43th AIAA Asrospace Sciences Mosling including the New Horlzans Fa d A Exposhl 1AA 2
4-7 January 2019, Orlando, Florida 8 the New Hor rum and Asteshace Exposition AlAA 2011615

A Scientific Software Verification Library Based on the
Method of Manufactured Solutions

David . Marshall *
Californiz Polytechnic State {niversity, Sen Luis Obispy, CA SR4O7-0858, U184

A safltware library, sveli, is being doveloped in the G4+ programuming langnage that
applies the Mothod of Manufactured Solutions (MMS)] to & variety of partial differential
equation (PDE) proklems. This library will allow researchers to utilize MMS as a softwara
verification process without developing significant amounts of testing code. The library is
split into three componenis: solution classes which can be used as manufactured solutions
te PDE prablems; PDE problem classes which represent speclfic types of PDEs Lo be solved
{(such ms linear convection-diffusion equation or Poissen’s equation]; and port-processing
classes that collect the convergence information and can perform varlous analysis technigues
to the canvergence data. In wee, any solution class can be used with any PDE prohlem
elasy and vice versa. This creates a significent amoont of flexibility in this architectura
and allows the end users io customize thelr MBMSI testing process, In addition, end users
are able to dovelop their own solution classes in one of three ways: inheriting from the
solutlon base clese and implementing thelr own class; providing the functions (a8 source
cade to be compiled or as a software library with exported functions) regoired to evaluate
the aolution and its derivatives; or providing the eclution equation as A string to be parsed
by the library into a function. This paper will demonstrale s gumber of features of this
library, as wall as demonstrate ita application in & typical use case.

Nomencelature
1) Comvective wave velocity in linear convection-difusion problem
b Source term in partial diferential equation
o Sululion to partial diferential equation
Subzcripts
oD Convection-Niffusion Term
TMma Manufactured Salntion Term
Cenventions
Gl Grid Convergetice Index
bME Methed of Manufactured Sclutions
PDE Partial Differential Equation
Syrrebofs
(2 Diffusivity in Hnear conveclion-difusion problem

I. Imiroduction

OFTWARL verilication is an important concept in software development, and it has Legun to gain in sig-
nificance in the ares of software development far scientific applications. The distinction between software
verification and software validation that is important to keep in mind. *The AIAA Cuide for Verification
and Validation of Computational Sinmulations” defines! software verification as “the process of determining
that & model implemontation accerately ropresents the develnper's conceptual description of the mode] and

*Arsociste Profesaor, Acrospace Engineering Department, Senior Momber AIAA .

1 of 13

Copyright © 2011 by Omvad 3. Marshat, Pubiahad by the ArbRRGH Sl B/t MR RE Bar SRR Wt AR RS asion.

the solution of the madel.” In other words, is the code solving the equations that it was intended to solve.
For software validation, the ATAA guide says it is “the process of determining the degres to which a model
is an accurate representation of the real world from the perspactive of the intended uses of the medel” In
other words, is the code modeling the correct equations for the physics of the problein. This paper will focus
vn the sspect of software verification.

Roache has authored two Looks on the subject of software verification for scicntific and engineering
software™ ¥ that provide an excellent summary of techniques that can be used to verify software. He also
Presents a thorough description of what informatiou i important 1o the code developer, who is writing the
software, and the experiinentalist, who is generating the validation dataset. Theose two books are excellent
references for anyone whe i9 participating iu scientific software verification and validation,

The book by Knupp and Salari* provides excellent examples of implementing software veyification tech-
niques ol 4 wide varicty of problems. They also cover lmplementation issues sucl as the process of order
verification, mesh refinement guidelines for structured and unstructnred nieshes and the treatment of bonand.
ary vonditions. They slso provide excellent guidance on how to choose & manufactured solution so that it i
similar to the expeeted solution.

Eca and Hoekstra have also contributed a number of excellent papers in the Feld of software verif-
cation.® ' They have focused on the use of the Method of Manufectured Salutions, MMS, to perform
verification techniques on CFD codes. MMS v & technigue where & solution lo a diffsrentisl equation {or
sl of differentiel cquatione} is assumed. These can be cither ordinary or partial dilferential cquations. This
esrnmed solution is the substituted into Lhe differentia] equation(s) and ferms are added to the origing di-
ferential eyuation(s) in order to make the assutned solution an actual salution Lo the differential equation(s],
Section II provides a brief introduction to MMS.

