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Abstract 
This paper serves as a layman’s introduction to similarity assessment techniques, their distinction 
from contemporary computing paradigms, and their real-world applications.  The following 
content derives from the experience gained by the authors in applying similarity assessment 
techniques to resolve the real-world problems of CDM customers, in particular those faced by 
the United States Transportation Command (USTRANSCOM).    
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Introduction 
Study of case-based reasoning (CBR) served as our initial introduction into similarity assessment 
strategies. CBR is a two-part reasoning process whereby (1) similarity assessment techniques are 
employed to compare a new, current case against a case base of previously stored cases to find 
the most similar case in the case base, which is (2) subsequently used to classify and resolve the 
current case.  Case-based reasoning projects such as the Collaborative Agent-Based Control and 
Help system (COACH)1 and the Navy Conversational Decision Aid Environment (NaCoDAE) 
(Breslow and Aha 1998) refactoring project2 led us to appreciate the applicability of the first step 
of case-based reasoning (i.e., similarity assessment) to a variety of problems.  Having identified 
the CBR-derived similarity assessment as a broadly applicable problem-solution paradigm, we 
applied it, with success, to a number of difficult real-world problems, thus initiating a compelling 
new growth platform for the company.  

This paper first describes the paradigm by which most contemporary software-based problem 
solutions are derived—namely, Boolean logic, shown to be distinct from similarity assessment as 
a problem-solution paradigm.  Similarity assessment is discussed within the context of its 
heritage, case-based reasoning.  Examples of distinct similarity assessment techniques—word, 
trigram, numeric, vicinal, and mixed-initiative—and similarity assessment applications—search, 
mapping, and data cleansing—are provided to further illustrate the concept.  The paper ends with 
a summarizing conclusion. 

 

                                                 
1 COACH, a research project sponsored by the Office of Naval research from 1999 to 2001, employs case-based 
reasoning technology to provide analysis, evaluation, and the formulation of guidance for major equipment item 
repairs aboard US Navy ships.   
2 NaCoDAE refactoring was performed under a collaborative research agreement (CRADA) with the Navy Center 
for Applied Research in Artificial Intelligence. 
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Boolean Logic 
Boolean logic is a complete system for operations in symbolic, mathematical logic named after 
its inventor, George Boole, the 19th-century mathematician, who uncovered the algebraic 
structure of deductive logic, the basis of computer hardware and software.  In Boolean logic, 
elements each contain only two possible values, following various conventions, such as "true" 
and "false", "yes" and "no", "on" and "off", or "1" and "0".  A Boolean expression, such as “X < 
Y And Y< Z” evaluates to true or false.  Relational databases use Boolean logic to perform 
queries.  For example in standard relational query languages a statement such as:  “SELECT * 
FROM EMPLOYEES WHERE (Not LAST_NAME = 'Zang') And (FIRST_NAME = 'Mike' Or 
‘Michael’)”, is used to return records from a database.  Search engines (e.g., Google) also 
employ Boolean logic. For example “Search term 1" "Search term 2" is equivalent to "Search 
term 1 Or Search term 2". 

Special characters, such as truncation and wildcard, provide a higher level of abstraction than the 
Boolean logic which underlies the operations implementing them.  Truncation, ‘*’, allows for 
search using a shortened (i.e., truncated) form of a word.  For example, “adolescen*” will return 
both “adolescent” and “adolescence”. Wild card characters, ‘?’, prove useful in allowing for 
alternate spellings and other quirks of the English language. For example, “wom?n” will return 
results for both “women” and “woman.”  These special characters provide a higher level 
abstraction than straight Boolean Logic.  Note for example, “adolescen*” is not the same as the 
Boolean expression “adolescent And adolescence” as it may return other perhaps unforeseen 
values such as “adolescents.” 

Regular Expressions further the abstraction by providing a language of special characters for 
identifying strings of text of interest, such as particular characters, words, or patterns of 
characters. A relatively simple Regular Expression can, for instance, identify the word "car" in 
isolation or when preceded by the word "blue" or "red", while another can recognize a dollar sign 
immediately followed by one or more digits, followed, optionally, by a period and exactly two 
more digits, thus accounting for dollars and cents.  While special characters and regular 
expressions can prove useful during focused searches, processing them across the entire database 
may consume excessive computer resources (Strickland and Henderson 2005).   

