

A DECENTRALIZED REINFORCEMENT LEARNING CONTROLLER

FOR COLLABORATIVE DRIVING

Luke Ng, Chris Clark, Jan P. Huissoon

Department of Mechanical Engineering, Automation & Controls Group

University of Waterloo

Waterloo, Ontario, Canada

l4ng@engmail.uwaterloo.ca

Abstract: Research in the collaborative driving domain strives to create control systems
that coordinate the motion of multiple vehicles in order to navigate traffic both efficiently
and safely. In this paper a novel individual vehicle controller based on reinforcement
learning is introduced. This controller is capable of both lateral and longitudinal control
while driving in a multi-vehicle platoon. The design and development of this controller
is discussed in detail and simulation results showing learning progress and performance
are presented.

Keywords: autonomous vehicles, co-ordination, decentralized control, machine learning,
robot control.

1. INTRODUCTION 	 collaborative driving as a multi-agent planning
problem, and address it using reinforcement learning

In major cities throughout the world, urban (Laumonier et al 2006).
expansion is leading to an increase of vehicle traffic Reinforcement Learning is a machine learning
flow. The adverse effects of increased vehicle traffic technique which uses a numerical reward signal as
flow include traffic congestion, driving stress, vehicle feedback to modify a control policy (Sutton & Barto
collisions, pollution, and logistical delays. Once 1998). Its promise is that an agent can learn using
traffic flow surpasses the capacity of the road system, experience alone in a changing environment. As this
it ceases to become a viable transportation option. technique is a recent development in machine
One solution is to build more roads; another is to learning, it has had limited success in scaling to real-
build a better vehicle - a vehicle that can negotiate world problems (Stone & Sutton 2001). A current
traffic, coordinate with other similar ‘thinking’ challenging area of research is to scale reinforcement
vehicles to optimize their speeds so as to arrive at learning to solve real-world robot control problems
their destination safely and efficiently. The vehicle (Ng et al 2004), (Kohl & Stone 2004).
system described is referred to formally as a In this paper, a novel low-level vehicle controller
collaborative driving system. is introduced. Its key feature is that it adapts its

Previous studies have addressed collaborative control policy using reinforcement learning for both
driving as a hierarchical decentralized control lateral and longitudinal control of the individual
problem (Huppe et al 2003), (Halle et al 2004). vehicle. This controller is meant to be deployed in a
These approaches use a layered approach with a vehicle group for the purpose of collaborative driving.
heuristic controller layer choosing among lower-level The objective of this paper is to present the design
behaviours. Alternatively, one could approach and development of this low-level vehicle controller.

In particular, the methodology of mapping
reinforcement learning algorithms to this problem

1This research is funded by the Auto21 Network of Centres domain is explained. In addition, simulation results
of Excellence, an automotive research and development for the initial learning process are presented along
program focusing on issues relating to the automobile in the with initial performance data while travelling in a
21st century. AUTO21 is a member of the Networks of fixed platoon. Centres of Excellence of Canada program. Web site:
www.auto21.ca. 2. COLLABORATIVE DRIVING DOMAIN 2Part of this research was undertaken at the University of
Toronto Institute for Aerospace Studies, Space Robotics The collaborative driving research domain aims Group for the application of multi-robot planetary

to coordinate the motion of multiple vehicles in order exploration.

mailto:l4ng@engmail.uwaterloo.ca

to navigate traffic. The group of vehicles being
coordinated forms a single-file formation (platoon) in
which the lead vehicle’s role is to manage and guide
the group as it travels along a road (Varaiya 1993).

Issues being addressed in collaborative driving
include: longitudinal control (maintaining vehicle
spacing), lateral control (lane changing and turning),
insertion and exit into and out of the platoon, human­
in-the-loop platoon guidance, fully autonomous
platoon guidance, vehicle configurations, road
configurations/conditions, sensor fusion,
communication, and scalability. This paper
represents a first step to approaching the problem of
collaborative driving from the bottom up. Thus, we
begin by focusing on the problem of individual
vehicle control while travelling in a platoon. Further
work will address the issue of platoon maintenance,
inter-vehicle communication, and autonomous
control.

3. REINFORCEMENT LEARNING

3.1 The Markov Decision Process

Collaborative driving can be considered a
problem of acting or planning in the presence of
uncertainty (i.e. in a changing environment). The
Markov Decision Process (MDP) provides a formal
framework for modelling this type of control problem
and for deriving an optimal solution (i.e. an optimal
controller) (Bellman 1957).

