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This paper details the results of ongoing efforts to improve upon the meshing techniques
required to produce accurate RANS CFD solutions for attached and separated flows for
a Circulation Control aircraft. Work, thus far, under the current NASA Research An-
nouncement (NRA) project has revolved around an unstructured near-body volume mesh
due to its robustness for complicated geometries, However, it has been found that this
technique does a poor job capturing detailed flow features such as the boundary layer,
shear layer, and wake of large velocity-gradient regions. Its hindrance is primarily due to
the limitations of current computational resources, thus new techniques are investigated
to improve the quality of CFD solutions while not impeding on resources. High quality
hybrid near-body volume meshes that combine structured and unstructured meshing have
been utilized to meet the goals of the project. The area around the engine and circulation
control slots serves as the basis for improved meshing techniques. So far, a hybrid mesh
has been successfully generated around the engine and the results of the CFD solutions
have improved immensely.

The focus of this paper is to show a comparison of the quality of the CFD solution
of old and new meshing techniques. In addition, preliminary results of a hybrid mesh
eround the circulation control slots are discussed and will be the focus of future work.
It has been determined thet the primary meshing software used, ICEM CFD does not
allow enough user control to adaguately refine particular regions in the flow fleld, thus,
alternative meshing software will have to be explored. Current computing resources limit
the total size of the mesh to about 35 million, However, given this constraint, the results
clearly show that the hybrid mesh attains more refined and stable CFD solutions.

Nomenclature
A Ares
b = Wing span
Cu = Jet momentum blowing coefficient
h = Jet slot height
M = Mach Number
m = Mass flow rate
P = Static pressure
g = Dynamic pressure
R = (as constant
S = Wing planform area
i = Static temperature
U = Velocity magnitude
yt = Dimensionless wall distance
Subscripts
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00 = Freestrean property

0 = Stagnation property

jet = Jet slot property
Conventions

cec = Circulation control
CCW = Circulation control wing
LE = Leading edge

MAC = Mean aerodynamic chord
NFAC = National Full-Scale Aerodynamic Complex
TE = Trailing edge

Greek Symbols

P = Density

¥ = Specific heat ratio

I. Introduction

THE basis for computational analysis in this paper revolves around the implementation and interaction
between circulation control wings (CCW) and upper surface blowing (USB). This complex coupling has
been studied for years as a way to improve the Short Take-Off and Landing (STOL) performance of an
aircraft! . STOL configurations are one way researchers are irying to tackle the problem of globel air traffic
congestion. The problem doesn’t appear to be slowing down either as the Burean of Transportation Statistics
recently reported that passenger traffic on U.S airlines increased 1.8% in August 2010.compared to the same
time in 2000 . Air traffic congestion causes unnecessary and excess fuel usage in addition to the air and noise
. pollution assmna.ted with it near ajrports.

A. Advanced Model for Extreme Lift and Improved Aeroacoustics

The Advanced Modsl for Extreme Lift and Improved Aeroacoustics (AMELIA) as seen in Fig, 1 is the
focus of research at Cal Poly funded under NASA’s Subsonic Fixed Wing Program. The collaborative effort
culminates into The Integrated Modeling and Verification of Hybrid Wing-Body Low Noise ESTOL Aircraft.
Aerodynamic and aeroacoustic snalysis will be carried out in an offort to develop and validate predictive
modeling capabilities for AMELIA. In addition, a large scale wind tunnel test will be condueted in the 40
foot x 80 foot wind tunnel at the National Full-Scale Aercdynamic Complex (NFAC) at Moffett Field, CA
in the fall of 2011. Much of the esearch thus far for AMELIA revolves around aerodynamics, turbulence
modeling, and developing CFD techniques required to reasonably predict accurate CFD solutions, Marshall?
-gives a complete description of current and future goals of the AMELIA project. Table 1 lists many features
AMELIA possess which complicates the meshmg process slgmﬁcautly
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Figure 1. Cal Poly's CESTOL aircrafi AMELIA

Table 1. Advanced Features of AMELIA
Over-the-Wing Engines

Swept Wing

Tapered Wing

Leading Edge Circulation Control Slots
Trailing Edge Circulation Control Slots
Deflected Flaps

