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Abstract: Research in the collaborative driving domain strives to create control systems 
that coordinate the motion of multiple vehicles in order to navigate traffic both efficiently 
and safely.  In this paper a novel individual vehicle controller based on reinforcement 
learning is introduced.  This controller is capable of both lateral and longitudinal control 
while driving in a multi-vehicle platoon.  The design and development of this controller 
is discussed in detail and simulation results showing learning progress and performance 
are presented. 

Keywords: autonomous vehicles, co-ordination, decentralized control, machine learning, 
robot control. 

1. INTRODUCTION 	 collaborative driving as a multi-agent planning 
problem, and address it using reinforcement learning 

In major cities throughout the world, urban (Laumonier et al 2006). 
expansion is leading to an increase of vehicle traffic Reinforcement Learning is a machine learning 
flow. The adverse effects of increased vehicle traffic technique which uses a numerical reward signal as 
flow include traffic congestion, driving stress, vehicle feedback to modify a control policy (Sutton & Barto 
collisions, pollution, and logistical delays.  Once 1998). Its promise is that an agent can learn using 
traffic flow surpasses the capacity of the road system, experience alone in a changing environment. As this 
it ceases to become a viable transportation option. technique is a recent development in machine 
One solution is to build more roads; another is to learning, it has had limited success in scaling to real-
build a better vehicle - a vehicle that can negotiate world problems (Stone & Sutton 2001).  A current 
traffic, coordinate with other similar ‘thinking’ challenging area of research is to scale reinforcement 
vehicles to optimize their speeds so as to arrive at learning to solve real-world robot control problems 
their destination safely and efficiently.  The vehicle (Ng et al 2004), (Kohl & Stone 2004).  
system described is referred to formally as a In this paper, a novel low-level vehicle controller 
collaborative driving system.   is introduced. Its key feature is that it adapts its 

Previous studies have addressed collaborative control policy using reinforcement learning for both 
driving as a hierarchical decentralized control lateral and longitudinal control of the individual 
problem (Huppe et al 2003), (Halle et al 2004). vehicle. This controller is meant to be deployed in a 
These approaches use a layered approach with a vehicle group for the purpose of collaborative driving. 
heuristic controller layer choosing among lower-level The objective of this paper is to present the design 
behaviours.  Alternatively, one could approach  and development of this low-level vehicle controller. 

In particular, the methodology of mapping 
reinforcement learning algorithms to this problem 

1This research is funded by the Auto21 Network of Centres domain is explained.  In addition, simulation results 
of Excellence, an automotive research and development for the initial learning process are presented along 
program focusing on issues relating to the automobile in the with initial performance data while travelling in a 
21st century.  AUTO21 is a member of the Networks of fixed platoon.   Centres of Excellence of Canada program. Web site: 
www.auto21.ca. 2. COLLABORATIVE DRIVING DOMAIN 2Part of this research was undertaken at the University of 
Toronto Institute for Aerospace Studies, Space Robotics The collaborative driving research domain aims Group for the application of multi-robot planetary 

to coordinate the motion of multiple vehicles in order exploration. 

mailto:l4ng@engmail.uwaterloo.ca


 

     

   
 

    
 

 
 

  

   
  

 

   
 

  
  

 
   

 

 
  

 
 

 
 
 
 

   

   
  

   
   

     
 

  
   

  
 

 
 

 
   

   
  

    
    

  
 

  
   

   
 

  
    

   
 

   
    

    
   

      

     
    

   
  

  
 

 
 

   
    

  
  

  
 

  
 
 

  
 

 
 

 
 
    

     
    

  

      
   

 
  

 
    

  
   

   
 

   
   

 

   

   
  

  
  

 
 

  

to navigate traffic. The group of vehicles being 
coordinated forms a single-file formation (platoon) in 
which the lead vehicle’s role is to manage and guide 
the group as it travels along a road (Varaiya 1993).   

