Applying Kinodynamic Randomized Motion Planning with
a Dynamie Priority System to Multi-Robot Space Systems

Christopher M. Clark, Tim Bretl & Stephen Rock
Aerospace Robotics Lab
Department of Aeronautics & Astronautics
Stanford University
Stanford, CA 94305
650-723-3213

chrisc@sun-valley.Stanford.edu
tbretl@sun-valley. Stanford.edu
rock@sun-valley.Stanford.edu

Abstract—This paper presents a new motion planning
system that can construct collision-free trajectories for
groups of robots in dynamic environments, without global
knowledge or high-bandwidth communication. The robots
plan within a confined environment that consists of
stationary and moving obstacies. Each robot plans
independently using Kinodynamic Randomized Motion
Planner techniques to construct its own trajectory that is free
of collisions with moving obstacles and other robots. To
resolve conflicts between robot trajectories, a new Dynamic
Priority System (DPS) is introduced which gives the right of
way to the robot whose local workspace is the most
crowded. The kinodynamic randomized motion planner
allows easy integration of the robots nonholonomic
constraint into the planning so that only kinematically and
dynamically consistent plans are constructed. The speed of
the trajectory construction allows planning in real-time,
enabling the robot to maneuver safely in a dynamic
environment. Communication between robots is infrequent
since robots only communicate on a “need to know basis”.
To verify the planner’s effectiveness. it was tested using
both simulation and experiment. Results show a clear
improvement in the decrease in planning times when the
DPS is used instead of a static priority system.

TABLE OF CONTENTS

INTRODUCTION

MOTION PLANNER

COORDINATING MULTI-ROBOT PLANNING
PLANNING EXPERIMENTS

CONCLUSIONS

ok

1. INTRODUCTION

Future space missions will require a fleet of robots to
perform tasks such as planet exploration and outpost
construction. When large groups of robots and moving
obstacles are working together within a designated area,
high-level motion planning is required to avoid collisions.
In a real system with a large number of robots, it becomes
difficult for each robot to estimate the state of all other
robots. Continuous communication between all robots may
not be feasible, and no system of sensors can provide global

0-7803-7231-X/01/$10.00/©2002 TEEE

knowledge. Also, to function in a dynamic environment
with moving obstacles, the system must be able to react
quickly. For this type of multi-robot system, a motion
planner that does not need global knowledge or high
bandwidth communication, but can still plan in real-time, is
required, The main objective of this work is to develop a
motion planning system that meets this requirement.

Figure 1 - Robots from the Micro-Autonomous RoverS
(MARS) test platform.

The motion planning algorithm presented is based on the
planner developed by Kindel and Hsu [4]. Their work
demonstrates the use of a Kinodynamic randomized Motion
Planner for a single robot maneuvering around stationary
and moving obstacles. Their planner benefited from fast
planning times. allowing the robot to rebuild trajectories in
the presence of changes to the environment.

In this paper. the Kinodynamic Randomized Motion Planner
is extended so that it may be used in a muiti-robot situation,
This extension requires a new communication protocol, a
new priority system, and a limit on the number of nodes in a
robots trajectory. When robots detect one another using
local sensots, they communicate with each other. Using the
priority system, the robots coordinate their motion plans to
avoid collisions, (see Section 3). Relative to Kindel & Hsu’s
work, the number of nodes in a trajectory is limited, (see
Sections 2). This restricts the amount of information

7-3621

communicated between robots, limiting delays in the system
due to communication.

The coordination of robots planning around each other’s
previously constructed trajectories has been demonstrated
before [6]. [11]. [12]. In [12], Simeon et. al. use a geometric
based approach to coordinate previously built trajectories.
This algorithm demonstrated effective planning for a large
number of robots in a confined area. In [6], the trajectory for
one robot is constructed irrespective of the other robots
trajectory. To avoid collisions, the robots maintained the
same path they constructed earlier. but altered the velocities
along their paths.

While this research was the first to apply Kinodynamic
Randomized Path Planning to a multi-robot system, it
should be noted that it is not the first instance of applying
other types of randomized motion planning. Svestka et.al.
demonstrated the use of Probabilistic Road Maps (PRM) for
a muliti-robot system in [13]. The algorithm was successful
in building trajectories for up to 5 robots with planning
times of a few seconds. However, this required a pre-
processing step to build a “Road-Map”.

