Multicolored Simon Newcomb Problems

DoN RAWLINGS

Recent progress made by Désarménien and Foata in the area of permutation
statistics indircclly points ouf a certain gap in the theory of sequence enumeration.
The remedy of the situation lics in the consideration of some colorful extensions of
the Simon Newcomb problem.

[. INTRODUCTION

Certain modifications in the classic Simon Newcomb problem {CSNP)
are indirectly suggested by the results in [5]. The modified version focused
on in this paper will be referred to as the “bicolored” Simon Newcomb
problem (BSNP). Multicolored extensions will be briefly discussed in
Section 6,

Like the CSNP, the BSNP may be described in terms of a simple card
game. A deck of cards is said to be bicolored of specification (7, i3, ..., i,)
_if each card is either bluc or green and if /,, cards have integer face value
m for 1 <m<r The statement of the BSNP gocs as follows:

The BSNP. A bicolored deck of specification (i,, i3, ..., /,) is first to bhe
shuffled and then dealt oul into piles; & new pile is begun only with a card
which is immediately preceded by

(0) mnothing, that is, the first card in the shuffle begins the first pile,
or

{1) a card of strictly greater face value, or

{2) a green card of the same face value.
An occurrence of (1) or (2) is referred to as a cut in the sequence of cards.

The problem then is to determine how many shuifles, when dealt out, result
in (k+ 1) piles (or equivalently, have & cuts).




There are two special cases of the BSNP that are worth singling out. If
afl of the cards in the deck arc blue, then the notion of a cut is none other
than the classic one of a descent and the BSNP reduces to the original
CSNP as considered in [1-3, 7, 10, 11, 14]. On the other hand, if all of the
cards happen to be green, then the notion of a cut corresponds to what is
known in the literature as a nonrise. This problem, henceforth referred to
as the “reciprocal” Simon Newcomb problem (RSNP), has received much
less press than the CSNP. The solution of the RSNP may be implicitly
found in [4] and is explicitly cquivalent to the generating function for non-
falls given in [10, p. 72].

The main purpose of this paper is to provide a “g-solution” of the BSNP.
In order to adequately state the g-solution, some definitions and notation
are needed.

First, for an r-tuple (i, iy, .., {,) of non-negative integers, let

(a) () =, 2y s 1)) W
() =i +i+ - i,

The symbol #[i(r}] will be used to signify the set of bicolored integer
sequences f of the form

f=Fyf2)--fn) (1.2)

in which the integer m1 appears i, times for 1<m<r and cach integer
F(k) in f is either blue or green. Thus, there are 2"-nlfi;1i!--- it such
sequences.

The cut set of f=[i(r)], denoted by Cut f, is defined to be the union
of the two sets

(a) {k: flk) >fk+1]1€k<n}

1.3
{b) {k: flky=flk+1), f(k)is green, 1 <k <n}. (19)

In considering the BSNP, the relevant statistics on a bicolored sequence f
are defined by

(a) ‘ cut f ;= cardinality of Cut f
(b) B(f) ;= number of blue integers in f (1.4)
(c) ¥(f) := number of green integers in f.

The sum of the clements of the cut set of f

ses = ) Kk (1.5)

keCutf



is another statistic which will be seen to be of interest in the context of the
BSNP. In [act, if all of the cards in f happen to be blue, then the statistic
scs reduces to thc classic statistic known as the major index of
MacMahon [117].

As an example of the preceding definitions, consider the bicelored
sequence

[=22333417142e%(2,3,3,2], (1.6)

where an italicized (resp. bold-faced) integer is to be imagined as being blue
(resp. green). For fin (1.6), one has Cut f = {4, 6,9}, cut f =3, scs /=19,
B(f)=7, and »(f)=3.

