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Based on the binary tree decomposition of a permutation, a natural vector space 
of permutation statistics is defined. Besides containing many well known permuta­
tion statistics, this space provides the general context for an archetypal recurrence 
relationship that contains most of the classic combinatorial sequences and some of 
their known generalizations. 

1. INTRODUCTION 

Permutation statIstIcs have arisen in connection with various applica­
tions of combinatorics to a wide spectrum of mathematics (including 
differential operators, orthogonal polynomials, hypergeometric functions, 
probability, and sorting problems). However, in spite of an increased 
interest in permutation statistics, no systematic study of them has been 
done. The basic purpose of this paper is to propose a possible framework 
for such a study. 

The approach being advocated for unifying this area consists of the 
introduction and examination of natural vector spaces of statistics which 
(Ire defined in terms of permutation decompositions. The central focus here 
will be on a vector space which arises in connection with the binary tree 
decomposition of a permutation. Besides containing many well-known per­
mutation statistics (such as the descent number, the inversion number, the 
trough number, the minimum component number, and others), this binary 
tree decomposition statistic space provides the setting for an archetypal 
recurrence relationship that contains many classic combinatorial sequences 
(including the Catalan numbers, the Fibonacci numbers, the Eulerian poly­
nomials, the Stirling polynomials of both kinds, the Hermite polynomials, 
and the Bell polynomials). 
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2. THE BINARY TREE DECOMPOSITION STATISTIC SPACE I 
I 

A permutation (J of a set D of n integers will be written as a list r 

(J = (JI (J2'" (In and the symbol 2[D] will denote the set of such lists. For 
simplicity, 2[n] will signify the set of lists of {I, 2, ..., n}. 

For (J E S{J[ C], where C is a non-empty set of (n + I) integers, let (k + 1) 

be the unique index such that (J k + I is equal to the minimum element in C. 
Further, let 

\ 
(i) A =:= {(JI' (J2' ... , (Jd 

(2.1 ) I 
(ii) B=:={(Jk+2,(Jk+3, ... ,(Jn+d. I 

Then, the "rooted binary planar tree" decomposition of (J E 5f [C] IS i 
defined to be the unique factorization of (J into the sublists ( 

( 
\ 

(J = amp, (2.2) 

where a=:=(J1(J2"'(JkE2[A], m=:=mmlmum element of C, and p= 
(Jk+2(Jk+3"'(Jn+! E:f'[B]. IThe reason for referring to (2.2) as the rooted binary planar tree decom­
position of (J becomes clear if one views (J =am{J geometrically as ( 

( 

,r
((2.3 ) 
( 

( 

I 
Iteration of (2.3) will produce a unique rooted binary planar tree in which i 
each vertex has a unique label from the set C, such that the labels appear (
in increasing order as one moves up and away from the root. This unique 
tree is the so-called "arbre binaire croissant" associated to (J as described I 
by Foata and Schiitzenberger [FS2]. For example, the rooted binary Iplanar tree associated to 

(J = 26147385 E 2[8] (2.41 
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(2.5) 

A map s: Y[C] ---> IR (reals) is said to be an "elementary tree statistic" if 
for all eJ = c1.mfJ we have 

S(eJ) = as(o:) + hs(fJ) + c/(A, B) +f(IAI, IBI), (2.6) 

where 

(i) s(0)=0 

(ii) a, h, C E IR 

(iii) /(A, B)= l{i>j: iEA,jEB}1 

(iv) f: N x N ---> IR (N ={O, 1,2, ... }). 

The number /(A, B) defined in (iii) counts the number of inversions from 
set A to set B (see page 98 of [GJ]). 

Many classic permutation statistics are elementary tree statistics. Some 
are listed in Table I, where, for convenience, if S symbolizes a statement, 
then the symbol X(S) is equal to 1 if S is true and is equal to 0 otherwise. 

The identities of Table I may be readily verified from the combinatorial 
definitions given in the corresponding references. More radically, one may 
take these identities as "decomposition based" definitions of the statistics of 
Table I. 

The set of all elementary tree statistics is nearly a vector space over R 
Certainly the zero statistic O( eJ) =°for all eJ is in this set since 8( eJ) = 

O(ex) + 8(fJ). Also, if s is an elementary tree statistic, then so is ds for any 
dE Ilt The only property missing is that of additive closure. 

