

InterSymp-2003, Jul.29, 2003, Baden-Baden, Germany ZANG-S2

The Knowledge Level Approach
To Intelligent Information System Design

Michael A Zang
Senior Software Engineer

CDM Technologies, Inc
San Luis Obispo, CA, USA

mzang@cdmtech.com

Abstract
Traditional approaches to building intelligent information systems employ an ontology to
define a representational structure for the data and information of interest within the target
domain of the system. At runtime, the ontology provides a constrained template for the
creation of the individual objects and relationships that together define the state of the system
at a given point in time. The ontology also provides a vocabulary for expressing domain
knowledge typically in the form of rules (declarative knowledge) or methods (procedural
knowledge). The system utilizes the encoded knowledge, often in conjunction user input, to
progress the state of the system towards the specific goals indicated by the users. While this
approach has been very successful, it has some drawbacks. Regardless of the
implementation paradigm the knowledge is essentially buried in the code and therefore
inaccessible to most domain experts. The knowledge also tends to be very domain specific
and is not extensible at runtime. This paper describes a variation on the traditional approach
that employs an explicit knowledge level within the ontology to mitigate the identified
drawbacks.

Keywords
Data, Information, Knowledge, Knowledge Management Ontology, Object Model, UML

Introduction
This paper employs a simple example to describe the knowledge level approach employed in
several of the software projects currently being developed at CDM Technologies, Inc. CDM
Technologies specializes in the development of collaborative decision support systems for
large government and private organizations particularly in the field of maritime logistics.
The example builds a simple medical diagnostic model and accompanying agent rules
capable of diagnosing infection types and of recommending actions to assist in the diagnosis.
The model and rules are first developed using what this paper calls the traditional approach.
Next, an interim technique, termed the taxonomic approach, is developed to address some of
the shortcomings identified in the traditional approach. Then the knowledge level approach
is developed to address some of the shortcomings identified in the taxonomic approach.
Finally, summarizing conclusions are provided, which identify the strengths and weaknesses
of the knowledge level approach and provided guidance as to when it should be considered
for use.

The progression from the traditional approach to the taxonomic approach to the knowledge
level approach parallels those taken by the ARES development team at CDM Technologies
in the successive development of three projects sponsored by the United States Office of
Naval Research (ONR). These systems are: the Collaborative Agent Based Control and Help
System (COACH), the Ordnance Tracking and Information System (OTIS), and the
Shipboard Integration of Logistics Systems Mission Readiness Assessment Tool (SILS
MRAT). This effort extensively leverages the work of Martin Fowler described in his book
Analysis Patterns, Reusable Object Models (Fowler 1997a) and the work of David Hay
described in his book Data Model Patterns, Conventions of Thought (Hay 1996).

This paper assumes but does not require a rudimentary knowledge of the basic concepts of
object-oriented modeling. A good introduction to this subject can be found in the book
Inside the Object Model by David Papurt (Papurt 1995). All the figures in this paper use a
small subset of the graphical object-oriented notations defined by the Unified Modeling
Language (UML). A brief overview of the UML notations employed in this paper is
provided in Figure 1. A concise summary of UML can be found in UML Distilled by
Martin Fowler (Fowler 1997b). The UML based figures in this document provide only the
minimum level of detail necessary to understand the concepts under discussion, and therefore
they leave off many of the details typical in UML diagrams such as role names and
multiplicity constraints. This paper capitalizes and italicizes ontological class names, quotes
and italicizes object instance names, and italicizes association, attribute and method names.
Class, attribute, and method names are word separated by underscores while association
names are word separated by dashes.

C la s s N a m e

o b j e c t n a m e :C l a ss N a m e S p e c ia liz a tio n

G e n e ra liz a tio n C la s s 1 C la s s 2 ro le 2 ro le 1

l i n k e d o b j e c t:C l a ss N a m e

class

inheritance

association

self association object object link

Figure 1: UML Notions Employed in this Paper

Traditional Approach
The traditional approach utilizes a statically compiled ontology that virtually mirrors the real-
world entities associated with the targeted system domain. Ontology development is
followed by developing agent rule sets, which are grounded in the vocabulary and structure
the ontology provides, to produce the desired intelligent behavior. Following this approach
an ontology for the simple medical diagnostic domain must first be developed.

