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ALEXANDER’S SUBBASE LEMMA

S. SALBANY AND T. D. TODOROV

(Communicated by James E. West)

This note provides a very simple proof of Alexander’s subbase lemma, from
the point of view of Nonstandard Analysis. There is no direct appeal to Zorn’s
lemma or equivalent principle (as in [1]). This set theoretic principle is, of
course, embodied in the construction of the nonstandard extension “X .

Notation and terminology is that of A. Hurd and P. Loeb [2].

Lemma (Alexander). Let (X ,T) be a topological space and & a subbase of
closed sets. If every family of closed sets in & with the finite intersection property
has nonempty intersection, then (X ,T) is compact.

Proof. Recall that (X, T) is compact iff "X = Uyex #(x) [2, Theorem (2.9),
Chapter III] and that the monad of x is u(x) =N{"Glx € G, X - G € &}
[2, Proposition (1.4) of Chapter III]. Let a € *X . Consider & = {F|F € ¥,
a € "F}. Then % has the finite intersection property and, by assumption,
there is a point x such that x € {F|F € & }. We show that a € u(x):
if xeGand X -Ge &%, then a ¢ (X —G), by our choice of x, hence
a € *G, as required.
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