Issues being addressed in collaborative driving 
include: longitudinal control (maintaining vehicle 
spacing), lateral control (lane changing and turning), 
insertion and exit into and out of the platoon, human­
in-the-loop platoon guidance, fully autonomous 
platoon guidance, vehicle configurations, road 
configurations/conditions, sensor fusion, 
communication, and scalability. This paper 
represents a first step to approaching the problem of 
collaborative driving from the bottom up.  Thus, we 
begin by focusing on the problem of individual 
vehicle control while travelling in a platoon. Further 
work will address the issue of platoon maintenance, 
inter-vehicle communication, and autonomous 
control. 

3. REINFORCEMENT LEARNING 

3.1 The Markov Decision Process 

Collaborative driving can be considered a 
problem of acting or planning in the presence of 
uncertainty (i.e. in a changing environment).  The 
Markov Decision Process (MDP) provides a formal 
framework for modelling this type of control problem 
and for deriving an optimal solution (i.e. an optimal 
controller) (Bellman 1957). 

MDPs are characterized by states s, actions a, and 
transitions σ (s,a).  For the problem to be considered 
Markov, s must be able to completely describe the 
current situation without a dependence on path.  That 
is, the state does not depend on previous states. 
Transitions σ, are predictions of the next state based 
on the current state and the current action being 
performed, s’ = σ (s, a).  For a robot agent, the 
transitions represent the agent’s model of the 
environment. 

3.2 The Policy 

The action for a given state is governed by the 
agent’s current policy π, a mapping from states to 
actions.  An agent starts at an initial state s0 and 
follows π until the goal, referred to as the terminal 
state sterm, is reached. The process of going from s0 to 
sterm is known as an episode.  For every MDP, there 
exists at least one policy which maps the best action 
for every state this is referred to as the optimal policy 
π*, the solution to the MDP. 

In order for the agent following a policy π to 
evaluate the effectiveness of its actions, a reward 
signal r from the environment associated with each s 
is provided to the agent. If an accurate transition 
model σ is provided to the agent, the agent can 
predict how much future reward will be received for 
the remainder of the episode by a summation of the 
rewards associated with visiting the remaining states 
in an episode following a given policy.  The form of 

the return R typically used includes a discount rate γ, 
which allows future rewards to be discounted, 

Rt = rt+1 + γ rt+2 + γ2
∞ 

k (1)rt+3 + … =	 ∑γ rt+k+1 
k =0 

where 0≤ γ ≤ 1.  The return is the basis for 
determining which action is best to take for a given 
state. 

The state-value function, Vπ(s) is the expected 
accumulation of discounted reward received at each 
state leading to the terminal state by following policy 
π, where Eπ{} denotes the expected value. 

∞ 

V π (s) = E {R | s = s} = E {∑γ k r | s = s} (2)
π t t π t +k +1 t 

k =0 

It expresses the desirability of being in a particular 
state for a given policy.   When following the optimal 
policy π*, the state-value function is maximized.  If an 
accurate transition model σ is available, only the state 
s is important since actions a can be mapped directly 
to the next state s’. Otherwise, the state and action 
must be paired (s,a), to represent a unique event. 
Thus a state-action-value function is introduced, 
Qπ(s,a), which allows the agent to assess the 
desirability of following a given action a while in a 
particular state s for a policy π. 
Qπ (s,a) = Eπ {Rt | st = s,at = a} = Eπ {∑

∞ 

γ k rt+k +1 | st = s, at = a} 
k =0 

(3) 

3.3 The Algorithms 

The algorithms used to determine the optimal 
policy π* for a given MDP are called Reinforcement 
Learning (RL) algorithms. These algorithms follow 
a common approach.  The agent begins with an initial 
policy π0 which may be far from optimal, and an 
estimate of its state-value function Vπ(s) or state­
action-value function Qπ(s,a) is inaccurate. As the 
agent follows π0 it receives rewards r based on its 
state s.  Using this new information, its estimate of 
Vπ(s) or Qπ(s,a) is iteratively improved. 
Concurrently, the improved Vπ(s) or Qπ(s,a) can be 
used  to iteratively improve the policy until the agent 
arrives at the optimal policy π*. 