D ia g n o s t ic _ A c tio n
p e rfo rm e d -o n

P e r s o n
h a s -a

In fe c t io n

- e n d _ t im e :
- s t a rt_ t im e :

- e n d _ t im e :
- s ta rt _ t im e :

Figure 2: Mirror Image Ontological Framework

2

At the highest level of abstraction, the example ontology consists of three entities: Person,
Infection, and Diagnostic_Action. Both Diagnostic_Action and Infection are temporal and
therefore contain attributes to indicate the applicable time span. These entities are related in
that a Person may optionally have an (has-a association) Infection and a Diagnostic_Action
is performed-on a Person. This level does not provide enough detail for a diagnostic agent to
perform any useful tasks but does provide the structural framework, depicted in Figure 2,
with which to further develop the ontology. In order to make this a bit more interesting the
diagnostic agent needs to be provided with some different types of Infection to diagnose. In
this regard, The Infection class can be further specialized into Bacterial_Infection and
Viral_Infection as shown in Figure 3. Person can also be specialized into two types:
Young_Person, and Old_Person. These additions are shown in Figure 4.

B a c te ria l_ In fe c tio n

- e n d _ t im e :
- s t a rt _ t im e :

In fe c tio n

V ira l_ In fe c tio n

- h a s _ s o re _ m u s c le s :
- h a s _ h ig h _ t e m p e ra t u re :

P e rs o n

O ld _ P e r s o n Y o u n g _ P e rs o n

Figure 3: Types of Infection Figure 4: Types of Person

For the sake of simplicity, assume that bacterial infections are indicated by a high fever and
viral infections by sore muscles. In this regard at least two types of Diagnostic_Action are
required: Body_Temperature_Measurement and Sore_Muscle_Check. To make things more
interesting, Body_Temperature_Measurement can be further specialized into Oral_
Temperature_Measurement and Aural_Temperature_Measurement as shown in Figure 5. It
will be assumed that the Diagnostic_Action Oral_Body_Temp_Measurement applies only to
an Old_Person while Aural_Body_Temp _Measurement applies only to a Young_Person. A
place is needed to record the results of these diagnostic actions. For this purpose an attribute
has_high_temperature and an attribute has_sore_muscles (both true or false) can be added to
the Person class as shown in Figure 4.

- e n d _ t im e :
- s ta rt _ t im e :

D ia g n o s tic _ A c tio n

O ra l_ T e m p _ M e a s u re m e n t A u r a l_ T e m p _ M e a s u r e m e n t

Figure 5: Types of Diagnostic Action

B o d y _ T e m p e ra tu r e _ M e a s u r e m e n t S o r e _ M u s c le _ C h e c k

3

This completes the traditional approach developed ontology for the simple medical
diagnostic example. Note that while the ontology was developed with the intended usage in
mind it does not capture the associated agent rules in any manner. These may be specified in
a declarative manner using condition action pairs as listed in Table 1. The rule conditions
specify patterns of linked objects and are therefore specified in terms of the class names that
the ontology defines. Since the diagnostic agent is targeted to diagnose types of infection, it
should not be triggered until a person is known to have an undiagnosed infection. In terms of
the ontology, an undiagnosed infection is indicated by the association of an object that is a
kind of person (instance of class Person, or of a subclass of class Person, ad infinitum) to an
instance of class Infection (not Viral_Infection or Bacterial_Infection). The rule scheme
employs a priority to control the order in which triggered actions will be invoked.

