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A method for achieving an arbitrary lift distribution with an arbitrary planform is pre­
sented. This is accomplished through optimizing aerodynamic twist for a given number of 
either known airfoils or airfoils to be designed. The spanwise locations of these airfoils are 
optimized to get as close to the desired lift distribution as possible. Airfoils are linearly 
interpolated between these points. After aerodynamic twist, the planform is twisted geo­
metrically using radial basis functions to model the twist distribution. The aerodynamic 
influence of each twist distribution is determined and all are superimposed to determine 
the function weights of each twist function, yielding the optimal twist to match the given 
lift. This method has been shown to match both an elliptical and a triangular lift distri­
bution for an arbitrary planform. This method can also be used with any fidelity model, 
creating a powerful design tool. 

Nomenclature 

A = aerodynamic influence matrix 
bb = required aerodynamic change vector 
c = chord length 
Cl = section lift coefficient 
i = twist function index 
M = number of spanwise wing segments 
N = number of twist basis functions 
r = radius from origin or center point in radial basis function 
r0 = reference radius in radial basis function 
w = basis function weight 
bx = basis function weighting vector 
y = non-dimensional semispan location 
α = angle of attack 
Δ = increment 
δ = magnitude of twist basis function 
η = center point in radial basis function 
λ = wing taper ratio 
φ = radial basis function or velocity potential 
ω = geometric twist angle 
\ = gradient 

I. Introduction 

For increasing the aerodynamic efficiency of wings, it is desirable to reduce their induced drag. One way 
this can be done is through achieving an elliptical lift distribution. This is the theoretical minimum 
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for induced drag as shown by Prandtl’s classical lifting-line theory.1 Phillips2 has introduced an expression 
for the optimum washout distribution for a wing of arbitrary planform. It comes from a “more practical 
form of the analytical solution for the effects of geometric and aerodynamic twist” on a wing of arbitrary 
planform that is based on Prandtl’s lifting-line theory. This is a good low-fidelity model that works well 
for a clean wing. However, if a fuselage and/or a nacelle/pylon combination were added to the wing, the 
optimal washout distribution based on lifting-line theory is no longer valid. 

What is required is a more general method that does not depend on geometry, but rather simply examines 
lift distributions. This can be accomplished by determining the required change in the lift distribution of 
an untwisted wing in order to achieve the desired lift distribution. The wing can then be twisted according 
to a set of known basis functions and each twist distribution’s influence on the untwisted lift distribution 
can be obtained. Any set of basis functions used for function approximations should work to represent the 
wing twist. However, radial basis functions will be used here. All the resulting ΔCl ·c distributions can 
be superimposed to attain all the necessary twist function weights, which yields a wing that achieves the 
desired lift distribution. The reason superposition works is noted by examining Laplace’s equation. For 
incompressible, irrotational fluid flow, Laplace’s equation reduces to 

\2φ = 0 (1) 

This is a second order linear partial differential equation. Since Laplace’s equation is linear, superposition 
can be used to add together the effects of all the twist distributions on the lift distribution. Since this is 
a general method that does not depend on geometry, influences from additional bodies such as a fuselage 
and/or a nacelle/pylon combination can be included. Also, since this method does not specify an elliptical 
lift distribution, it will work for any desired lift distribution. 

II. RBF Wing Twist 

Radial basis functions (RBFs) are functions whose values depend solely on the distance from the origin or 
from some other point to be taken as the center. Therefore, RBFs take the form of φ(r). For representation 
of wing twist, the radius of an RBF is represented as: 

r =  y − η (2) 

where y is the semispan location and η is the point to be used 
as the center of the RBF. There are many common types of RBFs 
including Gaussian, multiquadric, and the polyharmonic spline. The 
form used in this method to model the twist distribution of an arbi­
trary wing is the multiquadric RBF, shown below,  

φ(r) = r2 + r0
2, r0 ≥ 0 (3) 

where r0 is a reference radius. Figure 1 displays several multi-
quadric RBFs for differing centers. The center of each RBF corre­
sponds to the y-location of the minimum φ point for each function. 
Therefore, the η values displayed in Fig. 1 are 0, 0.2, 0.4, 0.6, 0.8, 
and 1. Also, the minimum φ value corresponds to the r0 value of 
each function. Therefore, each RBF has an r0 value of 1 in this 
example. 