The convergence of this maximization process 
requires that all states and actions be visited infinitely 
in order for estimates of Vπ(s) or Qπ(s,a) to reach their 
actual values.  To ensure this convergence criterion, 
policies leading to π* are ε-soft, meaning that there is 
a ε probability that a random action is selected. 
Therefore, all actions and states will be reached as 
t→∞. 

In this paper, the RL algorithms considered are 
called Temporal-Difference (TD) Learning 
Algorithms.  TD-Learning algorithms are a class of 
RL algorithms that do not require a transition model. 
Experience is used to update Qπ(s,a) every step of a 
given episode.  TD-Learning algorithms can learn 
quickly however, they can become trapped in local 
minima as experiences are used immediately (called 
boot-strapping) as opposed to other methods which 



     

 
  

   
  

     
  

  
 

   
    

      
   

    
 

 
  

  

  
   

  
 

 
    

                                   
   

  
 
  

 
 

  

  
      
 

   
 

  
 

  
    

  
 
 

  

 
    

  
  

    
   

  
  

  
 

    
 
  

 

   

  

  
  

  
 

   
 

 
  

    
   

  
  

 
  

  
 

 

 
 

 
  

  
 

    
    

  
  

    
   

     
    

  
   

  
   

 
   

 
 
 

  
   

   
 

    
       

average experiences over the entire episode (i.e. 
Monte Carlo methods). 

Two versions of TD-Learning algorithms are 
evaluated for implementation in the collaborative 
driving domain.  The first is the Q-Learning 
algorithm (Watkins 1989) shown in Figure 1, which 
is considered an off-policy method as it estimates 
Qπ(s,a) using the maxa policy.  The maxa policy 
returns the action with the highest value for the given 
state.  The second is called SARSA (Rummery & 
Niranjan 1994), shown in Figure 2, and is considered 
an on-policy method as it estimates Qπ(s,a) using the 
current policy with the aid of the next state and next 
action.  In theory, if the optimal policy of an MDP is 
unique, these two approaches should lead to this same 
policy what will differ is how quickly they will reach 
this policy. 

Initialize, Q(s, a) 
Repeat (for each episode): 

Initialize s 
Repeat (for each step in the episode): 

Choose a from s using policy derived from Q  
(e.g. ε-greedy) 

Take action a, observe r, s’ 
Q(s,a) ← Q(s,a) + α[ r + γ max a'Q(s’,a’) -

Q(s,a)] 
s ← s’
 

until s is terminal
 

Fig. 1. Q-Learning Algorithm. 

Initialize, Q(s, a) 
Repeat (for each episode): 

Initialize s 
Choose a from s using policy derived from
 Q (e.g. ε-greedy) 

Repeat (for each step in the episode): 
Take action a, observe r, s’ 
Choose a’ from s’ using policy derived from Q  

(e.g. ε-greedy) 

Q(s,a) ← Q(s,a) + α[r + γQ(s’,a’) - Q(s,a)] 

s ← s’; a ← a’ 


until s is terminal 

Fig. 2. SARSA Algorithm 

4. CONTROL 

The collaborative driving problem can be 
considered a hierarchy of two control problems.  The 
lower level problem is the control of the individual 
vehicle, while the higher level problem is the 
management of the platoon when multiple vehicles 
are driving in single file formation.  This paper 
focuses exclusively on the lower controller.  The 
design of this controller is described in detail in the 
following paragraphs.  

The problem of lateral and longitudinal control at 
the individual level is addressed with a decentralized 
controller modelled using a Markov Decision Process 
(MDP).  Table 1 summarizes the states/inputs and 
actions/outputs of the MDP while Figure 3 illustrates 

the variables used in determining the states and 
actions with respect to the vehicles. 