Similarity Assessment 
Similarity assessment techniques inherently concern objects that share a common set of features 
to varying degrees. Well-established techniques have been developed in the fields of machine 
learning—a branch of artificial intelligence—and statistical pattern recognition (Michie et al. 
1994). Example approaches include neural networks, support vector machines, decision-tree 
induction, Bayesian, and case-based classification techniques. 

Neural networks consist of interconnected, biologically inspired processors called neurodes that 
can learn to classify by pre-classified examples. Support vector machines use an optimization 
technique to find planes that best separate objects into distinguishing classes.  Decision-tree 
induction algorithms typically employ a measure called information gain to select the most 
promising features, construct a decision tree, and use it to classify new objects. Bayesian 
classification techniques apply estimations of class-conditional probabilities to predict a label for 

 2



InterSymp-2008, Focus Symposium on Intelligent Software Tools and Services, Germany, 25 July 2008  ZANG-IS08 

a new case or object. Case-based classification reuses the decisions from the closest matching 
pre-classified objects to label new objects.   

The applicability and classification performances of these techniques depend on the 
representation language of the objects and the amount of available pre-classified data.  For 
example, neural networks and support vector machines work well with many instances of 
numerical data. In contrast, case-based techniques are well-suited for a mixture of data types 
with relatively few examples.     

Case-based techniques utilize similarity assessment to classify new objects.  Classification refers 
to the task of assigning one or more predefined labels to a previously unlabelled object.  Case-
based classification works as follows. For a new object or a case to be labeled, similarity 
assessment techniques are utilized to retrieve the most closely matching previously labeled cases 
from a database of cases, called a case base, to assign the label from the retrieved cases as the 
label for the new object (Kibler and Aha 1988).    

 
Figure 1:  Case-Based Classification 

Classification performance depends significantly on two design factors, the case representation 
and the similarity metric. 

Case Representation: A case is a structured representation of the factors to be 
used for assessing similarity between two cases. The most common case 
representation is a list of attributes and values.  

Similarity Metric: A similarity metric is an aggregation function that assigns a 
number between 0 and 1 as a measure of similarity between two cases. A 
similarity value of 1 implies that the two cases are identical while a similarity 
value of 0 implies that they are completely distinct.  

Examples of similarity or distance metrics include the Euclidean metric, cosine metric, and 
Hamming distance. Such metrics often specify parameters such as attribute weights to improve 
classification performance. Nonetheless, when a large number of features are associated with a 
case base, some prove irrelevant and can reduce classification performance. While counteractive 
parameters can be set manually, automatic methods can potentially achieve the same result. For 
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this purpose, several attribute weighting and feature selection methods, such as information gain 
and rough-set theoretic methods (Gupta et al. 2005), are available.   

Word Similarity 
The principal problem when comparing the similarity of words is the breadth of naming 
differences for word-associated concepts.  Causes for such differences are described by the 
taxonomy in Figure 2.  Name variation can arise for syntactic or semantic causes.  Syntactic 
distinctions engender commonly used vocabulary (e.g., “code” vs. “id”), conventions (e.g., 
“Airport_Code” vs. “AirportCode”), and abbreviations (e.g., “Airport” vs. “Arpt”).  Semantic 
distinctions occur as differences in abstraction (e.g., “Ship” vs. “Vessel”) and granularity (e.g., 
“Name” vs. “First Name” and “Last Name”).  

 
Figure 2:  Taxonomy of Naming Differences 

Many techniques have been developed to address such terminological variation. CDM has 
employed the following approaches to aid in detecting the conceptual equivalence of two distinct 
terms.  

• Creation of a synonymous terms lexicon, by exploiting the mapping that has 
already been performed.  For example, if the field label “Ship Id” has been 
manually mapped to “Vessel Code” it can be interactively identified that “Ship” is 
synonymous with “Vessel” while “code” is synonymous with “identifier”. Such a 
resource can be used directly for similarity assessment. 