Wind Tunnel Wall Effects

TUS T 62 B

B. Circulation Control Overview

AMELIA utilizes circulation contrel to generate its STOL capabilities. Lift is traditionally generated for
subsonic aivfolls through increasing angle of attack and/or camber, However, the increase in 1ift eventually
builds an adverse pressure gradient over the surface of & traditional wing causing the flow to seperate and
Jimit the wing’s maximum lift coefficient. To overcome this, the use of complex devices such as flaps and
slats are utilized at the expense of overall mechanical complexity, noiss, and cost.

As a balance, AMELIA implements a circulation control wing (CCW), an active flow control device
ag a simpler and more effective performance alternative to the usual high-lift devices seen on conventional
airerafts.® Figure 2 gives a general overview of the technology while Figure 3 shows the cross section of the
CCW with the trailing edge flaps undeflected. The mechanical simplification of circulation control devices
over traditional flaps and slats help reduce noise and drag upon takeoff and landing. This is due to large
complex wing components no longer obstructing the fresstream Dow. The largest effect of nsing CCW will
be seen during takeoff and landing where high lift coefficients are needed at low airspeeds. This technology
is made possible through the use of the Coanda effect along the adjacent curved surface of the wing, where
the accelerated ﬂmd is able to stay attached for an extended amount of time, thus delaying separation
and increasing lift.* Moreover, the camber of the airfoil and dual radius flap are manipulated such that
the stagnation point on the leading edge and fow separation point on the trailing edge provides a positive
circulation around the wing and consequently increasing lift. In addition, initial research into the flow physics
of AMELIA reveals additional unexpected lift through the engine exhaust entrainment due to the downward
momenturn strength of the circulation control jet stream. This can be seen in Figure 4 and comes from
the work of Blessing.® Overall, AMELIA produces lift through three sources: 1). Traditional lift through
airfoil preduction 2). Circulation control slots through Coands effect 3). Engine exhaust entrainment similar

3of 22

American Institute of Aeronauties and Astronsutics




to Upper Surface Blowing technology. The increased lift production observed can improve immensely the
takeoff and landing performance of aircrafts and can enable large aircrafts to operate out of smaller airports,
thus alleviating the growing problem of air traffic congestion. The extent of the stegnation and soparation
point movement is primarily a function of the jet momentum coefliclent, Cp, which is & measure of the jet
mementum relative to the freestream momentum. It is represented by Equ. (1).

b TANGENTIAL BLOWING OVER
i e, . ROUNDED COANDA SURFACE
SLOT, - N

. PRESSURE -~ CENTRIFUGAL
FORCE BALANCE

Figure 2, General characteristics of circulation control technology

&/////

Figure 3. Circulation control alrfoll with leading edge and trailing edge slots

I , 5 Engine
¢ Lengths

Figure 4. Engine exhaust entrainment due to downward momentum strength of circulation control jot stream

II. Model Description

The following section will discuss the model used during experimental testing and for computational
analysis in this paper.

A, Experimental Model

The experimental aspect of this contract will culminate in a full scale wind tunnel test of the AMELIA
model. An in depth description of the experimental model as well as overall project details is provided by
Marshall et al.? Figure 5 shows a cut away view of the wind tunnel model, highlighting the leading and
trailing edge circulation control slots es well as the TPS unit.
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Filgure B, Schematic of AMELIA experimental model

B. Computational Model

For the computational analysis, many features from the experimental model were removed to simplify
and obtain reasonable meshes. Figure 6 shows the simplified computational model of AMELIA. Features
that were removed include the wind tunnel sting, engine pylon, and fuselage blend. All of which were deemed
negligible on the aerodynamic effects of AMELIA. Even after simplification of the model, AMELIA possesses
many foatures that pose a challenge on the meshing process.

