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This paper explores the applicability of several variations of the v2­f turbulence 
model to circulation control flows. The effects of modifying the model to capture 
nonlinear eddy viscosity effects and streamline curvature effects are assessed. 
Results indicate that the v2­f turbulence model is capable producing more physically 
accurate results for circulation control flow fields than common modern turbulence 
modeling techniques. 

Nomenclature b = Reynolds stress anisotropy tensor (second order)
­bij = Reynolds stress anisotropy
­bjet = jet slot width
­Cf = skin friction coefficient
­Cf = jet momentum coefficient
­

= turbulent viscosity coefficient
­CDf 
= material derivative Dtf = elliptic relaxation factor ℎjet = jet slot height
­h = identity matrix
­I = turbulence kinetic energy
­k = turbulent length scale
­Lm
o = mass flow rate
  = production of turbulence kinetic energy
 
 = dynamic pressure
­Re = Reynolds number
­S = wing area
­s = mean strain rate tensor (second order)
­S = mean strain rate, = s1 oadi + adjoij a-j a-iT = transformation matrix
­T = turbulent time scale
­U = velocity
­U, v, w = Cartesian velocity components
­Ui = velocity
­v1
o = velocity scale
­W = mean rotation rate tensor (second order)
­∗W = mean rotation rate tensor (second order), modified for streamline curvature effects
­

Greek Symbols
Gij = Kronicker delta, = {1, i = j 0, i ≠ j
E = turbulence dissipation rate
­
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1s = strain invariant 11 = vorticity invariant 1 = laminar dynamic viscosity 1t = turbulent dynamic viscosity v = laminar kinematic viscosity vt = turbulent kinematic viscosity P = density P = turbulent time scale T = specific dissipation rate iΩij = mean rotation rate, = s1 oadj − adijoa- a-Ω = objective vorticity tensor (second order) 

Superscripts and Subscripts∞ = freestream 

I. Introduction 

TO generate increased lift from traditional subsonic airfoils, either the angle of attack or the camber must be 

increased. The maximum lift coefficient of a traditional wing is limited by the eventual separation of flow over 

the wing, due primarily to the adverse pressure gradient that builds on the wing as lift is increased. Traditionally, 

this obstacle is overcome by use of complex moving wing surfaces, including flaps, slats, and other devices. 

Circulation control has been proposed as a simpler and more effective alternative to the usual high­lift devices
1
. 

Circulation control is an active flow control device that increases the lift coefficient without the use of complex 

components in freestream flow. Circulation control is primarily needed when high lift coefficients are required due 

to low airspeeds, particularly during takeoff and landing. The technology makes use of the Coanda effect, according 

to which a fluid has a tendency to stay attached to an adjacent curved surface
2
. A high­speed jet of air is blown out 

of the leading and/or trailing edge of a wing, which follows the wing surface. The stagnation point on the leading 

edge and the flow separation point on the trailing edge are thus manipulated such that the circulation is increased, 

and consequently lift is increased. 

Figure 1. Circulation control airfoil with leading and trailing edge jets3. 

The extent of the stagnation and separation point movement is primarily a function of the jet momentum 

coefficient, Cf. The jet momentum coefficient is a measure of the jet momentum relative to the freestream 

momentum, and has two common formulations, which are defined as follows. 1 = LmCf = 2ℎjetSbjet PPjet2 Ujet Ujet
(1) U21 2S 

The benefit of circulation control is that the lift is significantly increased, with relatively insignificant increases 

in drag. Circulation control requires high energy air to be blown over the wing’s surface. This requires some 

additional source of energy, potentially the engine(s) or auxiliary gas generators; this is, of course, a problem 

associated with circulation control, but the solution is outside the scope of this research paper. 

II. Challenges to CFD Modeling of Circulation Control Flows 

A. Streamline Curvature 
In the formulation of an algebraic stress model, the classical approach is to apply the weak­equilibrium 

assumption. When this assumption is applied to turbulence equations, the Reynolds stress anisotropy tensor bij = 
2
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didj − 31 Gij is assumed to be constant along a streamline
4
. This assumption is untrue in flows with streamline 

curvature, and the effect is amplified in cases where such curvature is significant. 

