D}^{(n)}(0) = 0$, for all n = 1, 2, ..., n = 1, 2, ...where \widehat{D} denotes the Fourier transform of D. It follows $\widehat{D} = \widehat{D}(0) = c$ for some constant c since \widehat{D} is an entire function on \mathbb{C}^d , by the Paley-Wiener Theorem (H. Bremermann [12], Theorem 8.28, p. 97). On the other hand, $D \in \mathcal{D}(\mathbb{R}^d) \subset \mathcal{S}(\mathbb{R}^d)$ implies $\widehat{D} \mid \mathbb{R}^d \in \mathcal{S}(\mathbb{R}^d)$ since $\mathcal{S}(\mathbb{R}^d)$ is closed under Fourier transform. Thus, it follows c = 0, i.e. $\widehat{D} = 0$ which implies D = 0 contradicting (ii).

For other classes of nonstandard delta functions we refer to (A. Robinson [15], p. 133) and to (T. Todorov [16]).

Our next task is to show the existence of an internal cut-off function.

NOTATIONS. Let Ω be an open set of \mathbb{R}^d .

1) For any $\epsilon \in \mathbb{R}_+$ we define

$$B_{\epsilon} = \{x \in \mathbb{R}^d : ||x|| \le \epsilon\} \text{ and } \Omega_{\epsilon} = \{x \in \Omega : d(x, \partial\Omega) \ge \epsilon\},$$

where ||x|| is the Euclidean norm in \mathbb{R}^d , $\partial\Omega$ is the boundary of Ω and $d(x,\partial\Omega)$ is the Euclidean distance between x and $\partial\Omega$. We also denote:

$$\mathcal{D}_{\epsilon}(\Omega) = \{ \varphi \in \mathcal{D}(\Omega) : \operatorname{supp} \varphi \subseteq B_{\epsilon} \}, \ E'_{\epsilon}(\Omega) = \{ T \in E'(\Omega) : \operatorname{supp} T \subseteq \Omega_{\epsilon} \}.$$

- 2) We shall use the same notation, *, for the convolution operator * : $\mathcal{D}'(\mathbb{R}^d) \times \mathcal{D}(\mathbb{R}^d) \to \mathsf{E}(\mathbb{R}^d)$ (V. Vladimirov [13]) and its nonstandard extension $*: {}^*\mathcal{D}'(\mathbb{R}^d) \times {}^*\mathcal{D}(\mathbb{R}^d) \to {}^*\mathcal{E}(\mathbb{R}^d)$ as well as for the convolution operator $*: E'_{\epsilon}(\Omega) \times \mathcal{D}_{\epsilon}(\Omega) \to \mathcal{D}(\Omega)$, defined for all sufficiently small $\epsilon \in \mathbb{R}_+$, and for its nonstandard extension: $*: *E'_{\epsilon}(\Omega) \times *\mathcal{D}_{\epsilon}(\Omega) \to *\mathcal{D}(\Omega), \ \epsilon \in *\mathbb{R}_+, \ \epsilon \approx 0.$
- 3) Let τ be the usual Euclidean topology on \mathbb{R}^d . We denote by $\tilde{\Omega}$ the set of the nearstandard points in Ω , i.e.

$$\widetilde{\Omega} = \bigcup_{x \in \Omega} \mu(x),\tag{3.2}$$

where $\mu(x)$, $x \in \mathbb{R}^d$, is the system of monads of the topological space (\mathbb{R}^d, τ) (T. Todorov [6], p. 687). Recall that if $\xi \in {}^*\Omega$, then $\xi \in \widetilde{\Omega}$ if and only if ξ is a finite point whose standard part belongs to Ω .

LEMMA 3.4. For any positive infinitesimal ρ in *R there exists a function Π in * $\mathcal{D}(\Omega)$ (a ρ -cut-off function) such that:

- a) $\Pi(x) = 1$ for all $x \in \widetilde{\Omega}$;
- b) supp $\Pi \subseteq {}^*\Omega_{\rho}$, where ${}^*\Omega_{\rho} = \{ \xi \in {}^*\Omega : {}^*d(\xi, \partial\Omega) \ge \rho \}$.