Although it is a simple matter to consider closure with respect to finite 
sums, it is of more interest to consider an infinite additive closure. A 



TABLE I 

Examples of Elementary Tree Inversion Statistics 

Name References Identity relative to a = (xmfJ 

I.� Length len(a) = Ien(a) + len(fJ) + I 
2.� Descents [CS, FSI, M] des(a) = des(,,) + des(fJ) + X(IAI ~ 1) 
3.� Rises [C2] ris(a) = ris(a) + ris({)) + X(IAI = 0) 

4.� Inversions [CI,FI,M] inv(a) = inv(,,) + inv(fJ) + I(A, B)+ IA I 
5. 312 patterns [R2] 312(a) = 312(,,) + 312(fJ) + I(A, B) 
6.� 213 patterns [R2] 213(a) = 213(,,) + 213(IJ) - I(A, B) + IAIIBI 
7.� Left-to-right minimum [C2,G, RI] lira) = lira) + x(IBI + I = i)� 

components of length i� 

8.� Right-to-Ieft minimum [C2,G, RI] ri(a)=ri(IJ)+x(IAI + I =i)� 
components of length i� 

9. Troughs� [FV] tr(a) = tr(,,) + trU)) + x( IA I ~ I );:(181 ~ 1) 

10. Pies� [FV] pe(a) = pc(,,) + pc(IJ) +x( IAI = 0) x( IBI = 0) 

sequence s == (sJ,;:, 0 of elementary tree statistics is said to be a joint elemen­
tary tree statistic. Furthermore, s is said to be admissible if for all (J, 

I(i: .IA(J) "" O}I < eXJ.� (2.7) 

Then, the closure of the set of elementary tree statIstIcs with respect to 
sums of admissible joint statistics, that is, the set 

{ I .1',: s is admissible}� (2.8) 
I~O 

is a vector space over IR. The set of (2.8) will be referred to as the "binary 
tree decomposition statistic space." Table II contains some examples of 
statistics in the binary tree decomposition statistic space written as linear 
combinations of the statistics of Table I. 

TABLE II 

Some Statistics Written as Linear Combinations 

Name� References In terms of Table I statistics 

I. Length� len(a) = des(a) + risea ) 

2.� Left-to-right min. compo [C2, G, RI] lea) = L l,(a) 
i~O 

3. Right-to-left min. compo [C2, G, RI] rea) = L r,ca) 
i~O 

4.� Double descents [FV] ddes(a) = len(a) - pe(a) - ris(a) 

5.� Double rises [FV] dris(a) = ris(a) - tr(a) 



3. AN ARCHETYPAL RECURRENCE RELATIONSHIP 

Besides serving as a common setting for many classic statistics, the 
binary tree decomposition statistic space also provides a framework for 
unification. The possibility for unification is exemplified by the problem of 
determining the distribution of a binary tree decomposition statistic space 
statistic over 2' [n]. In order to present a recursive solution to this 
problem, the stage needs to be further set with a few more comments and 
definitions. 

First, to find the distribution over ,..'.f [n] of a binary tree statistic 
s:= Li?O Si' where s == (Si)i?O is an admissible sequence of elementary tree 
statistics, it clearly suffices to determine the joint distribution of s == (Si)i;,O' 

Second, let p== (pJi?O be a sequence of indeterminates and, given a 
sequence of real valued constants d == (dJi;'O, define 

(i) Pd == (p;"L?o 
(3.1 ) 

d(ii) p == n p;li• 
i:;?: 0 

Third, for an indeterminate q, the q-analog, q-factional, and q-binomial 
coefficient of a non-negative integer n are respectively defined to be 

(i) (n),,== I +q+q2+ ... +q" I 

(ii) (nV == (1 ),,(2),,'" (nL, (3.2 ) 

n) (n),,!(iii) ( k ,,-(k),,!(n-k),,!' 

where, by convention, (O),,! == 1. 
Furthermore, suppose that s == (SJi?O IS an admissible sequence of 

elementary tree statistics with 

relative to the decomposition (J = cxm{3 for all (J. Finally, for a set D of 
positive integers with tDI = n and a sequence of indeterminates p == (pJi?O' 

the generating polynomial over ,..'.f[D] for the admissible joint statistics 
s := (s Ji? 0 is defined to be 

!e,,(p) == L ps«r). (3.4 ) 
"E2',Dl 

(The notation !e,,(p) is adequate, since the sum in (3.4) depends only on 
the cardinality of D.) 



With respect to the setup of the preceding paragraph and due to the fact 
(see page 98 of [GJ]) that 

(3.5 ) 

where the sum is over all ordered pairs of sets (A, B) such that Au B = 

{2, 3, ... , n + 1} and A n B = 0, it follows quite readily that the sequence of 
polynomials :.e,,(p) recursively satisfies the "archetypal" identity 

(3.6 ) 

where !£o(p) == 1 and the sequences a== (a;);;,o, b == (b;L;,o, C == (c;);;,o, and 
f== (Ibo are those of (3.3). The proof of (3.6) goes as follows. 