The states and actions exist in the world as 
continuous normalized values.  The states are 
converted into discrete binary strings of varying 
precision so they can exist as discrete variables within 
the MDP framework. This process of conversion is 
analogous to analog-to-digital conversion and digital­
to-analog conversion used in digital signal 
processing.   The MDP outputs actions in the form of 
discrete binary strings that are converted into 
continuous normalized values.   

Table 1. States and actions of the lower-level MDP 
State: Expression: Description:
 s1 θi / θmax Normalized difference in 

angle to preceding vehicle.
 s2 (dι - dmin) / 

(dmax- dmin) 
Normalized distance to 
preceding vehicle’s 
minimum distance. 

s3 ||vi|| Current vehicle speed 
Action:  

a1 kθ Gain for steering angle 
a2  kv Gain for speed 

Figure 3. Vehicle relationships and variables 

The collaborative driving problem at the 
individual level can be seen as a problem of 
maintaining equilibrium for two independent 
variables: i)  the alignment of the proceeding vehicle 
and ii) the distance to the preceding vehicle 
Intuitively, the steering command should be 
proportional to the error in alignment to the 
proceeding vehicle. Likewise the speed command 
should be proportional to the error between actual 
distance and desired distance to the preceding vehicle. 
Therefore, the actions that are required to be learned 
are the proportionality gains of the steering and speed 
commands for different situations or states.  The 
steering and speed functions are expressed below, 
where i is the rank in the platoon of n vehicles. 

θcmd = a1 s1= kθθi / θmax (4) 
vcmd = a2 s2= kv(dι- dmin)/(dmax - dmin) (5) 

The reward function conveyed to the MDP is a 
function of the observed states.  It is expressed as a 
superposition of two separate piecewise continuous 
functions as shown in equations 5, 6, and 7. 

Rtot = R1(s1)+ R2(s2) (5) 
1− | s1 | if | s1 | < 1 (6)R1 (s1 ) =  − 1 if | s | = 1 1 



     

    

 
    

  
   

   
  

  
 

 
  

 
     

 
   
   

 
   

 
      

 
    

 

  
   

 

 
  

  
   

   
  

 

 
  

   
  

  
 

    
  

  
  

  
   

  
  

  

 

 
 

 
  

 
   

 

    
 

     
 

 
 

  
    

    

   
  

 
 

    
 

 
   

 

 
            

           
 

 
 
  

  
  

     
  

 
    

 
  

   

1 − s2 if (0 < s2 < 1)
 (7) R2 (s2 ) =  − 1 if (s2 = 1) 
 s2 if (s2 ≤ 0) 

The reward function is a key factor in determining the 
optimal policy, that is, it communicates to the MDP 
the task to be performed.  In this MDP, continuous 
rewards are used to favour the elimination of both the 
angle error and the distance error.  The resulting 
reward function produces the surface in Figure 4. 

Fig. 4. Reward surface for MDP 

In general the process of learning begins with a ε ­
soft policy, a(s) = ε-greedy.  This policy is initially 
set to random, that is every action a, has equal 
probability of being selected and ε is the exploration 
factor, where 0≤ ε ≤1. Prior to selecting an action 
using ε-greedy, a random number n is generated 
where 0 ≤ n ≤ 1 if n > ε, ε-greedy should return the 
action with the maximum Q for the state s provided if 
there is no prior visit to state s or if n ≤ ε, an 
exploration start occurs and a random action a is 
selected. As all states and actions are visited the ε ­
greedy policy becomes the optimal policy π* with the 
exploration starts disabled. 

The manner in which the optimal policy is 
learned is dependent on the learning algorithm. In 
designing this controller, two TD-Learning 
algorithms are studied, since there are no rules to 
indicate which algorithms work best for which 
situations.  TD-Learning methods are chosen since 
this type of solution method utilizes experience 
immediately.  SARSA and Q-Learning (see Figure 1 
and 2) are the two of the most common TD-Learning 
algorithms, with many variations in existence. In this 
paper the basic implementation of each is evaluated. 