The calculation of material derivatives is necessary to solve the RANS equations. Material derivatives of scalar 

fields are Galilean invariant (i.e., invariant of the coordinate system;) however, material derivatives of tensor fields 

with rank greater than zero are not Galilean invariant
4
. The material derivative of the Reynolds stress anisotropy 

tensor is needed to solve the RANS equations, presenting a problem in flows with streamline curvature. Spalart and 

Shur
5 

proposed a method based on a Galilean invariant measure of turbulence for sensitizing eddy viscosity 

turbulence models to the effects of streamline curvature. Gatski et al.
6 

and Hellsten et al.
7 

proposed extensions of 

this approach, in which the anisotropy tensor is transformed to a local streamline­oriented coordinate system such 

that the weak­equilibrium assumption is valid. The general model for the transport of the anisotropy tensor is given 

as: DDbb = − ab- − a3 obs + sb − 23 {bs}ho + a1(bW −Wb) + aIsE ob1 − 13 {b1}ho (2) 

where ai are calibrated constants and { } represents the trace of a matrix. The weak­equilibrium assumption of this Db
form gives Dt = 0, and leads to an algebraic system of equations for the Reynolds stress anisotropy tensor that is 

dependent on the choice of coordinate system. This can be corrected by introducing the transformation matrix T, 

which accounts for the transformation from a global, inertial coordinate system to a local, streamline­oriented 

coordinate system. Hellsten et al. showed that taking the material derivative of TbTT 
and transforming back into the 

inertial coordinate system results in: DDb D= TT [ (TbTT)] T − (bΩ- − Ω-b) (3) b Db 
where - = T DTT. The transformation matrix must be selected such that the Reynolds stress anisotropy can be Dt 
ignored in the local, streamline­oriented coordinate system. If this is true, the Reynolds stress anisotropy tensor 

transport equation simplifies to the following: 

DDb = −(bΩ- − Ω-b) (4) b 
This result can be incorporated into the original transport equation for the Reynolds stress anisotropy tensor by ∗ s

replacing W in Equation (2) with W = �2 Ω, resulting in the following, final form of the transport equation: DDbb = −ab- − a3 obs + sb − 23 {bs}ho + a1 [b oW + a11 Ω-o − oW + a11 Ω-o b] (5) + aIsE ob1 − 13 {b1}ho 
The problem of incorporating streamline curvature effects is then reduced to finding the transformation matrix, 

T. 

B. Eddy Viscosity Formulation 
The traditional approach to relating the turbulent Reynolds stresses to the mean strain rate tensor has been to 

make use of the Boussinesq assumption, thereby creating a linear eddy viscosity model (LEVM.) According to the 

Boussinesq assumption, the unnormalized Reynolds stresses and the mean strain rate tensor are related via the 

turbulent viscosity such that
8 

= 2UiUj 3 IGij − 2vtSij (6) 

Common LEVM formulations vary in complexity from zero­equation (algebraic) to four­equation; the number of 

equations refers to the number of differential equations that need to be solved in a given model. Examples of zero­

equation LEVMs include the Cebeci­Smith
9 

and Baldwin­Lomax
10 

models. The most common one­equation LEVM 
11 12 13 

is the Spalart­Allmaras turbulence model . Two­equation LEVMs include the k­ε and k­ω turbulence models. 

The standard v
2
­f turbulence model

14 
is an increasingly common four­equation turbulence model. 

3
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LEVMs have proven to be quite powerful in industrial and academic CFD applications, but the linearization of 

the relationship between the Reynolds stresses and the strain rate can cause these models to produce non­physical 

results. In particular, the Boussinesq assumption assumes that the eddy viscosity is isotropic; that is, U1 = v1 = w1 = 23 I (7) 

This negates any anisotropy of the Reynolds stresses, most notably near­wall anisotropy, which can be a 

significant feature of wall­bounded flows. 

One approach to solving this shortcoming has been to introduce empirical damping functions or other sorts of 

ad­hoc modifications. This allows improvement upon a model for a given type of flow, but is far from universal. 