MDPs are characterized by states s, actions a, and
transitions σ (s,a). For the problem to be considered
Markov, s must be able to completely describe the
current situation without a dependence on path. That
is, the state does not depend on previous states.
Transitions σ, are predictions of the next state based
on the current state and the current action being
performed, s’ = σ (s, a). For a robot agent, the
transitions represent the agent’s model of the
environment.

3.2 The Policy

The action for a given state is governed by the
agent’s current policy π, a mapping from states to
actions. An agent starts at an initial state s0 and
follows π until the goal, referred to as the terminal
state sterm, is reached. The process of going from s0 to
sterm is known as an episode. For every MDP, there
exists at least one policy which maps the best action
for every state this is referred to as the optimal policy
π*, the solution to the MDP.

In order for the agent following a policy π to
evaluate the effectiveness of its actions, a reward
signal r from the environment associated with each s
is provided to the agent. If an accurate transition
model σ is provided to the agent, the agent can
predict how much future reward will be received for
the remainder of the episode by a summation of the
rewards associated with visiting the remaining states
in an episode following a given policy. The form of

the return R typically used includes a discount rate γ,
which allows future rewards to be discounted,

Rt = rt+1 + γ rt+2 + γ2
∞

k (1)rt+3 + … =	 ∑γ rt+k+1
k =0

where 0≤ γ ≤ 1. The return is the basis for
determining which action is best to take for a given
state.

The state-value function, Vπ(s) is the expected
accumulation of discounted reward received at each
state leading to the terminal state by following policy
π, where Eπ{} denotes the expected value.

∞

V π (s) = E {R | s = s} = E {∑γ k r | s = s} (2)
π t t π t +k +1 t

k =0

It expresses the desirability of being in a particular
state for a given policy. When following the optimal
policy π*, the state-value function is maximized. If an
accurate transition model σ is available, only the state
s is important since actions a can be mapped directly
to the next state s’. Otherwise, the state and action
must be paired (s,a), to represent a unique event.
Thus a state-action-value function is introduced,
Qπ(s,a), which allows the agent to assess the
desirability of following a given action a while in a
particular state s for a policy π.
Qπ (s,a) = Eπ {Rt | st = s,at = a} = Eπ {∑

∞

γ k rt+k +1 | st = s, at = a}
k =0

(3)

3.3 The Algorithms

The algorithms used to determine the optimal
policy π* for a given MDP are called Reinforcement
Learning (RL) algorithms. These algorithms follow
a common approach. The agent begins with an initial
policy π0 which may be far from optimal, and an
estimate of its state-value function Vπ(s) or state­
action-value function Qπ(s,a) is inaccurate. As the
agent follows π0 it receives rewards r based on its
state s. Using this new information, its estimate of
Vπ(s) or Qπ(s,a) is iteratively improved.
Concurrently, the improved Vπ(s) or Qπ(s,a) can be
used to iteratively improve the policy until the agent
arrives at the optimal policy π*.

The convergence of this maximization process
requires that all states and actions be visited infinitely
in order for estimates of Vπ(s) or Qπ(s,a) to reach their
actual values. To ensure this convergence criterion,
policies leading to π* are ε-soft, meaning that there is
a ε probability that a random action is selected.
Therefore, all actions and states will be reached as
t→∞.

In this paper, the RL algorithms considered are
called Temporal-Difference (TD) Learning
Algorithms. TD-Learning algorithms are a class of
RL algorithms that do not require a transition model.
Experience is used to update Qπ(s,a) every step of a
given episode. TD-Learning algorithms can learn
quickly however, they can become trapped in local
minima as experiences are used immediately (called
boot-strapping) as opposed to other methods which

average experiences over the entire episode (i.e.
Monte Carlo methods).

Two versions of TD-Learning algorithms are
evaluated for implementation in the collaborative
driving domain. The first is the Q-Learning
algorithm (Watkins 1989) shown in Figure 1, which
is considered an off-policy method as it estimates
Qπ(s,a) using the maxa policy. The maxa policy
returns the action with the highest value for the given
state. The second is called SARSA (Rummery &
Niranjan 1994), shown in Figure 2, and is considered
an on-policy method as it estimates Qπ(s,a) using the
current policy with the aid of the next state and next
action. In theory, if the optimal policy of an MDP is
unique, these two approaches should lead to this same
policy what will differ is how quickly they will reach
this policy.

Initialize, Q(s, a)
Repeat (for each episode):

Initialize s
Repeat (for each step in the episode):

Choose a from s using policy derived from Q
(e.g. ε-greedy)

Take action a, observe r, s’
Q(s,a) ← Q(s,a) + α[r + γ max a'Q(s’,a’) -

Q(s,a)]
s ← s’

until s is terminal

Fig. 1. Q-Learning Algorithm.