Oberlampf and Roy have recently produced a hook!® that discusses a wide variety of verification and
validation topies as they relate Lo scientific software development. ‘They present a variety of lechniques that
ciul be used to generate the reference solutien that will be nsed for CompAarison in the verification process.
In addition to MMS, they also discuss a variety of ways of obtaining solutiona that are more realistic to the
undetlying physics of the problem. This can be an important issug when vatidating differential equations
that have a linuited range of applicability, such as turbulence models in CFD,

II. Summary of the Method of Manufactured Solutions

The Method of Manufactured Soluticons is & useful method of generating e reference solution to diffcrential
squations when an exact solution is oot know or is too costly to obtain, As an examnple of how MMS is used,
suppose the one-dimensional, linear wave equation with a source terin is the differendial equation Lhat we
aro trying to perform acftware verification upon,

—-—+|:’!—-I——{:!" =1 I:].}

where ¢ is the unknown selution and g is the wave speed. Notice that the source term was moved to the
left hand side so that the entire equation was equal to zero, This is 5o that the MMS sourre term is easier
to identify.

Suppose that we do bot know mny exact sohition o this partia] eifferential cquelion, FDE, s we are
going to assume that the Follosing equation is the solution

s = 8in [ar + H2) (2

where o and A are srbitraty {non-zero) constants. Whila gy, is not & solution to the criginal PDE, it iz a
solution ta the following PDE
8¢ B _
ﬂ_‘}‘cm_ﬂt:s‘mms {3)
Sma = {ex + 3, cos [ax + #) — ™! f4]

where Smm, i the source term that necded to be added to the original PDE {1) in order to make () &
solution. The source term is obtained by substituting the assumed solution into the original PDE {1). Any
remaining termy on the left hand side {since we moved the vriginal source term to the left hand sude as
mentioned above) are the MMS source term.

2ol 1y

American Ingtlbute of Aeronautlos snd Astronautios

While this paper will not discuss the concept of boundary conditions as mpplied to M3S, it is wortl
noting that since we have the exnct solution, then Dirichlet, Neumann or even more complicated boundayy
conditions can be applied sxactly,

The use of MMS as a software verification techmique is very promising siuce it sllows the spfiware
developer ta compare the computed salution to an exact solution. One of the difficulties in implementing
this iz that for cach new differential cquation solution that is Luing solved & new MMS source noeds to be
dorived. In addition, it is believed that MMS can be too intrusive into the sonree code ginee Lhe differentia)l
ciqustion being solved needs to be modified i order to meke the assummed solotion an actual sojution. This
raper predents the preliminary work on a software library, sveli, written in C++ that attermnpts to address
these two issues and provide a convenient and eagy Lo use tool for svientific software developern,

III. Software Architecture

A, Dverview

There are three main components to sveli: The Sclulion Component, the Equation Component and the
Post-Protessing Component. Each ong is implementcd as & separate namnespace. The Solution Component
implernents & variety of standard mamufactured solutions. Fach class can caleulste its value and its derivatives
for & given inpnt conditions and adlieres to the solution interface. Since all solutions imptement. Lie same
mterface, they can be inlerchanged with littie etlort. The Equation Coamponent utilizes the soletion interlace
lo define & variety of differentisl equations that can be used w perform MMS verification, Currently only
& two interfaces have been developed, but more will be implemented in the Fature. The third component,
the Tost-Processing Component porfonios all of the standard post-processing that is typically porformed for
woftware verification. Currently, this eomponent collects the solutions for the individunl solutions that have
been performed and calenlates order of accuracy and other information that can he displeyed to the wser,
It is important to remark that these three components only uiilize interfaces from the ather components as
needed and are not tied to any specific instantinble class. Thus the library user is free to mix specific classes
85 Bppropriate to meet het needs,

B. Soluticn Component

The Solutivn Component is the mosi
lundamental component in sveli Since
it represents the implementation of the
manufactured sclutions and existz in solution_interface
the anloten namespace within the sveld

namespace, Figure | shows the inheri- o b“\
tance hierarchy within this component. o~ *
The most bagic interface is the solution .
interface. This interface spocifies how & unsteady_interface single
sn:rluticrn interf_a.cc:s with the user t.o pro- Fi 2 F A
vide the solution and the derivatives of s

the selution, For this interface there are
two methods that represent the interface constant ksB1_besc cosine sime exponential
between the user and the classes. One
is the eveluate method that takes 8 vec- F R
tor that represents the independent pa- P 3
rameters ﬂm.i r_etums thﬂ. mﬂuntﬂd 8O- kag1 4 .
lutivn. This is shown in Line 37 in
the following code. The other mathod
ia the avanlats_parvinl which takes the
same veckor of independent paramcters
and &l2o a yvector representing the deriva-
tive order(s) desired. For instance, if
&8 (T127) Is desired for o solution of three independent variables {¥;, xz, zi), then the vectar passed
in would be [1, 1,00, The method returns the evalusted partial derivative. This is vhown in Line 40, Notice

Flgure 1. The Soluticn Compenont class inherilance hiararchy.