PROOF. Let ρ be a positive infinitesimal in *R and D be a ρ -delta function Define the internal set $X = \{\xi \in {}^*\Omega : {}^*\|\xi\| \le 1/\rho, {}^*d(\xi,\partial\Omega) \ge 2\rho\}$ and let χ be its characteristic function. Then the function $\Pi = \chi * D$ has the desired property. \square

4. THE ALGEBRA OF ASYMPTOTIC FUNCTIONS

We define and study the algebra $^{\rho}E(\Omega)$ of asymptotic functions on an open set Ω of \mathbb{R}^d . The construction of the algebra $^{\rho}E(\Omega)$, presented here, is a generalization and a refinement of the constructions in [9] and [10] (by the authors of this paper, respectively), where the algebra $^{\rho}E(\mathbb{R}^d)$ was introduced by somewhat different but equivalent definitions. On the other hand, the algebra of asymptotic functions $^{\rho}E(\Omega)$ is somewhat similar to but different from the J. F. Colombeau [7], [8] algebras of new generalized functions. This essential difference between $^{\rho}E(\Omega)$ and J. F. Colombeau's algebras of generalized functions is the properties of the generalized scalars: the scalars of the algebra $^{\rho}E(\Omega)$ constitutes an algebraically closed field (as any scalars should do) while the scalars of J. F. Colombeau's algebras are rings with zero divisors (J. F. Colombeau [8], §2.1). This improvement compared with J. F. Colombeau's theory is due to the involvement of the nonstandard analysis.

Let Ω be an open set of \mathbb{R}^d and $\rho \in {}^*\mathbb{R}$ be a positive infinitesimal. We shall keep Ω and ρ fixed in what follows.

Following A. Robinson [2], we define:

DEFINITION 4.1 (Robinson's Asymptotic Numbers). The field of the complex Robinson ρ -asymptotic numbers is defined as the factor space ${}^{\rho}\mathbb{C} = \mathbb{C}_M/\mathbb{C}_0$, where

$$\begin{split} \mathbb{C}_{\mathit{M}} &= \{ \xi \in {}^{*}\mathbb{C} : |\xi| < \rho^{-n} \ \, \text{for some} \ \, n \in \mathbb{N} \}, \\ \mathbb{C}_{0} &= \{ \xi \in {}^{*}\mathbb{C} : |\xi| < \rho^{n} \ \, \text{for all} \ \, n \in \mathbb{N} \}, \end{split}$$

("M" stands for "moderate"). We define the embedding $\mathbb{C} \subset {}^{\rho}\mathbb{C}$ by $c \to q(c)$, where $q : \mathbb{C}_M \to {}^{\rho}\mathbb{C}$ is the quotient mapping. The field of the real asymptotic numbers is defined by ${}^{\rho}\mathbb{R} = q({}^{*}\mathbb{R} \cap \mathbb{C}_{M})$.

It is easy to check that \mathbb{C}_0 is a maximal ideal in \mathbb{C}_M and hence ${}^{\rho}\mathbb{C}$ is a field. Also ${}^{\rho}\mathbb{R}$ is a real closed totally ordered nonarchimedean field (since ${}^{\bullet}\mathbb{R}$ is a real closed totally ordered field) containing \mathbb{R} as a totally ordered subfield. Thus, it follows that ${}^{\rho}\mathbb{C} = {}^{\rho}\mathbb{R}(i)$ is an algebraically closed field, where $i = \sqrt{-1}$.

The algebra of "asymptotic functions" is, in a sense, a C^{∞} -counterpart of A. Robinson's asymptotic numbers ${}^{\rho}\mathbb{C}$:

DEFINITION 4.2 (Asymptotic Functions on Ω). (i) We define the class ${}^{\rho}E(\Omega)$ of the ρ -asymptotic functions on Ω (or simply, asymptotic functions on Ω if no confusion could arise) as the factor space ${}^{\rho}E(\Omega)=E_{M}(\Omega)/E_{0}(\Omega)$, where

$$E_{M}(\Omega) = \left\{ f \in {}^{*}E(\Omega) : \partial^{\alpha} f(\xi) \in \mathbb{C}_{M}, \text{ for all } \alpha \in \mathbb{N}_{0}^{d} \text{ and all } \xi \in \widetilde{\Omega} \right\},$$

$$E_{0}(\Omega) = \left\{ f \in {}^{*}E(\Omega) : \partial^{\alpha} f(\xi) \right\} \in \mathbb{C}_{0}, \text{ for all } \alpha \in \mathbb{N}_{0}^{d} \text{ and all } \xi \in \widetilde{\Omega} \right\},$$

and $\widetilde{\Omega}$ is the set of the nearstandard points of $^*\Omega$ (3.2). The functions in $E_M(\Omega)$ are called ρ -moderate (or, simply, moderate) and those in $E_0(\Omega)$ are called ρ -null functions (or, simply, null functions).

(ii) The pairing between ${}^{\rho}E(\Omega)$ and $\mathcal{D}(\Omega)$ with values in ${}^{\rho}C$, is defined by

$$\langle Q_{\Omega}(f), \varphi \rangle = q \left(\int_{^*\Omega} f(x) \, ^* \varphi(x) dx \right),$$

where $q: \mathbb{C}_M \to {}^{\rho}\mathbb{C}$ and $Q_{\Omega}: E_M(\Omega) \to {}^{\rho}E(\Omega)$ are the corresponding quotient mappings, φ is in $\mathcal{D}(\Omega)$ and ${}^*\varphi$ is its nonstandard extension.