The first is the “scissor-like junction” seen in Fig. 7 that the flaps make with the wing when deflected
for takeoff and landing configurations. Generating an error-free high quality boundary layer mesh neer these
two junctions has become very difficult. The most complex feature of AMELIA is the circulation control
slots located on the leading edge and treiling edge of the wing seen in Fig. 8. The slot varies in height
from inhoard to outboard of the wing, where the smallest Is 0.137 inches. The mean aerodynamic chord
(MAC) of AMELIA is 18.6 inches, which makes the smallest gap in the slot 0.74% of the MAC. The drastic
change in size from the slots to the remaining wing makes it very challenging to generate a good mesh that
is within the Iimitations of existing computational resources. The last troubling issue about AMELIA iz the
large change in flow speed relative to freestream in the wake of the trailing edge circulation control slote and
the engine. The ratio of flow spesd of the slot wake to freestream flow is about 6, while the engine wake's
ratio to freestream flow is about 4. These large flow speed ratios generate a strong shear layer that’s been
measured from the preliminary CFD solutions to travel at least 20 chord lengths downstream. The challenge
this poses is that the mesh in the region of the shear layer and wake must be fine enough to capture the
details of the flow feature, but existing computational resources limit the number of mesh elements that can
exist in the computational model,
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A

Figure 6. Simplified computational model of AMELIA

Mesh
Difficulty

Figure 7. Difflcult “sclssor-junction” - outboard (left) Inboard (right)

B <1% M.ACY

Figure 8. Circulation control slots - leading edge (left) trafling edge (right)

ITI. Mesh Generation

The mesh generation software chosen for this NRA is ICEM CFD.® Careful mesh generation must be
taken to onsure that the final mesh exhibits good quality elements. The quality of the mesh has significant;
implicetions on the convergence, stability, and accuracy of the numerical simulation. The type of mesh chosen
can also determine the success or failure in attaining a computational solution. The mesh must be sufficiently
fine to provide an adequate resolution of the important flow features and geometry topology. Recirculation
vortices and steep flow gradients within the viscous boundary layer have been observed in preliminary CFD
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solutions, thus requiring proper mesh resolution where these flow features are expected. The final mesh
used for numerical simulation consists of four key components. The first is a high-quelity surface mesh that
maps itself to the computational model followed by a boundary layer and shear layer mesh that can capiure
complex viscous effects. Then there needs to be a refined near-body volume mesh that can capture the
unsteadiness of the flow pessing over the computational model. Lastly, there needs to be a far-body volume
mesh resolved enough fo capture flow features expected to extend many chord lengths downstream of the
computational model such as wingtip vortices, circulation control flow, and engine exhaust. In addition,
the far-body volume mesh must be large enough to allow these secondary flow features to dissipate into the
freestream flow.

Since the beginning of the NRA project, the meshing approach has revolved around a near-body unstruc-
tured volume mesh. This approach (1st Method) has been utilized for its robustness of modeling complex
geometries like AMELIA and has yielded encouraging results of the general nature of the cirenlation control
wing interacting with the engine. However, this approach has done a poor job capturing important flow
features near the computational model that are essential to producing the most accurate validation data
for the future wind tunnel test. The mesh regions that need to be improved first are in areas of large flow
gradients such as the engine exhaust and high speed air accelerated through the efrculation control slots.
Work under this NRA project that uses the 1st Method can be seen in Blessing et al.,%7 Marcos et al.5?
and Lichtwardt et al. In addition, there has been 2-dimensional work that hag utilizes fully structured
meshes end can be seen in Lane et al.,!! Golden et al.!? and Storm et al.’¥ The work from this paper has
built and improved upon the methods learned thus far in simulating circulation control fowfileds.

For the latest approach (2nd Method), it has been proposed to generate a siructured mesh in certain
regions to improve the mesh quality. The structured regions will be merged with unstructured elements to
meke a hybrid mesh. The 2nd Method provides much more user-control over meshing parameters which
become importent in capturing complex flow regions, but it comes at the expense of time. Although it takes
significantly longer in creating a structured mesh than an unstructured mesh, it iz a necessity in obtaining
the most accurate solution possible and offers many benefits over the 1st Method. The areas of most concern
are the region around and behind the following: (1) engine (2) trailing edge circulation control slots (3)
leading edge circulation control slots This paper focuses on improvements made to the mesh around the
engine,

The following sections will discuss the mesh generation procedure highlighting the four key components
mentioned previously. The first two sections discuss the near-body mesh generation of the 1st and 2nd
Method. The last section will discuss the far-body mesh generstion that has been used for both methods.
The total mesh count of the 1st Method was about 34 million elements, while the 2nd Method was about
36 million elements.