• Use of WordNet (Fellbaum 1998), a publicly available linguistic ontology, to 
identify occurrences of terminological variations due to conceptual abstraction. 
For example, the hyponym (is-a-type-of) relation between concepts (e.g., Ship is-
a-type-of Vessel) may be exploited as part of the similarity assessment.   

• Creation of an abbreviation resource, by exploiting the correspondence of data 
model logical and physical names.  The logical names that include non-
abbreviated terms (e.g., Airport) and their corresponding physical names that 
include abbreviated terms (e.g., ARPT) can be used to automatically create a 
lexicon of abbreviations for use in similarity assessment.  
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• Employment of an order-based abbreviation detection algorithm, which exploits 
the characteristic of abbreviations to preserve the relative ordering of the original 
word. For example, the letter “r” occurs after the “p” in the word “airport.” A 
search utilizing this algorithm will, for instance, return “ARPT,” a desired result, 
while excluding instances of “APRT” (i.e., apartment), an irrelevant, if similar 
abbreviation. Regularity in abbreviation conventions can be exploited to detect 
abbreviations dynamically when they are not available in the abbreviations 
lexicon.   

Synonym and abbreviation resources may be employed with a technique commonly known as 
Bag-of-Words to assess the similarity between textual data.   Here the number of primary words 
in common divided by the number of unique words provides a measure of similarity.  Algorithms 
can exploit a synonym resource to maximize the number of common words.  Synonyms may 
have an associated weighting factor denoting the semantic distance between the word pair.  For 
example, the concept of the word “vessel” is more general than that of “ship,” which is more 
general than that of “oil tanker.”   To account for variation in semantic abstraction, the synonym 
pair (vessel, ship) may have a weighting factor of 0.9 and the pair (vessel, oil tanker) a 0.8.   The 
example in Figure 3 shows application of this technique to determine that the expression, “The 
vessel is arriving” is more similar to “The ship is coming” than “The airplane is coming”. 

 
Figure 3: Word Similarity Query Example 

Trigram Similarity 
Trigrams represent a specific instance of the more general N-gram concept by which text is 
broken down into all-composing three letter contiguous sequences in order to compare for 
similarity with other text.  N-grams, in turn, represent one of many techniques for producing 
similarity metrics for what is known in the industry as case-based classification.  N-grams are 
particularly tolerant of spelling variations and misspellings and indeed serve as the underlying 
technology for contemporary spell-checkers, which present a list of correctly spelled words that 
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may correspond to a word flagged as incorrectly spelled (i.e., not found in the dictionary of 
words).   

As an example, assume a mechanic wishes to query an intelligent parts database for a pressure 
gage.  The semi-literate mechanic queries the system with the phrase “presure gage.”  This query 
generates the 11 unique trigrams shown in Figure 4.   Note that the beginning and ends of words 
are padded with spaces to emphasize their importance within a word.   

 
Figure 4: Query Phrase Trigrams 

Further assume that the case base (i.e., the parts database employed in a similarity assessment 
context) contains a pressure gauge, garlic press, and box wrench.  The trigrams for these items 
are shown in Figure 5.  The number of occurrences of a particular trigram within the case base—
1 or 2 in this example—is shown below each case base item trigram.  Note that the trigrams 
“_pr,” “_ga,” “pre,” and “res” occur in both “pressure gauge” and “garlic press” (i.e., twice as 
often as do any other trigrams).  Statistical analysis of the number of occurrences of each trigram 
allows them to be weighted for rarity.  For example, the twice-occurring trigrams may be 
weighted at .5 while the single occurring trigrams are weighted at 1.  These weights are 
employed when summing like trigrams.   