Table 1: Diagnostic Agent Rules for the Traditional Approach

Condition Action Priority
1 A kind of Person

has_sore_muscles
Indicate Person has-a Viral_Infection 1

2 A kind of Person
has_high_temperature

Indicate Person has-a Bacterial_Infection 1

3 A kind of Old_Person has-a
undiagnosed Infection

Recommend Oral_Temp_Measurement
performed on Person

2

4 A kind of Young_Person has-
a undiagnosed Infection

Recommend Aural_Temp_Measurement
performed on Person

2

5 A kind of Person has-a
undiagnosed Infection

Recommend Sore_Muscle_Check
performed on Person

3

The core strengths of the traditional approach are that the resulting ontologies are typically
easier to understand, particularly for the uninitiated, than other approaches and typically
results in more efficient implementations of agent behavior as modern languages natively
support operations associated with the mirror image type of classifications hierarchies upon
which a large percentage of agent logic is typically based.

A primary drawback of the traditional approach is that the agent logic dependent
classification hierarchies are not easily modifiable at runtime because the class model must
be extended which in turn requires recompilation. In addition, the traditional approach tends
to produce models that are not reusable in the context of other domains. Since the agent and
application logic of a typical information system are built directly on top of the ontology,
these too will find little reuse in the context of different domains. Finally, the traditional
approach does not readily support the common real-world concepts of dynamic and multiple
classifications that are introduced in conjunction with the taxonomic approach in the
following section.

Taxonomic Approach
The taxonomic approach utilizes a statically compiled ontology that is more abstract and
generic than that employed by the traditional approach, but can be tailored to a particular
domain using runtime instances that capture the specialized or unique concepts within it. In
this approach, the logical classification of an object is provided by associative mechanisms

4

rather than the native classification mechanisms provided by the implementation language,
which is employed only for the purpose of inheritance mechanisms it provides to gather up
the attributes, associations, and behaviors of a particular class of object.

With the taxonomic approach, the classes of the statically compiled model are partitioned
into two distinct categories: Operational_Object and Taxonomic_Object as shown in Figure
6 for the simple medical diagnostic example. The Operational_Object classes: Action, Asset,
and Observation can be respectively substituted for the classes: Diagnostic_Action, Person,
and Infection, the difference being that the logical classification of instantiated objects, upon
which much reasoning by intelligent software agents can be applied, is provided by specific
associations to subtypes of the Taxonomic_Object class. Note that concepts of action, asset,
and observation from the taxonomic approach are much more general than the traditional
approach concepts of diagnostic action, person, and infection and are therefore applicable to
a much broader domain than that of the medical diagnostic example.

A s s e t

A c t io n

O b s e rv a tio n P h e n o m e n o n

P r o to c o l

A s s e t_ T y p e i s -a

h a s -a

o f-a

p e rfo rm e d -o n

o b s e rve d -o n

- o b je c t _ n a m e :

T a x o n o m ic _ O b je c t

s u b t y p e s

O p e ra t io n a l_ O b je c t

Figure 6: Taxonomic Class Model

A key part of the taxonomic approach ontology is the subtypes association of the
Taxonomic_Object class. This allows object instances created from the Taxonomic_Object
class to be linked together to form taxonomies that can be iterated over at runtime to provide
a much more flexible classification scheme than that provided by the traditional approach.
The taxonomies that substitute for the classification provided by class hierarchy of the
traditional approach are shown in Figure 7 for the simple medical diagnostic example. One
can easily see the Infection (Figure 3), Person (Figure 4), and Diagnostic_Action (Figure 5)
classification hierarchies mirrored in the structures of linked object instances of the
respective Protocol, Asset_Type, and Phenomenon classes from the taxonomic approach.

