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� Under assumptions compatible with the theory of Markov chains, we use a property of 
Vandermonde matrices to examine the reliability of an n-component system of production or 
service. 
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1. INTRODUCTION 

The reliability of an n-component system of production or service is 
compromised when any of its components are out of service. Viswanadham 
and Narahari[6] examined the reliability of such systems in some detail. 
We consider a set of assumptions not pursued in Ref.[6]: 

•	 Time, measured in discrete units, is identified with the set of positive 
integers. At time t = 1, all n components are in service. 

•	 The probability of an in service (or available) component remaining 
in service from one time to the next is fixed and denoted by �. For 
convenience, the complementary probability 1 − � is abbreviated as �. 

•	 The probability of an out of service (or unavailable) component 

and unavailable is independent of the other components. 

remaining out of service from one moment to the next is fixed and 
denoted by �. We let  � = 1 − �. 

• The transition of any component between the states of being available 
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As the cases � = 0 = � and � = 1 = � are of little interest, we make the 
restriction 0 < �  + � <  2. 

For � = 1, our set-up coincides with the Greenwood model 
(Ref.[3], p. 71) of contagious disease: The connection is made by 
identifying an available component with a healthy individual and an 
unavailable component with an infected individual. 

Our assumptions allow the theory of Markov chains to be brought to 
bear. We take the number of components available to be the state of our 
chain. The transition probability pi ,j of moving from state j to state i in one 
unit of time is readily computed. Such a transition results when l of the j 
available components remain in service and i − l of the n − j unavailable 
components are returned to service. Thus, 

i ( )( ) 
j n − j 

�l �j−l �n+l −i−j �i−lpi ,j = � (1)
l i − l 

l =0 

Among many results aimed at measuring the reliability of an 
n-component system, we present but three (under our assumptions, 
of course): 

n(�+�qt )R1 The expected number of components available at time t is 1−q 
where, for convenience, q = � + � − 1. 

R2 The expected time it takes for the system to crash (that is, ( )n ∑ ( )1−q n nall components are out of service) is + ((�/�)k −
� k=1 k 

(−1)k ) qk
 

1−qk .
 
R3 As time t → ∞, the expected fraction of time for which i of the n ( n ) 

�n−i �i components are available approaches i (1−q)n . 

We begin with a brief discussion of a relevant class of matrices. 

2. VANDERMONDE MATRICES 

For convenience, we set 

( ) i ( )( ) 
a, b j n − j n+l −i−j b j −l i−l d l �Vi ,j = a c (2)c , d l i − l 

l =0 

We then define the nth Vandermonde matrix with parameters a, b, c , and d 
to be the array 

a b  a, b = Vi ,j � 
c d  c , d 

0≤i ,j≤nn 
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For n = 3,
  3 2b b3a a ab2 [ ] 
2 

a b  3a c 2abc + a2d b2c + 2abd 3b2d    2 c d  
3  3ac bc2 + 2acd 2bcd + ad2 3bd2  

c3 c2d  cd2 d3 

In Ref.[5], we proved the following remarkable fact. 

Theorem 2.1. If a, b, � � � , h are elements of a field, then [ ] [ ] [( ) ( )] 
a b  e f  a b e f  

c d  g h  c d g h
n n n 

In other words, the product of two Vandermonde matrices is 
Vandermonde. Moreover, the matrix of parameters for the product 
miraculously coincides with the product of the underlying two-by-two 
matrices of parameters! 

Theorem 2.1 allows us to multiply, invert, and diagonalize 
Vandermonde matrices at will. For instance, if ad − bc �= 0, then 
Theorem 2.1 implies that 

[ ]−1 [ ] [ ] 
a b  d −b 1 d −bad−bc ad−bc = = � (3)−c a nc d  (ad − bc) −c a

ad−bc ad−bcn n n 

The relevance of Vandermonde matrices for our present intentions 
should be apparent: In view of (1) and (2), pi ,j = Vi ,j �,� . So our transition 
matrix 

P = (pi ,j )0≤i ,j≤n = (4) 
n 

is Vandermonde. 