A. Near-Body Unstructured Meshing (1st Method)

The 1st Method uses the Octree Algorithm within ICEM CFD to generate the surface and near-body
volume mesh. This approach begins with a tetrahedron that encloses the entire computational model and is
subdivided until all mesh size requirements set on the surface and volume of the model have been met. This
top-down approach allow for faster mesh generation because it only refines the mesh where necessary, while
maintaining larger elements everywhere elss. The Octree method is great for computing a preliminary CFD
solution for understanding the general flow features of the computational model. However, when genorating
validation data for a wind tunnel test, all complex flow features of the model must be captured and that’s
where the Octree method does & poor job. This has been improved upon and will be discussed in a later
section of this paper.

1. Surface Mesh

There ars various ways to generating a surface mesh. One can use all structured clements, all unstructured
elements, or & combination of both. Unstructured surface meshing was chosen ag it is the emslest and
fastest. There are two methods in ICEMCFD for creating this surface mesh: 1) patch-dependent 2) patch-
independent. The patch-dependent method requires a high-quality CAD model and tedious mesh size curve
satting in order to generate a proper mesh. With more time, this method would be used because it yields a
higher-quality surface mesh and allow the user more confrel over mesh parameters. The patch-independent
method is best for low quality CAD models with poor connectivity. The surface mesh is created using the
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top-down Octree method which requires minimal input from the user and thus can be created very quickly.
To start the Octree method, mesh sizes must be set for each part in the computational model. Parts that
do notf present severe curvature, such as the fuselage, flat surfaces of the wing and the tail, were set with
coarse sizes. Surfaces that do present a lot of curvature, such as the leading edge and trailing edge of lifting
surfaces are meshed with finer sizes so that the topology of the geometry can be captured.

The circulation control slots exhibited by the leading and trailing edge of the wing are the most novel
features of this model. The air accelerated from these slots produce a strong viscous dominated region
downstream. It is essential that these slots are adequately resolved in order to capture a high resolution fow
field. Figure 9 shows the surface meshes of the forward and aft end of the wing using the Octree method.

Finer Mesh Due to
, ¢ Flow Gradients
Figure 9. Unstructured surface mesh of wing, clrculation control slots, 82 engina

2. Boundary Leyer Mesh

To create the near-wall mesh, prisms are generated off the surface triangles. Prisms are used instesd of
tetrahedrals because they can be easily adjusted in accordance with the near-wall turbulence model require-
ments which will become an important issue in accurately capturing viscous effects. For most applications,
it is acceptable to model the boundary to have at least one element within the fully turbulent log-law layer
and allow the solver to use wall functions!4 to bridge the gap between the surface of the model and the fully
turbulent log-law layer. Wall functions will be discussed further in Section V. This method will be teken in
order to obtain solutions more rapidly. As the mesh and solver settings become more evolved, modeling the
mesh near the wall will migrate from the wall functions approach to & much more refined mesh near the wall
so that the viscous dominated region can be fully resolved.

The high quality mesh that is desired will require careful consideration to cell shape in terms of aspect
ratio, skewness, and warp angle. If care is not taken in the mesh setup, prism elements will exhibit very poor
quality in these categories. Elements with large aspect ratios should alweys be avoided in critical regions of
the flow field. These types of elements can degrade the solution accuracy and may result in instability of
the simulation. As for skewed elements, this will be inevitable. It is up to the user to maintain as little as
possible the nurber of slements below a certain skewness quality. For complicated geometries like AMELIA
that confain very small features, this bhas been very difficult, Most mesh-generating packages have built-in
smoothing algorithms that can help remedy the complications expected to be seen in building prism elements
on the model.