Priority systems have also been used extensively to resolve
conflicts between robots in decoupled planning systems.
Warren uses a priority scheme with potential fields [14].
The reactive nature of potential field planners [7] makes
them very fast and they are used in several applications like
robot soccer [9]. A major drawback of potential fields is
their susceptibility to deadlock. Our planning system is
similar to these plarmers in that it can react quickly to
dynamic environments, but is more robust to deadlock
situations due to its randomness.

Bennewitz and Burgard [1], [2] use a search routine to find
optimal priorities for minimizing path lIengths and
maximizing distances to obstacles. This algorithm
demonstrated it’s effectiveness in finding optimal plans in
several difficult situations where the correct order of
planning was essential to finding a solution.

The motion planning system presented in this paper and in
[3], does not search for optimum trajectories. However,
unlike the motion planners listed above, it can be applied to
dynamic environments where real-time planning is required
the robots are restricted to using only local sensing and
comtnunication.

The paper is organized as follows. Details of the individual
Motion Planners are given in section 2. Algorithms for
coordinating the robot plans are given in Section 3. Section
4 describes the Micro-Autonomous RoverS test platform
that was used for simulations and real robot experiments.
Results from the experiments are presented here. Section 5
discusses future work on the MARS test platform and
possible heuristics to improve performance of the planner.

2. MoTIoN PLANNER

Probabilistic Road Maps are constructed by randomly
selecting milestones from the robot’s configuration space
and connecting the milestone pairs whose connection paths
are collision-free [5]. As described in [4] and [8], this
algorithm can be modified to accommodate any
kinodynamic constraints by building a roadmap in the state
x time space. This is known as Kinodynamic Randomized
Motion Planning. Also shown in [4], is that under
reasonable assumptions on the free space, the probability of
failure decreases exponentially to 0 as the number of
sampled milestones increases. They demonstrated how
randomized motion planners can successfully build
kinodynamically-consistent trajectories in real-time.

For the cases referenced, simulations and experiments were
carried out successfully with only a single robot. While the
planners could be modified to include more robots by
increasing the size of the configuration space searched, the
planning times would increase to the point where real-time
implementation would become infeasible.

In the new multi-robot planning system presented, each
robot independently constructs trajectories using the
algorithm described below. These trajectories are
constructed to be collision-free with any obstacles in the
robot’s local area. When robots enter each other’s local area.
they must coordinate their trajectories to ensure they will
remain collision-free. This is discussed in Section 3.

Road Map Construction

The state of the robots in the MARS test platform can be
described by x = (x;,x2,0) e W’ representing the position
and attitude of the robot with respect to the inertial frame.
Milestones are specified by both the state and time the robot
reaches that state (x,z).

Xa

7 (x/)58)
N

(x.x2,0)

-)

/
Figure 2 - State space model of the MARS robot

Let the trec T be a set of milestones, Initially T contains
only the milestone (x,), where x and 7 are the starting
position and starting time respectively. The Roadmap is

7-3622

constructed using an iterative algorithm that adds new
milestones to the set T at every step.

At each iteration, a milestone (x,#) is randomly selected from
T for expansion. From this milestone, the tree is expanded to
several new randomly selected milestones, (see below). If
the arc connecting ¢x,#) to a new milestone (x't} is
collision-free. then it will be added to the tree 7 and the
milestone (x,#} will be stored as it's parent. If (x’+) also ligs
within the endgame region, (ie. the region of the
configuration space for which there must exist a collision-
free arc connecting every point in the region to the goal),
then the algorithm has found a solution and halts. The final
trajectory is constructed by linking milestones to their
parent milestones, starting with the goal milestone.

To avoid over-sampling in any one area of the workspace,
procedure of selecting a milestone for expansion is
modified. The workspace is divided up into a grid of cells.
Let C denote the set of all cells in which a milestone from T
is located. To select a new milestone in T for expansion, a
cell ¢, is randomly selected from C. Then from within c.,.
the next milestone to expand from is randomly selected,

Selecting new Milestones

When selecting a new milestone (x’,#’), consideration must
be taken for the nonholonomic constraint described by:

tan® = 22)
xl

The constraint can be reformulated in terms of the wheel
velocities v, and v, of the robot.

i = “—';’i) cosé (2a)
%, = ﬂ%l) sind (2b)
B=v,-v {2¢)

To select a new milestone in the road map, the velocities v;
and v, could be randomly selected from { 0, v, }. However,
further restrictions on the search space can be incorporated
to increase the probability of finding a solution. The search
space is restricted so that from one milestone to the next, the
robot will not rotate more than 90 degrees. This inhibits the
robot from spinning in circles. The distance the robot travels
between milestones is also restricted to decrease the
probability of selecting milestones located beyond the
boundaries of the workspace. To incorporate these
restrictions, two randomly selected variables are introduced:
range which is selected from {-range,.. range,. } and
difference which is selected from (-difference,q, ,
difference,,; }. From these two variables, the distance
traveled by each wheel s, and s, can be determined.

