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ABSTRACT. We present a solution of the problem of multiplication of Schwartz distributions by 

embedding the space of distributions into a differential algebra of generalized functions, called in the 

paper "asymptotic function," similar to but different from J. F Colombeau's algebras of new generalized 

functions. 
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1. INTRODUCTION 

The main purpose of this paper is to prove the existence of an embedding Ev,n of the space of 

Schwartz distributions V'(O) into the algebra of asymptotic functions P£(0) which preserves all linear 

operations in V'(O). Thus, we offer a solution ofthe problem ofmultiplication of Schwartz distributions 

since the multiplication within V'(O) is impossible (L. Schwartz [I]). 

The algebra P£(0) is defined in the paper as a factor space of nonstandard smooth functions 

The field of the scalars PC of the algebra P£(0), coincides with the complex counterpart of 

A. Robinson's asymptotic numbers-known also as "Robinson's field with valuation" (see A Robinson 

[2]) and A. H. Lightstone and A. Robinson [3]). The embedding Ev,n is constructed in the form 

Ev,n =Qo o D *II • • where (in backward order): • is the extension mapping (in the sense of 

nonstandard analysis), • is the Schwartz multiplication in V'(O) (more precisely, its nonstandard 

extension in •1)'(0}), * is the convolution operator (more precisely, its nonstandard extension}, o 

denotes "composition," Qn is the quotient mapping (in the definition of the algebra of asymptotic 

functions) and D and lin are fixed nonstandard internal functions with special properties whose existence 

is proved in this paper. 

Our interest in the algebra P£(0) and the embedding V'(O) c P£(0), is due to their role in the 

problem of multiplication of Schwartz distributions, the nonlinear theory ofgeneralized functions and its 

applications to partial differential equations (M. Oberguggenberger [4]), (T. Todorov [5] and [6]). In 

particular, there is a strong similarity between the algebra of asymptotic functions P£(0) and its 

generalized scalars PC, discussed in this paper, and the algebra of generalized functions 9(0) and their 
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generalized scalars C, introduced by J. F. Colombeau in the framework of standard analysis 

(J. F. Colombeau [7], pp. 63, 138 and J. F. Colombeau [8], §8.3, pp. 161-166). We should mention that 

the involvement of nonstandard analysis has resulted in some improvements of the corresponding 

standard counterparts; one of them is that PC is an algebraically closed field while its standard 

counterpart C in J. F. Colombeau's theory is a ring with zero divisors. 

This paper is a generalization of some results in [9] and [10] (by the authors of this paper, 

respectively) where only the embedding of the tempered distributions S'(Rd) in PE(Rd) has been 

established. The embedding of all distributions V'(O), discussed in this paper, presents an essentially 

different situation. We should mention that the algebra PE(lRd) was recently studied by R. F. Hoskins and 

J. Sousa Pinto [11]. 

Here 0 denotes an open set of Rd (d is a natural number), E(O) =0""(0) and V(O) =08"(0) 

denote the usual classes ofO""-functions on 0 and 0""-functions with compact support in 0 and V'(O), 

and E'(O) denote the classes of Schwartz distributions on n and Schwartz distributions with compact 

support in 0, respectively. As usual, N, R, R+ and C will be the systems of the natural, real, positive 

real and complex numbers, respectively, and we use also the notation No = {0} UN. For the partial 

derivatives we write IJO', a eNg. Ifa= (aJ. ... ,ad) for some a eNg, then we write Ia\ =at+...+ad 
and ifx = (xl, ... ,xd) for some X e Rd, then we writex0 = xr·x~ ... xd' ... x~·· For a general reference 

to ,distribution theory we refer to H. Bremermann [12] and V. Vladimirov [13]. 

Our framework is a nonstandard model of the complex numbers C, with degree of saturation larger 

than card(N). We denote by *R, ·~. •c, *E(O) and *V(O) the nonstandard extensions ofR, !4, C, 
E(O) and V(O), respectively. IfX is a set of complex numbers or a set of (standard) functions, then • X 

will be its nonstandard extension and if I: X-+ Y is a (standard) mapping, then • I: •X-+ •y will be 

its nonstandard extension. For integration in *Rd we use the •-Lebesgue integral. We shall often use th~ 

same notation, llxll, for the Euclidean norm in Rd and its nonstandard extension in •Rd. For a shon 

introduction to nonstandard analysis we refer to the Appendix in T. Todorov [6]. For a more detailed 

exposition we recommend T. Lindstrom [14], where the reader will find many references to the subject. 