‘T'here will be prisms, tetrahedral, and hexahedral elements used to model the volume of the computational
domain. To ensure a good mesh, the user needs to consider volume transition ratic. For a good volume
transition from the surface triangles to the volume elements, each prism element follows a 40% volume growth.
ratio. As for the interface batween the prisms and tetrahedrals, the user should aim to have the last prism
element be roughly 1:1 in volume ratio to the adjacent tetrahedral element. Figure 10 shows an example of
how prism elements are to be mapped for sach surface of the aircraft meodel,
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Figure 10. Prism boundary layer mesh bridging surface triahgles and volume tetrahedrals

3. Volume Mesh

Constructing & good mesh in the region near the computational model will be important as it presents a
lot of the unsteadiness that is expected to occur in the numerical simulation. Thus, the user must be extra
careful choosing the proper techniques to model this region. Typically, there are three methods: (1) fully
unstructured (2) fully structured (3) hybrid. This section outlines the use of fully unstructured meshing
while Section B will discuss the hybrid method.

Tetrahedral elements are well suited for handling arbitrary shape geometries. This proves to be a major
plus as the AMELIA configuration contains complex features. Employing unstructured tetrahedral meshing
to the domain will inherently increase the total cell count because it has be to adequately fine enough to
resolve the important flow features in that region. As mentioned previously, the near-body volume mesh is
created using the top-down Octree Algorithm. Figure 11 shows a full cutplane view of the near-body volume
mesh. These elements extend up to 2 chord-lengths in all directions away from the nearest point on the
computational model to anticipate the highly unsteady flow regime that surrounds the model.

Figure 11. Cutplane of near-body unstructured volume mesh

B. Near-Body Hybrid Meshing (2nd Method)

This section outlines the improvements to the meshing techniques previously discussed. For the first
improvement, the algorithm chosen to generate the unstructured tetrahedral elements has been improved.
The 2nd Method now uses the TGrid Delaunay Algorithm6 instead of the Octree Algorithm. Unlike the
Octree method, the Delaunay method creates a tetrahedral mesh using a bottom-up approach from an
existing surface mesh. This approach creates a smoother transition in the volume element size. The second
improvement is the creation and merging of a structured mesh around the engine, This type of mesh creates
quadrilaterals on the surface of the model and hexahedrals in the volume. The Hybrid meshing approach
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improved the quality of the mesh around the engine immensely, while staying within the limitations of
computationsal resources.

1. Surface Mesh

As mentioned, a surface mesh must exist in order to run the Delaunay method. The surface mesh wes
created using the Octree method and then deleting the volume elements afterward. To create the structured
mesh around the engine, it must be prepared with a structured surface mesh. A multi-bloek scheme was
created around and behind the engine where mesh sizes were manually set to match user requirements. The
blocking scheme can be seen in Fig. 12, The surface mesh of the engine can be seen in Fig. 13 compared
to the unstructured surface mesh used in the 1st Method. The structured approach improved the quality of
the mesh, while also reducing the cell count by 30%.

A

i

|
|
.;

Figure 12. Multi-blocking around and behind the engine
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155,000 elements

Figure 13. Surface mesh comparisen of engine: unstructured (top row) structured (bottom row)

2. Boundaery Loyer Mesh

Numerical simulation of high Reynolds number flow creates strong gradients normal to the surface of the
computational model and across shear layers. Modeling the boundary layer and shear layer adequately is
one of the most crucial aspects of a high-quality mesh. To model these regions correctly, the mesh resolution
should be much finer compered to the average resolution of the model. In order to keep the mesh size
manageable, anisofropic elements are needed, thus, the biggest benefit to creating a structured mesh is the
amount of control the user has over mesh parameters. This allows the user to control how much refinement
is needed in oll directions relative to the surface of the model. A comparison of the boundary layer end shear
layer mesh around the engine can be seen in Fig. 14. Creating o boundary layer mesh using the 1st Method is
decent. Users can control the height, number of layers, and growth ratio as you can with & structured mesh.
However, one thing the user cannot control is the transition of prism layers from one section to ancther of
the computational model. When it comes to modeling the shear layer, the 1st Method does a. Very poor
Jjob because the user cannot directly control the mesh density of a particular region like the 2nd Method..
However, ICEM CFD docs have a feature that allows the user to create “density regions” where the user
can set & mesh size limit, Doing this would have increased the total mesh count significantly, which would
require & compromise in other aress of the mesh in order to stay with computational limitations,
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Flgure 14. Boundary layer mesh comparison of engine - 1st Method (top row) 2nd Method (bottom row)