Initialize, Q(s, a)
Repeat (for each episode):

Initialize s
Choose a from s using policy derived from
 Q (e.g. ε-greedy)

Repeat (for each step in the episode):
Take action a, observe r, s’
Choose a’ from s’ using policy derived from Q

(e.g. ε-greedy)

Q(s,a) ← Q(s,a) + α[r + γQ(s’,a’) - Q(s,a)]

s ← s’; a ← a’

until s is terminal

Fig. 2. SARSA Algorithm

4. CONTROL

The collaborative driving problem can be
considered a hierarchy of two control problems. The
lower level problem is the control of the individual
vehicle, while the higher level problem is the
management of the platoon when multiple vehicles
are driving in single file formation. This paper
focuses exclusively on the lower controller. The
design of this controller is described in detail in the
following paragraphs.

The problem of lateral and longitudinal control at
the individual level is addressed with a decentralized
controller modelled using a Markov Decision Process
(MDP). Table 1 summarizes the states/inputs and
actions/outputs of the MDP while Figure 3 illustrates

the variables used in determining the states and
actions with respect to the vehicles.

The states and actions exist in the world as
continuous normalized values. The states are
converted into discrete binary strings of varying
precision so they can exist as discrete variables within
the MDP framework. This process of conversion is
analogous to analog-to-digital conversion and digital­
to-analog conversion used in digital signal
processing. The MDP outputs actions in the form of
discrete binary strings that are converted into
continuous normalized values.

Table 1. States and actions of the lower-level MDP
State: Expression: Description:
 s1 θi / θmax Normalized difference in

angle to preceding vehicle.
 s2 (dι - dmin) /

(dmax- dmin)
Normalized distance to
preceding vehicle’s
minimum distance.

s3 ||vi|| Current vehicle speed
Action:

a1 kθ Gain for steering angle
a2 kv Gain for speed

Figure 3. Vehicle relationships and variables

The collaborative driving problem at the
individual level can be seen as a problem of
maintaining equilibrium for two independent
variables: i) the alignment of the proceeding vehicle
and ii) the distance to the preceding vehicle
Intuitively, the steering command should be
proportional to the error in alignment to the
proceeding vehicle. Likewise the speed command
should be proportional to the error between actual
distance and desired distance to the preceding vehicle.
Therefore, the actions that are required to be learned
are the proportionality gains of the steering and speed
commands for different situations or states. The
steering and speed functions are expressed below,
where i is the rank in the platoon of n vehicles.

θcmd = a1 s1= kθθi / θmax (4)
vcmd = a2 s2= kv(dι- dmin)/(dmax - dmin) (5)

The reward function conveyed to the MDP is a
function of the observed states. It is expressed as a
superposition of two separate piecewise continuous
functions as shown in equations 5, 6, and 7.

Rtot = R1(s1)+ R2(s2) (5)
1− | s1 | if | s1 | < 1 (6)R1 (s1) =  − 1 if | s | = 1 1

1 − s2 if (0 < s2 < 1)
 (7) R2 (s2) =  − 1 if (s2 = 1)
 s2 if (s2 ≤ 0)

The reward function is a key factor in determining the
optimal policy, that is, it communicates to the MDP
the task to be performed. In this MDP, continuous
rewards are used to favour the elimination of both the
angle error and the distance error. The resulting
reward function produces the surface in Figure 4.

Fig. 4. Reward surface for MDP

In general the process of learning begins with a ε ­
soft policy, a(s) = ε-greedy. This policy is initially
set to random, that is every action a, has equal
probability of being selected and ε is the exploration
factor, where 0≤ ε ≤1. Prior to selecting an action
using ε-greedy, a random number n is generated
where 0 ≤ n ≤ 1 if n > ε, ε-greedy should return the
action with the maximum Q for the state s provided if
there is no prior visit to state s or if n ≤ ε, an
exploration start occurs and a random action a is
selected. As all states and actions are visited the ε ­
greedy policy becomes the optimal policy π* with the
exploration starts disabled.

The manner in which the optimal policy is
learned is dependent on the learning algorithm. In
designing this controller, two TD-Learning
algorithms are studied, since there are no rules to
indicate which algorithms work best for which
situations. TD-Learning methods are chosen since
this type of solution method utilizes experience
immediately. SARSA and Q-Learning (see Figure 1
and 2) are the two of the most common TD-Learning
algorithms, with many variations in existence. In this
paper the basic implementation of each is evaluated.