With the conventions that

(a) (4 v = (1 —u)(L —ug) - {1 —uq™)
(1.7)

(b) X = [ xin

m=1

a generating function solution to a g-analog of the BSNP, which will be
proven in Section 4, may finally be stated:

TuroREM 1.1.  The “exponential” generating fimction for the polynomial
defined by

Syt g, b, g) = Y, g pPgD (1.8)
fe&F[in]
is given by
Z S(’(’)a l, 4, b, g) Xj(r): 5 d (_g-xk;Q)s+l (19)
itry=0 {{;q)n+l 520 k=1 (bxk;q)erl ’

where n =i, +i,+ - + i, and i(r) =0 means that i, 20 for l<m<r,

The reason for using the term “g-solution” should now be apparent: If
g :=1, then Theorem 1.1 gives the generating function for the solution of
the BSNP as stated. Explicit formulas for (1.8) and for the distribution of
the statistic scs will be given in Seclion 5.

Of course, g-solutions of both the CSNP and the RSNP may be
immediately obtained from Theorem 1.1 as corollaries: If the parameter g
(resp. b) is set equal to zero, then only completely blue (resp. green)
sequences make non-zero contribulions to the sum in (1.8). Respectively,
we have



COROLLARY 1.2. The generating function for the polynomial defined by

C(f(}‘); f: Q) = S(i(r); f, q: 13- 0) (1‘10)
is given by
Ci(r); t, q) X' : 1
= t° _— 111
i(r}z:zl] (% Q)n+l ,g;o kl;[l (xx; Q)s+ 1 ( )

CoORrROLLARY 1.3. The generating function for the polynomial defined by

R(i(r); 6, q) == S(i(r); £, 4,0, 1) (1.12)
is given by
R(i(r); ¢, X7 r
> ((). <) =2 ] (—x; @i (1.13)
i(r)=0 (39770 N s=0 kel

Corollary 1.2 for the g-solution of the CSNP was first derived by
MacMahon [11] (also see [9, 137]). In the case when g : =1, (1.13) is
equivalent to the generating function for sequences by nonfalis given on
page 72 of [ 10}. Also, note that taken together, identities {(1.11) and (1.13)
explain the use of the word “reciprocal” in the context of Corollary (1.3).

Before getting down to the business of proving Theorem (1.1), a brief
explanation of the underlying motivation for the BSNP is in order.
Recently, Désarménien and Foata [ 5] made the beautiful observation that
some Schur function identities may be used to obtain permutation statistic
results. In particular, they derived the three generating functions

A (8,15, ¢4, " 1
(a) Z A1, 2, G, gr) U _ Z s

n=0 (£15G1)nv 125 da)n a1 p— (w91, Q2)r+1,s+1

B?I(f’t)q’Q)un r .5
) X 22 2 2 3 (=G Ga)es st (1.14)

=0 (II;QI)H+1(I2; QQ)H—E—I _r’S;U

(c) Z C.(ty, 12, 4,, g-) U” _ Z 03 (‘_ZU;91>Q2)r+1,s+1
n;—,(}('tl;gl)n—}—l(tE;‘_?2)::-}-1 fy>0 b2 (6 G1:92)r 1541

which arise in connection with various statistics defined on permutations.
(For details, see [57].)

Note the similarity in form between the identities of (1.14) and those
respectively of (1.11}, (1.13), and (1.9). In fact, there is more than just a
mere resemblance between (1.14a) and (1.11). In [127] it was demonstrated
that the CSNP of (1.11) implies (1.14a).

Thus, given the relationship between (1.11) and (1.14a), it is clear that
the existence of (1.14c) does indeed motivate the combinatorial study of



(1.9). A proof that the BSNP provides an appropriate combinatorial
framework for (1.9) is given in the next three sections.

2. BICOLORED MATRICES

A certain result on “bicolored” matrices will be employed to derive
Theorem (1.1). This key result is now presented.