Pope
15 

suggested that the more robust approach to this problem is to reformulate the relationship between the 

Reynolds stresses and the strain rate in a nonlinear manner. The general approach to formulating a nonlinear eddy 

viscosity model (NLEVM) is to generalize the formulation of the unnormalized Reynolds stresses to the following 

form
16 

: = 2 AUiUj 3 IGij + I�gATij (8) A 
where TiAj are the tensor bases and gA are the calibrated expansion coefficients. The specific approach to deriving the 

general form of the Reynolds stresses can vary depending on the number and form of the terms chosen to include in 

the tensor bases. 

III. Previous CFD Approaches to Circulation Control Flows 

Traditional CFD approaches have been applied to circulation control airfoils, mostly in two dimensions, with 

mixed success. Unfortunately, the physics of circulation control wings are highly complex, and are not well 

understood due to limited experimental studies. The high momentum of the circulation control jet allows the 

boundary layer to remain attached longer than usual, thereby moving the separation point. This movement of the 

separation point is the primary reason that lift is augmented, and CFD modeling techniques must be able to 

accurately model the separation point by properly predicting the spreading rate of the jet and the exchange of 

momentum between the jet and the surrounding fluid. 

Today’s computer resources limit most academic and industrial CFD to RANS solutions, especially for high 

Reynolds number flows. Many attempts have been made to model circulation control flow fields using common 
17,18,19 18,19,20,21,22,23,24 25 22,24,25,26

turbulence models (including Baldwin­Lomax , Spalart­Allmaras , k­ε , and k­ω ,) and 

while acceptable accuracy has been obtained in some cases, the general consensus has been that these models are not 

well suited for circulation control flow fields. 

One reason that common turbulence models poorly model circulation control flows is their use of the Boussinesq 

assumption. The Boussinesq assumption simplifies the relationship between the turbulent Reynolds stresses and the 

mean strain rate tensor to a linear relationship. Also, most common models do not capture streamline curvature 

effects, which might become significant in circulation control flows. Addressing these two issues for a robust 

turbulence model has the potential to greatly improve the CFD predictions of circulation control flows. 

IV. The v2­f Turbulence Models 

A. Standard v2­f Turbulence Model 
Durbin

27 
developed the v

2
­f turbulence model to be used in flows in which near­wall turbulence is of significant 

importance, specifically flows with separation, recirculation, or heat transfer
28 

. The model solves four transport 

equations, those for turbulence kinetic energy, turbulence dissipation rate, velocity scale, and elliptic relaxation 

factor. The model is essentially an extension of the k­ε turbulence model, with the computational advantage of using 

the eddy viscosity concept to close the transport equations (as opposed to full second moment closure,) but improves 

upon several known deficiencies of the k­ε model. Specifically, the v
2
­f model can be integrated to a solid wall, 

eliminating the need for damping functions or wall functions
29

. Also, the introduction of the velocity scale allows 

the model to correctly scale damping of turbulence transport near walls, which turbulence kinetic energy is 

theoretically incapable of
30

. In recent years, the v
2
­f turbulence model has proven robust and superior to other RANS 

methods, despite its linear eddy viscosity formulation and insensitivity to streamline curvature
28 

. 

The v
2
­f turbulence model uses the same transport equations for turbulence kinetic energy and turbulence 

dissipation rate as does the k­ε turbulence model. In addition to these transport equations, this model solves the 

following transport equations for the velocity scale and the elliptic relaxation factor: 

4
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av1 av1ab + Uj aVj = If − v1 IE + aaVj [ov + Vvt o aavVj1] (9) 

k1 aafVj1 − f = T1 (Cs − 1)(vI1 − 23) − C1 I (10) 

where represents the production of turbulence kinetic energy due to the mean flow velocity gradients, and is 

modeled as = 21tS1 (11) 

The turbulence length scale, L, and the turbulence time scale, T, are defined as follows. I3⁄1 ⁄-k = CLLaV [ E , C1 (P133E)s ] (12) 

IT = LaV [E , CTfP1El (13) 

The turbulent viscosity is defined as: 1t = PCfv1T (14) 

It is important to note that this model does not use any wall functions or damping functions. Instead, the model 

uses the velocity scale (which is a measure of velocity fluctuation normal to streamlines) to damp turbulence 

transport near inhomogeneities, and the elliptic relaxation factor to model non­local effects. 