5. MODELLING

In order to derive an optimal control policy
through reinforcement learning, an environment is
required. This environment is provided in simulation
its purpose is to provide the learning algorithm with
simulated state information, a transition model to go
from action to subsequent state, and reward data with
which to improve its policy with. The benefit of
simulation is twofold, as it also allows one to evaluate
the performance of the controller in situations which
may not be feasible to achieve in reality.

In this study a commercial rapid prototyping tool
for mobile robots is used called Webotstm, by

Cyberbotics Ltd. (Michel 2004). Using Webotstm, a
vehicle model was created along with two different
training environments. Webotstm contains a library of
sensors and robot models with which to build robot
experiments with. It integrates with the Open
Dynamics Engine (ODE), an open-source rigid body
simulation library which models dynamics using
lagrange multipliers (Baraff 1996).

Fig. 5. Amigobottm modelled using Webotstm .

4.1 Vehicle Model

The vehicle used in this study is a small
holonomic differentially driven two-wheeled mobile
robot called the Amigobottm, manufactured by
MobileRobots Inc. Our laboratory has access to up
to five of these research robots, on which the
controller will ultimately be deployed on. Table 2 list
key parameters used in modelling the Amigobottm.

Object Parameters:
Body Mass m = 3.5 kg
Bounding
Cylinder

h = 0.132m r = 0.14m

Wheels: m = 0.05kg r = 0.05m W = 0.025m
Sonar: 6 front 2 rear R = 0.4m
Camera: Color 320x240 θmax = ±20°

Table 2. Webotstm/ODE Model Parameters

As the application for the controller is collaborative
driving, commands such as steering angle θsteer and
speed V are used to mimic an automobile. However,
the Amigobottm is driven with differential wheel
speeds. Therefore steering and speed commands are
mapped to the left and right wheel speeds via
equations 8 and 9.

Vleft = (V / Vmax - θsteer / θmax) kwheel (8)
Vright = (V / Vmax + θsteer / θmax) kwheel 9)

4.2 Environment

Two distinct environment models are created in
this study: one for initial learning (called Arena), the
other for performance testing (called Track). The
Arena is a large open 10m x10m flat floor with a
barrier to prevent the vehicles from escaping. This
environment contains two vehicles, a lead vehicle and
a learning vehicle which follows it. Both static and
dynamic target training are conducted in this
environment. The custom MDP software allows
policies to be saved and reloaded, to facilitate
learning.

 The Track is a simulated two lane road with
barriers on either side to prevent escape. Five
vehicles are modelled in this world and placed at the
start position. The end of the road contains a “Warp
Gate” which when reached sends the vehicles back to
the starting position. Therefore, a repeating road can
be simulated using only a straight 50m section of
track.

6. RESULTS

6.1. Learning

Two control policies are obtained through static
target training through two different reinforcement
learning algorithms. Q-Learning with ε = 0.1, γ = 0.1
and α = 0.1 (learning rate) is used to learn a control
policy π1 which can approach a static target to within
1m. The location of the target is randomized for 100
episodes. This is repeated for the SARSA algorithm
under the identical conditions to arrive at π2.

Fig. 6. Q-Learning performance (π1).

Fig. 7. SARSA: Learning performance (π2).

Figure 6 and 7 show the progress of learning or each
algorithm. The exploration ratio represents the ratio
of exploration starts to total steps for a given episode,.
This begins high as the policy is unknown and as
t→∞, it should approach ε, showing the policy has
been learned. From the simulation data, both
algorithms appear to learn at more or less the same
speed, and we cannot say one is faster than the other
for this application.

6.2. Longitudinal Performance

The longitudinal control is evaluated by
deploying four copies of a policy on four vehicles.
The vehicles are initially arranged in single file
separated by 0.4m and all at rest. The lead vehicle is
set to reach a constant speed of 0.3m/s while each
vehicle attempts to follow the preceding vehicle. The
vehicle separations are recorded throughout the
evaluation. At t = 100 sec, the lead vehicle is stopped

to observe the behaviour of the platoon as the
vehicles come to rest. This evaluation is executed for
both policy π1 and π2 and shown in Figure 8 and 9
respectively.

Fig. 8. Q-Learning: Longitudinal control (π1).

Fig. 9. SARSA: Longitudinal control (π2).

For this application, the minimal vehicle spacing is
considered 1m while the maximum distance is 5m. It
is interesting that all vehicles try to adjust their
distance to 2m while travelling at about 0.3m/s. After
braking, the vehicles attempt to keep a distance of 1m
as this results in more reward.

Fig. 10. Q-Learning: Lateral control (π1).