5, = range+difference (3a)
5, = range—difference (3b)

This method corresponds to randomly selecting an arc of
radius r and angle 8. The new milestone x* = (x;'x,,6’) can
be calculated as follows:

s +35,

p=—2 (4a)
-5 +3,
5 +8,
= 4b
> {4b)
8’ =6+¢ (5a)
x; =x, +r(sin® ' —sin0) (5b)
Xy =X, +r(—cosb +cosh) (5¢)

Endgame Region

In our algorithm, the final goal state x® is underspecified in
that only the position and not the attitude is specified. This
is based on the assumption that once a robot has reached its
goal location, it can rotate on the spot to reach any desired
attitude. This underspecification on the goal state increases
the size of the endgame region, hence increasing the
probability of finding a solution. The endgame region E in
our algorithm is defined as the subspace that includes all
states x°, such that the arc connecting x° to the goal state has
an angle ¢ less than 90 degrees.

Decreasing Path Distances

The randomness of the planner leads to trajectories that are
non-optimal. However, the randomized motion planner
offers decreased planning times (on the order of 0.1
seconds). allowing the robots to plan in real-time. A method
of improving the trajectories is to plan m (>1) times
consecutively, and use the trajectory with the shortest path.

3, COORDINATING MULTI-ROBOT PLANNING

To deal with the intractability of planning for » different
robots, the following technique was developed. Each robot
creates a plan with knowledge of only the few obstacles
surrounding it. By planning around only those objects
within the robot’s local area, the motion planning problem is
greatly simplified leading to decreased planning times.
When new objects enter the robot’s field of view, a re-plan
is called for to ensure that the robot's trajectory is collision-
free.

A priority system is used to determine how robots plan
around each other. When two robots encounter one another
(i.e. they detect each other using local sensing). they
proceed to communicate with each other. The robots
exchange data including the milestones of their roadmap
and the robot's priority number. The robot with the lower
priority number will immediately replan. When re-planning,
the milestones received from the high priority robot are used
to estimate its trajectory. The low priority robot can then
construct a plan that is free of collision. The high priority
robot will continue along its original path knowing the other
robot will avoid it.

7-3623

Two different priority systems are presented here. First, the
“Static” Priority System originally used in [3]. Second, a
new “Dynamic™ Priority System (DPS) is introduced.

Static Priority System

Before the experiment begins, each robot is given a priority
number distinct from all others. To facilitate this priority
system, each robot must store a list of all robots within its
field of view who have fower priority, and a list of all robots
within it's field of view who have higher priority. When the
robot must replan because it encounters a robot with higher
priority, it must communicate its new trajectory to all the
local robots of lower priority so that they can replan, (see
Figure 3). For example, Robot A has priority 1, robot B has
priority 2, and robot C has prierity 3. If robot B and C
encounter one another at time ¢;, robot C will build a new
trajectory so as to avoid robot B. If at time £, robot A and
robot B encounter one another, then robot B will replan and
communicate it's new trajectory to robot C who must also
replan.

Since robots communicate only when they enter each
other’s field of view, communication between robots is
infrequent.

New Robot
Encounter?

Local robot
left area?

Add new robot
to H list
Replan to avoid
robots on H list

Communicate replan
g robots on L list

Figure 3 -Robot Coordination Algorithm for the Static
Priority System

Dynamic Priority System

The purpose of using a dynamic priority system is to modify
robot priorities, based on the current workspace
configuration, in attempt to create less complex planning
problems for the individual robots and more evenly
distribute motior planning responsibilitics among the
robots.

The complexity of the collision checking routine in the
planning problems that each robot solves during a replan is
of order Ofp), where p is the number of local obstacles it
must perform collision checks with at each milestone
expansion. By giving priority to robots with higher p, the
order of the collision checking routine and hence the overall
complexity of the planning problem can be decreased.