For the appropriate combinatorial perspective, the rows (resp. columns
of a matrix will be numbered from bottom-to-top (resp. left-to-right). An
(rx §) matrix A= (a,,) is said to be bicolored if its entries are of the form

Ay = (1, p), (2.1)

where m is any non-ncgaiive integer and p is equal to zero or one. The
integer m (resp. p) is to be imagined as being blue (resp. green). The
symbol .# [i(r); s] will be used to denote the set of such (rxs) bicolored
matrices 4 having row vector sum i(r) := (I}, i, ., {,); that is,

i, :=sum of all integers in row k of A (2.2)

for 1 <k<r.

Geometrically, a matrix 4 e .#[i(r); s] will be viewed as an array of rec-
tangular cells with entries of the form given in (2.1). Diagram (2.3)
illustrates an element of .#[i(4):=(2,3,3,2);8] in which the trivial
entries (0; 0) have been omitted.

{1;0) {1;0) iq: 2
¥ [
l"\ 1Y
i IS ,
() -p----- AT 3°3
- - \ : s
- , - (23)
-~ 1 . oL
(2:0) L (i) 273
o
-
Wl
1230 he2
1L

The dotted line segments in (2.3} will be explained in Section 3.



For Ae.#[i(r);s], the color statistics and the column vector sum of 4
are defined to be

(a) B{A) :=sum of all blue integers in A
(b) ¥(A) :=sum of all green intepers in 4 (2.4)
(C) CO](A) = (.j]:jl: it js)!

where j,:=sum of a/l integers in column [ of 4 for 1 <7<y In diagram
(2.3) we have i{4)="7, y(4)=3, and col{4)=1(0,2,2,0,2,3, 1, 0}.
The key result on bicolored matrices is stated in Lemma 2.1:

Lemma 2.1, For Ae#[i(r); 5] with col{A) :=(j,, ja, - Js), et
socol(A Z (s—1)] -(2.5)

Then, the polyromial defined by

MJi(r)q, b, g) = ) g pA gt (2.6)

Ae #[Ar)s]

satisfies the identity

S M) a b, @) X =[] (—gxis q)lbx; ), (2.7}

ir) 20 k=1
Proof. For an entry a, ;= (p1; p) of Ae 4 [i(r); 5], let

8aw) = (bxeq* )" (gxeg”™ )" (2.8)

Extending in a “cell-wise™ multiplicative fashion, definc the weight funclion

¢ on #[i(r); 5] by

o(A)= H ﬂ B8(a,). (2.9)
k=1 (=1
From (2.8) and (2.9) it is not difficult to scc that
5(/_1) — qr UultA)bﬂ(Al g}'(A]Xi(rJ, (2'10)

which in turn implies that the left-hand side of (2.7) is equal to

) Y 84 (2.11)

Hriz0 Ade. H[ir)s)

On the other hand, since § is multiplicative in the sense of (2.9) and since



the choices of m and p are independent, the d-weight generating function
of (2.11) on all (r x s) bicolored matrices may be written in the form

[T [1(+greq YL bxeqg ) (2.12)
k=1 /=1
By re-indexing and by using (1.7a), the expression in (2.12) may be seen to
be equal to the right-hand side of (2.7). Thus, the proof is complete.

3. THE ENCODING

For converting Lemma 2.1 inte Theorem 1.1, an encoding I” will be used
which maps a bicolored matrix 4 e .#[i(r);s] to a pair of the form

)

where fe#[i(r)] and where h:=h(1)k(2)---h(n) is a non-decreasing
integer sequence of length »:=i +/,+ --- +i, satisfying the conditions
that

(a) T<h{my<s for 's<m<n

(3.2)
(b) hm)<him+1) if meCutf

(The set of such / will henceforth be denoted by 5#(s, f).) The map /" may
be best described geometrically in terms of a scanning process:

The Encoding I". Given a bicolored matrix A e 4 Li{r); 5], the sequences
h and f arc to be construcied in the following manner. Viewing A
pictorially as in (2.3), scan the cells one at a time in the order outlined
below in (3.3):

Beginning with the cell of a,,, completely scan ¢olumn 1 from
bottom-to-top. Then, scan column 2 from bottom-to-top.
Proceed in this way until all cells have been scanned. (3.3)

Il a,, := (n; p), then respectively define the sequences h,; and f,, each of
length (4 p) by

(a) =101

S, . (3.4}
AL £ f =0
fk."—{ LY

®) E ki pi=1.

