ALEXANDER'S SUBBASE LEMMA

S. SALBANY AND T. D. TODOROV

(Communicated by James E. West)

This note provides a very simple proof of Alexander's subbase lemma, from the point of view of Nonstandard Analysis. There is no direct appeal to Zorn's lemma or equivalent principle (as in [1]). This set theoretic principle is, of course, embodied in the construction of the nonstandard extension *X.

Notation and terminology is that of A. Hurd and P. Loeb [2].

Lemma (Alexander). Let (X , T) be a topological space and \(S \) a subbase of closed sets. If every family of closed sets in \(S \) with the finite intersection property has nonempty intersection, then \((X , T) \) is compact.

Proof. Recall that \((X , T) \) is compact iff \(*X = \bigcup_{x \in X} \mu(x) \) [2, Theorem (2.9), Chapter III] and that the monad of \(x \) is \(\mu(x) = \bigcap \{ *G \mid x \in G , \ X - G \in \mathcal{P} \} \) [2, Proposition (1.4) of Chapter III]. Let \(\alpha \in *X \). Consider \(\mathcal{F} = \{ F \mid F \in \mathcal{P} , \ \alpha \in *F \} \). Then \(\mathcal{F} \) has the finite intersection property and, by assumption, there is a point \(x \) such that \(x \in \bigcap \{ F \mid F \in \mathcal{F} \} \). We show that \(\alpha \in \mu(x) \): if \(x \in G \) and \(X - G \in \mathcal{P} \), then \(\alpha \notin *(X - G) \), by our choice of \(x \), hence \(\alpha \in *G \), as required.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ZIMBABWE, HARARE, ZIMBABWE

INTERNATIONAL SCHOOL FOR ADVANCED STUDIES (SISSA/ISAS), 34014 TRIESTE, ITALY