Oral Temp Measurement:Protocol

Aural Temp Measurement:Protocol

Sore Muscle Check:Protocol

Young Person:Asset Type

Old Person:Asset Type

Infection:Phenomenon

Viral Infection:Phenomenon

Bacterial Infection:Phenomenon

subtypes[2]

subtypes[1]

Person Diagnostic:Protocol Person:Asset Type

subtypes[2]

subtypes[1]

subtypes[3]

subtypes[2]

subtypes[1]

Symptom:Phenomenon

Sore Muscles:Phenomenon

High Fever:Phenomenon

subtypes[2]

subtypes[1]

Figure 7: Taxonomic Approach Taxonomies

5

A Phenomenon hierarchy for symptoms can be defined so that observations of symptomatic
phenomenon on ‘Person’ Assets can be used to eliminate the need for the has_sore_muscles
and has_high_fever attributes required for objects of class Person from the traditional
approach ontology (Figure 4). This pattern of posting observations on phenomenon to
replace attributes of the Asset class eliminates the need for complex inheritance hierarchies
that traditionally tie attributes to classes making a domain neutral statically compiled
ontology a feasible system design and development option.

Micha el Za ng:Asset Old Person:Asse t_Type is-a

Asset Asset_Type
is-a

Person

Michae l Zang:Person

Object Level

Class Level

Traditional Approach Taxonomic Approach

Equivalent Classes

Equivalent Objects Instantiation

Figure 8: Equivalent Representations of Person

In order to provide the same logical meaning as objects from the traditional approach, objects
instantiated from Operational_Object classes must be associated with an object instantiated
from the corresponding Taxonomic_Object class. In this manner, an object instantiated from
the Person class of the traditional approach is logically equivalent to an object instantiated
from the Asset class of the taxonomic approach and associated to an object instance of the
Asset_Type class with an object_name attribute value of ‘Person’ as shown in Figure 8.

P a tie n t

O ld _ P a tie n t Y o u n g _ P a tie n t

P e rs o n P e rso n :A sse t_ T yp e

D o c to r:A sse t_T y p e P a ti e n t:A sse t_T y p e

Yo u n g P a tie n t:A sse t_T yp e

O l d P a tie n t:A sse t_T yp e

s ub ty pes [1] s ub t y p es [2]

s ub ty pes [1]

s u b t y pe s [2]

D o c to r

Figure 9: Extended Person Class Hierarchy Figure 10: Extended Person Taxonomy

In addition to providing support for extensibility at runtime, the taxonomic approach also
supports the concepts of dynamic and multiple classification both of which are common in
practice but difficult to implement using the traditional approach. Dynamic classification
refers to the ability of an object to change its classification at runtime. Multiple classification
refers to the ability of an object to belong to more than one class. The ongoing medical

6

diagnostic example has been extended in Figure 9 for the Person class hierarchy of the
traditional approach and in Figure 10 for the ‘Person’ taxonomy of the taxonomic approach
in order to provide examples of these concepts.

The example extension indicates diagnostic actions are performed-on a Patient and
performed-by a Doctor. This is shown in Figure 11 for the traditional approach and in Figure
12 for the taxonomic approach. These extensions show that the flexibility provided by the
taxonomic approach in regards to classification and runtime modification comes at the cost
of additional complexity. This is evidenced by the complex constraint on the Action class
that is required to, for example, prevent patients from diagnosing themselves.

Suppose a doctor gets sick and needs to be admitted to a hospital as a patient. With the
taxonomic approach, this situation is represented by breaking the link between the
representative Asset object and the Asset_Type object with object_name ‘Doctor’ and
connecting it instead to the Asset_Type object with object_name ‘Patient’. With the
traditional approach this situation is much more difficult to deal with because the
representative object and its classification are inseparable. The representative object of class
Doctor must be destroyed and a new object of class Patient created. This process results in
a loss of identity, which, in turn, results in a complete loss of the professional history (i.e.
diagnostic actions performed on patients) of the doctor as the traditional approach physically
constrains Patient objects from linking to Diagnostic_Action objects with the performed-by
association. Although the taxonomic approach preserves the individual identity of the Asset
object as the logical classification dynamically switches from ‘Doctor’ to ‘Patient’, there is
still an issue with the logical constraint put in place to mimic the physical constraints
inherent in the traditional approach. While the logical constraint could be relaxed to deal
with this, a better approach is to employ multiple classification.