5. MODELLING 

In order to derive an optimal control policy 
through reinforcement learning, an environment is 
required.  This environment is provided in simulation 
its purpose is to provide the learning algorithm with 
simulated state information, a transition model to go 
from action to subsequent state, and reward data with 
which to improve its policy with.  The benefit of 
simulation is twofold, as it also allows one to evaluate 
the performance of the controller in situations which 
may not be feasible to achieve in reality. 

In this study a commercial rapid prototyping tool 
for mobile robots is used called Webotstm, by 

Cyberbotics Ltd. (Michel 2004).  Using Webotstm, a 
vehicle model was created along with two different 
training environments.  Webotstm contains a library of 
sensors and robot models with which to build robot 
experiments with.  It integrates with the Open 
Dynamics Engine (ODE), an open-source rigid body 
simulation library which models dynamics using 
lagrange multipliers (Baraff 1996). 

Fig. 5. Amigobottm modelled using Webotstm . 

4.1 Vehicle Model 

The vehicle used in this study is a small 
holonomic differentially driven two-wheeled mobile 
robot called the Amigobottm, manufactured by 
MobileRobots Inc.  Our laboratory has access to up 
to five of these research robots, on which the 
controller will ultimately be deployed on. Table 2 list 
key parameters used in modelling the Amigobottm. 

Object Parameters: 
Body Mass m = 3.5 kg 
Bounding 
Cylinder 

h = 0.132m r = 0.14m 

Wheels: m = 0.05kg r = 0.05m W = 0.025m 
Sonar: 6 front 2 rear R = 0.4m 
Camera: Color 320x240 θmax = ±20° 

Table 2. Webotstm/ODE Model Parameters 

As the application for the controller is collaborative 
driving, commands such as steering angle θsteer and 
speed V are used to mimic an automobile.  However, 
the Amigobottm is driven with differential wheel 
speeds.  Therefore steering and speed commands are 
mapped to the left and right wheel speeds via 
equations 8 and 9. 

Vleft = ( V / Vmax - θsteer / θmax) kwheel  (8) 
Vright = ( V / Vmax + θsteer / θmax) kwheel 9) 

4.2 Environment 

Two distinct environment models are created in 
this study: one for initial learning (called Arena), the 
other for performance testing (called Track).    The  
Arena is a large open 10m x10m flat floor with a 
barrier to prevent the vehicles from escaping.  This 
environment contains two vehicles, a lead vehicle and 
a learning vehicle which follows it. Both static and 
dynamic target training are conducted in this 
environment.  The custom MDP software allows 
policies to be saved and reloaded, to facilitate 
learning. 



     

 
   
   

  
    

 
  

     
 

 
 

 
  

 
    

      
  

   

 

 
  

 
  

 
 

   
 

    
   

 
  

   
 

 
 
   

      
 

  
  

     
  

    

  
    

  

 
   

 
   

 

     
    

  
     

 

 

 
  

 
 

 
     

     

  
  

   

 The Track is a simulated two lane road with 
barriers on either side to prevent escape.  Five 
vehicles are modelled in this world and placed at the 
start position.  The end of the road contains a “Warp 
Gate” which when reached sends the vehicles back to 
the starting position.  Therefore, a repeating road can 
be simulated using only a straight 50m section of 
track. 

6. RESULTS 

6.1. Learning 

Two control policies are obtained through static 
target training through two different reinforcement 
learning algorithms.  Q-Learning with ε = 0.1, γ = 0.1 
and α = 0.1 (learning rate) is used to learn a control 
policy π1 which can approach a static target to within 
1m.  The location of the target is randomized for 100 
episodes.  This is repeated for the SARSA algorithm 
under the identical conditions to arrive at π2. 

Fig. 6. Q-Learning performance (π1). 