8. Volume Mesh

There are two benefits of the 2nd Method that stend out most, First, the quality of the mesh with
respect to aspect ratio, skewness, and orthogonality are drastically improved with increased user-control in
mepping the mesh to the geometry. And secondly, the surface mesh count of the engine was reduced by
about 30%. This reduction allows for further mesh refinement around other important flow features of the
geometry without impeding on limited computational resources. A full cutplane of the near-body hybrid
volume mesh can be seen in Fig, 15. It should be noted that the structured and unstructured portions of the
mesh are created separately and merged together. When merging two separate mesh topologies, it becomes
important thet there is & good transition from one mesh to the other. This was not addressed for this paper,
but will be irnproved upon in the near future. Figure 16 compsres the near-body volume mesh of the 1st
and 2nd Method, where the most prominent improvement being the resolution of the boundary layer, shear
layer, and wake mesh of the engine.

Figure 15, Cutplane of near-hody hybrid volume mesh
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elna Tetra

Figure 16. Volume mesh comparison of englne wake - 1sf Method (top row) 2nd Method (bottom)

C. Far-Body Structured Meshing

To model the flow field that is away from the unsteady flow regime, hexahedral elements are the most
efficient way to capture the secondary flow features. Also, this reglon will nof need to map to the surface
of computational model, so this method can be generated very easily. Both near-body meshing approaches
utilized the same far-body structured mesh. '

The mesh was assembled using a number of structured blocks attached to each other. Using this mmlii-
blocking approach gives the user a lot of flexibility in choosing how to map out each stritctured block. Perhaps
the user wants to refine a certain block but does not need the same mesh resolution in & different block.
For example, it is expected that the flow field will exhibit secondary flow features such as wingtip vortices
and high momentum slot exhaust. These vortices are known to travel many chord lengths downstream of
the model before dissipating. In subsonic flow, failure to capture this featurs accurately may greatly affect
the final computational solution. Thus, it would be advised that the blocks that represent the wake of the
model be much more resolved. Figure 17 shows an example of how the blocking scherne looks like,

Instead of using hexahedral elements, the user could use unstructured tetrahedral elements to model
this portion of the domain. However, doing so would diminish the accuracy of the solution and would
unnecessarily increase total cell count. Using preliminary CFD solutions as guidance, the structured domain
was modeled to be roughly 45 chord-lengths upstream and 65 chord-lengths downstream. Upwerd and
downward is modeled to be 20 feet from the model to represent the wind tunnel test section of the NFAC.,
An example of the hybrid mesh used is shown in Fig. 18. ’
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Filgure 17. Multi-block scheme for structured meshing

Flgure 18, Cutplane of structured far-body volume mesh

IV. Numerical Similation Setup

The following section outlines the solver settings and boundary conditions chosen io setup each compu-
tational analysis.

A. Solver Settings and Boundary C(;nditions

The numerical solver chosen for this project is FLUENT.'® The numerical scheme chosen for the 3-D cases
is an implicit compressible solver that couples and solves the governing equations of continuity, momentum,
and energy simultaneously. The coupled solver is generally used for compressible flows and because the flow
exiting from the slots are compressible, this solver proves to be the best choice. In addition, both cases were
simulated using an inviscid model and iterated up to 15,000 steps. With more time, the viseous model will
be turned on and allow the solution to further progress. Table 2 summarizes the solver settings used for the
model.
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Table 2. General FLUENT solver settings

Model Inviseid

Solver Compressible
Density calculator | Ideal Gas Law
Viscosity calculator | Sutherland’s Law
Reference length 4.3 ft.

Reference areq 5.8 ft.?