Begin by noting that the binary tree decomposition of (2.2) may be 
viewed as a bijection from the set of permutations ~[n + 1] to the set of 
4-tuples 

u {( A, B; a, I)): IA I = k, A u B = {2, 3, ..., n + 1}, 

An B= ¢, a E~[A], {lE ~[B]}. (3.7) 

Then, the facts and definitions of this section combine to justify the calcula­
tion 

aEy'rn+ 11 

= L L L L (Pa)'(') (Pb)s(fi J pC!(A.B)pf(k.n-kl 

k~O IAI~k HY'[A] fIE.Y'[B] 

= k~O pf(k.n k) C)p' 2'k(Pa) 2'" dPb), (3.8 ) 

which completes the proof of (3.6). 

4. SOME CLASSIC CASES OF THE ARCHETYPAL RECURRENCE RELATIONSHIP 

Identity (3.6) generalizes many classic recurrence relationships of com­
binatorics. For example, consider the joint distribution s== (312, e, e, ... ) 
and let P == (0,1,1, ... ). Since 

(i) 312(0") = 312(a) + 312(fJ) + I(A, B) 
(4.1) 

(ii) Ora) = Ora) + e(fJ) 



relative to the binary tree decomposition (J = rxm{3, it follows that 

(i) a = (I, I, ... ), Pa = P 

(ii) b = (I, I, ... ), Ph=P 
(4.2)

(iii)� c = (I, 0, 0, ... ), pc=O 

pf (k.1l(iv) f= (0, 0, ... ), k) = 1. 

Thus, since (no=l, if one sets CII = 2';,(0, I, I, I, I, ... ), then (3.6) 
immediately reduces to 

II 
CII + 1 = L C k CII k with Co = I, (4.3) 

k~O 

which is a fundamental recurrence relationship for the Catalan numbers. 
As an second example, consider setting 5=(312,/ 1,/2 ",,), P= 

(0, I, 1,0,0, ... ), and FIl = ~,(p). Then, since 

(i) 312((J) = 312(rx) + 312({3) + I(A, B) 
(4.4 ) 

(ii) li((J) = IJrx) + X(IBI + I = i) for all i, 

it follows that 

(i) a=(I, I, ... ), Pa=P=(O, I, 1,0,0, ... ) 

(ii) b=(I,O,O, ),� Ph=(O, I, I, I, )#p 

(iii) c=(I,O,O, ),� pC=OlloloOoOo =0 (4.5) 

(iv)� f=(O,x(n-k=O),x(n-k=I), ... ),� 
pf =OojX(1l k~O)jX(1l k~ Ilox(1l� 

Thus, recurrence relationship (3.6) becomes 

(4.6 ) 

Since only the terms corresponding to k = (n ~ I) and k = n do not zero 
out, (4.6) reduces to 

(4.7) 

with initial conditions Fa = ~(p) = I and F1 = !.fl (p) = I. Of course, F
Il 

defines the classic Fibonacci sequence. 
Further identities for classic combinatorial sequences fall out as special 

cases of (3.6) by making the selections on 5 and P indicated in Table III. 
The corresponding special cases of (3.6) are listed in Table IV. Although 



TABLE III 

Some Selections on sand P That Lead to Classic Recurrence Relationships 

Symbol 
Name P for :t'n(P) 

I. Cardinality of :t'[n] (&, &, ... ) (I, I, ... ) :t'" 
2. Catalan numbers (312, &, 0, ... ) (0, I, 1, ...) Cn 

3. Fibonacci numbers (312, 1,,/2 , ... ) (0,1,1,0,0, ... ) Fn 

4. Eulerian polynomials (des, 0, 0, ... ) (I, I, I, ) En(t) 
5. Number of derangements (11,/2, ) (0, 1, I, ) Dn 

6. First Stirling polynomials (r" r" ) (z, Z, ... ) sn(z) 
7. Second Stirling polynomials (len, -r, --{}es, r" r" ... ) (0,0,0, z, z, )" Sn(z) 
8. Hermite polynomials (r l , r" ... ) (y, -I, 0, 0, ) Hh) 
9. Bell polynomials (len, -r, --{}es, r" r" ... ) (0,0,0, Z" Z2' ... )" Bn(z"z" ... ) 

a All powers of zero in :t'n(P) are to be treated formally and are to be collected before 
evaluating. 