2. 	 TEST FUNCfiONS AND THEIR MOMENTS 

In this section we study some properties of the test functions in V(Rd) (in a standard setting) which 

we shall use subsequently. 

Following (J.F. Colombeau [7], p. 55), for any k e N we define the set oftest functions: 

Ak = {cp e V(Rd) : cp is real-valued, cp(x) =0 for llxll ~ 1; 

!. 	cp(x)dx = 1 and J. x0 cp(x)dx =0 for a e N3, 1::; lal::; k }. (2.1) 

Obviously, A1 :::> A2 :::> Aa :::> ••• Also, we have Ak =/= 0 for all keN (J.F. Colombeau [7], Lemma 

(3.3.1), p. 55). 

In addition to the above we have the following result: 

LEMMA 2.2. For any k e N 

(2.2)inf (/. !cp(x)ldx) = 1. 
!pEA,. Rd 

More precisely, for any positive real othere exists cp in Ak such that 

1::; ( l'f/(x)!dx::; 1 +6.
la• 

In addition, cp can be chosen symmetric. 
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PROOF. We consider the one dimensional cased= 1 first. Start with some fixed positive (real 
valued)'¢ in 1J(R) such that '1/;(:c) = 0 for l:cl ;?: 1 and f. '1/;(:c)d:& = 1 ('¢can be also chosen symmetric 

if needed). We shall look for cp in the form: 

cp(:c) =tc;¢(~) 
r-0 

:& E R, EE R+· We have to find c1 for which cp e A~:. Observing that 

L:&i'I/J(~)d:c = E(•+l)j Lyi'lj;(y)dy 

fori= 0,1, ... , k, we derive the system for linear equations for c1 : 

The system is certainly satisfied, if 

which can be written in the matrix form V~:+J(E)C = B, where V~:+J(E) is Vandermonde (k+1) x (k+1) 
matrix, Cis the column ofthe unknowns c1 and B is the column whose top entry is I and all others are 0. 

For the determinant we have detVk+1(E) #= 0 forE#= 1, therefore, the system has a unique solution 
(c1, ct. C2, ••. , c~;). Our next goal is to show that this solution is ofthe form: 

c = ± E"•(l+EP;(E)) 
1 (2.3)-EfJ-;:-:(~1+-E-::P-::--:(~E)7-) 

where P; and P are polynomials and 

A:-1 A:-1


L q(k+1-q)+L (k+1-m) 


P=k+E q(k+l-q). 

a1 = (2.4) 
r-1 m=j 

for 0 :5 j :5 k, and 

A:-1 

q=l 

The coefficients co, Ct. ... , c~; will be found by Cramer's rule. The formula for Vandermonde determinants 
gives 

fi IT (~-E"') =fi (ll E"'(~-"'-1))
m=1 q=m+1 m=1 q=m+1 

k k+1 
= E{Jn n (E9-"'-1) = ±E{J(l+EP(E)} 

m=1q=m+1 

for some polynomial P, where 
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k k-1 
(3 = L m(k+1-m) = k + L m(k+1-m). 

m=1 m=1 

To calculate the numerator in (2.3), we have to replace the jth column of the matrix by the column B 

(whose top entry is 1 and all others are 0) and calculate the resulting determinant D1 . Consider first the 

case 1 ~ j ~ k - 1. By developing with respect to the jth column, we get 

f.2 , f.2(j-1) f.2(J+1), , )f.3 , f.3(j-1), f.3(J+1) , ,,.( !, f.3k 
D1 = ±det ~... 

f.k+l f.(k+l){J-1) f.(k+1)(J+1) f.(k·~·1)k1, , , 

We factor out £2,£4, ... , £2(1-1), £2(J+1l, ... , f.2k and obtain: 

1, 
f.(J-1), 

f.(j-1)(k-1) , 

The. latter is a V andermonde determinant again, and we have 

D; = ± f.1•2+2•2+ ...+<i-1)2+(J+1l2+...k-2 

X (f. -1)(£2 -1){£3 -1) ... (f.i-1 -1){f.J+l -1) ... (f.k -1) 

X (£2 _ f.){f.3 _ f.) ... (~-1 _ f.){f.J+l _ f.) ... (i _f.) 

X ................................................................... 