Kalitzin
31 

applied the v
2
­f turbulence model to simple aerospace configurations, and compared the results to 

those produced by Menter’s k­ω turbulence model and the Spalart­Allmaras turbulence model. Results were 

generated for a subsonic A­airfoil, a transonic RAE2822 airfoil, and a subsonic three­element trapezoidal wing­

body. Given that the configurations are simple airfoils and a subsonic wing­body, the cases are considered validation 

cases for the v
2
­f turbulence model. In all cases, the results between the three models matched quite well, indicating 

that the v
2
­f turbulence model correctly predicts flows for simple aerospace configurations. 

Bell
28 

performed an in­depth comparison of turbulence models for a wide variety of flows; the turbulence models 

included in the comparison include, but are not limited to, Launder­Sharma, Spalart­Allmaras, standard k­ε, 

realizable k­ε, k­ε­RNG, standard k­ω, Menter’s k­ω, and standard v
2
­f. The test cases include a fully developed 

channel flow, an asymmetric planar diffuser, an axisymmetric afterbody, a low Reynolds number flow over a 

backstep, and an impinging jet. In every case in which the standard v
2
­f turbulence model was used, it produced 

results similar to or more accurate than those from other RANS models. 

B. Nonlinear v2­f Turbulence Model 
One deficiency in the standard v

2
­f turbulence model is the use of the Boussinesq assumption to linearize the 

relationship between the Reynolds stresses and the mean strain rate. Pettersson Reif
32 

proposed a nonlinear 

constitutive relationship that could account for turbulence anisotropy, thereby improving the v
2
­f model’s predictive 

capability for turbulent shear flows. The nonlinearization begins with the proposal by Pope
6 

for an equilibrium 

solution of a second­moment closure for an incompressible, two­dimensional mean flow in a non­inertial frame, UUuuuu = 2 ∗ ∗I 3 h − asPss − asP1(sW − W s) + a3P1 os1 − 31 |s1|ho (1) 

where the ai coefficients are functions of turbulent quantities, P is a turbulent time scale, and |s|1 = Sl S l (where S 
is a second order tensor.). Pettersson Reif used this form to propose the following relation for the v

2
­f turbulence 

model: UUuuuu v̅1I = 23 h − Cf∗s I Pss − Cf∗1VsP1(sW∗ − W∗s) + Cf∗3V1P1 os1 − 13 |s1|ho (2) 

where Vi and Cf∗i are functions of 
22 

and the dimensionless velocity­gradient parameters 1s = P1Si Si∗ ∗11 = P1Si Si (3) 

For two­dimensional incompressible flow, Equation (2) gives the following nonzero components of the 

Reynolds stress tensor. Us1 v1∗ ∗= 23 − 2Cfs PsA + 13 Cf3V1P1A1 (4) I I 
5
­
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U11 ∗ v1 P ∗ P1A1 (5)I = 23 + 2Cfs I sA + 13Cf3V1U31 = 23 − 13 Cf∗3V1P1A1 (6)I UsIU1 = −2Cf∗1VsP1TA (7) 

In the model proposed by Pettersson Reif, the principles of realizability and internal consistency were used to 

determine the final form of the nonlinear v
2
­f turbulence model. Realizability is the requirement that all quantities 

known to be strictly positive must be guaranteed to be positive by the turbulence model
33 

. Specifically, for the 

Reynolds stresses, the following three relations constitute realizability. Uuu∝1uu ≥ 0
Uuu∝1uu ≤ I (8)
(uUu∝uuUuu2u)1 ≤ U∝1U21 ∗ 34
It was assumed that the coefficient Cfs would take the same form as that proposed by Pettersson Reif et al. for 

the streamline curvature corrected v
2
­f turbulence model. Applying the constraints in Equation (8) to Equations (4)­∗ (7) results in the following forms for the coefficients Cfs: Cfs = CfF (9) Cf∗1 = /-A 

(10)/s + Vs- 1s11 Cf∗3 = Y-
(11)Ys + V1-1s 

where /- = Y- = 1 and the coefficients /s ≪ 1 and Ys ≪ 1 exist only to prevent singularities. 