Then, the sequences / and f are constructed by respectively juxtaposing the
hy, and £, according to the scanning order in (3.3).



As an example of how I works, consider the matrix A in (2.3). The
dotted line segments, beginning in the cell of a,,, indicate the scanmng
order of the cells with non-trivial entries. By (3.4), =106, fis= 11, and
[+ = 33. Furthermore, juxtaposing the sequences of {3.4) according to the

scanning order yields
(h (2233556667) 35
£l T\2233341142) 2

Note that the dotted line segments in (2.3) completely illustrate the
“up—down” behavior and the cuts of [

The bicolored sequence f has a cut al an index if and only
if the corresponding line segment is descending or is level and
originates from a cell with an entry of the form (m1; 1) (3.6)

Define the content vector of a non-decreasing sequence # in H#(s, £ by
COI’l(h) = (j13j2= L) j,s)! {37)

where j, is equal to the number of times that k appears in &, 1 <k <s. The
relevant properties of [~ are Jisted in Lemma 3.1 below. The proof of
Lemma 3.1 is straightforward and is left to the reader.

LeMMa 3.1, The map T is a bijection from A Ti(r); 5] to the set

{(;) fe L Li(r)] and he # (s, f)} (3.8)
Furthermore, i I{4)= (_’}), then
(a) col(A4)=con(h)
(b) plA)=p0/f) (3.9)
(c) y(A)=v(/).

One additional lemma, which involves a “g-counting” of the set Hs, )
is needed. The g-analog, g-factorial, and g-binomial coefficient of a non-
negative integer » are defined by

(a) [n]::l+q+q2+..,+qn-1
(b) [2]1:=1{1] [2]---Lr] (3.10)

(c) [Z] = [ YK [ — &1L



where, by convention, [0]:=1. For he #(s, [} of length n, define m,,
0<k<n by

(a) my:=h{l)—1
(b} my =hlk+1)—h(k)—%(keCut f) for 1<kgn—1
(¢} m, i =5—h{m) (3.11)

in which, for a statement Q, Z(Q) is equal to 1 if @ is true and 0 otherwise.
Furthermore, lct

a(l) 1= Z k. (3.12)

k=1

Then, the required “g-counting” lemma, which can be proven in exactly the
same way as Lemma 5.1 of {12, may be expressed in the form:

LemMma 3.2.  For s a positive integer and for e 5 [i{r)] of length n, we

have
Y q"”’{s“““”""]. (3.13)

hc (5.0} n

Moreover, given he #(s, [} having content vector con({ft) ;== (1, Jzs - L)

ses f+ah)= z‘: (s—0J (3.14}

4. THE SOLUTION OF THE BSNP

A proof of Theorem 1.1 may now be given with the aid of the lemmas
in Sections 2 and 3. First, the polynomiai in (1.8) must be refined by
defining

S,(i(r); 0, b, 8) = T /6P g (4.1)

where the summation is over all /e % [i(r)] with cut f=m. Note that

S L g b, gy= >, "S,i(r) 6, b, g) (4.2)

mzl

Second, obscrve that Lemmas 3.1 and 3.2 together justify the calculation
in (4.3) which relates the polynomial of (2.6) lo the one of (4.1),



M(i(r);a. b, 8)= 2 Y gt g gt
Ferlilry] ke #{s, S}

s o s—1—cutf+n
- Y g fbﬂ(f:g,(f)[ ]

re#Tin] n
s—1—m+n .
= I EACCTARCE
mz0

By shifting the index s to {s+ 1) in (4.3) and by using the first of the two
facts (see [2, p. 36]) listed in