Calculate Priority
Number

Local robot
left area?

Remove robot
from L/H list

Poli ocal robots
for priorities

Replan to avold
robots on H list

Communicate replan
p robots on L list

Figure 4 -Robot Coordination Algorithm for the Dynamic
Priority System

7-3624

To impiement the dynamic priority system, the robot
coordination algorithm described in Figure 4 is used. The
main addition to the static priority system algorithm is the
function that poils local robots to request their current
priority numbers, (see dotted box in Figure 4). This requires
an extra communication call between robots and is the main
cost of using the dynamic priority system.

Each robot dynamically recalculates its priority number
based on how crowded the local search space is. The
following equation is used.

priority = Zg, +0.001p

6
B l1o>ic4d ©)
T Y0oied

The first term equals the number of robots in the local area
A. This gives the right of way to robots operating in the
most crowded environments, forcing the robots operating
with the most open space to replan when encounters occur.
The second term is the robot’s identification number,
weighted by a very small number. This term is used to act as
a ticbreaker when two robots have the same number of
robots in their local area.

4. PLANNING EXPERIMENTS

The purpose of this research is to develop a system that can
plan for large groups of robots. Presented below are
simulations and experiments that verify the system’s ability
to build trajectories for many robots in constrained
environments, First, the Micro-Autonomous RoverS test
platform is introduced, followed by descriptions of how the
platform is used in both simulations and real robot
experiments.

Figure 5—- A rover on the MARS test atfon'n stand
beside a quarter.

The MARS Flatform

The Micro-Autonomous RoverS (MARS) test platform at
Stanford University was used to model the rovers in a two-
dimensionai workspace. The platform consists of a large 3m
X 2m flat, granite table with six autonomous robots that
move about the table’s surface.

The robots are cylindrical in shape and use two
independently driven wheels that allow them to rotate on the
spot, but inhibit lateral movement so as to induce the
nonholonomic constraint. Each robot has it’s own Motion
Planner located off-board. Control signal processing is also
done off-board. and the control signals are sent to the
individual robots via a wireless RC signal.

An overhead vision system is used to provide position
sensing. Three cameras with Infrared filters are used to
detect LED’s mounted on the top surface of robots and
obstacles. Each robot/obstacie has a distinct pattern of LEDs
to distinguish it from other robots/obstacles. The vision
system updates the robot's position and velocity at a rate of
30Hz.

The test platform features a Graphical User Interface (GUI)
designed in Java/Swing. It provides a top-down view of the
table including graphical representations of robots and
obstacles, (see Figures 7.,8). Setting robot goal locations is
accomplished with a drag and drop system. New goal
locations are sent to the respective motion planner so
trajectories can be constructed.

o GUI

M. Planner 1

U

U

M. Planner 2

M. Planner n

nwnggdz

ool

‘__f_@ Cameras
 Jroens

Congroller 2 L Robot 2

. Robot n

Figure 6 - Data Flow in the MARS test platform.

All communication within the MARS platform is
accomplished with Real Time Innovation's Network Data
Delivery Service (NDDS) software. NDDS is based on a
publish/subscribe architecture. Figure 3 illustrates the data
flow in the platform.

Vision System

Controller 1

C:> Controller n

The platform can be modified to allow for multi-robot
simulations. The Vision System, the Controller, and the
robot, (i.e. The two lower blocks in Figure 6), can be
replaced by a software simulation program. Therefore the

7-3625

same Graphical User Interface{GUI) and Motion Planner are
used for both physical experiment and simulation.

Integration of the planner

Data Flow—As mentioned above, NDDS works on a
publish/subscribe architecture. Hence every node on the
network can send and receive different data types.

The GUI subscribes to the vision data being published so
that it may display the current locations of objects oa the
table. It publishes any command signals and desired goal
locations requested by the user.

The Motion Planners subscribe to the vision data and te the
command signals being published. Upon receiving a new
command signal, it immediately constructs a new trajectory
which it then publishes. To limit the amount of data sent
across the network, Motion Planners only publish the
milestones of the trajectory.

The Controllers subscribe to the vision data and the
trajectory data published by their corresponding Motion
Planner. They don’t publish any information on the NDDS,
but send control signals to their corresponding robots via an
RC signal.