3 of 13

American Institute of Aeronwatice and Astroneutics

that these methods are abstract since each solution implementation needs to define the functionality of these
methods.

namespace dvell

1
a1

] nEmeEpace pelution

4 {

¥ templats <typeoans __values

[claag solution_inteardsca

T {

[publkic;

] NOUE ACTOT_code

Bl {

11 o, 8ITar = f,

17 invalid parsmetar =1,

13 iopvalid variable_ipdex = 2,

14 invalid derivative_ordar = 3,

16 derivative_not_svallable = 4

m h

"

LM typedaf upsigned char order_typs;

19 typodel etd::size t variable_inder_typs;

e

Y I

a1 A¢# WOTE: varicus protwcted and private methode and meshers removed

EE) £

T4

I8 public:

us Bolutien interfucelconst vacisble_index_typa #evd: ovar(ov) {}

ar selution_lnterimes(const solotion_interfaces._value> E¥1) : ovar{fi.nvar) {}
an virtual “soloticn_interfiscedl {}

]

an £¢ returm the mmber of verisbles thet this fundticn expects

L voriable_imdex_type ouster_varimhlsa(} comat {retorn ovay;}

a3

33 /f Tetern poloter to copy of functiem

EI virtual selutioo_interfaces__valuws « copy(} comay = ;

3%

11 £/ evaluate the function for given valuws and return reault

an virtual stror.code wvaluatal _valuw Evelout, const __value valfl) const = 0
28

20 /f mynluata the partial derivative of the function for given valuen.
40 virtual scror_code evalusts_partislf__velus Bvalout, conmt __valuw wall],
a1 conat order_typa ord[]) conmt = O
az k

4 }

<1}

Figore 1 shows an interface that extends the salution interface called aingla. This interface iz a specinl-
ization that handles the case where the manufactured solution is & finction of one independent parametcrs,
Such exanuples of this are trigunometrie functisn, and they have been implemented in thi= library,

Since maty manufactured solutions heve an explicit time dopendence that is fundamentally different that
the vther independent parameters, there is also an unsteady slution interface that is a specialization of the
solution interface. Figure 1 shows this interface and the classes Lhat implement this interfaco. The following
code shows the unsteady solution interface with Lines 14 and 17 showing the unstesdy evaluate snd the
unstesdy evaluste partia] derivative methods which are alstract methods that need to be implemented by
the specific unsteady solution classes. Lines 23 and 27 show the steady interface versionr of these methods,
The unsteady solutivn interface implementa these by persing the inpul wvector to the steady versions with
the first vector element being the time and the rest of the vectur elements being the othey independent
parameters. Thus, no unsteady interface needs to re-implement these, Lwever thoy can if the wish,

1 pamespacs mwell

:

] oamaBpacs golutlion

4 i

) template <Lypename __valua>

n claps unatamdy_interfaca : public solution_interfaces__values

4 of J5

American Enstiiuto of Aeranaudlos and Astronawlles

T {

3 Pablic:

[unateady_ioterimce (conmt typenmme aplution_interface<__value’:ivariablae, index_type #mv);

0 upetpady incerfacs(conat unetasdy interfaca< _valuer #f1).

1 virtual “unstwady, ioterface();

1

13 A7 wvaluabe the fupcelon for gpivan valuse and raturn rasvlt

14 virtual typaoame soluticn, interface<_ _valow*::srror_code

13 wyalunte_unsceady(__value gralout, const __valus #t, comae __valve veall[]} comec = 0;
18 // evalumte the partial derivative of the function for gives valoes.

17T yiptual typanama sslution intarfaces__veluar::arror_code

18 svaluaty _unstesdy partisl(__velue kvelout, coust __value kt, const __walus valll,

i conat typeaoama molution intarfaca<_ _value:::order_typs tord,
e const typeoame mclution. interfaces__valuw?;:ordec type ord[1} conat = 0,
an

HES /¢ avpluate the funition for given valuas mnd raturs rasult

23 virtual typaoams soluticn interfaced__valuw*::srror_cods

2 ayalystad__valus kvalook, conmt __walus wal[]} commt;

25

ae // evalumte the partial derivative of tha fonction for given valoes.

ar viptual typename salution intarfaces _wveluax::srrar_code

23 evaluata_partial(_valos kvalout, conat __wvalue vall],

an conat typepams aslotian interfmcns _veluss::srder_type ord[]) coost:
o h

HY }

F

An example implementation of & manufactured solution is one from Knupp and Salari." They present 8
manufactured solution of the form

Usnema (1 &) = 1[50 (T &+ wh) +] (5]

that they nsed for the validetion of the linear, convection-diffusion cquation,

With the mannfactured solution chosen, the solution elass aod the solution derivatives need to be devel-
cped. These devivatives sre needed for tasks such as building the MMS source term. The eesit library has
implemented thie manufactured solution in the ksgiu class. The kefio class inherits from the unatasdy_intsrfacs
glass since it i= & function of time as well as a function of position. It implemnents the evaleats_uneteady and the
avalunts_uoateady_partial methods Below shews an example usage of the wsBiu class to evaluate the function,
line 10, as well 65 the pavtial derivetive %‘iﬁy, lingg 13 throngh 15, Notice how few lines are needed to
create & fully fonctional mannfactured solution, Lines 1 through 4 are declarations, Line 7 is the initialization
of the sclution, Line 10 evaluates the solotion, Lines 13 and 14 set the partiat decivative order, and Line 15
evaluates the derivative.