RBFs can be used to build up function approximations. This is how a twist distribution is modeled in 
this method. Multiquadric RBFs using different centers are summed up and scaled by their corresponding 
function weights to yield the twist angle at a given semispan location. This is expressed as: 

NN 
ω(y) = δ · wi · φ( y − ηi ) (4) 

i=1 

where δ is the magnitude of the basis functions used prior to calculating the weights required to match 
a given lift distribution. 
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III. Aerodynamic Twist Optimization
 

A wing can be twisted aerodynamically according to a given number of airfoils. These airfoils are placed 
optimally in order to achieve as close to the desired lift distribution as possible. These airfoils are then 
designed to achieve the required lift coefficient found from the desired lift distribution. Airfoils are linearly 
interpolated between these designed airfoils to yield the entire lift distribution. This is done by finding the 
set of spanwise locations and corresponding design lift coefficients that minimize the error between the Cl 

distribution achieved by aerodynamic twist and the Cl distribution resulting from the desired lift distribution 
and planform shape. The spanwise placement of each airfoil was optimized using the MATLAB3 constrained 
optimizer fmincon. A constraint was placed on the location of airfoils such that each one must be placed 
further outboard on the span than the previous airfoil. At each iteration in the optimization, when an airfoil 
was placed, its lift coefficient was taken to be the same as that from the desired lift distribution. Figure 2 
shows the Cl distribution corresponding to a desired elliptical lift distribution for two different taper ratios. 
They also show the Cl distribution for the optimized airfoil placement. Figure 2(a) shows the Cl distribution 
for a wing with a taper ratio of 1 and Fig. 2(b) shows the Cl distribution for a wing with a taper ratio of 0.3. 
This was done at a Mach number of 0.8 at an altitude of 35,000 feet. With just four airfoils between the root 
and the tip, linear interpolation of the design lift coefficient gets fairly close to the desired lift distribution. 

(a) λ = 1 (b) λ = 0.3 

Figure 2. Optimized Airfoil Placement 

Another way to optimize the aerodynamic twist of a wing is with a set of given airfoils. Again, their 
placement can be optimized with fmincon. However, with this method the Cl of each airfoil is already 
determined, not taken from the desired lift distribution. While this does not get as close to the desired lift 
distribution as the previous method, it does save on computational time because the airfoils do not have to 
be designed. 

IV. Geometric Twist Optimization 

IV.A. Overview 

A wing can also be twisted geometrically to achieve a desired lift distribution. This is done by superimposing 
all the ΔCl ·c distributions due to each twist distribution together to calculate the required twist function 
weights. First, all of the ΔCl ·c distributions can be organized in matrix form into an aerodynamic influence 
matrix. It is an M x N+1 matrix where M is the number of spanwise sections the wing is broken up into and 
N is the number of twist basis functions. The extra column comes from an angle of attack function used in 
the process. The aerodynamic influence matrix is expressed as: 
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⎤⎡ ⎢⎢⎢⎢⎣ 

(ΔCl · c)α,1 (ΔCl · c)ω1,1 (ΔCl · c)ω2,1 · · · (ΔCl · c)ωN ,1 

(ΔCl · c)α,2 (ΔCl · c)ω1,2 (ΔCl · c)ω2,2 (ΔCl · c)ωN ,2 
⎥⎥⎥⎥⎦ 

(5)A = . ... . .. 
(ΔCl · c)α,M (ΔCl · c)ω1 ,M (ΔCl · c)ω2,M · · · (ΔCl · c)ωN ,M 

. . 

where each column represents a particular twist distribution’s influence on the lift distribution along the 
span of the wing. In order to calculate the necessary twist to achieve the desired lift distribution, the required 
ΔCl ·c distribution must be known. This is equivalent to subtracting the untwisted wing lift distribution 
from the desired lift distribution. This is expressed in a required aerodynamic performance change vector 
as: ⎤⎡ 

bb = 

⎢⎢⎢⎢⎣ 

(Cl · c)1,desired − (Cl · c)1,base 

(Cl · c)2,desired − (Cl · c)2,base 
. . .
 

(Cl · c)M,desired − (Cl · c)M,base
 

⎥⎥⎥⎥⎦ 
(6) 

The final components in this system are all the weights of the twist basis functions and angle of attack. 
These scale all of the ΔCl ·c distributions so that it reflects the final angle of attack and twist distribution, 
not the basis function twist distributions. The basis function weights are expressed in a weighting vector as: ⎤⎡ 

bx = 

⎢⎢⎢⎢⎢⎢⎣ 

wα 

wω1 

wω2 

. . . 
wωN 

⎥⎥⎥⎥⎥⎥⎦ 

(7) 

Knowing A and bx allows the ΔCl ·c distribution of the twisted wing to be calculated, which when added 
to the untwisted wing lift distribution yields the twisted wing Cl ·c distribution. This is expressed as simply 
the matrix multiplication problem: 

A · bx = bb (8) 

However, if the final twist distribution is not yet known, it must be solved for. The values in bx must be 
found such that the ΔCl ·c distributions are scaled by the appropriate amounts. Therefore, when added to the 
untwisted lift distribution, the Cl ·c value at every spanwise location on the wing matches the corresponding 
value from the desired lift distribution. This is accomplished by building up bb as shown in Eq. (6) and 
solving for bx using the pseudo inverse of A. The pseudo inverse is used because Eq. (8) is a rectangular 
overdetermined system unless the number of basis functions used is one less than the number of spanwise 
sections the wing is broken up into. It is one less due to the angle of attack term present in the system. This 
is typically far more basis functions than is required. 