 

Least 
Similar 

Next Least 
Similar 

Most 
Similar 

Figure 5: Trigram Similarity Query Example 

In the example, the query text “presure gage” shares 0 trigrams with “box wrench.  With “garlic 
press,” “presure gage” shares 4 trigrams each weighted at .5 due to their commonality.  This 
produces of score of 4 times 0.5 divided by 18—the total number of unique trigrams contained in 
both, which equals 0.111.  Comparing “presure gage” to pressure gauge produces a score of 
0.375.  The individual comparison scores are only meaningful in relation to other scores.  In this 
example the case base item “pressure gauge” is clearly the most similar to the query “presure 
gage” as its score of 0.375 has a 54% difference from the next highest score of .111 for “garlic 
press.”    
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Numeric Similarity 

The similarity assessment of numeric values, including quantitative values (e.g., weights and 
ages) and displacement values (e.g., heights and lengths), pose inherent difficulties for deriving 
appropriate similarity scores.  Consider the comparison of the weight of a 20 pound dog to that 
of an 11 pound cat.  When attempting to determine the appropriate similarity score, it becomes 
clear that additional information is needed.  If the range of weights of all animals being 
compared runs from 5 pounds to 20 pounds, then the weights of the dog and cat are relatively 
dissimilar (i.e., their similarity score should be close to 0).  However, if the list of animals 
includes a 100-ton blue whale, then, relatively speaking, the weights of the dog and cat are quite 
similar (i.e., their similarity score should approximate 1).  Hence, the calculated similarity score 
should be different in these two cases. 

For this reason it is critical that the variance of values across the entire comparison domain be 
considered when determining the similarity of any two elements.  CDM’s approach, specified by 
Equation 1, calculates the similarity between the two numeric values relative to the difference 
between the maximum and minimum values across the entire domain. 
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Equation 1:  Assessing Similarity of Quantitative Values 
An additional difficulty arises when comparing values within a domain with a large variance.  
Taking our weight example, if the 100-ton whale is included in the comparison, a five pound 
difference in weight leads to only a .00002 difference in similarity score.  This makes the 
calculated difference for a significant number of comparisons negligible (i.e., the difference in 
weight between the dog and the cat would have almost no effect on similarity score).  To counter 
this issue, CDM uses a logarithmic modifier (LOG_MOD) to accentuate the differences at the 
lower end of the scale. 

Vicinal Similarity 
Another valuable technique, vicinal similarity comparison, targets the relative distance between 
locations (i.e., determines if two locations are in the same vicinity).  This type of comparison 
faces an inherent difficulty in that geographic locations are often represented in multiple ways 
and include information from multiple fields (e.g., latitudinal and longitudinal values are 
combined).  Hence, geographic information must be translated into a comparable format before 
similarity calculations can be attempted.  CDM’s approach is to take the provided format (e.g., 
latitude/longitude, geospatial, etc.) and convert it into vector [x,y,z] coordinates on the earth.  
The physical distance between two points is then calculated by determining the angle between 
the two vectors and scaling the results based on the radius of the earth. 
Once a physical distance between two points has been calculated, the problem is essentially one 
of Numeric similarity, described in the previous section. The appropriate similarity score to 
assign the results again largely depends on the variance between the locations across the entire 
domain.  For example, when comparing distances between locations in a single zip code, then the 
locations of two different cities in that zip code might be relatively dissimilar (i.e., their 
similarity score should be close to 0).  However, if you are comparing locations across the entire 
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world, those same two cities’ locations will be, relatively speaking, quite similar (i.e., Their 
similarity score should approximate 1).  The approach taken by CDM, as when handling   
numeric comparisons, is to determine the similarity between two locations by comparing their 
physical distance relative to the largest physical distance between two locations across the entire 
comparison domain.  Once again, a logarithmic modifier is again used to magnify the differences 
at the lower end of the scale when comparing domains with a large variance. 

A related vicinal technique compares geographic areas, such as zip codes or countries, rather 
than specific points on the earth.  CDM handles this type of comparison by assigning a specific 
point on the earth to represent the estimated center of each geographical area.  Once this single 
point has been assigned for all areas within the case representation, similarity assessment can 
continue as described above. 