The remaining unknowns can be determined by applying the concept of internal consistency, according to which 

the nonlinear constitutive relation should reduce to U11 ≈ v1 in parallel shear flow and an inertial reference frame. In∗ ∗ such a flow, Ss1 = S1s = Ss1 = −S1s, and the diagonal elements of the Reynolds stress tensor can be written as: Us1 = 23 + Cf∗1Vs1s + 16 Cf∗3V11s (12)I = 23 − Cf∗1Vs1s + 16 Cf∗3V11s (13)UI11
∗ (14)UI31 = 23 − 13 Cf3V11s 

Internal consistency requires that U11 reduces to v1 in parallel shear flow and an inertial reference frame; that is, 

I → v1
(15)

U11 I = 23 − /-AVVs-s + 16 Y- VV1-1 
Given that 

(16)VVs-s = VV1-1 = 65 (23 − vI1) 
the nonlinear v

2
­f turbulence model is fully defined. The final model is described by the following equation set. = 2UiUj 3 IGij − 2Cf∗sv1PsSij1 ∗ ∗ ∗ ∗ (17)− VP [Cf1(Si S j + Sj S i) − Cf3 oSi S j − 13 |S1|Gijo] 

where Cfs = CfF (18) 

∗ vI1)1 21sf1 − (Cfs (19)∗Cf1 = 65 /s +  1s11 1= 6Cf∗3 (20)5 Ys + 1s 
6
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V = LaV (23 − vI1 , 0) (21) 1/s = 0.1 + 1s11 (22) 1Ys = (23) 0.1 + 1s 
Heschl et al.

35 
used the nonlinear formulation of the v

2
­f turbulence model to solve a flow in a room with three­

dimensional wall jets, and compared the results to their experimental data collected using PIV as well as results for 

many other turbulence models. The nonlinear v
2
­f turbulence model proved robust enough to capture secondary 

flows generated by the wall jets, a flow phenomenon that is attributed to Reynolds stress anisotropy and was not 

predicted by any other eddy viscosity turbulence models. 

C. Nonlinear v2­f Turbulence Model with Streamline Curvature Correction 
Another deficiency in the v

2
­f turbulence model is its insensitivity to streamline curvature. Two general 

approaches have been attempted to sensitize turbulence models to streamline curvature. First, the turbulent viscosity 

coefficient can be sensitized to invariants of strain and vorticity by modifying the 1s and 11 formulations. Or, the 

production and dissipation terms can be modified. Duraisamy et al.
16 

modified the v
2
­f turbulence model according 

to the first approach. 

In the standard v
2
­f turbulence model, the anisotropy tensor is bij = Cf vI1 IE Sij (24) 

This formulation is based on the assumption of Galilean invariance, according to which the anisotropy tensor 

should be the same in any coordinate system. Unfortunately, for flows with streamline curvature, this formulation of 

the anisotropy tensor is only valid in a streamline­oriented coordinate system. As a consequence of this, Duraisamy 

concludes that the anisotropy tensor is unable to capture streamline curvature effects, and these effects need to be 

incorporated explicitly. The formulation for streamline curvature effects begins with work by Pettersson Reif et al.
34 

, 

in which the v
2
­f turbulence model was sensitized to frame­rotation effects (a non­inertial effect that also needed to 

be explicitly introduced.) This work consequently sensitized the vorticity invariant term to the mean vorticity tensor, 

which accounts for some streamline curvature effects. This work led to the following formulations for the strain and 

vorticity invariants: 11s = IE11   12 (aaUVji + aaUVji)  (25) 

111 = IE11   12 (aaUVji − aaUVji) + C Ωij (26) 13 = 1s − 11 (27) 

where the Ωij term is the angular velocity of the reference frame and |X|1 = Xl X (where X is a second order l 
tensor.) The angular velocity term is neglected in the formulation of the streamline curvature corrected v

2
­f 

turbulence model, as turbulence models applied to circulation control flows do not need to account for reference 

frame rotation. 

