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1. Introduction 

In this paper, we develop a preliminary math
ematical model for determining lot sizes for a single 
product which has several quality levels. The qual
ity level of each unit is determined ("binned") by 
testing the product after it is produced. Binning 
based on performance after production is common 
in several industries, but the application which 
motivated the model developed here is semicon
ductor manufacture. A typical example is a micro
processor that operates at one of several different 
speeds. Specifically, consider the 80486 micro
processor developed by Intel Corporation of Santa 
Clara, California. {The 486 chip is currently the 
processor of choice for IBM compatible personal 
computers). At the current time, the 486 operates at 
three speeds: 25,33 and 50 MHz. The production 
process is exactly the same in each case. After the 
chip is produced, it is tested and binned based on its 
performance. 

The issue that we address in this paper is to 
determine the value of the lot size (x) so that we are 
guaranteed with specified probabilities that the de
mands for the various grades of product are satis
fied. We also assume, as is often done for problems 

of this type, that we may substitute higher quality 
products for ones of lower quality, but not vice 
versa. While several related studies have addressed 
similar issues in more general settings, our ap
proach will yield a solution which is easy to com
pute and easy to implement. 

2. Literature review 

Uncertainty of supply is a concept that has been 
studied by many researchers. Karlin [1] considered 
supply uncertainty in the context of one-stage mod
els with uncertainty. Karlin [1] considered the 
standard newsboy type single-period stochastic in
ventory model but generalized this model to the 
case where the amount received is a random vari
able whose distribution depends on the size of the 
order. Giffier [2] formulated a model in which the 
uncertainty of the supply is a consequence of a pro
duction process in which items might be defective. 
Giffler [2] assumed that the number of defects is 
a random variable whose distribution depends on 
the number of items produced. The goal of the 
analysis is to find an optimal "reject allowance", 
which is an amount over and above the normal lot 
size to compensate for defectives in the lot. Levitan 
[3] considered the same model but provided 
a more rigorous analysis, and a different computing 
algorithm. 

 



Because of the increased emphasis on manufac
turing competitiveness and, more specifically, on 
quality in manufacturing, there has been consider
able interest in extensions of the types of models 
considered by Giffier [2] and Levitan [3]. We will 
not provide a complete review here, but refer the 
interested reader to the recent related papers by 
Lee and Yano [4] and Henig and Gershak [5] and 
references contained therein. 

Two studies which are much closer to the spirit 
of ours are due to Bitran and Dasu [6] and Bitran 
and Leong [7]. In the former study, the authors 
formulate a multi-period, multi-product pro
duction planning problem in which each product 
is binned according to a single attribute after 
production. Determining the optimal lot size for 
production of each product is referred to as the 
""morning" problem. Once production is com
pleted, the yields in each quality category are real
ized. The next problem, referred to as the "evening" 
problem, is to allocate the existing stocks in an 
optimal fashion. The assumption is that there are 
known demands in each quality category. Both 
optimal and heuristic solution techniques are
explored. The latter reference explores essentially 
the same problem, but assumes that customer de
mand is satisfied from inventory a.: 0/o of the time, 
where a.: is a given constant between zero and one 
representing a type 1 service level (see [8] for a 
discussion of service levels). The model developed 
is also multi-product and multi-period and results in 
a large chance constrained formulation of the prob
lem. Heuristic solution methods are recommended. 

3. Assumptions and notation 

We consider a single product, which after pro
duction, is classified into one of n quality levels 
according to a single attribute. The levels will be 
designated 1, 2, ... , n. We assume that the quality 
levels are ordered in descending order. That is, 
quality level 1 is the best level, then level 2 and so 
forth. Furthermore, we will assume that customers 
requesting product of quality level 1 will not accept 
product of lower quality as a substitute, but cus
tomers demanding a lower quality product will 
accept a higher quality product as a substitute. 

Suppose that x is the total size of a production 
run. We assume that the numbers of items which 
are binned into the n quality levels follows a multi
nomial distribution. That is there are probabilities 
p ~> P2o ... , Pm representing the likelihood that a unit 
of production is binned into each category. Since 
this is a multinomial distribution we require the 
condition that Pi ~ 0 for each i and "Lpi = 1. It is 
possible that one or more of the items produced in 
a batch may be defective. In that case we could 
consider quality level n representing defective items 
and assume it has zero demand and zero service 
level. Define the random variables y; as the number 
of units of quality level i produced. Then according 
to our assumptions, y; is a binomial random vari
able with parameters x ( # of trials) and Pi (prob
ability of success). (It is well known that marginals 
of the multinomial have the binomial distribution.) 
Suppose that the demand for product of quality 
level i is a known constant d;. Finally suppose that 
there are given constants ocb ()( 2 , •.. , ()(n between zero 
and 1 representing the required level of type 1 ser
vice for each quality level. Type 1 service means 
that we would like to satisfy all the demand for 
quality level i with probability ()( 1 . The problem is to 
find the minimum value of x to accomplish this 
goal. 