deukla vout, vpout, x[2]1 = {1.2, 3.4};

L]

3 double wQ(3.2}, omege(2}, apeilan{=0.€],

a ayell::ksBlutdouble, 1> xld;

4 typenmma mvell::mclutlon::sslutipn_intarfacasdoublas::erder_type ord[2];
3

n FF aat valua

v kld.set_values(od, cmega, epsilonl;

n

¢ Ff evaluate the function at x with return value vout

1 kid_avaluses (vayt , x];

1L

13 ff evmluate the partial derivetive o _{ttrxr} at x with return value vpoot
13 ordl0)=2;

14 ardll]=3;

13 kld.svaliuate partisl (vpout, x, ordd;

. Eguation Componcnt

The Equation Cemponent represents & particular differential equation to be used in the MM5 technique. Tt
utilizes the solution and unsteady solution interfaces to define the manufactured solution gource term. 1t
exigls in the squatisn nAamespace within the aveli namespace. Figure 2 shows the class hierarchy for this
component. The pde_problen_base class specifies the basic interfuce that sll equations have. This wommon

ol 13

American [natituts of Aeronautics and Astronauticy

functionality is specifying of the MMS solution elass and specifying the source term for ihe differential
equation (if it hes one). Since there are two types of solution (general and unsteady), there are also two
typer of differential equation interfaces: steady and unsteady. These classes define how Lhe user mteracts
with the equation class, either with an explicit time term or not. The code below shows the pde_prehlem_base
¢l

pde_problem_hase
7 w
- ~
- -
rl T
unsteady_interface steady_interfacc
. | |
euler convection_diffusion_pde laplace
7 7 2 R
s s . Y
rd . o
nevier_stokos eonvection_diffusion_linsar_pde conveclion_diffusion_nonlinear_pde [s50n

Figure 2. The Equetion Compoenent cless inhorttance hlararchy.

1 namespaca mvali

z i

3 ramsspace equatian

4 i

] teaplate <typenama __valead, size_t __apace_dio®

n clmen pda_probleo bane

T {

i public:

Y A0UM SITRI_.Code

10 {

1L no_8¥rrar = q,

12 iovalid paramatar -1,

a eprce_lndex_out_of_rangs -7,

" iovalid_aplution_class = 3,

14 molution_not_specifisd -4,

1% avrnlubtion_not_mupported = g,

i derivetiva_order_not_supported = &,

L) unkhekn_ error = 939

1w 1

-

T £

1% /f WOTE: wvarigus protectad and privite mathods and members removed
a3 I

a

H pablic:

ET pde_problem_bawel);

' pde_protlem_bawe(conat pda_problem bmas<__uvslps, ~uapace_dim> &ppbl;
an “pda_problem_bassf];

19

a0 srror_code eet_sclution{const moluticom::moluticn_iloterfmces__valusr kmol);
an conat aslutlon:raclutien_interfsce<__value» «» get_molution{] conmt;
L]

a1 error_code aat_mewrce(conet __valus Bye);

LT error_code aat_source(conmt Aolution::molution interface<__wvalua® karc):

[N

American Institute of Aetonpulicy snd Aatronaytics

as conat spluticn::moluticn_interfmce<__values * gat_mourcel) const;
L L

ar ¥
s}

An exemple class implerented in this component, is the linear convertion-diffusion problem. The PDE
that it represents is

Z—T+E-ﬁ'u—u?2u—ﬂc:p=ﬂ (6)

where @ i3 the convective move speed, v is the diffusivity, and S i the sonree term for the convection-
diffusion problem. Note that each of those terms cen be function of space and time.

Tt order Lo acoommodate the MMS wsave, v modiled version of the linear convection-diffusion PTHR i
actuafly solved. This modificd equation is

'?;"% +ir- ﬁu - Uviu - -SC.D = Sm.m.l {?}

where Syuns 19 the mamufactured solution source term thet is obtained frotn

SI'I'I:I’J'IH = % + a- 1ﬁl’“fu‘rrms - i"".{'-'r2'1'|'1'.l‘.|'r|"us - SGD‘ {B]
with Wmma representing the specificd manufactured solution. Notice that if wxmme were an nctual solifion ko
Eq. fi, then the manufactured selution source term would be identically zero.