The boundary conditions employed on the model also have serious implications on the computational
solution and are very difficult to define the correct boundary conditions to mimic the real physical represen-
tation of the flow field. Initial and boundary conditions are essential to solving the governing equations, thus,
meaningful numerical solutions are highly dependent on the types of boundary conditions implemented and
the values that initialize that boundary. For CCW simulations, jet slot boundary conditions must be speci-
fied to simulate the jet flow effects. Generally, the driving parameter for COW simulations is the momentum
coeflicient, Cp, defined as the following,

e

C,=——
# %PngoSrsf -

ity
Or alternatively as the following,

PjethggAjet (2)
':'lz'poo U&Sref

In part with this NRA project, Georgia Tech Research Institute (GTRI) conducted studies of & COW
wing and concluded that a Cu between 0.4-0.6 is most optimal. The results of this study is documented in
Marshall. ¢ However, there is no boundary condition in FLUENT that allows for the specification of Cyt. The
best available option is to specify the slots as a Pressure-Inlet boundary condition, where FLUENT requires
the total pressure and temperature at the slot. The total temperature is assumed to be approximatsly equal
to the total temperature of freestream, Obtaining the total pressure at the slot requires a few calculations.
The slot faces are assumed to be the throat of the nozzle, which implies the local Mach number at the jet
should be unity. The static temperature of the slot can be computed using the following equation.

ng

b, r-1
Tt = 1k S M 3)

Equation (3) can also be re-written to be the following,

2vR
Ul = %(ﬁua‘ez — tyet) (4)
From Ideal Gas Law, the following relation can be obtained,
o, et
Biet Rtjet (5)
Substituting Eqns. (4) and (5) into Eq. (2), we get the following equation where the jet static pressure
can be computed using a desired Cu of 0.4,

= 2 Ajer Piea(to,jer — Liet) ()
# v—1 quTef ties
- With static pressure known, the follow relation can be used to compute the total pressure at the slot.
Diet 7T-1.2 -2
e G RAEY Ve s 7
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Table 3 shows boundary conditions used for the engine and slots along with the values used at that
boundary. The engine boundary conditions come from Blessing.® From a simple 2-D study of & CC airfoil,
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the values computed from the sclution compares

very well with the values predicted using 1-D isentropic
relations. Figure 19 illustrate the desired boundary conditions for the engine and circulation control slots.

Table 3, Boundary conditions

Freestream Conditions

Boundary condition

Pressure-Far-Field

Pressure 14.7 psi
Density 0.0765 lbm/f®
Mach Number 0.07

(1) Engine Inlet

Boundary condition | Pressure-Outlet
Static pressure 11.5 pst

Tofal temperature 520.T R

(2) Engine Fan Outlet

Boundary condition | Mass-Flow-Inlet
Mass flow rate 4.03 Ibm/s
Total temperature 42192 R

(3) Engine Nozzle Qutlet
Boundary condifion | Mass-Flow-Inlet
Mass flow rate 1.32 Ibm/s
Total temperature 57933 R

(4) Leading Edge

Circulation Control Slot

Boundary condition

Pressure-Inlet

Total pressure

25.2 psi

Total temperature

519.7TR

{4) Trailing Edge Circulation Control Slot

Boundury condstion | Pressure-Inlef
Total pressure 25.2 psi
Total temperature 519.7TR
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Figure 18. Boundary conditions sef on engine and circulation control slots

V. Results & Discussion

This section will discuss the CFD resulis of the two different meshing techniques discussed so far in
this paper. The next series of figures display the solution of both cases at a cross-sectional plane through
the centerline of the engine. In addition, both solutions were stopped at 15,000 iterations to allow for
comparison. Figure 20 shows contours of velocity for both cases. Immediately, there are & few problems
we gee visually with the unstructured mesh. First off, the engine exhaust streams from the fan and nozzle
exits are poorly defined and smeared away by the unstructured elements. The mass flow rates of fan and
nozzle exits are 1.83 kg/s and 0.60 kg/s, respectively. The 3-to-1 ratio should show a discernible difference
of the two exhaust streams which the unstructured case doesn't clearly show, The next problem seen is
the poor resolution of the engine exhaust wake about 3.5 engine lengths downstream, When compared to
the structured cese, the solution appears well-defined and is not dissipated by the poor mesh quality of
the unstructured mesh. And then lastly, the jet stream of the trailing edge slot appear to be unstable and
oscillatory in the unstructured case. Not much effort was spent refining the structured region in the trailing
edge wake, however, the solution still exhbits more stability compared to the unstructured case. Observing
the unstructured case the dark, densely packed region surrounding the trailing edge flaps suggests adaquate
refinement. But, the problem with ICEM CFD is the lack of user control. The refinement seen around the
flaps is unneccessary and doesn’t refine the key features of the jet stream.
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Figure 20. Comparison of CFD solution for different meshing techniques