(~-1- ~-2)(f.i+l- f.j-2) ... (f.k- ~-2) 

X (f.j+1_ f.i-l) ... (f.k _ f.j-1) 

Hence, factoring out f.(i- 1Hk-•) in the ith row above, we get D1 = ± £'>1(1 + £Pj(£)) for some 

polynomials P;(£) and 

aj = 1· 2 + 2 · 2 + ... + (j- 1) • 2 + (j + 1) · 2 + ... + k · 2 
+ 1. (k- 2) +2(k- 3) + ... + (j- 1)(k- j) 
+ (j + 1)(k- j- 1) + ... + (k- 1). 1 

= 1. k +2(k- 1) + ... + (j- 1)(k- j + 2) + (j + 1)(k- j + 1) + ... + (k- 1). 3 + k. 2 
j-1 k-1 k-1 k-1 

= L q(k + 1- q) + L (m + 1)(k +1-m) = L q(k + 1- q) + L (k +1-m) 

q=1 m=J q=1 m=J 


which coincides with the desired result (2.4) for a;, in the case 1 ~ j ~ k- 1. For the extreme cases 

j = 0 and j = k, we obtain 

k-1 k-1 k-1 
ao =L (m + 1)(k +1-m) = L q(k + 1- q) + L (k +1-m) 

m=O q=1 m=O 
k-1 

ak =Lq(k+1-q) 
q=l 

which both can be incorporated in the formula (2.4) for a;. Finally, Cramer's rule gives the expression 

(2.3) for c;. 

Now, taking into account that 1/J ~ 0, by assumption, and the fact that I1+£P(£)1 > 11-lf.P(£)11 = 
1- f.IP(£)1 > 0 for all sufficiently small epsilon, we obtain 
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and this latter expression can be made smaller than 1 +ofor sufficiently small £ ifa) j +a1 - (3 > 0 for 

0 :5 j :5 k- 1, and b) k + ak- (3 =0. Now, b) is obvious, as for a), we have: 

k-t 	 1 
j + ai- (3 = j + L. (k +1-m)- k = 2(k- j)(k- j + 1) > 0, 

m=J 

for 0 :5 j :5 k- 1. To generalize the result for arbitrary dimension d, it suffices to consider a product of 

functions ofone real variable. The proofis complete. 0 

3. 	 NONSTANDARD DELTA FUNcriONS 

We prove the existence ofa nonstandard function D in •v(R") with special properties. The proof is 

based on the result of Lemma 2.2 and the Saturation Principle (T. Todorov [6], p. 687). We also 

consider a type of nonstandard cut-off-functions which have close counterparts in standard analysis. The 

applications ofthese functions are left for the next sections. 
LEMMA 3.1 (Nonstandard Mollifiers). For any positive infinitesimal p in •R there exists a 

nonstandard function 8 in •v(R") with values in •R, which is symmetric and which satisfies the following 

properties: 

(i) 8(x) =0 for x E •R", llzll ~ 1; 

(ii) f.a• 8(x)dx = 1; 

(iii) f.a• 8(x)x0 dx =0 for all a ENg, a# 0; 

(iv) f.a•l8(x)!dx ~ 1; 

(v) 	jlnpl-t ( sup l8"8(z)1) ~ 0 for all a ENg; 

:z:e•lll• 


where 	~is the infinitesimal relation in •c. We shall call this type offunction nonstantltud p-mollifiers. 

PROOF. For any k e N, we define the set oftest functions: 

Ak ={rp E V(Rd) : rp is real-valued and symmetric, 

rp(x) = 0 for llzll ~ 1, { rp(x)dx = 1,J•• 
f xarp(x)dx =0 for 1 :5 Ia! :5 k, f jrp(x)!dx < 1 + -k1 }J.. 	 J.. . 

and the internal subsets of"V(R"): 

Ak ={rp e • (Ak) : llnprt (.,:g.la<>(•rp(x))l) < ~ for Ia! :5 k }· 

Obviously, we have At :::> A2 :::> Aa :::> ... and At :::> A2 :::> Aa :::> ... . Also we have Ak # 0 for all 
kEN, by Lemma 2.2. On the other hand, we have Ak c Ak in the sense that rp E Ak implies •rp E Ak, 
since 

sup IB"("rp(z))l = sup ja"rp(z)l = supj8"cp(z)l 
:z:e•R• :z:eR• :z::St 

is a real (standard) number and, hence, lin prt (sup l8"(•rp(z))1) is infinitesimal. Thus, we have 
:z:e•a• 