The class that represents thiy (4 convection_diffusion limmar_pde. The following code shows the class
declaration. This class provides the user the sbility Lo specify Lhe problem parameters such as the diffusivity,
the copvective velocity, and the manufactured solution. These can o) be specified as constants or a9 functicus
of time and space via lines 30 through 63. Lines 17 through 25 are convenience functions that sllow the
user to caleulale sperific termng in Lhe convection-difusion problem. Line 21 is what oeeds to be called w
abrtain the MMS source, eq. B, Line 22 i5 what can be used to obtain tho mamafactured solution value. This
interfoce allows the wse of spatial angd temporal veriations for the difusivity and wave speed by ageepting a
functien_interface pointer in the set methods, lines 26 and 30

| oanpapace svali
I |
1 nansiphce sgquation
L]

{
n tamplabs <eypecrsa __valus, sixe B __ Epaca_dink
n clams convection diffusicn_ lioear_pde : public pde_proeblem_base<__ value, . epace _di;m>
” {
] £é
[f¢ HOTE: wvariecue protactad amd private methoda and membars ramoved
n £
!
18 publice:
13 convection diffumion, linsar pde{);
19 convection_diffusion_linemr _pda{const convection diffuaicn_linesr pde<__vmlum, __spacs_din> kcdlp);
H “edovectioo diffuslion linwar pell;
1
L typename pdo_problem bages_ vealus, __space _dip*:error_code
| caleulate_diffosion_terni__value kval, comst __wvalum kt,
w cenat __valoa x[__apeee _dig]) conat,
0 typvoams pde_problea_baset_ _valow, . space_die®::error_code
LT calowlate_convection term{__valus Eval, conat __value bt
13 cenat __valud r[__gpace_dim]] conat;
L] typeneme pde_problem basec_ _velue, __dpace_dip»: error_cods
T calculate_uneteady terml, valuw kval, conet .. valua &t
Ih conet __value x[__apaca_dim]) cenat;
wn typoptamd pde_problem_baasd__velyd, __Apdca_dig*: error code
1T culculate oo _wourse_termi__valuw kval, cooet __value &t,
T conet __value x[__space_dim]) const;
i
10 typenane pde_probleo baset__valuwe, __space_dim*: error.code
a1 pat_diffumivity{connat __value kvd};
aa typenams pda_problam bmmes__valus, __spacae_d4ims: ! arror_cods

Toaf 13

American lnstitute of Aeranautics and Astronautics

12 ant_diffuaivity{connt aolution: iunetesdy interfaced__valus* kdidl;

a4 commt mplution:iunsteady_interfacec _walusr + gat_diffunivicy(} comat;

ax

L typeniod poe_problam baxe< _valua, __apace_dim®::error_code

EE et _convective_velocity(conet __value Evd, cookt #izs_t &vipdex);

L typente pde_problem_bases__valua, __apaca_dim»::error_code

aw aat cenvactlve.velecity (coodt selutlon: rupatesdy invevfmess velosr Evel,
) copet mize_t kviodex);

dl const aplution::uneteady_ interfaced _talue> «

43 gat_convactiva_welocity({conat mize_t kvindex} coDat;

43

i4 typename pde_problem, based. velow, __space_dipr: error, conde

4h sot_convactiva_x velceclty(coneat __value hvell;

4 typenans pde_problem_bame<d. _valuw, __space_dimr::apror_code

41 aet_conuactiva_x_veloclty(const molution::unsteady loterfmce<__velus* &vell;
1] conet saolution::unetwady_ ioterfscec_ valoar =+

au gat_convactive_x_veloclty() comat;

ED

51 typeoams pode_problem bame<__valoa, __apace dip*:srror_code

&3 a2t _coovective ¥ velocity(copat __value bvael);

%] typasama pde_problem_bame<__valuw, __space_dipd::error_ cods

54 sot_convectiva_y_veloclty(conat aplution::unmtaady ioterfmce<, valuw> kvel);
11 conmt solution::unetesdy_interfaces _valusr +

=n gat_convactive_y_veloclty() comst:

ar

b1] typesame pde_problem_ bamed__valuw, __space_dipk::grror_code

38 ant_convactiva_z_valoclty{comat __value &vel);

En typenams pde_problem based__valus, __epacs_dinmy:.error_code

5L sat_convactiva_z_velocity{conat molution::unsieady_iotecfacec _valus:x jgvall;
#1 conet solation: iundtesdy interfaces _valumy 4

ea got_convastive_z_velocity() comst

4a h

on ¥

s}

D. Post-Processing Component

The Post-Processing Component is the least well developed component it wesli. Currently it has a class to
collect the results from one MMS run snud a class that steres a collection of results. The results collection
can then caleulate the order of accoracy, the GCL? tracking the error as reported by the user and other
information. These classes exdat in the pest namespace within the sveli namespace,

LAZNEPACH Svall
{

nan@space post

tomplete <eypanams __Jats, aiza t __WERRDR™

clampa cAme_error_result

L
i
S BMITE: varipue protected and private methode sod members peamaisd
£

public:
cars_srrar_reealt():
case_error, result (conet size t keldi;

cang_srror_rerult (const care_errar_remult<__data, __NEARDR> kcerl;