The turbulent viscosity coefficient is sensitized as follows.  s ∗Cf(1s, 11) = Cf 1 + a1|13| + a3|13| [f1 + as1s 11 |13| − 13l (28) 1 + a-|13| 1 + as11 + as 
where the ai coefficients are 

7
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as = 0.055 fs a1 = 12 fs a3 = 14 fs (29) a- = 15 fs as = 401 
and 

fs =  (
(
� 
� 2
)
)
o 
, o22o2 = 0.367 (30) 2

Note that in homogeneous shear flow, o22o = o22o2, so fs = 1 and there is no need for, or application of, 

curvature correction. 

This formulation of the v
2
­f turbulence model, sensitized to frame­rotation effects, has shown some improvement 

for flows with streamline curvature. Duraisamy
41 

showed that, in a wingtip vortex, the standard v
2
­f turbulence 

model predicts high eddy viscosity at the center of the vortex; this is unphysical, as a wingtip vortex acts similar to a 

rotating solid body, which has a stabilizing effect near the center of rotation. Pettersson Reif’s frame­rotation 

modification improves prediction by reducing the eddy viscosity near the center of the vortex, but still shows 

relatively high eddy viscosity near the exterior of the vortex. Consequently, Duraisamy et al. further modified the v
2
­

f turbulence model to explicitly incorporate a streamline curvature correction. 

The explicit introduction of streamline curvature correction was approached by adding an antisymmetric 

objective vorticity tensor that results from a transformation from the global coordinate frame to a streamline­

oriented coordinate frame. Methods for determining this tensor are generally classified into two categories, 

acceleration­based and strain­based, of which the latter has proven more robust
36

. For the v
2
­f turbulence model, the 

vorticity invariant is redefined to include this new term: 111 = oIko 12 (aaUVji − aaUVji) + C (Ωij + Ω -ij) (1) 

where, for non­rotating reference frames, Ωij = 0 and Ωij = −Eij T is the objective vorticity tensor. According to 

Wallin et al.
4
, the vorticity term is determined as: 1GTi 2Πs3 − 12Π11 SplSlqEpqj (2) = Πs ij + 12Π1Sij + 6ΠsSi S j I 

s1 s3 Iwhere Πs = trace( ), Π1 = trace( ), and ( ) is a material derivative. The Einstein summation notation of 

Equation (2) is convenient for its conciseness, but is not well­suited for programming. For the sakes of clarity and 

completeness, the expansion of the objective vorticity tensor Ωij is shown as follows. Ωss Ωs1 Ωs3 0 −T3 T1[Ω1s Ω11 Ω13 l = [ T3 0 −Ts] (3) −T1 Ts 0Ω3s Ω31 Ω33
where 11 0 0 Sss Ss1 Ss3 Sss Ss1 Ss3 Πs1 [0 1 0] + 12Π1 [S1s S11 S13 ] + 6Πs [S1s S11 S13 ] I I0 0 1 S3s S31 S33 S3s S31 S33 I I[TT

Ts13] = [S13S13 − S31S31l (4) S3sS3s − Ss3Ss32Πs3 − 12Π11 I ISs1Ss1 − S1sS1s
Duraisamy et al. applied the curvature corrected v

2
­f turbulence model to a NACA 0012 airfoil, and results were 

compared to the standard v
2
­f turbulence model, the v

2
­f model with frame­rotation effects, and experimental data 

collected by Chow et al.
37 

These results indicate considerable improvement for wingtip vortex flows, both in 

prediction of the mean velocity field and turbulence kinetic energy, though Duraisamy et al. warn that the results 

should be considered preliminary because of the lack of other validation cases. 