Ak # 0 for all kin N. By the Saturation Principle (T. Todorov [6], p. 687), the intersection A= n Ak 
keN 

is non-empty and thus, any 8 in A has the desired properties. 0 
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DEFINITION 3.2 (p-Delta Function). Let p be a positive infinitesimal. A nonstandard function D 

in *V(JRd) is called a p-deltajunction if it takes values in *lR, it is symmetric and it satisfies the following 

properties: 

(i) D(x) = 0 for x E *Rd, llxll ~ p, 

(ii) f.lll" D(x)dx = 1, 

(iii) f.R" D(x)x<>dx = 0 for all a ENg, a# 0, 

(iv) J.lll" ID(x)ldx ~ 1, 

(v) lln Pl-1 (pd+l<>l sup 18" D(x)l) ~ 0 for all a ENg. 
:reiR" 

THEOREM 3.3 (Existence). For any positive infinitesimal pin *R there exists a p-delta function. 

PROOF. Let 8 be a nonstandard p-mollifier of the type described in Lemma 3.1. Then the 

nonstandard function D in *V(Rd), defined by 

(3.1) 

satisfies (i)-(v). 0 

REMARK. The existence of nonstandard functions D in *V(Rd) with the above properties is in 

sharp contrast with the situation in standard analysis where there is no Din V(JRd) which satisfies both 

(ii) and (iii). Indeed, ifwe assume that Dis in V(Rd), then (iii) implies 15Cnl (0) = 0, for all n =1, 2, ... , 

where 15 denotes the Fourier transform of D. It follows 15 =15(0) =c for some constant c since 15 is 

an entire function on Cd, by the Paley-Wiener Theorem (H. Bremermann [12], Theorem 8.28, p. 97). On 

the other hand, DE V(JR.d) c S(Rd) implies 151JRd E S(Rd) since S(Rd) is closed under Fourier 

transform. Thus, it follows c = 0, i.e. 15 = 0 which implies D = 0 contradicting (ii). 

For other classes of nonstandard delta functions we refer to (A. Robinson [15], p. 133) and to 

(T. Todorov [16]). 

Our next task is to show the existence ofan internal cut-off junction. 

NOTATIONS. Let n be an open set ofRd. 

1) For any E E R+ we define 

B, = {x E Rd: lixli::; E} and n, = {x En: d(x,an) ~ E}, 

where llx II is the Euclidean norm in Rd' an is the boundary of n and d(X. an) is the Euclidean distance 

between X and an. We also denote: 

V,(n) = {c,o E V(n): supp<p ~ B,}, E~(n) = {T E E'(n): suppT ~ n,}. 

2) We shall use the same notation, *·for the convolution operator* : V'(Rd) x V(Rd) --+ E(Rd) 

(V. Vladirnirov [13]) and its nonstandard extension*: *V'(JRd) x *V(Rd)--+ *E(JRd) as well as for the 

convolution operator * : E~(n) x V,(n) --+ V(n), defined for all sufficiently small 1: E R+, and for its 

nonstandard extension: *: *E~(n) x •v,(n) ..... *V(n), ~: E *JR+, ~: ~ 0. 

3) Let T be the usual Euclidean topology on Rd. We denote by n the set of the nearstandard 

points in •n, i.e. 

n=up.(x), (3.2) 
xen 

where p.(x), x E Rd, is the system of monads of the topological space (JRd, T) (T. Todorov [6], p. 687). 

Recall that ifeE •n, then eE 0 ifand only ifeis a finite point whose standard part belongs ton. 

LEMMA 3.4. For any positive infinitesimal pin *R there exists a function II in *V(n) (a p-cut-off 

function) such that: 

a) II(x) = 1 for all x E fl; 
b) supp II~ •np. where •nP = {e E •n: *d(e,an) ~ p}. 



423 EMBEDDING OF SCHWARTZ DISTRIBUTIONS 

PROOF. Let p be a positive infinitesimal in *Rand D be a p-delta function Define the internal set 

X= {{ e •n: "11{11 $ 1/p, "d({, 80) ~ 2p} and let x be its characteristic function. Then the function 

TI = X *D has the desired property. 0 

4. THE ALGEBRA OF ASYMPTOTIC FUNCI'IONS 

We define and study the algebra PE(O) of asymptotic functions on an open set n of Rd. The 

construction of the algebra P£(0}, presented here, is a generalization and a refinement of the 

constructions in [9) and [10) (by the authors of this paper, respectively), where the algebra PE(Rd) was 
introduced by somewhat different but equivalent definitions. On the other hand, the algebra of 

asymptotic functions PE(O) is somewhat similar to but different from the I. F. Colombeau [7], [8] 

algebras of new generalized functions. This essential difference between PE(O) and I. F. Colombeau's 

algebras of generalized functions is the properties of the generalized scalars: the scalars of the algebra 

PE(O) constitutes an algebraically closed field (as any scalars should do) while the scalars of I. F. 