Time Synchronization—Robots are building trajectories
based on the trajectory information of other robots. In order
fo ensure one trajectory is collision-free of another, all
processors must have their clocks synchronized. This is
accomplished by sending out an initial start signal from the
GUI, When the start signal is received by any processor
connected to the NDDS network, the processor’s clock will

be set to time zero. The time delay induced by the time it
takes for the signal to travel across the network is
compensated for by over constraining the collision
checking.

Trajectory Following—Each Controller uses the milestones
from its corresponding Motion Planner to construct the
robot’s trajectory. A PD control scheme is used to track the
desired heading and position of sampled points of the
trajectory.

Simulation

To simulate the MARS rovers and their environment, a Java
application was developed which replaces the vision system,
controllers, and robots. The simulations demonstrate the
success of the motion planner for a large group of robots in
a confined environment.

A simple example of a simulation is illustrated in Figures
7a-f, In this example, a single robot starts in the lower left
comer of the workspace and has a desired goal location
situated behind two obstacles. The robot is denoted by the
black circle and the goal is denoted by the black cross, (see
Figure 7a). The robot initially plans its trajectory, (see
Figure 7b.) without any knowledge of the two obstacles
(one stationary and one moving). However, as time
progresses, it encounters the moving obstacle and constructs
a new trajectory around it, (see Figures 7c, 7d). As it closes
in on the goal, it finally sees the stationary obstacle and
replans again to avoid it, (see Figure 7e¢). Finally, in Figure
7f, the robot approaches the goal. Time steps between
screenshots are not equal.

L)
1]
@
fi1!

@

Figure 7a) - Simulation at time T1

Figure 7b} - Simulation at time T2

Figure 7c) - Simulation at time 13

°

]
il

Figure 7d) - Simulation at time T4

Figure 7¢) - Simulation at time T5

Figure 7f) - Simulation at time T6

7-3626

Table 1 lists the results from 3 different simulation sets. In
each simulation. robots are initialized with randomly
selected starting points and goal locations. Obstacle
locations and orientations are also selected randomly. To
simplify the implementation, obstacles move through the
workspace with a constant velocity and don't stop or interact
with other obstacles. Between cach simulation set, the
number of robots and obstacles were varied. Each set was
run 20 times with different randomly selected -starting
points. These simulations were run on a Sun Sparc Ultras
with a 333 MHz processor and 128 MB RAM.

Table 1 - Simulation Results
Experiment 1 2 3
Set
Robots 5 10 15
Stationary 5 5 0
Obstacles
Moving 5 0 0
Obstacles
Average
Plan Time
(ms)
Average
Maximum
Plan Time
(ms)

38.57 96.36 4.66

102.47 276.52 44.44

As shown in Table 1, the motion planning system can
provide real-time motion planning solutions for experiments
with up to 15 robots in an obstacle-free, bounded
workspace, as well as for experiments with only 5 robots. 5
moving obstacles and 5 stationary obstacles.

In Table 2, the planning times are compared for simulations
using the dynamic and static priority systems. Simulations
demonstrated large reductions in both the average plan time
(approximately 78%), and the maximum plan time
(approximately 71%), when using the dynamic versus static
priority systems.

Table 2 — Comparing Static and Dynamic Priority Systems

Experiment Static Priority Dynamic
Set System Priority System
Robots 15 15
Stationary G)
Obstacles
Moving 0 0
Obstacles
Average 4.66 1.03
Plan Time
(ms)
Average 44.44 15.06
Maximum
Plan Time
(ms)

Figure 8 illustrates the distribution of the number of plans
each robot constructs during experiments. Plotted is the
average number of plans constructed by each robot in the
experiments. It is clear that the number of plans per robot is
more evenly distributed when using the dynamic priority
system as opposed to the static priority system. However,
there is still a slight rise in the number of plans per robot as
the robot number increases. This is due to the second term
in the priority equation (6).

BD ynam ic Priority @8 S mte P riovy

50

490

Numberof 30
P]a.ns 20

RobotNumber

7 8

9 10 11 12 13 14 15

Figure § - Robot Planning Responsibilities for Static and Dynamic Priority Systems

In the simulations presented, the average replan times are
significantly faster than the average maximum plan times.
This can be attributed to the fact that replans first check to
see if their original trajectory is collision-free with a newly

encountered obstacle, If the original trajectory is safe, the
planner will return it as the solution, and no new trajectory
is required. The average first plan times are less than 100
ms, allowing real-time planning.