(iii) We define the canonical embedding $E(\Omega) \subset {}^{\rho}E(\Omega)$ by the mapping $\sigma_{\Omega}: f \to Q_{\mathfrak{n}}({}^{*}f)$, where ${}^{*}f$ is the nonstandard extension of f.

EXAMPLE 4.3. Let D be a nonstandard ρ -delta function in the sense of Definition 3.2. Then $D \in E_M(\mathbb{R}^d)$. In addition, $D \mid {}^*\Omega \in E_M(\Omega)$, where $D \mid {}^*\Omega$ denotes the pointwise restriction of D on ${}^*\Omega$. To show this, denote $|\ln \rho|^{-1} \left(\rho^{d+|\alpha|} \sup_{x \in {}^*\mathbb{R}^d} |\partial^\alpha D(x)| \right) = h_\alpha$ and observe that $h_\alpha \approx 0$ for all $\alpha \in \mathbb{N}_0^d$, by the definition of D. Thus, for any (finite) x in ${}^*\mathbb{R}^d$ and any $\alpha \in \mathbb{N}_0^d$ we have $|\partial^\alpha D(x)| \leq \sup_{x \in {}^*\mathbb{R}^d} |\partial^\alpha D(x)| = \frac{h_\alpha |\ln \rho|}{\rho^{d+|\alpha|}} < \rho^{-n}$, for $n = d + |\alpha| + 1$, thus, $D \in E_M(\mathbb{R}^d)$. On the other hand, $D \mid {}^*\Omega \in E_M(\Omega)$ follows immediately from the fact that $\widetilde{\Omega}$ consists of finite points in ${}^*\mathbb{R}^d$ only.

THEOREM 4.4 (Differential Algebra). (i) The class of asymptotic functions ${}^{\rho}E(\Omega)$ is a differential algebra over the field of the complex asymptotic numbers ${}^{\rho}C$.

- (ii) $E(\Omega)$ is a differential subalgebra of ${}^{\rho}E(\Omega)$ over the scalars $\mathbb C$ under the canonical embedding σ_{Ω} . In addition, σ_{Ω} preserves the pairing in the sense that $\langle f, \varphi \rangle = \langle \sigma_{\Omega}(f), \varphi \rangle$ for all f in $E(\Omega)$ and for all φ in $D(\Omega)$, where $\langle f, \varphi \rangle = \int_{\Omega} f(x) \varphi(x) dx$ is the usual pairing between $E(\Omega)$ and $D(\Omega)$.
- **PROOF.** (i) It is clear that $E_M(\Omega)$ is a differential ring and $E_0(\Omega)$ is a differential ideal in $E_M(\Omega)$ since \mathbb{C}_M is a ring and \mathbb{C}_0 is an ideal in \mathbb{C}_M and, on the other hand, both $E_M(\Omega)$ and $E_0(\Omega)$ are closed under differential, by definition. Hence, the factor space ${}^{\rho}E(\Omega)$ is also a differential ring. It is clear that, $E_M(\Omega)$ is a module over the ring \mathbb{C}_M and, in addition, the annihilator $\{c \in \mathbb{C}_M : cf \in E_0(\Omega), f \in E_M(\Omega)\}$ of \mathbb{C}_M coincides with the ideal \mathbb{C}_0 . Thus, ${}^{\rho}E(\Omega)$ becomes an algebra over the field of the complex asymptotic numbers ${}^{\rho}\mathbb{C}$.
- (ii) Assume that $\sigma_{\Omega}(^*f)=0$ in ${}^{\rho}E(\Omega)$, i.e. $^*f\in E_0(\Omega)$. By the definition of $E_0(\Omega)$ (applied for $\alpha=0$ and n=1), it follows f=0 since *f is an extension of f and ρ is an infinitesimal. Thus, the mapping $f\to\sigma_{\Omega}(f)$ is injective. It preserves the algebraic operations since the mapping $f\to^*f$ preserves them. The preserving of the pairing follows immediately from the fact that $\int_{^*\Omega} ^*f(x)dx=\int_{\Omega} f(x)dx$, by the Transfer Principle (T. Todorov [6], p. 686). The proof is complete. \square

5. EMBEDDING OF SCHWARTZ DISTRIBUTIONS

Let Ω be (as before) an open set of \mathbb{R}^d . Recall that the *Schwartz embedding* $L_{\Omega}: \mathcal{L}_{loc}(\Omega) \to \mathcal{D}'(\Omega)$ from $\mathcal{L}_{loc}(\Omega)$ into $\mathcal{D}'(\Omega)$ is defined by the formula:

$$\langle L_{\Omega}(f), \varphi \rangle = \int_{\Omega} f(x)\varphi(x)dx, \quad \varphi \in \mathcal{D}(\Omega).$$
 (5.1)