3. MULTI-STEP TRANSITION PROBABILITIES AND R1 

Determination of the probability pi
(
,
t
j 
) of moving from state j to state i 

in t units of time is key in deducing the results R1, R2, and R3. To this 
end, we diagonalize our transition matrix P in (4) (which, by Theorem 2.1, 
is no more difficult than diagonalizing a 2 × 2 matrix). Let 

� −1 1 0  
Q = and D = � 

� 1 0 q
n n 
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Then, Theorem 2.1 and (3) together imply that 

Q −1PQ = D� (5) 

Corollary 3.1. If 0 < � + � < 2, then the probability of moving from state j to 
state i in t units of time is given by 

j ( )( ) 
(t) 1 j n − j n+l −i−j b j−l i−l d lpi ,j = a c (6)

n(1 − q) l i − l 
l =0 

where 

a = � + �q t , b = �(1 − q t ), c = �(1 − q t ), and d = � + �q t � (7) 

Moreover, if the chain begins in state j , then the state probability generating function 
at time t is 

n 
(t) i (a + cz)n−j (b + dz)j 

pi ,j z = � (8)
n(1 − q)

i=0 

Proof. As the multi-step transition probability pi
(
,
t
j 
) is the ij th entry in P t , 

we apply (5) and Theorem 2.1 to obtain 

1 a b  
P t = QDtQ −1 = 

n(1 − q) c d  
n 

where a, b, c , and d are as in (7). Hence, (6) now follows from (2). 
For (8), observe that (6) implies that 

n j ( ) n−j+l ( ) 
1 j n − j(t) i l (n−j)−(i−l )( i−l �pi ,j z = bj−l (dz) a cz)

n(1 − q) l i − l 
i=0 l =0 i=l 

Two applications of the binomial theorem then gives (8). 

Derivation of R1 is now a routine matter from (8): Taking j = n, 
differentiating with respect to z, and then setting z = 1 does the job. 

4. A WAITING TIME DISTRIBUTION AND R2 

To verify R2, we first consider how long it takes for a Markov chain to 
travel from one state to another. Let fi ,

(
j
t) denote the probability that the 

chain visits state i for the first time at time t given that the process begins 
in state j . For i = j , fi ,

(
i
t) is the probability of returning to state i for the first 
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time after t steps. The fundamental relationship between the waiting time 
probabilities fi ,

(
j
t) and the multi-step probabilities pi

(
,
t
j 
) is as follows. 

Theorem 4.1 (First Entrance Theorem). If we let 

(t) t f (t) tMi ,j (z) = (1 − z) pi ,j z and Fi ,j (z) = i ,j z , 
t≥1 t≥1 

then 

Mi ,j (z)Fi ,j (z) = (9)
1 − z + Mi ,i (z) 

for |z|< 1. Moreover, if 

(∞) (t)pi = lim pi ,j exists, is independent of j, and is positive, (10)
t→∞ 

then Fi ,j is a probability generating function, that is, Fi ,j is left-continuous at z = 1 
with Fi ,j (1) = 1. 

Proof. As in Ref.[3], p. 89,  

t−1 

f (t) (t) f (k) (t−k) 
i ,j = pi ,j − i ,j pi ,i (11) 

k=1 

for all t ≥ 1. Multiplying (11) by zt and summing over t ≥ 1 gives a formula 
equivalent to (9): 

(t) (t)Fi ,j (z) = pi ,j z
t − Fi ,j (z) pi ,i z

t � 
t≥1 t≥1 

Next, suppose that (10) holds. For |z|< 1, observe that 

(t) (t−1) tMi ,j (z) = pi ,j − pi ,j z (12) 
t≥1 

where pi
(
,
0
j 
) = 0. As the series 

(t) (t−1)pi ,j − pi ,j 
t≥1 

telescopes to pi 
(∞) , it follows from Abel’s Theorem that Mi ,j (z) is left-

continuous at z = 1 with Mi ,j (1) = pi 
(∞). Thus, limz→1− Fi ,j (z) = 1. 