D ia g n o s tic _ Actio n

D o cto r

P a tie n t

perform ed-by

perform ed-on

Action

Asset

Protocol

Asset_Type

performed-by performed-on

has-a

is-a

if self.has-a.object name = 'Person Diagnostic '
then self.perfomed by.is-a.object name = 'Doctor'
and self.performed by.is-a = 'Patient'

<< Constraint >>

Figure 11: Extensions for Traditional Approach Figure 12: Extensions for Taxonomic Approach

Multiple classification allows the person in question to be both a doctor and a patient, thus
preserving both identity and history. This is easily accomplished using the taxonomic
approach by changing the multiplicity of the is-a association between the Asset and
Asset_Type classes from exactly one to one or more. This allows multiple Asset_Type
instances to be associated with an Asset instance; thereby, allowing the Asset instance of the
example to be logically classified as both a ‘Doctor’ and a ‘Patient’.

7

The concept of multiple classification is difficult to implement using the traditional approach,
which combines the concepts of inheritance and classification. In order to create objects that
are classified as both a Patient and a Doctor in the traditional approach, language provided
multiple inheritance mechanisms must be used to create a new class Doctor_Patient that
inherits from both the Doctor class and the Patient class (Figure 13). While this in itself is
messy, additional complications are incurred because the diagnostic agent rules (specified in
Table 1) require that a patient be additionally classified as young or old; thereby, requiring
additional usage of multiple inheritance to create classes Young_Doctor_Patient and
Old_Doctor_Patient. This approach dilutes the clarity of the classification hierarchy and
quickly becomes untenable in realistically scoped models.

P a t ie n t

O ld _ P a t ie n t Y o u n g _ P a tie n t

P e r s o n

D o c to r

D o c to r _ P a tie n t

Y o u n g _ D o c to r _ P a t ie n t O ld _ D o c to r _ P a t ie n t

Figure 13: Multiple Classification Problems with the Traditional Approach

The taxonomic approach results in rules with more complex conditions than those resulting
from the traditional approach. The specified condition for rule number 1: “Observation of
‘Sore Muscles’ on Asset that is a kind of ‘Person” is shorthand. A more rigorous
specification is “an Observation object linked to a Phenomenon object, through the of-a
association between the Observation and Phenomenon classes, of type ‘Sore Muscles’, that is
also linked to an Asset object, through the observed-on association between the Observation
and Asset classes, that is a kind of ‘Person’”. Further, note that “of type ‘Sore Muscles’” is
shorthand for “a Phenomenon object that has an object_name attribute with value equal to the
character string ‘Sore Muscles’. Also, note that “is a kind of ‘Person’” is shorthand for an
Asset object linked to an Asset_Type object, through the is-a association between the Asset
and Asset_Type classes, that has an object_name attribute with value equal to the character
string ‘Person’ or that has parent Asset_Type objects in the taxonomic tree formed by the
subtypes association defined for the Asset_Type class. Additional complexity is required for
rule condition specification in the presence of multiple classification as set notation is then
required.

The complexity in rule specification can be alleviated some by providing convenience
methods within the Operational_Object classes that mimic the native language provided
behavior that was abandoned in the taxonomic approach to separate identity and inheritance

8

from classification. Considering the more rigorous example specification of the previous
paragraph, a method named of_type that takes a character string as an argument and returns
true or false can be added to the Observation class that walks of-a links to associated
Phenomenon objects and compares the values of their object_name attributes to the string
passed in as an argument. A similar method named kind_of can be added to the Asset class
to walk links to associated Asset_Type objects then recursively searches up the taxonomic
tree looking for objects with object_name attribute values equal to the string passed in as an
argument. This sort of model dependent and domain independent behavior is ideal for
implementation by statically compiled class methods.