__data gat_spacing{) cooat;
yold met_apacingfecmat __date kd);

__data get_cpu_slapmed_time{) const;
__data get_wall slapasd_time(} conet)
vodd aat_timericonat gutil::etap_watch ket):

size_t gat_ouober_veriobles{) const;
void aat_mumbar_variasblem{conat mize_t dmv};

slze_t get_caae_id{] conat;

R of I

American Lostitute of Acroowutbics sl Asloonwulles

http:0"1.,.,._,.,��
http:un.toody_i.torf.,.,��".,��
http:wo.toody_i.torf.,.,��".,��

voird ast_case_id(cookt size.t Bcid);

__dats get_aryovi{aize.t i) <oost;
vold met_srrorfconst . . data ker, size_t i)
e
}
H

IV. Application of the Linear Convection-Diffusion Equation

To demonstrate the capabilities of sveli, it hos been used to develop and welidate & one-dimensional, linear
eanvection-difusion equation. The use of Lthis library in the linear convective-diffusion problemn required sight,
lines of code plus ancther 19 lines for using the pest component. The relevant lines of code are shown below.
Lines 6 and 7 creste the sohition and the PDE problem classes. Lines 10, 11 and 12 initialize the BPDE
problem class (this could all have been done in the coustructor in line 7, but was not for the sake of clavity).
Lines 21 and 22 set the problem's Dirichlet boundery conditions. Line 25 caleulates the MMS source term
needed for the problem solution, In the future, the bonndary condition interface will be added to the equation
interface 50 that it is clearer to the user how the boundary conditions can be obtained.

Ff cemvactjop-diffusion varisbles
double a(2.2), mu(G.8); ¢/ wava speed mnd diffusion coafficiant

/¢ WA prescribed solution information
double o0{1.1}, smega(d), apailenid Bi); £ ksfluld molution parameters
svell::ka8lo<double, 1> solful, opege, apailon}; £f preacpibad aolution for this came

ayell: convection diffusion_linear_pde<double, 1> cdl; // 1-d, unetesdy, linear ¢-D manufacturad aplution

LI - L T R

F# dinltializa MMA

odl _pat_copvective x_velocitytlal;
cdl et _diffumivityiou};

cdl .t _salutionfaall;

[
TR TR

/¢ Temoved coda to awt up Bplver mnd iteratiana

for (i=0; 1<NITER; ++1i]
{
/7 Temoved pde molver code

c m oaa

/f sat the boundary conditioom using Dirichlat conditions
cdl . caloutate_aolutionfaf0], €, &Cx[A]1});
edl . ealenlava_sslucion(ulMAX], &, &(x[MAX1D);

L T I ']
@k = a

fF calculata the MM3 mowres fa {nelude Snto solver
edl, caléuleth_pme source teraf{etarn, t, E(x[L])};

BoR O k
- & @& oa

£/ remaved pda golvar code
}

mow
-

£/ podt process dete code here

7]
L=

This code was used to solve a linear convection-diffesion problern with @ = 3.2, & = 06, uy = 1.1,
w =002, asteady problem) and € = 0.01. The preblem domain was x € [-0.1, 1.2], and the prablem was
iterated until the change in the RMS ervor and L. error was less than | » 1075 A second arder in space,
first order in time, fully implicit scheme was used io solve the problem with the Courant mumber of 104,
The caleulations were performed on 8 MacBook Pro with a 3.08 GHz Intel Core 2 Dua CT'U. The commpiler
used was gee version 4.5

Figure 3 shows the maximum and the HMS errors for the problem using Aoat, double, and lowg double
(extended precision) data as well as with the donbte-doubte and quad-dovuble pseudo-primitive types by Hida
et al.'% 7 Singe these classes are templated on the data type used for the calenlations, changiug the data
lype io as simple as changing the argument to the class instantistions. When the double double and quad
double types were used, the only wmodification needed was to include the math fanctions implenented for
the double double and quad denble libraries since they should bLe in the atd namespace and not the defauls
uamespae, -

4 of 113

American lnatitute of Aeranaukics amd Astronautics

Mote that the problem size is veduced beyond the point where roundofl error overwhelms the truncation
error of the probletn for float, double and long double. Since the double double and quad double types are
even higher precision, their minimums were not reaclied. This was done to demonstrate the robustoess of
the library and itz ability to handle any datatype that mimics the primitive datatypes.

U]

1w | .
wt b 8
= 1|:|-u - .
L 5— Max Ermor floa i
o RMS Error fhosd
—8— Man Emor double
xk-- RS Emor double 3
—&+— Man Emor long double
s Do dae - WS Erol long doutie |
+ —— M Erroe’ double double
—+—- RME Ermor doubie double
—t— Max Ermor qued doubie
: - RMS Ermor qued doubss
1u" " 1l e n n aanral .
1w w0 i w® ™ 0! '

AN

Figure 3. Maxlmitn attd BMS error for the lnear convection-diffusion problens tost case using a variety of
data types.