6.3. Lateral Performance

The lateral control is evaluated by deploying four
copies of a policy on four vehicles. The vehicles are
initially arranged in single file separated by 2m and
all moving at a constant speed 0.3m/s in one lane. A
lead vehicle is placed on the adjacent lane, this is
equivalent to a unit step input; each vehicle then

tracks the preceding vehicle so as to accomplish a
lane change. The vehicles’ lateral positions are
recorded throughout the evaluation. This evaluation
is executed for both policy π1 and π2. Figure 10
shows the left and right lane change for π1 while
Figure 11 shows the left and right lane change for π2.

Fig. 11. SARSA: Lateral control (π2).

The data show a very smooth transition to the other
lane with no overshoot. The response is identical for
both policies and symmetrical.

7. CONCLUSION

From these initial simulation results, we can draw
a few conclusions. The difference in learning
performance between the Q-Learning and SARSA
algorithms is indiscernible, although, if learning
continued for 100s of more episodes we might
observe some differences. For now we conclude that
they give similar learning performance for this
application.

From the very preliminary performance
evaluations of the two obtained policies, one from Q-
Learning, the other from SARSA, very similar
performance is observed. One could conclude that
they are in fact the same policy for this MDP. This
follows in theory that if the optimal policy for an
MDP is unique then different RL algorithms will lead
to the same optimal policy. Only more evaluations
about different operating points would prove that the
same optimal policy has been reached.

8. FUTURE WORK

This paper has presented some preliminary results
in our study of collaborative driving control. While it
appears that reasonable vehicle behaviour can be
achieved via machine learning, our future objectives
include looking at longer learning periods for better
policies, more detailed evaluation of the obtained
policies, stability analysis, the control of higher-level
platoon management, and system performance under

varying initial platoon configurations and road
conditions.

REFERENCES

Baraff, D. (1996). Linear-Time Dynamics using
Lagrange Multipliers. In: Computer Graphics
Proceedings, Annual Conference Series
(SIGGRAPH ’96). pp 137-146. New Orleans,
LA, USA, Aug 1996.

Bellman, R. E. (1957). Dynamic Programming.
Princeton University Press, Princeton, NJ.

Halle, S., J. Laumonier and B. Chaib-draa. (2004). A
Decentralized Approach to Collaborative Drive
Coordination. In: Proceedings of 7th IEEE
International Conference on Intelligent
Transportation Systems (ITSC’2004).
Washington, DC, USA, Oct 2004.

Huppe, X., J. de Lafontaine, M. Beauregard and F.
Michaud. (2003). Guidance and Control of a
Platoon of Vehicles Adapted to Changing
Environment Conditions. In: Proceedings IEEE
Conference on Systems, Man, and Cybernetics.
pp 3091-3096.

Kohl, N. and P. Stone. (2004). Policy Gradient
Reinforcement Learning for Fast Quadrupedal
Locomotion. In: Proceedings of the IEEE
International Conference on Robotics and
Automation. pp 2619-2624. May 2004.

Laumonier, J., C. Desjardins and B. Chaib-draa.
(2006). Cooperative Adaptive Cruise Control: a
Reinforcement Learning Approach. In:

4thProceedings of Workshop in Traffic and
Transportation, AAMAS’06. Hakodate,
Hokkaido, Japan, May 2006.

Michel, O. (2004). Cyberbotics Ltd. Webotstm:
Professional Mobile Robot Simulation. In:
International Journal of Advanced Robotic
Systems. Vol 1 Number 1 pp 39-42.

Ng, A.Y., A. Coates, M. Diel, V. Ganapathi, J.
Schulte, B. Tse, E. Berger, and E. Liang. (2004).
Sutonomous inverted helicopter flight via
reinforcement learning. In: Proceedings of
International Symposium on Experimental
Robotics.

Rummery, G.A. and M. Niranjan (1994). On-Line Q-
Learning using connectionist systems. In:
Technical Report CUED/F-INFENG/TR 166.
Engineering Department, Cambridge University.

Stone, P. and R.S. Sutton. (2001). Scaling
Reinforcement Learning toward RoboCup
Soccer. In: Proceedings of The Eighteenth
International Conference on Machine Learning
(ICML 2001). pp 537-544. Willianstown, MA,
USA, June 2001.

Sutton, R.S. and A.G. Barto. (1998). Reinforcement
Learning: An Introduction. A Bradford Book.
The MIT Press. Cambridge, MA, USA.1998.

Varaiya, P. (1993). Smart cars on smart roads:
problems of control. In: IEEE Transactions on
Automatic Control. Vol 32, Mar 1993.

Watkins, C.J.C.H. (1989). Learning from Delayed
Rewards. Ph.D. thesis. Cambridge University.