4. Analysis 

The service level requirements and the assump
tion that higher quality levels may be substituted 
for lower quality levels gives rise to the following 
nested set of inequalities. For quality level of 
grade 1, 

This says that the number of units of quality level 
1 produced should meet all the demand for quality 
level 1 with probability at least oc 1 . Consider the 
demand for quality level 2. Allowing for the possib
ility that y 1 > d 1 , part of the demand for quality 
level 2 may be satisfied by the overage for level 
1 production. This gives rise to the chance con
straint: 



Note that these two constraints taken together 
guarantee the demand for quality levels 1 and 2 are 
both met with the desired service level. The general 
constraint is 

P{y1 + Yz + ··· + Y;:;::, dt + dz + ··· + d;}:;::, ~~ 
for 1 ~ i ~ n. 

The goal of the analysis is to find the minimum 
value of x so that these n constraints are simulta
neously satisfied. We should point out that our 
model is considerably simpler than that considered 
by Bitran and Leong [7] who also assumed a type 1 
service level criterion, multiple periods and mul
tiple products. The advantage of our approach is 
that we allow for different service levels. We also 
obtain an explicit algebraic solution. 

Define the random variable W 1 as the partial sum 
of the random variables Yt. ... , y 1• That is, 

W; = Y1 + Yz + ··· + Yi· 

It is easy to see that W 1 also has the bionomial 
distribution with parameters x and r 1 = p 1 + p 2 

+ ··· + p 1 • For large x it is well known that the 
binomial distribution can be closely approximated 
by the normal distribution (see [9] for example). 
The approximate values for the mean and variance 
are 

/--l; = X ( ) = X r i ,.± p j 
J=l 

For convenience of notation, define D; = d 1 

+ d 2 + · · · + d;. Then the i chance constraints can 
be written in the shorthand form: 

P{ W 1 :;::, D 1} :;::, ex; for 1 ~ i ~ n. 

Approximately each W 1 by a normal random 
variable with mean /--l; and standard deviation a 1 

means that the chance constraints become 

D·- xr- }p z ~ I I ~ ~~ for 1 ~ i ~ n,{ .Jxr1(1 - r1 ) 

where Z has the standard normal distribution. 
Because Z is continuous, we are guaranteed that 

there is a solution if we set the probability on the 
left equal to cx 1• Doing so results in the equation 

D;- xr1 t:P- 1 (~;). 
~-r;) 

where t:P- 1 is the inverse of the complementary 
cumulative standard normal distribution function. 
This is equivalent to 

The goal is to solve for x. Since each value of 
i between 1 and n defines a different equation and, 
hence, a different value of x, we will henceforth 
append x with a subscript. That is, the solution to 
this equation will be denoted x 1• This is easily seen 
to be a quadratic equation in x 1• Squaring both 
sides and rearranging terms so that the equation is 
in the standard form of ax2 + bx + c, we have: 

xl[rlJ + x 1[- 2r1 D 1 - zlr1(1- r 1)] + Dl = 0, 

where we have defined z 1 = t:P- 1 (~;) for conve
nience. 

The solution to the quadratic equation ts 

1 r z x 1 = -~. 2D; + z 1 ( 1 - r1 )2r; 


± z 1..}z1(1 -r1 ) 
2 + 4D1(1 -r;)}. 


Because z; is the complementary cumulative distri 
bution function, it follows that z 1 is negative for 
service levels more than 50°/o. The solution, x;, is 
the larger of the two roots. The value of the lot size 
x must satisfy all n chance constraints. Hence it 
follows that the required lot size, x, is given by 

5. Computations 

To better understand the interrelationships 
among the various parameters in this model we 
have computed the optimal values of x 1 for n = 2 
and n = 3 for several values of the system para
meters. The results for n = 2 appear in Table 1 and 
the results for n = 3 appear in Table 2. In Table 
1 we compute the value of x 1 for nine values of the 



demands (d 1 , d 2 ) and nine values of the probabilit
ies associated with the two quality levels (p 1 , p 2 ). 

We consider only the case where the service level 
for both quality levels is 90°/o. The numbers in both 
Tables 1 and 2 will just be scaled upward propor
tionally if higher service levels are considered. Since 
d 1 + d 2 = 100 in all cases, x 2 = 100 in each case in 
Table 1. Similarly, we assumed,+ d 2 + d 3 = 100 
in Table 2. resulting in x 3 = I 00 in each case in 
Table 2. For this reason, Table 1 only contains 
values of x 1 and Table 2 only contains values of 
(X 1o x 2 ). 

Consider first Table 1. Since x 2 = 100 in all cases 
what is interesting is which cases give x 1 > 100. 
Some of the results are different from what one 
might expect. For example, for the case 
(pb p 2 ) = (0.5, 0.5) and (db d 2 ) =(50, 50) one might 
think that the values of x 1 and x 2 would be close 
since all parameter values are the same. However, 
Table I shows that in this case x 1 = 203. The 
reason that the value of x 1 is so much larger than x 2 

is a consequence of the one way substitution. Ex
cess amounts of product 1 can be substituted for 
product 2, but not vice-versa. Hence, we need to 
produce a much larger lot to satisfy the demand for 
both quality levels that we would need just consid
ering quality level 2 by itself. Only when the de
mand for quality level 2 is substantially higher than 
that for quality level 1 or the yield for quality level 
2 is substantially lower than that for quality level 1, 
is x 1 < x 2 (in which case x = 100). It is also inter
esting to note from Table 1 that for very low yield 

Table l 
Values of x 1 for various parameter settings (n = 2) (x 2 = 100 and ::x 1 

rates for quality level 1, the lot size required to 
satisfy a demand of I 00 units can be as much as 25 
times higher! 