Colombeau's algebras are rings with zero divisors (I. F. Colombeau [8], §2.1). This improvement 

compared with I. F. Colombeau's theory is due to the involvement ofthe nonstandard analysis. 

Let 0 be an open set ofR" and p E *R be a positive infinitesimal. We shall keep 0 and pfixedin 

what follows. 

Following A. Robinson [2], we define: 

DEFINITION 4.1 (Robinson's Asymptotic Numbers). The field of the complex Robinson p

asymptotic numbers is defined as the factor space PC = eM /Co. where 

CM = {{ E "C: 1{1 < p-n for some n EN}, 
Co= {{ e"C: 1{1 < pn for all n eN}, 

(" M" stands for "moderate"). We define the embedding c c PC by c-+ q(c), where q: eM -+PC is 

the quotient mapping. The field ofthe real asymptotic numbers is defined by PR = q(*R n CM ). 

It is easy to check that Co is a maximal ideal in CM and hence PC is a field. Also PR is a real closed 

totally ordered nonarchimedean field (since *R is a real closed totally ordered field) containing R as a 

totally ordered subfield. Thus, it follows that PC = PR(i) is an algebraically closed field, where 

i=V-1. 
The algebra of "asymptotic functions" is, in a sense, a 0 00-counterpart of A. Robinson's asymptotic 

numbers PC: 
DEFINITION 4.2 (Asymptotic Functions on 0). (i) We define the class PE(O) ofthe p-asymptotic 

junctions on n (or simply, asymptotic junctions on n if no confusion Could arise) as the factor space 

PE(O)=EM(O)/Eo(O), where 

EM(O)={/e*E(O):O"/({)ECM, forall aeNg andall {eO}, 

Eo(O) = {! e *E(O) : 8" f(e)} e Co. for all a eNg and all { e fi}, 


and 0 is the set of the nearstandard points of*{} (3.2). The functions in EM(O) are called p-moderate 

(or, simply, moderate) and those in Eo(O) are called p-nulljunctions (or, simply, nul/junctions). 

(ii) The pairing between PE(O) and V(O) with values in PC, is defined by 

{Qn(J),rp) =q(Jn f(z) "rp(z)dz), 

where q: eM-+ PC and Qn: EM(O)-+ P£(0) are the corresponding quotient mappings, I{J is in V(O) 

and "rp is its nonstandard extension. 

(iii) We define the cononical embedding E(O) c PE(O) by the mapping Un : J -+ Qn c·f), where •I 
is the nonstandard extension off. 
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EXAMPLE 4.3. Let D be a nonstandard p-delta function in the sense of Definition 3.2. Then 

DE EM(Rd). In addition, D 1•n e EM(f!), where D 1·n denotes the pointwise restriction of Don •n. 

To show this, denote llnpl-1 (pd+iai sup 18'> D(x)l) =h0 and observe that h0 R:l 0 for all a ENg, 
ze•Rd 

by the definition of D. Thus, for any (finite) x in •Rd and any a ENg we have 18'> D(x)l $ 

sup 18'>D(x)l = ~!4.~1 < p-", for n = d + lal + 1, thus, DE EM(Rd). On the other hand, 
ze•Rd 

D l·n E EM(n) follows immediately from the fact that nconsists offinite points in •Rd only. 

THEOREM 4.4 (Differential Algebra). (i) The class ofasymptotic functions PE(fl) is a differential 

algebra over the field ofthe complex asymptotic numbers PC. 

(ii) E(fl) is a differential subalgebra of PE(f!) over the scalars C under the canonical embedding 

un. In addition, u0 preserves the pairing in the sense that {/, cp) = {u0 {!), cp) for all fin E(n) and for 

all cp in V(fl), where{/, cp) = J0 f(x)cp(x)dx is the usual pairing between E(fl) and V(fl). 