Here $\mathcal{L}_{loc}(\Omega)$ denotes, as usual, the space of the locally (Lebesgue) integrable complex valued functions on Ω (V. Vladimirov [13]). The Schwartz embedding L_{Ω} preserves the addition and multiplication by a complex number, hence, the space $\mathcal{L}_{loc}(\Omega)$ can be considered as a linear subspace of $\mathcal{D}'(\Omega)$. In addition, the restriction $L_{\Omega} \mid E(\Omega)$ of L_{Ω} on $E(\Omega)$ (often denoted also by L_{Ω}) preserves the partial differentiation of any order and in this sense $E(\Omega)$ is a differential linear subspace of $\mathcal{D}'(\Omega)$. In short, we have the chain of linear embeddings: $\mathcal{L}_{loc}(\Omega) \subset E(\Omega) \subset \mathcal{D}'(\Omega)$.

The purpose of this section is to show that the algebra of asymptotic functions ${}^{\rho}E(\Omega)$ contains an isomorphic copy of the space of Schwartz distributions $\mathcal{D}'(\Omega)$ and, hence, to offer a solution of the Problem of Multiplication of Schwartz Distributions. This result is a generalization of some results in [9] and [10] (by the authors of this paper, respectively) where only the embedding of the tempered distributions $\mathcal{S}'(\mathbb{R}^d)$ in ${}^{\rho}E(\mathbb{R}^d)$ has been established. The embedding of all distributions $\mathcal{D}'(\Omega)$, discussed here, presents an essentially different situation.

The spaces $\widetilde{E}(\Omega)$ and $\widetilde{\mathcal{D}}(\Omega)$, defined below, are immediate generalizations of the spaces $\widetilde{E}(\mathbb{R}^d)$ and $\widetilde{\mathcal{D}}(\mathbb{R}^d)$, introduced in (K. D. Stroyan and W. A. Luxemburg [17], (10.4), p. 299):

$$\widetilde{E}(\Omega) = \{ \varphi \in {}^*E(\Omega) : \partial^{\alpha} \varphi(x) \text{ is a finite number in } {}^*C \text{ for all } x \in \widetilde{\Omega} \text{ and all } \alpha \in \mathbb{N}_0^d \},$$
(5.2)

$$\widetilde{\mathcal{D}}(\Omega) = \{ \varphi \in {}^*E(\Omega) : \ \partial^{\alpha} \varphi(x) \text{ is a finite number in } {}^*\mathbb{C} \text{ for all } x \in \widetilde{\Omega}, \ \alpha \in \mathbb{N}_0^d \text{ and } \varphi(x) = 0 \text{ for all } x \in {}^*\Omega \setminus \widetilde{\Omega} \},$$

$$(5.3)$$

Obviously, we have $\widetilde{\mathcal{D}}(\Omega) \subset \widetilde{\mathbf{E}}(\Omega) \subset \mathbf{E}_{\mathbf{M}}(\Omega)$. Notice as well that $\varphi \in \widetilde{\mathcal{D}}(\Omega)$ implies $\varphi \in {}^*\mathcal{D}(G)$ for some open relatively compact set G of Ω . We have also the following simple result:

LEMMA 5.1. If $T \in \mathcal{D}'(\Omega)$ and $\varphi \in E_0(\Omega) \cap \widetilde{\mathcal{D}}(\Omega)$, then $\langle T, \varphi \rangle \in \mathbb{C}_0$.

PROOF. Observe that $E_0(\Omega) \cap \widetilde{\mathcal{D}}(\Omega)$ implies $\varphi \in E_0(\Omega) \cap {}^*\mathcal{D}(G)$ for some open relatively compact set G of Ω . By the continuity of T (and Transfer Principle) there exist constants $M \in \mathbb{R}_+$ and $m \in \mathbb{N}_0$ such that

$$|\langle^*T,\varphi\rangle| \leq M \sum_{|\mu| \leq m} \sup_{x \in ^*G} |\partial^\mu \varphi(x)|.$$

On the other hand, $M\sum_{|\mu|\leq m}\sup_{x\in {}^*G}|\partial^\mu\varphi(x)|<\rho^n$ for all $n\in\mathbb{N}$, since $\varphi\in E_0(\Omega)$, by assumption. Thus, $|\langle {}^*T,\varphi\rangle|<\rho^n$ for all $n\in\mathbb{N}$. \square

Let D be a ρ -delta function in the sense of Definition 3.2. We shall keep D (along with Ω and ρ) fixed in what follows.