Figures 3 on the next page and 4 on the following page give a more visual representation of the geometric 
twist optimization. Figure 3 on the next page represents all the basis functions used in this example. The 
first function represents an angle of attack, followed by a linear twist and four sinusoidal basis functions. 
Even though this is currently being performed with multiquadric RBFs, sinusoidal functions are easier to 
distinguish for the purposes of this visualization. Sinusoidal basis functions provide a good fit of an arbitrary 
lift distribution, but oscillations occur in the resulting twist distribution. Multiquadric RBFs also provide 
a good fit, but the twist distribution is much smoother than that resulting from sinusoidal basis functions. 
Therefore, multiquadric RBFs are the method of choice. Figure 4 on the following page represents the ΔCl ·c 
distributions that correspond to each basis function. 
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(a) α (b) Linear (c) 1/4 Period (d) 1/2 Period (e) 3/4 Period (f) 1 Period 

Figure 3. Example Basis Functions 

(a) α (b) Linear (c) 1/4 Period (d) 1/2 Period (e) 3/4 Period (f) 1 Period 

Figure 4. ΔCl ·c of Example Basis Functions 

IV.B. Fuselage Effects 

The inclusion of a fuselage into this process requires a slight modification to the matrix math. Adding a 
fuselage changes the lift distribution on a wing. Therefore, Eq. (6) must be modified in order for the required 
aerodynamic performance change to account for how the fuselage affects the lift distribution of the wing. 
The required lift change now equals the fuselage effect on the lift distribution subtracted from Eq. (6). ⎤⎡ 

bb = 

⎢⎢⎢⎢⎣ 

(Cl · c)1,desired − (Cl · c)1,base − (ΔCl · c)1,fuselage 

(Cl · c)2,desired − (Cl · c)2,base − (ΔCl · c)2,fuselage 
. . .
 

(Cl · c)M,desired − (Cl · c)M,base − (ΔCl · c)M,fuselage
 

⎥⎥⎥⎥⎦ 
(9) 

IV.C. Advantages 

What makes this method so powerful is not just that it can match any lift distribution with an arbitrary 
planform, but also because of its computational efficiency. It is very inexpensive compared to a numerical 
optimization process. The reason for this is that the user determines how many simulations to perform. 
Also, once the aerodynamic performance change vector and the aerodynamic influence matrix are filled in, it 
is simply an analytical solution for the optimal twist distribution. However, a numerical optimizer performs 
a search technique that is very expensive when an aerodynamic analysis is in the objective function. The 
optimizer must perform many simulations to calculate derivatives in order to determine what direction to 
travel in the design space. Another benefit to this method is that the aerodynamic analysis can be kept as 
a “black box.” It is a multifidelity method that can be used during all phases of the design process as the 
analysis tools become more computationally intensive. 

V. Solution Techniques 

V.A. Athena Vortex Lattice 

Athena Vortex Lattice (AVL)4 is a vortex lattice model that uses horseshoe vortices (vortex sheet) for the 
lifting surfaces and a slender-body model for fuselages and nacelles. Fuselages and nacelles are modeled with 
source and doublet lines. 

V.B. Panel Method Ames Research Center 

Panel Method Ames Research Center (PMARC)5 is a NASA panel code that computes the potential flow 
field around complex three-dimensional bodies. It is a low order panel method, using constant strength 
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source and doublet distributions over each panel. It uses a time-stepping wake model and performs a Trefftz 
plane analysis for induced drag calculations. It also has the option to use the Prandtl-Glauert compressibility 
correction. 

VI. Results 

Four design cases are presented to illustrate the application of this method. A rectangular wing and 
a tapered wing were analyzed with PMARC. A wing/fuselage combination was also analyzed with AVL. 
To compare with the PMARC case, the same tapered wing was also analyzed with AVL. The aerodynamic 
analysis and the geometry creation were automated using MATLAB. Since a wing had to be generated 
for each twist distribution, it was important to be able to efficiently create a wing and determine its lift 
distribution. 