Table 2: Diagnostic Agent Rules for the Taxonomic Approach

Condition Action Priority
1 Observation of_type ‘Sore Muscles’

observed-on Asset that is a kind of
‘Person’

Observation of_type ‘Viral
Infection’ observed-on Person

1

2 Observation of ‘High Fever’ observed-
on Asset that is a kind_of ‘Person’

Observation of_type ‘Bacterial
Infection’ observed-on Person

1

3 Observation of ‘Infection’ on Asset that
is a kind_of ‘Person’

Recommend Action of_type ‘Sore
Muscle Check’ be performed-on
Person

2

4 Observation of_type ‘Infection’ on Asset
that is a kind_of ‘Young_Person’

Recommend Action of_type ‘Aural
Temp Measurement’ be
performed-on Person

2

5 Observation of_type ‘Infection’ on Asset
that is-a kind_of ‘Old_Person’

Recommend Action of_type ‘Oral
Temp Measurement’ be
performed-on Person

3

The taxonomic approach appears to have addressed many of the shortcomings identified with
intelligent information systems developed using the traditional approach. The abstract
statically compiled ontology of the taxonomic approach is generally applicable to any
collaborative, intelligent agent based (human and software) information system. The
taxonomic level of the model serves as a constraining meta model that can be extended and
specialized for a specific target domain by instantiating objects from the meta-level classes
and configuring them to be representative of the concepts within a domain by linking them
together into runtime navigable taxonomies. This flexibility comes at the cost of additional
complexity, as it requires the logical classification provided by the ontology be represented
using an associative pattern rather than the mechanisms provided directly by the
implementation environment. In addition to providing for runtime extensibility of the core
ontology, the associative classification pattern allows for a richer and a more dynamic
information environment by seamlessly supporting the fundamental concepts of dynamic and
multiple classification.

The domain neutral, statically compiled ontology naturally leads to powerful domain neutral
application components such as observation recorders, action schedulers, and taxonomy
builders. Rather than hard coding such things as selection menu choices and graphical

9

display layouts, system applications query the ontological model at runtime to configure
themselves appropriately for both the target domain and the current user. This sort of
dynamic querying is very applicable to the highly optimized, statically compiled, procedural
(albeit event driven and object-oriented) environments commonly employed in the
development of highly interactive applications and interfaces. Unfortunately, it is not as well
suited for the declarative rule based environments commonly employed in development of
intelligent agents intended to assist users in making sense of and utilizing the information and
knowledge stored within the underlying software system. This is evident in the rule
condition specifications for the taxonomic approach. Notice that the rule conditions in Table
2 specify patterns that include not only the statically compiled class names employed in the
specification of rule conditions in the traditional approach (Table 1) but the textual values of
linked object instance names as well.

The taxonomic approach successfully addresses all the issues identified with the traditional
approach except the need for domain independent agent logic. When applying the taxonomic
approach, one starts with an abstract, domain independent, ontology and powerful, domain
neutral, application tools. Then the specialized taxonomies applicable to the domain are
created from object instances of the Taxonomic_Object classes defined by the ontology,
perhaps with the assistance of domain neutral application tools designed for the construction
and maintenance of these sorts of domain specific ontologies. Finally, agent logic, based on
both the statically compiled ontology and the specialized linked object taxonomic structures
for the domain, is develop to provide intelligent collaborative support for system users.
While it is possible to extend this agent logic at runtime as most declarative rule based
inference engines support the dynamic loading and interpretations of rules at runtime, the
corresponding rule development environments have not typically been accessible to even the
most advanced users of typical information systems, which greatly compromises the user
extensibility of the taxonomic approach.

Note however, that recent advances in applied artificial intelligence are beginning to result in
reasoning facilities with that are more accessible to technically savvy subject matter experts
or applicable to supervised or unsupervised algorithmic learning approaches. An example of
such is the Taxonomic Case-Based Reasoning System (TCRS) (Aha 2002)(Gupta 2001) that
has been successfully utilized in the development of CDM systems employing the taxonomic
approach. TCRS is particularly well suited to the taxonomic approach, and by extension the
as yet to be introduced knowledge level approach, because it employs taxonomically linked
objects to tailor the characteristic question and answer dialogs associated with case retrieval
to the level of expertise of the user.