PROOF. (i) It is clear that EM(f!) is a differential ring and Eo(fl) is a differential ideal in EM(n) 

since CM is a ring and Co is an ideal in CM and, on the other hand, both EM(f!) and Eo(fl) are closed 

under differential, by definition. Hence, the factor space PE(f!) is also a differential ring. It is clear that, 

EM(n) is a module over the ring CM and, in addition, the annihilator { c E CM : cf E Eo(fl), f E EM(fl)} 

of CM coincides with the ideal Co. Thus, P£(f!) becomes an algebra over the field of the complex 

asymptotic numbers PC. 

(ii) Assume that u0 (•f) = 0 in PE(f!), i.e. • f e Eo(fl). By the definition of Eo(fl) (applied for 

a= 0 and n = 1), it follows f = 0 since • f is an extension off and p is an infinitesimal. Thus, the 

mapping f-+ un{f) is injective. It preserves the algebraic operations since the mapping f-+ • f 

preserves them. The preserving of the pairing follows immediately from the fact that J.0 • f(x)dx = 
fn f(x)dx, by the Transfer Principle (T. Todorov [6], p. 686). The proof is complete. D 

5. EMBEDDING OF SCHWARTZ DISTRIBUTIONS 

Let n be (as before) an open set ofRd. Recall that the Schwartz embedding Ln : .C~oc(fl) -+ 'D'(fl) 

from .C~oc(fl) into 'D'(fl) is defined by the formula: 

(Lo(/),cp) = f(x)cp(x)dx, cp E V(f!). 	 (5.1)L 
Here .C~oc(fl) denotes, as usual, the space of the locally (Lebesgue) integrable complex valued functions 

on n (V. Vladintirov [13]). The Schwartz embedding Lo preserves the addition and multiplication by a 

complex number, hence, the space .C~oc(fl) can be considered as a linear subspace of'D'(fl). In addition, 

the restriction Lo IE(fl) of Loon E(fl) (often denoted also by Lo) preserves the partial differentiation of 

any order and in this sense E(fl) is a differential linear subspace ofV'(fl). In short, we have the chain of 

linear embeddings: .C~oc(fl) c E(fl) c 'D'(n). 

The purpose of this section is to show that the algebra of asymptotic functions PE(fl) contains an 

isomorphic copy of the space of Schwartz distributions 'D'(fl) and, hence, to offer a solution of the 

Problem ofMultiplication ofSchwartz Distributions. This result is a generalization ofsome results in [9] 

and [10] (by the authors of this paper, respectively) where only the embedding of the tempered 

distributions S'(Rd) in P£(Rd) has been established. The entbedding ofall distributions 'D'(fl), discussed 

here, presents an essentially different situation. 

The spaces !tn) and V(f!), defined below, are immediate generalizations of the spaces ~d) and 

V(Rd), introduced in (K. D. Stroyan and W. A. Luxemburg [17], (10.4), p. 299): 

!tn) = { cp e • E(f!) : 	lrcp(x) is a finite number in •c for all 
X E 0 and all a E Ng}, (5.2) 
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f(O) = {cp E • E(O) : 	OOcp(x) is a finite number in ·c for all 

x Eft, a ENg and cp(x) = 0 for all x E *0\fl}, (5.3) 

Obviously, we have V(O) c a:o) c EM(O). Notice as well that cp E V(O) implies cp E *'D(G) for 

some open relatively compact set G ofO. We have also the following simple result: 

LEMMA 5.1. If T E 'D'(O) and cp E Eo(O) n V(O), then (*T, cp) E Co. 
PROOF. Observe that Eo(O)nV(O) implies cp E Eo(O) n *V(G) for some open relatively 

compact set G ofO. By the continuity ofT (and Transfer Principle) there exist constants ME JR.+ and 

m E No such that 

j(*T,cp)j:::; M L sup j8~'cp(x)j. 
ll'l$m :r:E"G 

On the other hand, M E sup j8~'cp(x)j < pn for all n EN, since cp E Eo(O), by assumption. Thus, 
ll'l$m :r:E"G 

j(*T,cp)j < pn foralln EN. 0 
Let D be a p-delta function in the sense of Definition 3.2. We shall keep D (along with 0 and p) 

fixed in what follows. 

DEFINITION 5.2 (Embedding of Schwartz Distributions). We define the embedding 

V'(O) c P£(0) by ED.n : T-+ Qn((*TTin) *D), where *Tis the nonstandard extension ofT, Tin is 

a (an arbitrarily chosen) p-cut-offfunction for 0 (Lemma 3.4), *Tlln is the Schwartz product between 

*T and Tin in *'D'(O) (defined by Transfer Principle), * is the convolution operator and 

Qn : EM(O) -+ Pf(O) is the quotient mapping in the definition ofPE(O) (Definition 4.2). 