TABLE IV� 

Classic Recurrences of Combinatorics Contained in (3.6)� 

Name References Recurrence� 

I. Cardinality of :t' [n] 

2.� Catalan numbers [Co] Cn +,= L CkCn - k 
k=O 

3. Fibonacci numbers [Co] Fn+ 1 =Fn+Fn_ 1 

4. Eulerian polynomials [Co, FSI] En+,(I) = En(t) + 1k~' (~) Ek(t) En-k(t) 

5. Number of derangements [Co] Dn+, = nIl (~) (n -k)! Dk 

k=O 

6. First Stirling polynomials" [Co] Sn+ ,(z) =Z I. (~) k! Sn_k(Z) 
k~O 

7. Second Stirling polynomialsb [Co] Sn+I(Z)=Z I. (~)Sn_k(Z) 
k~O 

8. Hermite polynomials [Co,F2] H n+,(y) = Hn(y) -nHn_,(y) 

9. Bell polynomials [Co] Bn+,(z"z" ...)= I. Zk+' (~) Bn_k(z"z" ... ) 
k=O 

a The coefficient of Zk in sn(z) is the kth Stirling number of the first type. 
bThe coefficient of Zk in Sn(z) is the kth Stirling number of the second type. 



omitted, the respective initial conditions may be calculated from definition 
(3.4) of o'f,,( p). 

At first glance it may seem somewhat odd that all of the recurrence 
relationships of Table IV can be obtained within the same combinatorial 
context. The explanation for this apparent paradox lies in the fact that 
setting parameters equal to zero is in a sense equivalent to selecting out 
subsets of trees. For instance, in the case of the Catalan numbers, setting 
the parameter associated with 312 patterns to zero means that the only 
binary trees that will make a non-zero contribution to o'f,,(p) have no 312 
patterns. This subset of binary trees may be characterized as follows: 

For a vertex v of a binary tree T, define A,. (resp. B, ) to 
be the set of vertices in the upper left (resp. right) subtree 
attached to v. Then, Thas no 312 patterns iff I(A,., B,.)=O 
for all vertices v in T. (4.8 ) 

An example of a tree with no 312 patterns is sketched below: 

It is interesting to note that each T satisfying the condition I( A" B,) = 0 
for all v is uniquely labelled by what is commonly known as prefix order. 
Thus, the act of removing the labels is a bijection from the set of trees with 
no 312 patterns to the set of unlabeled binary rooted planar trees. The 
latter set is a well-known combinatorial model of the Catalan numbers. 

5. EXOTIC AND Q-SEQUENCES 

Identity (3.6) contains, as special cases, a "vector space" of recurrence 
relationships, some of which define new exotic sequences and some of 
which define both known and new q-analogs of many classic sequences. 



On the exotic side, consider making the selection s == (II, r l , 12 , r2' 

/3' r3, ... ) and P == (0, Z, 1, Z, 1, Z, ... ). Furthermore, let sdn(z) == !E,,(p). Note 
that 

(i) a = (1, 0, 1, 0, 1, 0, ) Pa = (0,1,1,1,1, I, ) 

(ii) b=(O, 1,0, 1,0, 1, ) pb=(I,z, l,z, l,z, ) 
(5.1 ) 

(iii) c = (0, 0, 0, 0, 0, 0, ) pC= 1 

(iv) f = (/1' g I ,(2' g 2, .f~, g 3, ... ) 

wheref;(k,n-k)==x(n-k+l=i) and g,(k,n-k)==x(k+l=i). There­
fore, identity (3.6) reduces to 

n I (n)sdn+l(z)=z I . Dksn_k(Z), (5.2) 
k -0 k 

where sdo = 1, sd l =0, and both D n and sn(z) are defined in Table IV. The 
sequence sdn(z) is thus a curious cross between derangements and first 
Stirling polynomials. 

There are also heretofore never considered statistics in the binary trec 
decomposition space which lead to new sequences. For instance, relative to 
the permutation factorization a = amfJ, consider the elementary tree 
statistic w defined by 

w(a) = w(a) + w(fJ) + X(IAI ~ 2), (5.3 ) 

which is a sight variation on des. Since (5.3) is equivalent to 

the statistic w may be thought of as counting the "waves of length greater 
than or equal to 2" in a. Now, if one takes s==(w,O,e, ... ), p==(t, 1, 1, ... ), 
and Wn(t)==!E,,(p), then (3.6) reduces to 

Wn+ I(t) = Wn(t) + nWn l(t) + t f G) Wdt) Wn k(t) (5.5) 
k~2 

with initial conditions Wo(t) = WI (t) == 1. 
With regards to q-analogs, any statistic for which the constant c in 

(2.6) is non-zero will yield a q-analog of the particular sequence under 
consideration. For instance, to obtain the q-Eulerian numbers due to 
Stanley [S], let s == (des, inv, e, 0, ... ) and En(t, q) == !E,,(t, q, 1, 1, ... ). 
Recurrence (3.6) then reduces to 

(5.6) 



with initial conditions Eo(l, q) == ~)(p) = 1 and E,(t, q) == 2'1(P) = 1. Further 
examples may be obtained by selecting sand P as in Table V. 