Table 2 shows results for the case of 3 quality 
levels. Again, we fixed the sum d 1 + d 2 + d 3 = 100, 
so that x 3 = 100 in each case. The values of x 1 and 
x 2 are shown under each parameter setting. The 
results are consistent with those observed for n = 2. 
When the yield rate for quality level 1 is low, the lot 
size must be increased substantially over the de
mand to be sure that the demand for level 1 product 
is satisfied. When the yield rates for quality level 1 
are high, it is more common that the values of 
either x 2 or x 3 exceed x 1 • Higher or lower service 
levels for quality level i result in proportionally 
higher or lower values of X;

If the yield rates, demands, and service levels for 
the various quality levels are approximately the 
same, it is clear that the value of x 1 will determine 
the optimal lot size, x, as we saw in the 11 = 2 case in 
Table 1. When one or more of these parameter 
values differ markedly, all values of X; need to be 
computed to find the optimal lot size that guaran
tees that all quality levels are met with the desired 
levels of confidence. 

6. Conclusions and extensions 

We have presented a preliminary model of a pro
duction system in which a single product is binned 
into one of several quality grades after production. 

= ::x 2 = 0.90 in each case) 

(d 1 , d 2 ) 

(P,P2 ) (10,90) (20.80) (30, 70) (40,60) (50,50) (60,40) (70,30) (80,20) (90, 10) 

(0.1,0.9) 307 587 867 1147 1427 1707 1987 2267 2547 
(0.2,0.8) 142 272 402 532 662 792 922 1052 1182 
(0.3, 0.7) 87 167 247 327 407 487 567 647 727 
(0.4, 0.6) 60 115 170 225 280 335 390 445 500 
(0.5,0.5) 43 83 123 163 203 243 283 323 363 
(0.6, 0.4) 32 62 92 122 152 182 212 242 272 
(0.7,0.3) 24 47 70 93 116 139 162 185 208 
(0.8,0.2) 18 36 53 71 88 106 123 141 158 
(0.9,0.1) 14 27 40 54 67 80 94 107 120 



Table 2 


Values of(xt>x2) for various parameter settings (n"' 3) (x 3 "' 100 and rx 1 "':x2 "' rx 3 "' 0.90 in each case) 


(db dz, d3) 

(Pt>Pz,p~) (10, 10,80) (30, 10, 60) (50, 10,40) (70, 10, 20) (10, 30, 60) (10, 50,40) (10, 70, 20) (20, 20,60) (20, 60,20) (60, 20, 20) 

(0.1,0.1,0.8) 307 
272 

867 
532 

1427 
792 

1987 
1052 

307 
532 

307 
792 

307 
1052 

587 
532 

587 
1052 

1707 
1052 

(0.1,0.3,0.6) 307 867 1427 1987 307 307 307 587 587 1707 
115 224 334 445 225 335 445 225 445 445 

(0.1,0.5,0.4) 307 
62 

867 
122 

1427 
182 

1987 
242 

307 
122 

307 
182 

307 
242 

587 
122 

587 
242 

1707 
242 

(0.1, 0.7,0.2) 307 867 1427 1987 307 307 307 587 587 1707 
36 71 106 140 71 105 141 71 140 140 

(0.3,0.1,0.6) 87 24 407 567 327 87 87 167 167 487 
115 225 335 445 335 335 445 225 445 445 

(0.5,0.1,0.4) 43 123 203 283 43 43 43 83 83 243 
62 122 182 242 122 182 242 122 242 242 

(0.7, 0.1,0.2) 24 70 138 184 24 24 24 47 47 138 
36 71 123 !58 71 106 141 71 141 141 

(0.4, 0.4, 0.2) 60 170 280 390 60 60 60 115 115 335 
36 71 106 141 71 106 141 71 141 141 



The model is only preliminary as it fails to consider 
several aspects of the real problem. One is that in 
most environments in which binning takes place 
there are capacity restrictions on the optimal lot 
size. While adding an upper bound to x would be 
a trivial extension in this case (one would simply 
produce the min (x, b) if b is the production capa
city), the capacity issue is more complex than this. 
Most production processes involve multiple steps 
with differing capacities and yield rates at each step. 

Another limitation is that our model is a static 
one. We considered a single production decision 
and a fixed and known demand pattern. In practice, 
log-sizing decisions are made on a continual basis. 
A multiperiod model would be much more realistic. 
Another feature of the real problem not considered 
here is demand uncertainty. However, even though 
our model lacks many features that would make it 
a realistic model of semiconductors manufacture, it 
can be useful for providing a "rough cut" first 
approximation for determining the size of the pro
duction run needed to satisfy demand for multiple 
quality levels. 
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