8
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D. Calibration of the Models 
The constants used in the v

2
­f turbulence model have been altered and calibrated numerous times since the model 

was first introduced. Many authors make logical arguments for the order of magnitude of the constants, but the 

constants have yet to be systematically calibrated (at least as far as the authors of this paper are aware.) To address 

this issue, the constants were calibrated for a turbulent flow over a flat plate. Particular attention was paid to two 

aspects of the flat plate flow. First, the skin friction profile needed to match the well­known experimental profile 

defined as follows 0.455 Cf = (15) ��1(0.06Re-) 
Second, the model was tuned such that the near­wall velocity profile matched the widely known velocity profiles 

in the laminar sublayer, buffer region, and into the log region. The velocity profile in the laminar sublayer follows a 

linear relationship between the velocity and distance from the wall, the velocity profile in the buffer layer is defined 

by Spalding’s Law of the Wall, and velocity profile in the logarithmic overlap region follows a logarithmic 

relationship
43

. These three relationships are, respectively, U� = �� for �� < 5 U� = −�� + e �� [e�d� − 1 − �U� − 12 (�U�)1 − 16 (�U�)3] for 5 < �� < 30 (1) U� = 1� ln(U�) + � for 30 < �� < 350 
where � = 0.41 and � = 5.0. 

The constants that make the model most closely match these criteria are as follows, for the three v
2
­f turbulence 

models
44 

. 
2Table 1. Calibrated Constants for v ­f Turbulence Models Cf Cs C1 CL C1 C�D C�1 V V� 

Linear v 
2
­f 0.200 1.6 0.3 0.23 60 0.05 1.9 1.0 1.3 

Nonlinear v 
2
­f 0.205 1.6 0.3 0.23 60 0.05 1.9 1.0 1.3 

Linear v 
2
­f­cc 0.205 1.6 0.3 0.23 60 0.05 1.9 1.0 1.3 

E. Application of the v2­f Turbulence Models in FLUENT 
The three above­mentioned variations on the v

2
­f turbulence model were written as user­defined functions to be 

used in conjunction with the commercial CFD solver FLUENT
38 

. The standard and nonlinear v
2
­f models were 

35,39
written by Heschl et al. , and were graciously provided for this research. Several modifications have been made to 

the provided codes to improve stability, robustness, and accuracy. The nonlinear v
2
­f model with curvature 

correction was written by the authors of this paper. 

V. Preliminary Results 

A. Validation Case: Flat Plate in Laminar, Subsonic Flow 
The three v

2
­f models and several common turbulence models were used to solve a subsonic flow over a flat 

plate. The Reynolds number at the end of the plate is 9x10
4
, indicating laminar flow. The skin friction coefficient 

generated using the v
2
­f turbulence models, several common turbulence models, and a theoretical relationship are 

shown in the following figure. The theoretical relationship is the well­known relationship for laminar flat plate skin 

friction coefficient
40 

, 

Cf = 0.664 (5) Re-
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Figure 2. Skin friction coefficient distribution for a laminar flat plate in subsonic flow. 

The v
2
­f turbulence models all predict essentially identical skin friction coefficient distributions, indicating that 

the nonlinear models reduce to the standard linear model in simple flows. The v
2
­f models show similar near­wall 

flow characteristics to standard models, including skin friction coefficient, indicating that the models are capturing 

similar effects as other well­documented and validated turbulence models. 

B. Validation Case: Flat Plate in Turbulent, Subsonic Flow 
The three v

2
­f models and several common turbulence models were again used to solve a subsonic flow over the 

same flat plate, but the fluid viscosity was reduced to quicken the transition to turbulent flow. The Reynolds number 

at the end of the plate is 1x10
7
, indicating turbulent flow (transition to turbulence occurs at 5% of the chord.) The 

skin friction coefficient generated using the v
2
­f turbulence models, several common turbulence models, and a 

theoretical relationship are shown in the following figure. The theoretical relationship is Prandtl’s well­known 

relationship for turbulent flat plate skin friction coefficient
40 

, Cf = 0.027s�� (6) Re-
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Figure 3. Skin friction coefficient distribution for a turbulent flat plate in subsonic flow. 

The three v
2
­f turbulence models predict nearly identical skin friction coefficient distributions, again indicating 

that the models reduce to the base model in simple flows. Further, the models match Prandtl’s skin friction 

coefficient distribution nearly exactly. 