The corresponding cases of (3.6) are listed in Table VI. In doing the 
calculations to obtain entries 2 and 7, it will be necessary to treat powers 
of zero formally and collect all such powers before evaluating. Also, the 
respective initial conditions for all entries can be derived from defini­
tion (3.4) of 2~,(P), 

Unfortunately, this "vector space" of q-analogs does not include some of 
the classic ones that arise in connection with the statistic known as the 
major index (maj). This is because, relative to the binary tree decomposi­
tion (J = cxmf3, the major index satisfies the relationship (see [R I]) 

maj((J) = maj(a) + maj(f3) + IA 1+ (IA 1+ 1) des(f3). (5.7) 

Therefore, maj is not an element of the binary tree decomposition space 
under consideration. 

One could however, at the expense of complicating matters somewhat, 
expand the space of consideration in a way so as to include the major 
index. This direction of inquiry will not be pursued here. For those 
interested, a recurrence relationship analogous to (3.6) of the joint distribu­
tion s == (des, maj, inv, 312, 213, I b r 1 , 11 , r 1 , ... ) over Y[n] is considered in 
some detail in [R2]. 

TABLE VI 

Some q-Sequences Derived from (3.6) 

Name References Recurrence 

I. q-Catalan numbers I [FH] Cn+\(q) = L qkCk(q) Cn-k(q) 
k=O 

2. q-Catalan numbers II [FH] Cn+\(q)= L q(k+\)(n-kICk(q)Cn_k(q) 
k=O 

3. q-derangements [Rl] Dn+\(q)<~~l(~)q (n-k)q! Dk(q) 

4. First q-Stirling polynomials [Go] Sn+\(q;z)=z I qk(~) (kJ.!sn k(q;Z) 
k =0 q 

5. q-Hermite polynomials I [Ci, D, ISV] hn+ \(q; y) = yhn(q; y) - (n)q hn_ \(q; y) 

6. q-Hermite polynomials II [Ci, D, ISV] Hn+\(q; y) = yHn(q; y) - qn(n)q H n_\(q; y) 

7. q-Bell polynomials Bn + \(q; Z\, Z2, ... ) 

= £qkZk +\ (~) Bn_ k(q;Z\,Z2,···) 
k =0 q 



TABLE V 

Some Selections of sand p That Lead to q-Analogs 

Name s p Symbol for 2;,(pj 

I. q-Catalan numbers I (312, inY, e, e, j (0, q, 1, 1, ) C,,(qj 
2. q-Catalan numbers II (213, inY, e, 0, ) (0, q, I, I, j Cn(qj 
3. q-derangements (inY, 11,12 , ) (q,O, I, I, j Dn(q) 
4. First q-Stirling polynomials (inY, rl, r2' j (q, Z, Z, ... j sn(q; zj 
5. q-Hermite polynomials I (312,rl,r2'''') (q, y,-I,O, 0, ... j hn(q; yj 
6. q-Hermite polynomials II (inY, 213, 312, rl' r2 , ... ) (q, q, q, y,-I, 0, 0, ... j Hn(q; yj 
7. q-Bell polynomials (len, -r, -des, inY, rl' r2' ... j (0,0,0, q, ZI' Z2' ... ) Bn(q; ZI' 22, ... j 



6. CONCLUDING REMARKS 

The idea of examining decomposition-based statistic spaces is new and 
there are many possible directions of inquiry to be pursued. For one, a 
general study of decomposition statistic spaces would be of interest. Such 
a study would include consideration of spaces based on other decomposi­
tions, a classification of known statistics according to decomposition, and 
an examination of the structural aspects of these spaces. 

A second possible direction involves the study of the generalizations of 
the classic sequences that arise. For instance, the Bell polynomials of 
Table III playa key role in functional composition and Lagrange inversion 
(see [Co]). A natural line of inquiry would be to determine the subspace 
of the binary tree decomposition statistic space for which the Lagrange 
inversion formula remains valid. 

Finally, although recurrence relationship (3.6) exists, it does not appear 
possible to determine a generating function for a general joint statistic s. It 
may, however, be fruitful to consider isolating classes or subspaces of 
statistics according to "generating function type." 
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