The cut-off function Tin can be dropped in the above definition, i.e. ED,n : T -+ Qn(*T *D), in 

some particular cases; e.g. when: 

a) T has a compact support in 0; 

b) O=Rd. 

PROPOSmON 5.3 (Correctness). T E 'D'(O) implies (*TTin) *DE EM(O). 

PROOF. Choose a ENg and all x En. Since we have OO((Tin*T) * D)(x) = (OO(*T) *D)(x) 

(by the definition of Tin), we need to show that 8°(*T*D)(x) E CM only, i.e. that 

j80(*T* D)(x)j < p-m for some mEN (m might depend on a). We start with the case a= 0 

Denote D:r:(~) = D(~- x), ~ E *R. and observe that supp(D:r:) ~ *G for some open relatively compact 

set G of 0, since Dz vanishes on *0\fl. Next, by the continuity ofT (and the Transfer Principle), there 

exist constants m E N0 and M e R.+ such that 

Finally, there exists n E N such that E sup I8fD(x - ~)I < p-n, since D j•G is a p-moderate 
ll'l$m {E"G 

function (Example 4.3). Combining these arguments, we have: j(*T*D)(x)j:::; M p-n < p-(n+I), as 

required. The generalization for arbitrary multiindex a follows immediately since 80(*T *D) = 
(8°(*T)) * D =*({}'>T) * D, by Transfer Principle, a {}'>Tis (also) in 'D'(O). 0 

PROPOSmON 5.4. 	I E 8:11) implies (f Tin)* D- I E Eo(O). 

PROOF. Let xEfl and aENl Since we have {}'>[((ITin)*D)(x)-l(x)]= 

80[(/ * D)(x)- l(x)) (by the definition of Tin), we need to show that aa[(/ * D)(x)- l(x)] E Co 

only. Choose n EN. 	We need to show that !80[(/* D)(x)- l(x)JI < p". We start first with the case 

a = 0. By Taylor's formula (applied by transfer), we have 
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f(x-e)-f(x)=t (-t>'"'~"f(x)e"+C-It+: 2: a"t(Tf(e))eP 
IPI=l (3. (n + 1)· IPI=n+l 

for any e E 0, where Tf(e) is a point in •{} "between x and e.• Notice that the point Tf(e) is also in 0 It 
follows 

since JI{USP D(e)e"de = 0, by the definition of D. Thus, we have 

!(! * D)(x)- f(x)l s ( 	pn++11)' ( r ID(x)!dx) ( L sup lfJ"f(Tf(e})l) < pn' 
n · j.R4 IPI=n+ti{ISP 

as desired, since, on one hand, f·R•ID(x)!dx ~ 1, by the definition of D and on the other hand, the 

above sum is a finite number because •fJPf(f1(e}) are all finite due to fl(e) E G. The generalization for 

an arbitrary a is immediate since 8"((/*D)(x)- f(x)J = (8"/*D)(x)- 8"/(x), by the Transfer 
Principle. 0 

' COROLLARY 5.5. (i) f E E(S"l) implies (• /fin)* D- •f E Eo(S"l). 
(ii) cp E 'D(S"l) implies ("cplln) * D- 0 VJ E Eo(S"l) nv(O). 

PROOF. (i) follows immediately from the above proposition since f E E(S"l) implies •f E ~S"l). 


(ii) Both ("cp lin)* D and •cp vanish on "!l\0 since their supports are within an open relatively 

compact neighborhood G ofsupp(cp) and the latter is a compact set of n, by assumption. Thus, 

c·VJIIn)*D- •cp e"V(G) c V(S"l), as required. 0 

Denoteb(x) = D(- x) and recall that b =D since Dis symmetric (Definition 3.2). 

PROPOSmON 5.6. IfT E V'(S"l) and cp E 'D(!l), then 


l.n (("Tfln) * D)(x) •cp(x)dx- (T, cp) E Co. 