DEFINITION 5.2 (Embedding of Schwartz Distributions). We define the embedding $\mathcal{D}'(\Omega) \subset {}^{\rho}E(\Omega)$ by $\Sigma_{D,\Omega}: T \to Q_{\Omega}(({}^{*}T\Pi_{\Omega}) * D)$, where ${}^{*}T$ is the nonstandard extension of T, Π_{Ω} is a (an arbitrarily chosen) ρ -cut-off function for Ω (Lemma 3.4), ${}^{*}T\Pi_{\Omega}$ is the Schwartz product between ${}^{*}T$ and Π_{Ω} in ${}^{*}\mathcal{D}'(\Omega)$ (defined by Transfer Principle), * is the convolution operator and $Q_{\Omega}: E_{M}(\Omega) \to {}^{\rho}E(\Omega)$ is the quotient mapping in the definition of ${}^{\rho}E(\Omega)$ (Definition 4.2).

The cut-off function Π_{Ω} can be dropped in the above definition, i.e. $\Sigma_{D,\Omega}: T \to Q_{\Omega}(^*T*D)$, in some particular cases; e.g. when:

- a) T has a compact support in Ω ;
- b) $\Omega = \mathbb{R}^d$.

PROPOSITION 5.3 (Correctness). $T \in \mathcal{D}'(\Omega)$ implies $(*T\Pi_{\Omega}) * D \in \mathcal{E}_{M}(\Omega)$.

PROOF. Choose $\alpha \in \mathbb{N}_0^d$ and all $x \in \widetilde{\Omega}$. Since we have $\partial^{\alpha}((\Pi_{\Omega} * T) * D)(x) = (\partial^{\alpha}(*T) * D)(x)$ (by the definition of Π_{Ω}), we need to show that $\partial^{\alpha}(*T*D)(x) \in \mathbb{C}_M$ only, i.e. that $|\partial^{\alpha}(*T*D)(x)| < \rho^{-m}$ for some $m \in \mathbb{N}$ (m might depend on α). We start with the case $\alpha = 0$ Denote $D_x(\xi) = D(\xi - x)$, $\xi \in {}^*\mathbb{R}$ and observe that $\sup(D_x) \subseteq {}^*G$ for some open relatively compact set G of Ω , since D_x vanishes on ${}^*\Omega \setminus \widetilde{\Omega}$. Next, by the continuity of T (and the Transfer Principle), there exist constants $m \in \mathbb{N}_0$ and $M \in \mathbb{R}_+$ such that

$$|(^*T*D)(x)| = |\langle ^*T, D_x \, | \, ^*\Omega \rangle| \leq M \sum_{|\mu| \leq m} \sup_{\xi \in ^*G} \left| \partial_\xi^\mu D(x-\xi) \right|.$$

Finally, there exists $n \in \mathbb{N}$ such that $\sum_{|\mu| \le m} \sup_{\xi \in G} \left| \partial_{\xi}^{\mu} D(x - \xi) \right| < \rho^{-n}$, since $D \mid {}^*G$ is a ρ -moderate

function (Example 4.3). Combining these arguments, we have: $|(^*T*D)(x)| \leq M \, \rho^{-n} < \rho^{-(n+1)}$, as required. The generalization for arbitrary multiindex α follows immediately since $\partial^{\alpha}(^*T*D) = (\partial^{\alpha}(^*T))*D = ^*(\partial^{\alpha}T)*D$, by Transfer Principle, a $\partial^{\alpha}T$ is (also) in $\mathcal{D}'(\Omega)$. \square

PROPOSITION 5.4. $f \in \widetilde{E}(\Omega)$ implies $(f \Pi_{\Omega}) * D - f \in E_0(\Omega)$.

PROOF. Let $x \in \widetilde{\Omega}$ and $\alpha \in \mathbb{N}_0^d$. Since we have $\partial^{\alpha}[((f\Pi_{\Omega}) * D)(x) - f(x)] = \partial^{\alpha}[(f*D)(x) - f(x)]$ (by the definition of Π_{Ω}), we need to show that $\partial^{\alpha}[(f*D)(x) - f(x)] \in \mathbb{C}_0$ only. Choose $n \in \mathbb{N}$. We need to show that $|\partial^{\alpha}[(f*D)(x) - f(x)]| < \rho^n$. We start first with the case $\alpha = 0$. By Taylor's formula (applied by transfer), we have

$$f(x-\xi)-f(x)=\sum_{|\beta|=1}^n\,\frac{(-1)^{|\beta|}\partial^\beta f(x)}{\beta!}\,\,\xi^\beta+\frac{(-1)^{n+1}}{(n+1)!}\sum_{|\beta|=n+1}\partial^\beta f(\eta(\xi))\xi^\beta$$

for any $\xi \in \widetilde{\Omega}$, where $\eta(\xi)$ is a point in * Ω "between x and ξ ." Notice that the point $\eta(\xi)$ is also in $\widetilde{\Omega}$ It follows