Mixed-Initiative Assessments  
Our experience with similarity assessment techniques, as with artificial intelligence paradigms in 
general, clearly indicates that specific techniques can perform exceptionally well with one data 
set and exceptionally poorly with others.  All such techniques operate based on pre-established 
(i.e., built-in) assumptions, thus limiting the utility of any single approach as a solution to every 
case.   The arbitrary or inconsistent performance of single assessment techniques can be 
counteracted by utilizing the weighted average of a number of distinct techniques to provide a 
single measure of similarity.   Weighting factors allow techniques to be turned off (i.e., weight = 
0), turned on (i.e., weight =1), or set to have less influence (i.e., 0 < weight < 1) depending on 
their domain performance individually and/or in conjunction with other techniques.  This 
approach was shown to greatly improve the performance of the data mapping application (Gupta 
et. al. 2008) described later in this paper.  Note, however, that the mapping performance gained 
by the mixed-initiative approach comes at the expense of computational performance.  While 
computational performance is not as much of an issue for an application that can run in the 
background and post results when complete, it can present a problem  for one which requires 
real-time user interaction, such as with an internet search or database query.  

 
Figure 6: Mixed Initiative Assessment 
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Figure 6 depicts a mixed-initiative assessment used to correlate airport records contained in two 
distinct database tables, each standard to a specific domain, Commercial and Military.  Both 
tables contain fields corresponding to name, latitude, longitude, and runway length.  The naming 
conventions, descriptiveness, and data quality, however, vary both across and within the two 
databases.   For example, LAX may be named Los Angeles International, LA Airport, or LAX 
CIV Runway 1.  Geographic locations (i.e., Lat/Long) and runway lengths can be missing, 
dramatically erroneous, close, or precise.   In the example, Names are compared using exact 
match weighted at .2, Trigram weighted at .5, and Bag-of-Words weighted at .3.  The resulting 
assessment score is combined, with weight .4, with a vicinal comparison of the latitude and 
longitude, with weight .4, and a numeric comparison of runway length weighted at .2, to produce 
an overall similarity score. 

Search Applications 
The data quality and interoperability issues faced by USTRANSCOM are closely associated with 
reference data (RD) which captures the relatively static information that defines and categorizes 
enterprise-associated representational entities, thus specifying the universe of content that can be 
referenced by program-specific data to provide externally meaningful semantic context. As such, 
a substantial portion of the information exchanged between automated information systems 
(AISs) is comprised of RD codes which serve as unique identifiers for individual records within 
a specific reference data set.  Contemporary practice results in a significant percentage of 
exchanged RD code values being rendered invalid or contextually improper, which results in 
interoperability issues among systems.  Such issues introduce operational inefficiencies within 
the enterprise while degrading the quality of its composite information state, upon which critical 
business decisions are based.  This problem is particularly prevalent in regards to very large and 
dynamic RD data sets such as National Stock Numbers (NSN), DoD Activity Address Codes 
(DODAACs), and Geographic Locations (GEOLOCs).   

 
Figure 7: National  Stock Number Lookup and Validation Tool 
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The users and agents of enterprise information systems require intelligent runtime access to RD 
sets in order to obtain the RD-identifying key codes or associated item characteristic data 
necessary to perform their system-specific IT tasks.  Consider the problem of obtaining the 
National Stock Number—a 13-character code identifying one of the 8.6 million DoD supply 
items—to fill in a requisite field on a data form.  Knowing what one has or wants does not 
necessarily provide the code, due to nomenclature variation, imprecision, and the limitations of 
contemporary database query technology.  To confront this problem, CDM developed the 
National Stock Number Lookup and Validation Tool (NSLV)3 to assist users in finding National 
Stock Numbers (NSNs) using free-form textual descriptions of desired items.  NSLV employs 
the trigram similarity assessment technique described in the Figure 5 example. The NSLV screen 
shot (Figure 7) displays the ranked results of a user query for a pressure regulator.  

Mapping Applications 
The joint deployment and distribution responsibilities of USTRANSCOM require a substantial 
level of interoperability across the broad range of technically and functionally diverse automated 
information systems (AISs) utilized by USTRANSCOM and the individual service branches, as 
well as the associated commercial suppliers and shippers.  This aspect of the USTRANSCOM 
mission prompted the development of an enterprise-wide data model, known as the Master 
Model (MM) and a formalized program for the identification, management, and distribution of 
enterprise reference data, known as the TRANSCOM Reference Data Management (TRDM) 
program.  