Knowledge Level Approach
The knowledge level approach addresses the single identified shortcoming of the taxonomic
approach by further extending the fundamental tenets of the approach by inter linking the
taxonomic object instances, through logically typed associations, to record additional
knowledge about them and the associated usage of them by the objects in the operational
level. Unlike the rule-encoded knowledge employed the traditional and taxonomic
approaches, the knowledge recorded through logically typed associations is in a form that is
both dynamically extensible and conceptually accessible by system users. The ontology

10

developed for the simple medical diagnostic example using the knowledge level approach is
depicted in Figure 14. It can be readily seen that basic elements and structure of the ontology
are the same as in the taxonomic approach except for two significant differences: the
generalization of all linkages between levels and the additional associations defined within
levels.

In order to both formalize and standardize the use of associations to knowledge level classes
to provide logical classification to instances of operational level classes a single type-of
association between the Operational_Object class and the Knowledge_Object class has been
provided. This association substitutes for the individual associations defined between the
Action and Protocol, Asset and Asset_Type and Observation and Phenomenon classes in the
taxonomic approach (Figure 6). The generalization of these associations allows generic
implementations of the type_of and kind_of convenience methods to be applicable to all
subtypes of the Operation_Object class. This generalization requires the addition of fixed
constraints on the Action, Asset, and Observation classes.

- objec t_nam e :

K n ow ledge_Object

+ k ind_of (s tring) : boolean
+ ty pe_of (s tring) : boolean

Operatio nal_Object

Asset

type-of

Observation P heno m en on

Asset Type
perform ed-on

observed-on

P ro tocol

subtypes

Action

perform ed-by

observed-by

target-ty pes

perform er-ty pes

target-ty pes

perform er-types

self. type is an ins tanc e
of the Protoc ol c lass

< < Cons traint > >

self. type is an ins tanc e
of the As set Ty pe c las s

< < Cons traint > >

s elf. ty pe is an ins tanc e
of the P henom enon c las s

< < Cons traint > >

sy m ptom s -of evidenc e-of

poss ible-triggers

triggers-of

Operational Level Knowledge Level

Figure 14: Knowledge Level Approach Ontology

In order to eliminate the agent logic dependence on specific object instances in the
taxonomies formed through the subtypes association defined for Knowledge_Object classes
exhibited by the rules developed using the taxonomic approach (Table 2) the self-association
symptoms-of has been added to the Phenomenon class and the association possible-triggers
has been added between the Phenomenon and Protocol classes. Set membership in the object
links formed by these associations is used as a substitute for the hard coded object_name
attribute values required by the taxonomic approach rules. This allows for the creation of
domain independent rules based only on the generic statically compiled ontology and set
operations.

The symptoms-of association allows a single domain independent rule (rule 1 in Table 3) to
replace the two domain specific diagnostic observation rules developed using the traditional

11

and taxonomic approaches (rules 1 and 2 in Table 1 and Table 2). The possible-triggers
association allows a single domain independent rule (rule 2 in Table 3) to replace the three
domain specific diagnostic action recommendation rules developed using the traditional and
taxonomic approaches (rules 3, 4, and 5 in Table 1 and Table 2). By cross-linking the
taxonomic concept hierarchies using logical associations the essence of the rules developed
under the traditional and taxonomic approaches has been moved into the form of instance
data that can be readily extended at runtime just as the taxonomic approach allowed for
runtime extensions of the core concepts within the ontology.