$$(f * D)(x) - f(x) = \int_{\|\xi\| \le \rho} D(\xi) [f(x - \xi) - f(x)] d\xi = \frac{(-1)^{n+1}}{(n+1)!} \sum_{\|\xi\| = n+1} \int_{\|\xi\| \le \rho} D(\xi) \xi^{\beta} \partial^{\beta} f(\eta(\xi)) d\xi,$$

since $\int_{\|\xi\| \le \rho} D(\xi) \xi^{\beta} d\xi = 0$, by the definition of D. Thus, we have

$$|(f * D)(x) - f(x)| \leq \frac{\rho^{n+1}}{(n+1)!} \left(\int_{\mathbb{R}^d} |D(x)| dx \right) \left(\sum_{|\beta| = n+1} \sup_{\|\xi\| \leq \rho} \left| \partial^\beta f(\eta(\xi)) \right| \right) < \rho^n,$$

as desired, since, on one hand, $\int_{\mathbb{R}^d} |D(x)| dx \approx 1$, by the definition of D and on the other hand, the above sum is a finite number because ${}^*\partial^\beta f(\eta(\xi))$ are all finite due to $\eta(\xi) \in \widetilde{\Omega}$. The generalization for an arbitrary α is immediate since $\partial^\alpha [(f*D)(x) - f(x)] = (\partial^\alpha f*D)(x) - \partial^\alpha f(x)$, by the Transfer Principle. \square

COROLLARY 5.5. (i) $f \in E(\Omega)$ implies $(*f\Pi_{\Omega}) * D - *f \in E_0(\Omega)$.

(ii) $\varphi \in \mathcal{D}(\Omega)$ implies $({}^*\varphi \Pi_{\Omega}) * D - {}^*\varphi \in \mathcal{E}_0(\Omega) \cap \widetilde{\mathcal{D}}(\Omega)$.

PROOF. (i) follows immediately from the above proposition since $f \in E(\Omega)$ implies $f \in \widetilde{E}(\Omega)$.

(ii) Both $({}^*\varphi\Pi_{\Omega})*D$ and ${}^*\varphi$ vanish on ${}^*\Omega\backslash\widetilde{\Omega}$ since their supports are within an open relatively compact neighborhood G of supp (φ) and the latter is a compact set of Ω , by assumption. Thus,

$$(^*\varphi\Pi_{\Omega})*D-^*\varphi\in ^*\mathcal{D}(G)\subset \widetilde{\mathcal{D}}(\Omega),$$
 as required. \square

Denote $\check{D}(x) = D(-x)$ and recall that $\check{D} = D$ since D is symmetric (Definition 3.2).

PROPOSITION 5.6. If $T \in \mathcal{D}'(\Omega)$ and $\varphi \in \mathcal{D}(\Omega)$, then

$$\int_{\mathbb{T}\Omega} \left((^*T \Pi_{\Omega}) * D)(x) * \varphi(x) dx - \langle T, \varphi \rangle \in \mathbb{C}_0.$$

PROOF. Using the properties of the convolution operator (applied by transfer), we have

$$\int_{{}^*\Omega} \left(({}^*T\Pi_\Omega) * D \right) (x) {}^*\varphi(x) dx - \langle T, \varphi \rangle$$

$$= \langle ({}^*T\Pi_\Omega) * D, {}^*\varphi \rangle - \langle {}^*T, {}^*\varphi \rangle = \langle {}^*T\Pi_\Omega, {}^*\varphi * \check{D} \rangle - \langle {}^*T\Pi_\Omega, {}^*\varphi \rangle$$

$$= \langle {}^*T\Pi_\Omega, {}^*\varphi * \check{D} - {}^*\varphi \rangle = \langle {}^*T, {}^*\varphi * D - {}^*\varphi \rangle \in \mathbb{C}_0,$$

by Lemma 5.1 since $\varphi * D - \varphi \in E_0(\Omega) \cap \widetilde{\mathcal{D}}(\Omega)$, by Corollary 5.5. \square

We are ready to state our main result:

THEOREM 5.7 (Properties of $\Sigma_{D,\Omega}$). (i) $\Sigma_{D,\Omega}$ preserves the pairing in the sense that for all T in $\mathcal{D}'(\Omega)$ and all φ in $\mathcal{D}(\Omega)$ we have $\langle T, \varphi \rangle = \langle \Sigma_{D,\Omega}(T), \varphi \rangle$, where the left hand side is the (usual) pairing of T and φ in $\mathcal{D}'(\Omega)$, while the right hand side is the pairing of $\Sigma_{D,\Omega}(T)$ and φ in ${}^{\rho}E(\Omega)$ (Definition 4.2).