We now take aim at our second result R2. First, note that it is correct 
when � = 1: In this case, the expected crash time in infinite. So consider 
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the case � <  1. As we are also assuming that 0 < �  + � <  2, it follows that 
|q |< 1. Corollary 3.1 then guarantees that (10) holds for i = 0. Thus, F0,n (z) 
is a probability generating function. Also by Corollary 3.1, 

( )n ( )n
�(1 − q t ) � + �q t 

(t) (t)p = and p = � (13)0,n 0,01 − q 1 − q 

Note that M0,n (1) = �n /(1 − q)n = M0,0(1)� With the aid of (12), (13), the 
extended binomial theorem, and a little finagling, we obtain 

( )n ( n ( ) ) 
k(t−1)M � (1) = �n + 

� 
t (−1)k

n 
(qk − 1)q0,n 1 − q k 

t≥2 k=1 ( 
� 

)n ( n ( 
n 
) 

qk ) 

= 1 + (−1)k−1 � 
1 − q k 1 − qk 

k=1 

Similarly, 

( 
� 

)n ( n ( 
n 
) 

qk ) 

M � 0,0(1) = 1 − (�/�)k � 
1 − q k 1 − qk 

k=1 

Finally, applying logarithmic differentiation to (9) yields R2: 

M � M � 0,n (1) 0,0(1) − 1 
F0,

� 
n (1) = −
 

M0,n (1) M0,0(1)
 ∑ k( 
1 − q 

)n n ( 
n 
) 

q= + ((−1)k−1 + (�/�)k ) � 
� k 1 − qk 

k=1 

In the context of n-player Russian roulette, the case � = 1 of  R2 is 
discussed in Rawlings[4]. Bartholdi[1] considered a variation of R2 in which 
n lamps are turned on and off according to a set of deterministic rules. 

5. THE EXPECTED NUMBER OF VISITS AND R3 

To get at our final result R3, we consider how often a given state is 
visited on a fixed time interval. This issue is resolved by Theorem 5.1 
(a proof of which may be found in Ref.[2], p. 105). 

Theorem 5.1. If a Markov chain begins in state j , then the expected number of 
times state i is visited on the interval [1, �] is (t) .t=1 pi ,j 
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For R3, we again assume 0 < � + � < 2 and that the chain begins in 
state n. If  � = 1 (so � < 1), then R3 is easily seen to be correct: It’s 1 if 
i = 0 and 0 if  i > 1. So assume that � < 1. Then, by Corollary 3.1, 

( ) i ( )in−i �	 �q t 
(t) n � t )n−ipi ,n = (1 − q 1 + � 

ni (1 − q)	 � 

So, relative to the time interval [1, �], Theorem 5.1 implies that the 
expected fraction of the time for which our system has i components 
available is 

�	 ( ) i ( )i ∑ n−i �1 n �	 �q t 

(1 − q t )n−i 1 + � (14)
n� i (1 − q)	 � 

t=1 

As lim�→∞ 
1 

k
n 
=1(1 + akq t ) = 1 when a1, a2, � � � , an are real and |q |< 1,

� t=1 

letting � → ∞  in (14) gives R3. 
As an exercise, Viswanadham and Narahari[6] (p. 206) pose the problem 

of determining the asymptotic expected fraction of time for which at least 
m of the n components are available when n = 3 and when unavailable 
components are returned to service according to a certain deterministic 
rule. Under our assumptions, R3 gives the solution to their problem for 
any non-negative integer n as 

∑n ( n ) 
�n−i �i /(1 − q)n .i=m i 
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