(a) Ga) =Y [”“} ”

sz0 5
il (4.4)
n
(b) o= (0| e
520
it is not difficult to verify that (4.3) is equivalent to-
Y M) ¢ by g) = (5g), 0 SUEE) 6 g, b, 8): (4.5)

yz=0

Multiplying both sides of (4.5) by X' and then summing over i(r)=0
leads to

TIae i(r)
y SUNLGLETI_ 5 5 xOM, )0 b 8 (46)

{1 =0 (5 q)nvt 20 ir)zb

Finally, Theorem (1.1) follows immediately from (4.6) together with
Lemma 2.1

5. ExpLiCIT FORMULAS

As corollaries of Theorem 1.1, explicit formulas for the g-solution of the
BSNP and for the distribution of the scs statistic on &[i(r)] may be
obtained. To do this, first note that (4.4} can be used to expand the
product

TT (—gxes ads i1 (Bxis ) (5.1)
k=1
into the form
SOXO ] Es, ik g, b, 8) (5.2)
itry=0 k=1



where, by definition,
i = 5 [ e et 63
[VE =Y

By inserting {5.2) into (1.9} and then by extracting the coefficients of X
from (1.9), one obtains the following corollary:

COROLLARY 5.1.  The explicit solution for the BSNP is given by

v

S(I(J); !’ Q’ bs g) = (f, Q')n+| Z t.‘- H E(S, rka q, bs g]: [54)

yz=0 k=
where E(s, iy; ¢, b, g) is defined in (5.3).

In order to express the formula for the distribution of scs in a compact
form, let

[.”, ] = [n 1YL LD (5.5)
i(r)

To derive the formula of this distribution, first note that setting r:=11ina
series of the form

Foy=(1=1) Y f.ff (5.6)

s=0

gives, provided that f,, converges, F{1)=1lim f,. Then, by restricting ¢ so
that 0 < |g] <1 and using the identity

(q;q), =1 =)' [n]L (57)

one is led through some tedious calculations to the fact that

COROLLARY 5.2. The distribution of scs on S Li(r)] is given by

S(t'(f‘);l,q,b,g):[i.g_)}f[ ) [jﬂq'”_”"zbi‘“’g’. (5.8)

k=1 0</i<iy

Of course, formulas for the distribution of scs in the special cases
corresponding to the CSNP and the RSNP may be obtained immediately
from (5.8). Respectively, we have

(a) (i) 1, ) = L(”J

(b) R(i(r); ]’Q):L(Y;-)] T g 2

k=1

(5.9)



where C(i(r); 1, ¢) and R(i(r); 1, q) are defined in (1.10) and (1.12). As
previously mentioned, in the case of the CSNP the statistic scs reduces to
the classic slatistic known as the major index which was first introduced by
MacMahon [11]. In fact, identity (5.94) is due to MacMahon.

It is worth noting, as suggested by the referce, that (5.9b) may be easily
derived from {59a) in a bijective manner. To a blue sequence
f=/F(1) f(2)-+- f(n) associate the scquence h=~h{1)h(2)---h(n), where
cach (k) is green and, numerically, i(k)=r+1— f{k). The obvious fact
that Cut =11, 2, .., n— 1 }\Cut f implies that

R(;(?)’ 1, q) :=Z qscsh: q(g) z (q ~ ])Scsf
A !

Identity (5.9b) then [ollows from (5.9a), (5.10), and a few simple calcula-
tions.

6. FURTHER VARIATIONS OF THE CSNP

The method developed in Sections 2, 3, and 4 may be extended to deal
with a variety of Simon Newcomb-iype problems. The first ol two examples
given in this section will be referred to as the “multicolored” Simon
Newcomb problem (MSNP) and can be stated as follows:

The MSNP. Supposc cach card in a deck of specification i(r) is either
one of u shades of blue {h,b,,..,b,} or one of v shades of green
{g., g2, £,}- The deck is to be shuffled and then dealt out into piles; a
new pile is begun only with

(0) the first card in the shuffle, or

(1) a card which is immediately preceded by one of greater face
value, or

(2) a card of color &, which is immecdiately preceded by a card with
equal face value of color b, where 1 < j<m<uy, or

(3) a card of color b; or g, which is immediately preceded by a card
with equal face value of color g,, where 1 <j<wuand | /<k<go

An occurrence of (1), (2), or (3) is referred to as a cut in the sequence of
cards. The problem is to determine how many shuffles have a given number
of cuts.