- (ii) $\Sigma_{D,\Omega}$ is *injective* and it *preservers all linear operations* in $\mathcal{D}'(\Omega)$: the addition, multiplication by (standard) complex numbers and the partial differentiation of any (standard) order.
- (iii) $\Sigma_{D,\Omega}$ is an extension of the canonical embedding σ_{Ω} defined earlier in Definition 4.2 in the sense that $\sigma_{\Omega} = \Sigma_{D,\Omega} \circ L_{\Omega}$, where L_{Ω} is the Schwartz embedding (5.1) restricted on $E(\Omega)$ and \circ denotes composition. Or, equivalently, the following diagram is commutative:

$$\mathcal{D}'(\Omega)$$

$$L_{\Omega} \nearrow$$

$$E(\Omega) \qquad \downarrow \Sigma_{D,\Omega}$$

$$\sigma_{\Omega} \searrow$$

$${}^{\rho}E(\Omega).$$
(5.4)

PROOF. (i) Denote (as before) $\check{D}(x) = D(-x)$ and recall that $\check{D}(x) = D$ (Definition 3.2). We have

$$\begin{split} \langle \Sigma_{D,\Omega}(T), \varphi \rangle &= \langle Q_{\Omega}((^*T\,\Pi_{\Omega}) * D), \varphi \rangle - \langle T, \varphi \rangle \\ &= q \Biggl(\int_{^*\Omega} ((\Pi_{\Omega} \,^*T) * D)(x) \,^*\varphi(x) dx \Biggr) - q(\langle T, \varphi \rangle) \\ &= q \Biggl(\int_{^*\Omega} ((^*T\,\Pi_{\Omega}) * D)(x) \,^*\varphi(x) dx - \langle T, \varphi \rangle \Biggr) = 0, \end{split}$$

because $\int_{\Omega} ((^*T\Pi_{\Omega}) * D)(x) * \varphi(x) dx - \langle T, \varphi \rangle \in \mathbb{C}_0$, by Proposition 5.6. Here $\langle T, \varphi \rangle = q(\langle T, \varphi \rangle)$ holds because $\langle T, \varphi \rangle$ is a standard (complex) number.

- (ii) The injectivity of $\Sigma_{D,\Omega}$ follows from (i): $\Sigma_{D,\Omega}(T)=0$ in ${}^{\rho}E(\Omega)$ implies $\langle \Sigma_{D,\Omega}(T), \varphi \rangle = 0$ for all $\varphi \in \mathcal{D}(\Omega)$, which is equivalent to $\langle T, \varphi \rangle = 0$ for all $\varphi \in \mathcal{D}(\Omega)$, by (i), thus, T=0 in $\mathcal{D}'(\Omega)$, as required. The preserving of the linear operations follows from the fact that both the extension mapping and the convolution $(\operatorname{applied})$ transfer Principle) are linear operators.
- (iii) For any $f \in E(\Omega)$ we have $\sigma(f) = Q_{\Omega}({}^*f) = Q_{\Omega}(({}^*f\Pi_{\Omega}) * D) = Q_{\Omega}(({}^*L(f)\Pi_{\Omega}) * D) = \Sigma_{D,\Omega}(L(f))$, as required, since ${}^*f ({}^*f\Pi_{\Omega}) * D \in E_0(\Omega)$, by Corollary 5.5. \square

REMARK 5.8 (Multiplication of Distributions). As a consequence of the above result, the Schwartz distributions in $\mathcal{D}'(\Omega)$ can be multiplied within the associative and commutative differential algebra ${}^{\rho}E(\Omega)$ (something impossible in $\mathcal{D}'(\Omega)$ itself). By the property (iii) above, the multiplication in ${}^{\rho}E(\Omega)$ coincides on $E(\Omega)$ with the usual (pointwise) multiplication in $E(\Omega)$. Thus, the class ${}^{\rho}E(\Omega)$, endowed with an embedding $\Sigma_{D,\Omega}$, presents a solution of the problem of multiplication of Schwartz distributions which, in a sense, is optimal, in view of the Schwartz impossibility results (L. Schwartz [1]) (for a discussion we refer also to J. F. Colombeau [7], §2.4 and M. Oberguggenberg [18], §2). We should mention that the existence of an embedding of $\mathcal{D}'(\mathbb{R}^d)$ into ${}^{\rho}E(\mathbb{R}^d)$ can be proved also by sheaf-theoretical arguments as indicated in (M. Oberguggenberger [18], §23).