7-3627

An example of one such simulation is represented in the
Figures 9a)-9f). This particular simulation involves 10
rovers, and 5 stationary obstacles. Smaller circles represent
the micro-rovers as viewed from above, while crosses
represent goal locations and larger circles represent

obstacles. Trajectories constructed by each robot's motion
planner are indicated with lines that iead to goal locations,
Note that the trajectories change as the simulation
progresses, indicating the replanning in real time.

&
(]
o
&
@ : &P
& &
¢t e
¢ o

-
'@/ | : e A
EB . i
@

.

Figure 9a) - Simulation at time T1:
Rovers , goals and obstacles before the simulation.

Figure 9¢) - Simulation at time T3:
Rovers replanning on the fly to aveid each other

Figure 9b) - Simulation at time T2:
Rovers after constructing their first plans

Figure 9d) - Simulation at time T4:
Rovers following their trajectories
@
R

Figure 9¢) - Simulation at time T3
Rovers heading towards their respective goals .

Figure 9f) - Simulation at time T6:
All but one rover having reached their goal location.

7-3628

Obsl Obs2

Robl Rob2

Rob3

Figure 10a) - Experiment at time T1: Physical Hardware photo and corresponding GUI screenshot.

@ &
@ &
] , & .
Y - SRR S - Y.
Figure 10b) - Experiment at time T2 Figure 10c) - Experiment at time T3
@
e .
3 @ .
Figure 10d) - Experiment at time T4 Figure 10¢) - Experiment at time T3
b
i .
‘o
-

Figure 10f) - Experiment at time T6: Physical hardware and corresponding GUI screenshot,

7-3629

Physical Experiments

Several experiments were run to demonstrate that the
system 1s able to comsiruct collision free trajectories for
rovers on a flat, bounded workspace. Tests were performed
with various start configurations. Throughout the
experiments, goal locations were continually being
modified, requiring real-time planning.

Figure 10 shows a series of snap-shots taken from an
experiment on the MARS test platform. In this experiment,
four of the rovers are tracking trajectories. The figures on
the left are photos of the actual test-bed. The GUI screen
shots on the right depict the rovers and the paths they are
following. They were taken at the same time as the photos
to their left. Time steps between screenshots are not equal.
What follows is an explanation of this particular experiment.

Figure 10a) depicts the rovers in their initial configuration,
They are sitting stationary, awaiting the “Start” command
from the GUL

In Figure 10b), the rovers have received the “Start”
command. They proceed by constructing their initial
trajectories and following them.

In Figure 10c), Rovers 0 at the bottom and 3 at the right
continue to follow their initial trajectories. Rover 1 has
replanned because it encountered Obstacle 2 located in the
bottom right. Subsequently, Rovers 1 and 2 encounter one
another, leading Rover 2 (located in the middle) to replan
around Rover 1.

In Figure 10d) Rovers O at the bottom and 3 at the right
continue to follow their imitial trajectories. Rover 1 (now
located in the middle) has passed Rover 2 and has a clear
path to its goal located at the far right. Rover 2 is following
its new trajectory around Rover 1 and is heading to its goal
located at the bottom left.

Finally, as depicted in Figure 10e), all rovers are finally on
collision-free paths to their goal locations. Rover 3 has
already reached its goal located at the top right.

5. CONCLUSIONS

The motion planner presented has demonstrated its
effectiveness in planning for a large number of robots within
a bounded workspace. It planned with a high probability of
success, even in "cluttered” environments involving 5 to 15
robots, stationary obstacles and moving obstacles. Planning
times on the order of 0.1 s allowed the robots to re-plan in
real-time and react quickly to changes in the environment.
Although the application of the mofion planner to a surface
rover mission has been discussed, it should be noted that the
planner is extendible to three-dimensional workspaces,
Hence it is also applicable to acrospace applications.

A significant improvement in performance was observed
when using the new Dynamic Priority System instead of the
original Static Priority System. At the cost of doubling the
communication bandwidth, decreases of greater than 70% in
the planning times were attained. Also, the Dynamic
Priority System more evenly distributed the motion
planning computation among the robots.

Future work will include investigation into other Dynamic
Priority Schemes that take into account both the focal and
global search space. The current Dynamic Priority system
calculates priorities based on the local search space only.

REFERENCES

[11 M. Bennewitz and W. Burgard, “A Probabilistic Method
for Planning Collision-free Trajectories of Multiple Mobile
Robots,” 14" European Conference on Artificial
Intelligence, 2000.

