TABLE OF CONTENTS

_DESIGN
Goals ... 3
Precedents ... 5
Site Investigation .. 7
2D/3D Design .. 11
Elevations .. 13
Sections/Oculus Detail .. 15

_STRUCTURE
Sap ... 17
Foundation Details ... 19

_CONSTRUCTION
Panel Test ... 22
Panel Assembly .. 23
Cost Estimate ... 25
Small Scale Construction Process 27
Oculus Performance .. 29
GOALS

_Create Unique Bar Experience

_Multi-Seasonal Performance Venue

_Celebrate Views

_Exciting Destination
Interested by Portland's diverse culture and unique environment, our group took on the challenge of designing a pub and performance venue in Portland, Oregon.

The site stands unique to others as it lays in between Tilikum Bridge and Ross Island Bridge. Being just south of Downtown Portland, there are many opportunities to bring in visitors to Portland Pacific.

Through the series of plans, construction details and photos to follow, you will understand just how Portland Pacific is envisioned by both architects and architectural engineers.
PRECEDE NTS

Naturtheater Grötzingen
Michael Balz Heinz Isler

The Forum
D·LIM architects
Seoul Structural Engineering
Naturtheater Grötzingen served as a great study as it utilized five foundation points rather than the usual three or four. It also served the very purpose our group pursued: a finicular concrete shell as a performance venue.

The Forum in particular was a great inspiration for Portland Pacific. It was important to the architects and engineers that the visitors of the project would not just be in awe of the design, but get to experience it fully by being allowed seating on the rooftop.
FORM DEVELOPMENT

_initial plane

_in response to:
 site, views, & climate

_final form
SITE PLAN
1 LOBBY
2 PUB
3 PERFORMANCE SPACE
4 MIXED USE
DESIGN
ELEVATIONS
unique to our building is the ability for visitors to sit on subtle/fixed seating arrangements on top of our very structure. Audience members can truly experience the form of the building while enjoying a performance outside.
[Ring of rebar in concrete to allow for stress travel]

DIAMETER = 8"

Straight acrylic to line outer face
LED lighting to be installed on exterior
Sloped lip to prevent water collection
SAP ANALYSIS

_DEAD
Thrust = 112k
BUCKLING
Factor = 10.71
SDS = 0.728
LEGEND
- EXISTING CONNECTION TO GROUND
- BUILDING FOOTPRINT
- PRE-STRESSED TENSION CABLE
- POST-STRESSED TENSION CABLE
- TENSION TIE

S&T CONCRETE, LLC
PO Box 007
San Luis Obispo, CA

DRAWN BY
S. MOORE
K. T. KHIEU
p: 916.742.8394
f: 916.742.8395

As indicated

POWAY FLATS
14155 MIDLAND RD. POWAY, CA 92064

SP3
THRUST
TENSION TIE PLAN
JAN. 29, 2017

1 1/2” = 1'-0”

1/4” = 1'-0”
FOUNDATION DETAILS

LEGEND
- EXISTING CONNECTION TO GROUND
- BUILDING FOOTPRINT
- SLAB EDGE BELOW GRADE

THRUST BEAM
THICKENED SLAB EDGE

1/4" = 1'-0"

POWAY FLATS
14155 MIDLAND RD. POWAY, CA 92064
S. MOORE
K. T. KHIEU
p: 916.742.8394
f: 916.742.8395

1/4" = 1'-0"

TYPICAL THREADED ROD HOOK PLAN

1 1/2" = 1'-0"
Panel layers:
- Concrete
- Mesh
- Bubble Wrap
PANEL
ASSEMBLY

Final Layer:
Monolithic Pour

Second Layer:
Concrete Panels
w/ inserted mesh

First Layer:
Cardboard formwork
Demonstrating the process of building our formwork, pouring and curing the concrete, and assembling the panels per the diagram provided on the previous page.
Portland Pacific Target Values

Portland Pacific Conceptual Estimate

<table>
<thead>
<tr>
<th>Description</th>
<th>Full Scale</th>
<th>9335 SF</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A10 FOUNDATIONS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03.21.00 Reinforcing Steel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REINFORCING - MISC. PADS AND CURBS - SF</td>
<td>1,200 SF</td>
<td>$6.00</td>
<td>$7,200</td>
</tr>
<tr>
<td>REINFORCING - FOOTING REINFORCING - LB (450#/CY)</td>
<td>33,480 LB</td>
<td>$2.00</td>
<td>$66,960</td>
</tr>
<tr>
<td>REINFORCING - SLAB-ON- GRADE - LB (2#/SF)</td>
<td>18,739 LB</td>
<td>$2.00</td>
<td>$37,478</td>
</tr>
<tr>
<td>03.31.00 Structural Concrete</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONCRETE - MISCELLANEOUS PADS & CURBS - SF</td>
<td>1,200 SF</td>
<td>$15.00</td>
<td>$18,000</td>
</tr>
<tr>
<td>CONCRETE - SLAB-ON- GRADE - SF</td>
<td>9,369 SF</td>
<td>$15.00</td>
<td>$140,540</td>
</tr>
<tr>
<td>CONCRETE - THICKENED SLAB EDGE - CY</td>
<td>10 CY</td>
<td>$500.00</td>
<td>$5,000</td>
</tr>
<tr>
<td>CONCRETE - FOOTINGS (W/ 20% WASTE) - CY</td>
<td>74 CY</td>
<td>$500.00</td>
<td>$37,200</td>
</tr>
<tr>
<td>EXPORT SPOILS (70%) - CY</td>
<td>152 CY</td>
<td>$60.00</td>
<td>$9,132</td>
</tr>
<tr>
<td>05.16.00 Structural Cabling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4" BRAIDED STEEL CABLE (20% WASTE) - LF</td>
<td>754 LF</td>
<td>$20.00</td>
<td>$15,080</td>
</tr>
<tr>
<td>05.50.00 Metal Fabrications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THREADED ROD - LF</td>
<td>50 LF</td>
<td>$25.00</td>
<td>$1,250</td>
</tr>
<tr>
<td>EYELET HOOKS - EA</td>
<td>12 EA</td>
<td>$4.00</td>
<td>$48</td>
</tr>
<tr>
<td>31.00.10 Earthwork</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXCAVATE FOUNDATION - CY</td>
<td>4,670 CY</td>
<td>$50.00</td>
<td>$233,500</td>
</tr>
<tr>
<td>31.22.16 Subgrade Reshaping - CY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGGREGATE BASE (STRUCTURAL SLAB ON GRADE) - CY</td>
<td>2,334 CY</td>
<td>$50.00</td>
<td>$116,700</td>
</tr>
</tbody>
</table>

TOTAL: $24,697,417
Potential Safety Hazards:
- Sharp mesh cuts
- Slips, trips, & falls
- Soft tissue injury
- Inhalation of silicates
- Cuts from power tools
- Inhalation of sawdust
- Eye irritants
- Foot injuries from drops

We intend to wear PPE including, but not limited to: goggles, gloves, masks; to reduce these risks

Tool/machinery needs for Production:
- Drill driver and impact driver
- Table saw and miter saw
- Wire cutters and pliers
- Gloves
- Scissors
- Respirators
- Eye protection
- Construction screws
- Matching drill bits
- Pliers
SMALL SCALE CONSTRUCTION
OCULUS PERFORMANCE

Demonstrating the various colors and atmospheres the oculus can display when in use.
A special thanks to Ed & Clare for their creative and educational direction and support.