Figure 4 shows the resulting CPU timings for the theee difference cases. This inlotmadion, alang with the
information for Figure 3 was all stored and processed by the library. Notice that there is a slight performance
penalty for using double (one to two times slower than float) or long doukle (1.5 to two times slower than
double) for the majority of the test cases, however there is certainly a memory penalty. For double double
and quad double, the porformance penalty s rather severe, Compared to the long dovble ealculations, the
doulle double coses took betwesn seven and eight timea ss long and the quad double tock between 80 and
il times a5 long. Note that some of the double and long double cases were not run sinee they solutions
would take multiple day= to complete,

Finally, Table 1 shows the calculated spacial order of aceuracy for this problem for & variety of data
lypes. Note vhat pll times show very close to second order convergence behaviar until the ronndofl error
hecomes dominant, For the float datatype there ave not many grid specing cases belore the roundoff error
dominates. O the other extreme, the roundoff error does not influence Lhe double double or qued double
results for any of the grid spacings.

V. Extending the Applicability of the Library

There are two immediste wayy that the user cen extend this library. One is that the user can develop
their vem solution anhd vse it with an existing PDE problem. They van aveomplish this in one of three ways.
They can create their own class that inherits from the sslutien_incerfsce class and implement the required
methods. Another planned approach is for the user to use an existing Computer Algebea System [(CAS) to
differentiate the user's aolution equation and have the CAS generate functions for those derivatives, This is
the method that is moet commonly veed cureently with MMS technique. 1t is envisioned that these functions
wonld he passed to a class derived from the selutico.interface class and can use these functione to retum

10 of 13

AineTlean Institute of Asroneutics and Astronautics

1ls)

1™ w? 1 ! 1w’

" 1™

Figure 4. Run-time information for the linear convectioh-diffusion problem test chge ueing a variety of deis
typoa.

Tabla 1. The order of accuracy for the linear convertlon-diffuslon problem test case using a varlety of data
types.

F ot Deuhle Long Double | Double Double | Quad Double
Grid Spacing | Max RMS | Max RMS | Max RMS | Max BMSE | Max RMS

A175x10t | 208 2.0 | 203 201 | 203 21 | 200 2.1 203 20l
40631072 | 201 1499 | 201 1989 | 201 199 | 201 1.99 201 189
angixl0? | 201 200 | 200 19% | 200 189 | 200 1.99 .00 1.59
LOGxi02 | 199 188) 200 200 | 200 200 | 200 200 200 200
rO7Ew10% | 232 250 | 200 200 | 200 200 | 200 2,00 200 200
2530x10°% | 480 455 | 200 200 | 200 2OG [200 204 200 200
L270=1077 | -2.96 -286 | 200 200 | 200 200 | 200 2400 200 2.00
fadrxiord | -z20 -2.26 | 200 200 | 200 200 | 200 2.00 200 200
3174%10% | -205 206 | 2o 2.00 | 200 200 [200 2.[H) 00 200
1EAT10°% | -1.80 -140 | 202 202 | 200 200 | 200 200 200 200
U105 | -1.66 155 | 245 250 | 200 200 | 200 200 2000 200

1oaFxi0® | — — | -p46 -0sh | 200 200 | 200 2,00 o0 200

lLosdx10®) — — - | -237 238 | 205 206 | 200 2,00 200 200

o9lEklgy® | . — —— | -1.87 -197 | 327 54n | 200 3,040 200 200

4950=106% | .. — —— | -2.00 -200-252 -28, | 200 200 200 200

o ggp=1r® | — — | — — |-215 -214 | 200 aon | — @ —
11 of 43

Arnerican Instibute of Aerosautics and Astyonaulics

the requested information. This is intended to be a transition option for those that have existing UAS
functions that they do not want to rewTite to integrate into this architecture. The third planned option for
uscts to specify their own solution Function via character strings end have a built-in CAS convert that into
the desired derivatives needed for the PDE problemn. This limited finctionality CAS is alrordy capable of
parsing equations such as: ul*(ain{x" 24y 2+z " 2+omegasti+epeilon} and cresting an equation tree that
represents that equation, Once derivatives can be caleulated from this parsed equation then this functicnality
will be integrated into aveli,

The second way that the user can cxtend this library by nsing the sclutions without the PDE problenn
classes, This mode would be most likely used by users who have problems that cannot be represented by
the existing PDE problem classes but want lo take pdvantage of the automatic ditferentistion capahility of
the solution classes. This would require inore coding on the end nser's part, but much less than if they were
to attemnpt the MMS technique without this library,

¥1. Conclusions

In its current state avels shows a number of the desirad features of an MM library for software verification.
The use of MMS o verify a PDE prolilem with very few lines of code has been shown with the resulty of the
test also shown. The interfaces 1o the sohition classes and the PDE problem classes have been well established,
and the interface to the post-process functionality is evolving as needs ave identified. The interfaces are the
mogt important part to the Hbrary usefulness, and as time progresses more slution clesses, PDE problem
classes and post-processing functiouality will be developed. Tn nddition wrappers will be developed Lo allow
the use of this Nbrary in other programming languages such as €, FORTAN and MATLAB. Also, more
differential equation classes will be developed it order to extend the vsefulness of thig Hbrary to a wider
yariety of users. While there is more to be done, it is believed that aveli represents an excellent Arst step
towards a simple scientific software verification library.