[2] M. Bennewitz, W. Burgard and 8. Thrun., “Optimizing
Schedules for Prioritized Path Planning of Multi-Robot
Systems,” Proceedings of the International Conference on
Robotics and Automation, 2001,

[3] C. Clark and S. Rock, “Randomized Motion Planning
for Groups of Nonholonomic Robots,” International
Symposium of Artificial Intelligence, Robotics and
Automation in Space, 2001.

[4] D. Hsu, R. Kindel, . C. Latombe, and S. Rock,
“Randomized Kinodynamic Motion Planning with Moving
Obstacles,” Workshop on the Algorithmic Foundations of
Robotics, 2000.

[51 D. Hsu, J. C. Latombe, and R. Motwani, “Path planning
in expansive configuration spaces,” Proceedings of fthe
IEEE International Conference on Robotics and
Automation, pages 2719-2726, 1997,

[6] K. Kant, and S. Zucker, “Toward efficient Trajectory
Planning: The path-velocity decomposition.” The
International Jowrnal of Robotics Research, 5-3, pages 72-
89,1986.

[71 ©O. Khatib, "Real-Time Obstacle Avoidance for
Manipulators and Mobile Robots.” International Journal of
Robotics Research, 5, 1, pages 90-98, 1986.

[8] R. Kindel, D.Hsu, J. C. Latombe, and 5. Rock.
"Kinodynamic Motion Planning Amidst Moving Obstacles,”
Proceedings of the IEEE International Conference on
Robotics and Automation, pages 537-544, 2000.

[9] Lee, Lee, and Park, "Trajectory Generation and Motion
Tracking for the Robot Soccer Game,” Proceedings of the
1999 [EEE International Conference on Intelligent Robois
and Systems, pages 1149-1154, 1999,

7-3630

[10] V. J. Lumelsky and K. R. Harinarayan, "Decentralized
Motion Planning for Multiple Mobile Robots: The Cocktail
Party Model,” Aufonomeus Robots Journal, No. 4, pages
121-135, 1997.

[11] T. Y. Li, and J. C. Latombe, "On-line manipulation
planning for two robot arms in a dynamic environment”,
Proceedings of the IEEE International Conference on
Robotics and Automation, 1995

[12] T. Simeon, S. Leroy and J.P. Laumond, "Path
Coordination for Multiple Mobile Robots: a geometric
algorithm,” Proceedings of the International Joint
Conference on Artificial Intelligence, 1999,

[13] P. Svestka, and M. H. Overmars, "Coordinated Path
Planning for Mulitiple Robois,” Technical Report UU-CS-
1996-43, Utrecht University, The Netherlands, 13, 1996.

[14] C. W. Warren, "Multiple Path Coordination using
Artificial Potential Fields,” Proceedings of the IEEE
International Conference on Robotics and Automation,
pages 300-503, 1990.

Christopher Clark is currently a Ph.D.
candidate in the Aerospace Robotics
Lab, located in the Department of
Aeronautics & Astronautics, Stanford
University. After finishing a B.Se. in
Engineering Physics at Queen’s
University, he worked as a Control
Systems Designer at Sterner Automation,
Toronto, Canada. He received his M.Sc. :
in Mechanical Engineering at the University of Toronto
where he focused on the application of Neural Nerworks to
PID comirolled Robots.

Tim Bretl is currently a Ph.D. candidate
in the Aerospace Robotics Lab, located
in the Department of Aeronautics &
Astronautics, Stanford University. He
graduated in 1999 with a B.S./B.A. from
Swarthmore College. He received his
MS. from Stanford University in 2000,
He now works in the areas of distributed
planning and control.

Dr. Stephen Rock received his S5.B. and
S.M. degrees in Mechanical Engineering
from MIT in 1972, He received his
Ph.D. in Applied Mechanics from
Stanford University in 1978, and joined
the faculty of the Aeronautics and
Astronautics department of Stanford in
1988. He is the Director of the
Aerospace Robotics Laboratory where :
his research focus is to extend the state-of-the-art in robotic
vehicle control. His interests include the application of
advanced conirol techniques for robotics and vehicle
systems. Areas of emphasis include remotely operated
vehicles for both space and underwater applications. Dr.
Rock teaches several courses in dynamics and control at
Stanford. Prior to joining the Stanford faculty, Dr. Rock
managed the Controls and Instrumentation Department of
Systems Control Technology, Inc.

7-3631