Note that if w:=1 and v:=1, then the MSNP reduces down to the
BSNP. Thus, there is no inconsistency in the way the term “cut” is used in
the two contexts. As already indicated, the MSNP may be solved by



generalizing the method used for the BSNP. Only a very rough sketch will
be given here.
Let M%[i(r)] denote the set of multicolored sequences f of the form

fi=7) f2)--- fn), (6.1)

where =i, +iy+ -+ +1i,, k appears i, times in f for ! <k <r, and each
letter f(k) is either a shade of blue b; or a shade of green g, After
appropriately extending definitions (1.3), (1.4), and (1.5), let

M%((ry1,q,B,G):= Y Vg BROG (6.2)

FeMF i)
where

13
BMO =[] pfAS)
N 4

J—=1

v
G = H g:{r(j)

{i=1

and f,{f) (resp. y,(f)) is cqual to the number of integers of shade b,
(resp. g/} in f.

The corresponding set of (rx s} “multicolored” matrices A = (a,,} with
row sum vector i(r) denoted by M.# [i(r); s] has entries of the form

Ay o= (1, M3, ey LG Pis Pasoos Pehs (6.3)

where m; for 1< j<u may be any non-negative integer and p, for 1 </<v
may be either 0 or 1. The entry m1, (resp. p;) can be thought of as being the
color b, (resp. g,)-

The encoding I in the context of the MSNP will be the same except for
one alteration: If @, is of the form given in (6.3), then in the scanning
process we associate to a,, the sequences A, and f,, each of length
(my+m,+ --- +m,+p+ p.+ -+ + p,) respectively defined by

(a) By =1

(6.4)
(b) i = ATAT AR RS R

2

where a symbol of the form «/ denotes j copics of & and the notation £;
(resp. k,)} signifies an integer & of color b, (resp. g,).

It is left as an exercise to properly extend the lemmas in Sections 2 and
3 and then to prove that the g-solution of the MSNP is given by the
following theorem:



THEOREM 6.1. The exponential generating function for the polynomial
defined in (6.2) is

2.

M (i(r); ¢, g, B, G) X7

i(r}=0 (5 G)n 31
_ Z 75 f[ (—&1 %3 G)s s 1(—82%p5 G)e v 1 (g Xk )51 (6.5)
x=0 k=t (blxk;Q)s+l(b2xk; g)5+1 “'(buxk;q}x—}-l ’

where n =1, +i,+ --+ +i,.

The second Simon Newcomb-type problem considered in this section
arises when the definition of the cut set is altered in such a way as to bound
the entries in the corresponding matrix by fixed positive integers. This
problem, referred to as the ASNP, will only be described for a single color.
The extension to the multicolored setting is not difficuit.

The ASNP. Let m be a fixed positive integer. A deck of specification i(r)
consisting of white cards is to be shuffled and then dealt out into piles; a
new pile is begun only with a card C which is immediately preceded by

(0) nothing, or
(1) a card of greater face value, or

(2) a consecutive run of m cards all having the same face value as C.

An occurrence of (1) or (2) is called a cut in the shuffle. The problem is to
determine how many shuffles have a given number of cuts.

For the ASNP, the entries in the corresponding matrices are non-
negative integers bounded by s and, thus, the exponential generating
function is equal to

11

S el IS g (6.6)

20 k=1 I=1 j—0

in which no parameter for color it utilized (or needed).

It is worth noting that when #1 :=1 that the ASNP is equivalent to the
RSNP and (6.6) reduces to the right-hand side of (1.13). Also, the limiting
case as m1 — o of the ASNP is just the CSNP.
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