PROOF. Using the properties ofthe convolution operator (applied by transfer), we have 

Jn ((•Trrn) * D)(x) •cp(x)dx- {T, cp) 

= ((•Trrn) * D, •cp)- (•T, •cp) = (•Trrn, •cp *D)- (•Trrn, •cp) 

= (•Trrn, •cp * b - •cp) = (•T, •cp * D- •cp) E Co. 

by Lemma 5.1 since •cp * D- •VJ E Eo(S"l) n V(!l), by Corollary 5.5. 0 
We are ready to state our main result: 

THEOREM 5.7 (Properties ofEo,n). (i) Eo,n preserves the pairing in the sense that for all Tin 

V'(S"l) and all cp in V(S"l) we have {T, cp) = (ED,n(T),cp), where the left hand side is the (usual) pairing 
ofT and cp in V'(S"l), while the right hand side is the pairing ofED,n(T) and cp in P£({}) (Definition 4.2). 

(ii) r:D,n is injective and it preservers all linear operations in V' ({}): the addition, multiplication by 

(standard) complex numbers and the partial differentiation ofany (standard) order. 

(iii) ED,n is an extension of the canonical embedding o-n defined earlier in Definition 4.2 in the 

sense that o-n = ED,n o Ln. where Ln is the Schwartz embedding (5.1) restricted on E(S"l) and o 

denotes composition. Or, equivalently, the following diagram is commutative: 
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V'(O) 

Ln/ 
E(O) !ED,o (5.4) 

uo ....._ 

P£(0). 

PROOF. (i) Denote (as before) D(:c) =D(- :c) and recall that .b(:c) =D (Definition 3.2). We 
have 

(ED,o(T), <p} = (Qo(("Tllo) *D), <p} - (T, <p} 

=q(fo ((ll0 "T)*D)(:t) "<p(:t)d:t)- q((T,<p}) 

= q(fo (("Tll0 ) •D)(:t) "<p(:t)d:t- (T,<p}) =0, 

because J.0 ((•Tno) * D)(:c) •tp(:t)d:t- (T, <p} E Co. by Proposition 5.6. Here (T,<p} =q((T, <p}) 

holds because (T, tp} is a standard (complex) number. 

(ii) The injectivity of ED,n follows from (i): ED,n(T) =0 in P£(0) implies (ED,n(T), <p} =0 for 

all <p E V(O), which is equivalent to (T, <p} =0 for all <p E V({}), by (i), thus, T = 0 in V'(O), as 

required. The preserving ofthe linear operations follows from the fact that both the extension mapping • 

and the convolution* (applied by Transfer Principle) are linear operators. 

(iii) For any f E E(O) we have u(f) =Qn(• f)= Qn((•flln) *D) =Qn((" L(/)110 ) *D) = 
ED,n(L(!)), as required, since"/- (•/lin)* DE Eo(O), by Corollary 5.5. 0 

REMARK 5.8 (Multiplication of Distributions). As a consequence of the above result, the 

Schwartz distributions in V'(O) can be multiplied within the associative and commutative differential 

algebra P£(0) (something impossible in V'(O) itself). By the property (iii) above, the multiplication in 

PE(O) coincides on E(O) with the usual (pointwise) multiplication in E(O). Thus, the class P£(0), 

endowed with an embedding ED,n. presents a solution of the problem of multiplication of Schwartz 

distributions which, in a sense, is optimal, in view ofthe Schwartz impossibility results (L. Schwartz [1]) 

(for a discussion we refer also to J. F. Colombeau [7], §2.4 and M. Oberguggenberg [18), §2). We 

should mention that the existence of an embedding of'D'(Rd) into PE(Rd) can be proved also by sheaf

theoretical arguments as indicated in (M. Oberguggenberger [18), §23). 

REMARK 5.9 (Nonstandard Asymptotic Analysis). We sometimes refer to the area connected 

directly or indirectly with the fields PR as Nonslandartl Asymptotic Analysis. The fields PR were 

introduced by A Robinson [2] and are sometimes known as "Robinson's nonarchimedean valuation 

fields." The terminology "Robinson's asymptotic numbers,• chosen in this paper, is due to the role of PR 
for the asymptotic expansions of classical functions (A. H. Ughtstone and A. Robinson [3]) and also to 

stress the fact that in our approach PC plays the role of the scalars of the algebra P£(0). Unear spaces 

over the field PR has been studied by W. A. J. Luxemburg [19] in order to establish a connection between 

nonstandard and nonarchimedean analysis. More recently PR has been used by V. Pestov [20) for 

studying Banach spaces. The field PR has been exploited by Li Bang-He [21] for multiplication of 

Schwartz distributions. 
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