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A NONSTANDARD DELTA FUNCTION

TODOR TODOROV

(Communicated by James E. West)

ABSTRACT. We prove that the Dirac delta distribution has a kernel in the class
of the pointwise nonstandard functions.

The purpose of this note is to prove the existence of a nonstandard function
A:'R" —*C such that

/ A(x)p(x)dx = p(0)
.

forall ¢ € C°. Here C° = CO(R") is the class of the continuous complex-
valued functions defined by R”, *R and *C are the sets of the nonstandard
real and nonstandard complex numbers, respectively, and “p:*R" —* C is the
nonstandard extension of ¢ . For examples of nonstandard functions A for
which (1) holds merely “up to infinitesimals,” we refer the reader to one of the
many texts on nonstandard analysis, e.g. [2, p. 300]. Recall that there does not
exist a standard function A with the property mentioned above.

In what follows, we shall work in a nonstandard model with a set of indi-
viduals S that contains the complex numbers C and degree of saturation k
larger than 2* for x = cardC % In particular, any polysaturated model of C
will do [2].

Notation. For any ¢ € c° , we define the functional F ¢:9 — C by

@ F= [ fexdx, fed,

where Z = C;°(R") is the class of all C*-functions on R" with compact
support. We write ker F¢ for the kernel of F¢ . For the nonstandard extension

‘F.f.@ —*C of F , for p € C°, we have the +-integral representation

3) Folf)= [ S0 dx, fE2.
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Lemma. For any k € N and any ¢, € C i=1,2,...,k, the system of
equations
(4) F,(N=0(0), i=1,2,...,k,

has a solution f in & .
Proof. Consider first the case kK = 1 of one equation:
(5) F,(f) = 0(0).
If 9 =0, then any f in & is a solution of (5). If ¢ # 0, then the set
d=9 —ker F¢ is nonempty and the function
_ 9(0)-

I=F ¢
satisfies (5) for any choice of g € ®. Assume, now, that the statement is true
for k—1.1f ¢,, ..., ¢, arelinearly dependent in C?, then (4) is equivalent to

a system of k —1 equations and, by assumption, has a solution. If ¢, ..., ¢,
are linearly independent, then the sets

k
§<nkerF¢j)—kerF¢i, i=1,2,...,k,

are nonempty [1, vol. 3, Lemma 10, p. 421], and we can pick g, € ®,. Now,
the function

/= ZF(g,

is obviously a solution of (4). The proof is complete. O
Proposition. There exists a nonstandard function A € for which (1) holds for
all pe C 0
Proof. Define the family .% ,peC O of subsets of & by
o, = {f €D:F,(f) = p(0)},

and observe that, by the above lemma, it has the finite intersection property.
Hence, by the saturation principle [2, 7.4.2(b), p. 181], the intersection

v,
peC®

is nonempty, where "%/, = {f e*.@:*F.w(f) = ¢(0)}. Hence every A € & has
the desired property. The proof is complete. 0O
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