REMARK 5.9 (Nonstandard Asymptotic Analysis). We sometimes refer to the area connected directly or indirectly with the fields ${}^{\rho}\mathbf{R}$ as *Nonstandard Asymptotic Analysis*. The fields ${}^{\rho}\mathbf{R}$ were introduced by A. Robinson [2] and are sometimes known as "Robinson's nonarchimedean valuation fields." The terminology "Robinson's asymptotic numbers," chosen in this paper, is due to the role of ${}^{\rho}\mathbf{R}$ for the asymptotic expansions of classical functions (A. H. Lightstone and A. Robinson [3]) and also to stress the fact that in our approach ${}^{\rho}\mathbf{C}$ plays the role of the scalars of the algebra ${}^{\rho}\mathbf{E}(\Omega)$. Linear spaces over the field ${}^{\rho}\mathbf{R}$ has been studied by W. A. J. Luxemburg [19] in order to establish a connection between nonstandard and nonarchimedean analysis. More recently ${}^{\rho}\mathbf{R}$ has been used by V. Pestov [20] for studying Banach spaces. The field ${}^{\rho}\mathbf{R}$ has been exploited by Li Bang-He [21] for multiplication of Schwartz distributions.

REFERENCES

- [1] SCHWARTZ, L., Sur l'impossibilité de la multiplication des distributions, C.R. Acad. Sci., Paris, 239 (1954), 847-848.
- [2] ROBINSON, A., Function theory on some nonarchimedean fields, Amer. Math. Monthly 80 (6), Part II: Papers in the Foundations of Mathematics (1973), 87-109.

- [3] LIGHTSTONE, A.H. and ROBINSON, A., Nonarchimedean Fields and Asymptotic Expansions, North-Holland Mathematical Library, 13, North Holland, Amsterdam-Oxford/American Elsevier, New York, 1975.
- [4] OBERGUGGENBERGER, M., Contributions of nonstandard analysis to partial differential equations, in *Development in Nonstandard Mathematics* (Eds. N.J. Cutland, V. Neves, F. Oliveira and J. Sousa-Pinto), Longman-Harlow, 1995, 130-150.
- [5] TODOROV, T., An existence result for a class of partial differential equations with smooth coefficients, in Advances in Analysis, Probability and Mathematical Physics - Contributions to Nonstandard Analysis (Eds. S. Albeverio, W.A.J. Luxemburg and M.P.H. Wolff), Kluwer Academic Publishers (Mathematics and Its Applications), Dordrecht/Boston/London, Vol. 314, 1995, 107-121.
- [6] TODOROV, T., An existence of solutions for linear partial differential equations with C[∞]-coefficients in an algebra of generalized functions, in Trans. Am. Math. Soc., 348, 2 (1996).
- [7] COLOMBEAU, J.F., New Generalized Functions and Multiplication of Distributions, North-Holland Math. Studies 84, North-Holland, Amsterdam, 1984.
- [8] COLOMBEAU, J.F., Elementary Introduction to New Generalized Functions, North-Holland, Amsterdam, 1985.
- [9] OBERGUGGENBERGER, M., Products of distributions: nonstandard methods, Z. Anal. Anwendungen 7 (1988), 347-365., Corrections: ibid. 10 (1991), 263-264.
- [10] TODOROV, T., Colombeau's new generalized function and non-standard analysis, in Generalized Functions, Convergence Structures and their Applications (Eds. B. Stankovic, E. Pap, S. Pilipovic and V.S. Vladimirov), Plenum Press, New York (1988), 327-339.
- [11] HOSKINS, R.F. and PINTO, J.S., Nonstandard treatments of new generalised functions, in Generalized Functions and Their Applications (Ed. R.S. Pathak), Plenum Press, New York, 1993, 95-108.
- [12] BREMERMANN, H., Distributions, Complex Variables, and Fourier Transforms, Addison-Wesley Publ. Co., Inc., Pal Alto, 1965.
- [13] VLADIMIROV, V., Generalized Functions in Mathematical Physics, Mir-Publisher, Moscow, 1979.
- [14] LINDSTROM, T., An invitation to nonstandard analysis, in Nonstandard Analysis and its Applications (Ed. N. Cutland), London Mathematical Society Student Texts 10, Cambridge University Press, Cambridge, 1988, 1-105.
- [15] ROBINSON, A., Non-Standard Analysis, North-Holland, Amsterdam, 1966.
- [16] TODOROV, T., A nonstandard delta function, Proc. Amer. Math. Soc., 110 (1990), 1143-1144.
- [17] STROYAN, K.D. and LUXEMBURG, W.A.J., Introduction to the Theory of Infinitesimals, Academic Press, New York, 1976.
- [18] OBERGUGGENBERGER, M., Multiplication of distributions and applications to partial differential equations, *Pitman Research Notes Math.*, 259, Longman, Harlow, 1992.
- [19] LUXEMBURG, W.A.J., On a class of valuation fields introduced by A. Robinson, Israel Journal Math., 25 (1976), 189-201.
- [20] PESTOV, V., On a valuation field invented by A. Robinson and certain structures connected with it, *Israel Journal Math.*, 74 (1991), 65-79.
- [21] BANG-HE, L., Non-standard analysis and multiplication of distributions, Sci. Sinica, 21 (1978), 561-585.