References

! American Inslitute of Aetonantics and Adtronantics Stefl, *Guide for the Verificaiton snd Yulidstion of Computational
Fluld Dynamles Simulations,” Fulde G-077-1998, American [natitute for Asronautics & Astronedtics, Reston, WA, 19088

2Roache, P. 1, Veryfication ond Validation i Computational Seience and Shgineering, Hermosn Pulillshers, Albuguerque,
MM, P8,

IRenche, P. 1. Fundomentals of Verificotion and Validazion, Harmoas Publlahers, Albuguarque, N, 2003

iKnupp, P. M. snd Salari, K., Verifieation of Computer Codes im Computational Seience and Bngineering, Discrole
Mmthemelic and fta Applications, Chapman & Hall, 2002,

SEea, L. and Hackstra, M., “An Evalustion of Verlfication Procedures for CFI13 Algerithme.” B{* Symporium on Navel
Hydrodymamics, Fukuohka, Japan, July 2002

BEea, L. and Hoakstra, B., “On the Crid Seositlvity of the Wall Boundury Condition of the & — w Turbulence Modal,"
Journal of Fluids Engineering, Vol 128, Na, 6, November 2004, pp. S03-0110.

"Ega, L. snd Hoekstra, B, "On the Infnence of the erative Frrot in the Numerical Uncertainty of Ship Wscous Flow
Calculations," 26 Symmposium on Novel Hpdrodytomics, Rome, Italy, September 2008,

YEga, L. and Hoekstra, M., "Verilicathon of Turbulance Models with & Marufactured Solution,” 4™ Buropean Conferanes
on Computationa! Fluid Mymamica, edited by P. Weaseling, E. Onate, and J. Périaux, BCCOMAS, Fgmond aan Zoc. The
Metherlands, Septambar 2006,

9%ga, L. mnd Hoekeira, M., “An Introduction to GFD Code Yerification Including Eddy-Viscosity Models,” §* Eurapean
Conference on Computational Fluid Dyagrica, cdited by P, Wosseling, E. Ofiste, and J. Périaux, ECCOMAS, Egtaond apn
Zee, The Natherlands, Seplermber 200,

HEea, L., Hoekstes, M., Hay, A, und Pelletier, I, "A Monufuctured Solution for s Twu-Dimensional Steady Wall-Bounded
Incumprressible Turbulont Flow," faternatione Journol af Computational Flad Dyramica, Yal. 21, Nu, 3-4, March-April 207,
pp. 175—1588,

1tErp, 1., Hoekstra, M. Hay, A., and Pelletiar, D, "On the Conatruction of Manufaetured Solutions for One and Two-
Hiquation Eddy-Viscoalty Modala," frternitional Journal for Numetiol Methode in Fluids, Vol S, 3007, pp. 1189-154-

1iFga, L., Hoekatrs, B, Hay, A, and Pellotier, D, uWeritication of RANS Solvers with banufactured Solytiona,” Engi-
reering with Computera, Yol, 28, J07, pp. 253-270,

19ges L. and Hovketrs, M., “Coda Verification of Unsteady Flow Selvens with the hathod of dMaonufactured Selutiona,”
17 frternational Offshare and Folor Sngmesring Conference, ISOFE, Lisban, Portugal, July 2007, pp. 2012-2019.

WEa, L. and Hoekstra, M., “Evaluativn of Numerical Error Estination Pased on Grid Refinement Studles with the hetbod
of the Manufactured Solvtlons," fompuiera £ Flusds, Yobo 33, No, %, Septomber 2009, pp. 1530 -1541,

L Oberkanpf, W. L. and ey, C. J., Verification and Validation in Seientific Computing, Cambridge University Presa,
New York, NY, 2010.

12 of 11

Amnerican Institute of Asroosuticy shd Astronautics

14 ida, Y., Lk, X. 5., and Hailey, D. H., “Quad-Deuble Arithmetic: Algorithms, Tmplamevtation, snd Applicutlon,” Tech,

Rep. LBNL-48537, Lawrence Beckeley National Laboratery, October 2030,

VHlde, Y., Li, X. 5, and Bailey, D H Aplgutithma for Quad-TDoulle Freciwion Flosting Point Arithmetie,” 15 IEEE
Sytnposium o Compuier Arithmetic, IEEE Computer Society, 2001, pp. 155-162, LBNL-48557.

18 Jeayttie, M, M., The O++ Standant Library: A Tuterial ghd Referenes, Addison-Waaley, New York, NY, 1040,

13 0f 13

Amarican Inatitute of Asronutics and Astronaatics