The MM enables interoperability at the metadata (i.e., database schema) level while TRDM 
enables interoperability at the instance-data (i.e., database record) level.  However, the human-
intensive (thus costly and error prone) development and maintenance of semantic maps is 
required for these capital investments to provide for increased interoperability levels.  At the 
metadata level, these semantic maps relate elements within AIS-specific data models and 
interface specifications to elements within the MM.  At the instance-data level, they join 
equivalent or semantically related records (e.g., airport to geographic location records as 
correlated by latitude and longitude fields).  

The Intelligent Mapping Toolkit (IMT)4 is designed as a set of intelligent collaborative tools to 
support professional analysts performing labor- and knowledge-intensive semantic mapping 
tasks within a dynamically evolving information infrastructure.  IMT employs a federation of 
matching agents for case-based similarity assessment and learning. IMT semi-automatically 
acquires domain-specific lexicons and thesauri to improve its mapping performance. It also 
provides an explanation capability for mixed-initiative mapping. IMT’s primary goal is to 
suggest mappings to users for final verification and acceptance (Gupta, et. al. 08).   

                                                 
3 NSLV was developed in the context of an analysis of the USTRANSCOM Reference Data Management program 
(TRDM) under contract to USTRANSCOM J6, 2006 – 2007. 
4 Sponsored by USTRANSCOM J6, 2005 - 2007 
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Figure 8: The Intelligent Mapping Toolkit 

Data Cleansing Applications 
The United States Central Command (USCENTCOM) Top 100 Analysis process provides 
visibility to the heaviest sustainment items (identified by National Stock Number [NSN]) from 
two continental United States aerial ports of embarkation—Charleston Air Force Base (AFB), 
South Carolina, and Dover AFB, Delaware—to the USCENTCOM area of responsibility (AOR) 
each month.  This information is used to support shifting the mode of transportation of the 
heaviest, most often airlifted commodities to surface transportation, in order to realize significant 
transportation cost avoidance and greater efficiency for the Department of Defense.  The current 
process is predominantly manual and requires excessive time to analyze the data, especially to 
overcome data quality issues.  The most pressing of these data quality issues fall into four 
categories: missing item shipping weights, incorrect item shipping weights, missing NSNs, and 
missing item names. 

The Intelligent Data Analysis Application (IDAA)5 is designed to detect problematic data within 
imported queries of shipped cargo items and provide support to users in resolving them. Using a 
                                                 
5 Sponsored by USTRANSCOM J6, 2007 - 2008 

 11



InterSymp-2008, Focus Symposium on Intelligent Software Tools and Services, Germany, 25 July 2008  ZANG-IS08 

database of nearly three million approved cargo types, IDAA matches cargo items by National 
Stock Number (NSN), item name, weight, and cube.  For those items that cannot be definitively 
matched, suggested cargo types are automatically generated using intelligent similarity-based 
data comparators.  

 
Figure 9: The Intelligent Data Analysis Tool 

Conclusion 
Similarity assessment techniques provide a unique solution approach applicable to a broad range 
of problems.  They prove to be intuitive to both users and developers, perhaps due to similarities 
with human problem-solving approaches.  Contemporary paradigms are based directly upon 
Boolean logic in which elements may either be True (1) or False (0).  Similarity assessment 
paradigms provide an analog paradigm which allows elements to have values between 1 and 0 as 
well.  Similarity assessment is derived from the field of case-base reasoning and is particularly 
effective when employed in conjunction with users to bring pertinent or desired items to their 
attention in ranked order.  Various techniques are available for assessing similarity of textual and 
numeric data, although performance is strongly dependent on the application domain.  This 
problem can be overcome by combining the results of multiple techniques to produce a single 
assessment result, given the acceptability in the corresponding loss of computational 
performance.    Similarity assessment techniques have been successfully applied in a variety of 
search, mapping, and data cleansing applications previously irresolvable employing Boolean 
logic approaches alone. 
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