Table 3: Diagnostic Agent Rules for the Knowledge Level Approach

Condition Action Priority
1 Observation of type_of Phenomenon

observed-on Asset with type_of
Asset_Type in Phenomenon target-types
with parent symptoms-of link

Create Observation instance
observed-on Asset of type_of
Phenomenon equal to the
Phenomenon associated as a
parent with the symptoms-of link

1

2 Observation on type-of Phenomenon
observed-on Asset with type_of
Asset_Type in Phenomenon target-types
and a Protocol in possible-triggers

Recommend Action of-type
Protocol be performed-on Asset

2

The rules that remain under the knowledge level approach act as domain generic machinery
for reasoning on the domain specific knowledge instance models. The domain specific
knowledge instance models (interlinked Knowledge_Object instances) are loaded at runtime
or created by advanced users to tailor the statically compiled, domain independent ontology
to support the specialized concepts with in the target system domain. By adding new
linkages, which exist as data elements rather than code, an unlimited number of rules like
those developed under the traditional and taxonomic approaches can be added to the system
at runtime. These new linkages can just as easily be connected to new user added concepts
as to existing ones; thereby, eliminating the problem identified for the taxonomic approach.

Summary
The knowledge level approach to developing intelligent information systems utilizes an
abstract, domain independent, statically compiled ontology divided into two distinct levels.
The operational level provides classes to serve as templates for creating object instances that
record the day-to-day events within the domain. The knowledge level provides classes to
serve as templates for creating object instances to record domain specific concepts and
knowledge of their application. Rather than using the language provided classification
mechanisms operational level objects associate with knowledge level object to represent
information related to their logical classification. This approach provides support for the
powerful modeling concepts of dynamic and multiple classification and allows for the
development of generic statically compiled ontologies that can be reused across multiple
disparate domains.

12

The statically compiled knowledge level provides a control structure and generic rule
activation mechanisms that system developers, subject matter experts, or advanced users may
utilize to tailoring the generic ontology to address the specialized or unique concepts within a
particular system domain. The fixed statically compiled ontology also allows for the
development of powerful, domain neutral, application tools such as: action schedulers,
observation recorders, and taxonomy editors that leverage the knowledge recorded by
knowledge level instances in order to tailor the application and its interface to the specialized
requirements of the domain. Ultimately the knowledge level approach is a structural layering
pattern used in the specification of ontologies for intelligent information systems. A well-
designed ontology may be layered in other compatible dimensions as well and examples of
this are provided in (Pohl 2000) and (Zang 2002).

The knowledge level approach is not necessarily applicable to development of all
information system. Although it reduces complexity by reducing both the number of classes
and the number of rules, it increases complexity in other ways that make ontologies
developed using the knowledge level approach much more difficult to understand for novice
programmers and for experienced programmers new to a knowledge level approached based
project. The knowledge level approach is particularly applicable for use by development
teams involved in the development of multiple (concurrent or over time) information systems
that have focus on either intelligent agents or knowledge management.

References
Aha, David W. and Gupta, Kalyan Moy (2002), Causal Query Elaboration in Conversational
Case-Based Reasoning; Proceedings of FLAIRS’02

Fowler, Martin (1997a); Analysis Patterns, Reusable Object Models; Addison Wesley
Longman

Fowler, Martin and Kendall Scott (1997b); UML Distilled, Applying the Standard Object
Modeling Language; Addison Wesley Longman

Gupta, Kalyan Moy (2001); Taxonomic Conversational Case-Based Reasoning; Proceedings
of the fourth ICCBR, D. W. Aha & I. Watson (Eds.), Springer, Berlin, Germany, pp. 219-233

Hay, David C. (1996); Data Model Patterns, Conventions of Thought; Dorset House

Papurt, David M (1995); Inside the Object Model; Sigs Books

Pohl, Kym (2000); Perspective Filters as a Means for Interoperability Among Information-
Centric Decision-Support Systems; Collaborative Agent Design Research Center, Cal Poly
San Luis Obispo, Ca

Zang, Michael A (2002); Data, Information, and Knowledge in the Context of SILS;
Proceedings ONR Workshop Series on Collaborative Decision-Support Systems; Office of
Naval Research Logistics Program Office

13