Figure 21 shows e closer view of the engine exhaust. The first major problem we can see visually is
the instability of the engine inlet for the unstructured case, that's not seen in the structured case. Despite
both solutions simulated to 15,000 iterations, the engine inlet solution of the siructured case appears to be
well-behaved and has converged based on the boundary condition set at inlet face. The other concern is the
jaggedness of the shear layer coming off the engine edges. Compared to the structured case, the solution is
smeared and poorly defined. Futhermore, the jaggedness exhibited in the solution appears to ressmble the

shape of the unstructured elements.
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Figure 21. Comparison of CFD solution for different meshing techniques (close-view)

Figure 22 shows the final solution comparison. Observing the mesh, the structured case is much more
refined cross-sectionally than the unstructured case, As seen in ihe figure, the mesh clearly plays a role in
the poor annular resolution of the engine exhaust. In addition, the instability at the engine inlet can be seen
more clearly in this figure. At this point in the simulation, there is reverse flow in the unstructured case
as evident by the streamlines going upstream, When compared to the structured case, the streamlines are
very well-behaver and doesn’t appear to exhibit any flow issues. The behavior seen in the unstructured case
has been observed befors in preliminary analysis. Typically, the solution will eventually stabilize but this is
going to require many more thousands of iterations.
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VI. Future Work

There still exist many more concerns elsewhere with the computational model, especially aronnd the
leading and trailing edge circulation slots. Problems seen in this region are very similar to that of the engine
exhaust, but it will be even more difficult to resolve this issue becauss the flow gradients in this region are
almost twice as large and will require an even more resoclved mesh. Similar to the engine mesh; the boundary
layer, shear layer, and wake mesh will need to be resolved. In addition, the volume transition between the
structured and unstructured alements will need to be smoothed out to prevent strange gaps in the CFD
solution. These improvements are highlighted in Fig. 23.

Efforts toward improving the mesh quality have begun for the trailing edge circulation control flow region.
This region includes the aft circulation control plenum and flaps. With more time, this blocking scheme will
be extended to cover the entire wing. The multi-blocking scheme, surface mesh, and cutplane view of the
volurne mesh can be seen in Fig. 24.
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VII. Concluding Remarks

Unstructured CFD analysis for the AMELIA aircraft has yielded encouraging results and served as the
basis for further improvement discussed in this paper. Numerical simulation of 3-D circulation control flow
fields is & very difficult task as we continue to gain more knowledge of what techniques are best for predicting
reascnably eccurate CFD solutions. Concerns surrounding the 1st Method’s ability to resolve the engine
exhaust flow have been resolved using the 2nd Method. The 2nd Method has improved the quality of the
CFD solutions immensely and will continue to be explored. Future work includes applying the techniques
learned through the 2nd Method for the leading and trailing edge circulation control slots. Overall, there
three concluding remarks.

1. The current computing resources at Cal Poly limit the total size of the mesh to ahout 35 million cells,
thus constraining further refinement,

2. The current meshing software used, ICEM CFD, does not allow enough user control to refine particular
regions in the flow field. Alternative codes will need to be explored in order for Unstructured Meshing to be
sufficient for this NRA Project.

3. Given the total mesh size constraint, Structured Meshing clearly attains more refined and stable CFD
solutions. Although time-consuming, this may prove to be the best method for predicting the complex flow
physics of AMELIA with existing computing constraints.
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