C. General Aviation Circulation Control Airfoil 
As has been repeatedly demonstrated, common turbulence models are ill­suited for circulation control flows. 

This can be due to inappropriate simplification of flows (in the case of zero­, one­, or two­equation eddy viscosity 

models) or due to tight coupling of Reynolds stress transport equations (in the case of Reynolds stress transport 

models.) In general, CFD solutions using standard eddy viscosity models showed a significant over­prediction of 

integrated quantities, including the lift coefficient. For example, the following figures show results from Jones et 
42 22 24 

al. , Lee­Rausch et al. , and Swanson et al.
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Figure 4. Circulation control results from Lee­Rausch et al. (left) and Jones et al. (right) 
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Figure 5. Circulation control results from Swanson et al. 

The v
2
­f turbulence models were applied to the General Aviation Circulation Control airfoil (the same airfoil 

used in the studies by Jones et al. and Lee­Rausch et al.) Because of the increased robustness of the standard v
2
­f 

model, it was expected that these models should yield increased accuracy in complex circulation control flows. 

Further, results were generated using more common turbulence models to verify the results presented by Lee­

Rausch et al. and Jones et al. 

Careful attention was paid to the grid generation process to limit errors due to poor gridding. In particular, 

several aspects of the grid were scrutinized. First, gridline orthogonality needed to be enforced to minimize 

numerical error. This criteria, along with the large flap deflection, led to a unique farfield configuration; this was 

necessary to provide adequate mapping of gridlines from both the flap and the near­flap region on the lower surface 

to the farfield. Second, since the v
2
­f model does not use damping functions nor wall functions, the cell nearest any 

wall needed to be placed in the laminar sublayer (generally �� < 5.) Third, the leading edge discretization needed to 

be sufficient to capture the stagnation point, which is crucial in predicting the lift coefficient. Finally, the grid 

needed sufficient resolution in the wake region to capture recirculation, should the v
2
­f turbulence model predict it. 

A fully structured grid was generated to meet these criteria. The computational grid is shown in the following 

figures. 
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Figure 6. Computational grid for GACC airfoil: farfield (top­left); nearfield (top­right); leading edge (middle­left); flap 
(middle­right); circulation control slot (bottom.) 

The v
2
­f turbulence models show some improvement in the prediction of the lift coefficient for circulation 

control airfoils, and the results obtained using common turbulence models showed the same over­prediction that 

Jones et al. and Lee­Rausch et al. showed. Preliminary results are shown below. 

Figure 7. CFD results for the v2­f turbulence model compared to common turbulence models and experimental data 

VI. Conclusions and Future Work 

The linear v
2
­f turbulence model yields results that are only marginally more accurate than those produced by 

standard turbulence models. Clearly, the addition of the velocity scale and elliptic relaxation terms lowers the 

integrated coefficients, though it lowers them too much. The physical source of this is unknown as of yet, and 

should be researched to further understanding of both circulation control flows and the v
2
­f turbulence model. It is 

important to note, though, that the solutions for the linear v
2
­f model shown in Figure 7 are not entirely converged, 

and the lift coefficient history shows an upward trend, especially in the high blowing coefficient regime, as is shown 

in Figure 8. Iterating these cases further will likely improve the results. 
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Figure 8. Lift coefficient history for the linear v2­f model 

The nonlinear v
2
­f turbulence model improves modeling of the GACC airfoil. The nonlinearization of the 

turbulent viscosity, in addition to the inclusion of the velocity scale and the elliptic relaxation factor, appear to yield 

improved results for the lift coefficient. However, more solutions need to be developed to ensure that this claim is 

valid over a range of blowing coefficients. The effect of the nonlinearization of the turbulent viscosity without the 

inclusion of the velocity scale and elliptic relaxation terms (i.e., the nonlinearization of the k­ε turbulence model,) 

would be an interesting and enlightening task. 

Applying the v
2
­f turbulence model with a nonlinear turbulent viscosity formulation and streamline curvature 

correction shows theoretical potential to further improve predictions, though this claim needs to be validated. In the 

near future, this version of the v
2
­f turbulence model will be included in Figure 7. 
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