Fig. 7. SARSA: Learning performance (π2). 

Figure 6 and 7 show the progress of learning or each 
algorithm.  The exploration ratio represents the ratio 
of exploration starts to total steps for a given episode,. 
This begins high as the policy is unknown and as 
t→∞, it should approach ε, showing the policy has 
been learned.  From the simulation data, both 
algorithms appear to learn at more or less the same 
speed, and we cannot say one is faster than the other 
for this application. 

6.2. Longitudinal Performance 

The longitudinal control is evaluated by 
deploying four copies of a policy on four vehicles. 
The vehicles are initially arranged in single file 
separated by 0.4m and all at rest.   The lead vehicle is 
set to reach a constant speed of 0.3m/s while each 
vehicle attempts to follow the preceding vehicle. The 
vehicle separations are recorded throughout the 
evaluation.  At t = 100 sec, the lead vehicle is stopped 

to observe the behaviour of the platoon as the 
vehicles come to rest.  This evaluation is executed for 
both policy π1 and π2 and shown in Figure 8 and 9 
respectively.  

Fig. 8. Q-Learning: Longitudinal control (π1). 

Fig. 9. SARSA: Longitudinal control (π2). 

For this application, the minimal vehicle spacing is 
considered 1m while the maximum distance is 5m. It 
is interesting that all vehicles try to adjust their 
distance to 2m while travelling at about 0.3m/s.  After 
braking, the vehicles attempt to keep a distance of 1m 
as this results in more reward. 

Fig. 10. Q-Learning: Lateral control (π1). 

6.3. Lateral Performance 

The lateral control is evaluated by deploying four 
copies of a policy on four vehicles. The vehicles are 
initially arranged in single file separated by 2m and 
all moving at a constant speed 0.3m/s in one lane.   A 
lead vehicle is placed on the adjacent lane, this is 
equivalent to a unit step input; each vehicle then 



     

 
    

 
   

    

 

 
  

  
    

  
  

 

 
    

 
  

  
  

  

 
 

 
   

  
    

   
 

   
  

 
 

  
     

   
  
   

 
    

 
 

 
 

 
 

 
 

  
   

 

 
   

 

 
 
 

  
  

   

 
 

  
 

 
  

  
 

  
  

 
  

  
 

 

 

 
 

   
  

 

  
 

 
 

 
 

  
   

 
 

  
 

tracks the preceding vehicle so as to accomplish a 
lane change. The vehicles’ lateral positions are 
recorded throughout the evaluation.  This evaluation 
is executed for both policy π1 and π2. Figure 10 
shows the left and right lane change for π1 while 
Figure 11 shows the left and right lane change for  π2. 

Fig. 11. SARSA: Lateral control (π2). 

The data show a very smooth transition to the other 
lane with no overshoot.  The response is identical for 
both policies and symmetrical. 

7. CONCLUSION 

From these initial simulation results, we can draw 
a few conclusions.  The difference in learning 
performance between the Q-Learning and SARSA 
algorithms is indiscernible, although, if learning 
continued for 100s of more episodes we might 
observe some differences.  For now we conclude that 
they give similar learning performance for this 
application. 

From the very preliminary performance 
evaluations of the two obtained policies, one from Q-
Learning, the other from SARSA, very similar 
performance is observed. One could conclude that 
they are in fact the same policy for this MDP.  This 
follows in theory that if the optimal policy for an 
MDP is unique then different RL algorithms will lead 
to the same optimal policy.  Only more evaluations 
about different operating points would prove that the 
same optimal policy has been reached. 

8. FUTURE WORK 

This paper has presented some preliminary results 
in our study of collaborative driving control. While it 
appears that reasonable vehicle behaviour can be 
achieved via machine learning, our future objectives 
include looking at longer learning periods for better 
policies, more detailed evaluation of the obtained 
policies, stability analysis, the control of higher-level 
platoon management, and system performance under 

varying initial platoon configurations and road 
conditions. 
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