VI.A. Wing Only 

VI.A.1. Rectangular Wing 

As an example of the geometric twist optimization process, 
a rectangular wing with an aspect ratio of 10 was twisted to 
achieve both an elliptical and a triangular lift distribution. No 
aerodynamic twist was implemented in order to show the ef­
fects of solely geometric twist on the lift distribution. The lift 
distributions were calculated using PMARC. This was done for 
at a Mach number of 0.8 and an altitude of 35,000 feet. Fig­
ure 5 displays the baseline lift distribution of the untwisted 
rectangular wing. Since this wing has a taper ratio of one, 
the Cl distribution and Cl ·c distribution have the same shape, 
only the magnitudes differ. Figure 6 displays the desired and 
achieved lift distributions for both an elliptical and a triangu­
lar lift distribution. They display that both an elliptical and 
a triangular lift distribution can be achieved fairly well with a 
simple rectangular planform solely with the use of geometric 
twist. While a triangular lift distribution would reduce wing 
root bending moment compared to a elliptical lift distribution, 
it is displayed more to show that the method can match an 
arbitrary lift distribution fairly accurately. 

Figure 5. Lift Distribution of Untwisted Wing 

(a) Elliptical (b) Triangular 

Figure 6. Achieved Lift Distributions 
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VI.A.2. Tapered Wing 

The geometric twist optimization process was then 
used on a tapered wing with a yehudi to match an 
elliptical lift distribution. This was also done at a 
Mach number of 0.8 and an altitude of 35,000 feet. 
Figure 7 shows the wing planform used for the twist 
optimization. Figure 8 shows the geometric twist 
optimization results for the tapered wing analyzed 
with AVL. Figure 8(a) gives the desired, twisted, 
and untwisted lift distributions. The theoretical lift 
distribution is the twisted lift distribution calculated 
using the matrix math instead of obtaining it from 
PMARC. It is equivalent to solving Eq. (8) for bb 
and adding in the baseline lift distribution of the 
untwisted wing. The lift distribution achieved with 
AVL and the theoretical lift distribution both match 
the desired lift distribution. The baseline lift distri­
bution is obtained from the untwisted wing at an 
angle of attack to achieve the same total lift force as the desired lift distribution. The baseline distribution 
is also very close to the desired distribution. The lift is slightly too low at the root and too high at the tip. 
Twisting the wing brought this to an elliptical shape. Figure 8(b) displays the resulting twist distribution 
of the wing. 

Figure 7. Wing Planform 

(a) Lift Distribution (b) Twist Distribution 

Figure 8. AVL Geometric Twist Optimization Results 

Figure 9 on the next page displays the geometric twist optimization results using PMARC. Figure 9(a) 
on the following page shows the desired lift distribution along with both the twisted and untwisted lift 
distributions. It shows a fairly dramatic change between the initial and final lift distributions. The baseline 
lift distribution differs from that obtained with AVL. They both produce too little lift at the root and too 
much at the tip. However, the PMARC baseline distribution deviates further from the desired lift distribution 
than the AVL baseline distribution does. This is probably due to the differences in the solution techniques. 
AVL ignores thickness. The wing is modeled as a vortex sheet. The achieved lift distribution also very closely 
matches the desired lift distribution. Figure 9(b) on the next page displays the resulting twist distribution 
of the wing. 
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(a) Lift Distribution (b) Twist Distribution 

Figure 9. PMARC Geometric Twist Optimization Results 

VI.B. Wing and Fuselage 

A fuselage was added to the AVL model to attempt to account for the effects of a fuselage on the lift distri­
bution. Figure 10 shows the geometric twist optimization results for the wing/fuselage combination. Both 
Fig. 10(a) and 10(b) very closely resemble the lift and twist distributions from the AVL twist optimization 
without the fuselage. This is probably due to the fact that AVL is a low order aerodynamic code. The 
fuselage effects are not greatly captured modeling it with a line of sources and doublets. However, it shows 
that this method can be used for a wing with a fuselage. 

(a) Lift Distribution (b) Twist Distribution 

Figure 10. AVL Geometric Twist Optimization Results with Fuselage 

Since all the lift distributions are superimposed, the fuselage should only have to be added once to obtain 
its effect on the lift distribution. It can then be left out of all subsequent analyses, which would decrease 
computational time. However, when this was done, the lift distribution did not match as well as when the 
fuselage was left in for all analyses. 

VII. Future Work 

Currently this method only works well for a wing in combination with additional bodies such as a fuselage 
or a nacelle/pylon combination if they are analyzed with the wing for each twist distribution. An investigation 
will be conducted into whether the whole configuration can be analyzed only to determine the influences of 
the additional bodies on the lift distribution of the untwisted wing. If this can be done accurately, then the 
wing alone can be analyzed for all the twist distributions. This would greatly simplify the analysis and could 
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potentially greatly decrease the computational costs if high-fidelity tools are implemented. A detailed study 
into modeling wing twist with different basis functions will also be conducted to determine how different 
basis functions affect the optimal wing twist and the fit to the desired lift distribution. 
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