GUIDE TO ACADEMIC PROGRAMS

AERONAUTICAL ENGINEERING B.S., 119.
AGRICULTURE M.S., 58.
 (Soil Conservation, International Agriculture, General Agricultural Sciences)
AGRICULTURAL BUSINESS MANAGEMENT B.S., 66.
AGRICULTURAL ENGINEERING B.S., 62.
 (Power and Machinery, Soil and Water)
ANIMAL SCIENCE B.S., 69.
ARCHITECTURE B.Arch., 88.
ARCHITECTURAL ENGINEERING B.S., 91.
BIOCHEMISTRY B.S., 164.
BIOLOGICAL SCIENCES B.S., 159.
 (Biology, Botany, Field Biology, Marine Biology, Medical Laboratory Technology, Microbiology, Plant Pathology-Entomology, Zoology)
BIOLOGICAL SCIENCES M.S., 161.
BUSINESS ADMINISTRATION B.S., 93.
 (Accounting, Finance and Property Management, Industrial Relations, Management, Marketing, Economics)
BUSINESS ADMINISTRATION M.B.A., 94.
CHEMISTRY B.S., 162.
CHILD DEVELOPMENT B.S., 145.
CITY AND REGIONAL PLANNING B.S., 92.
COMPUTER SCIENCE B.S., 165.
CROPS SCIENCE B.S., 71.
 (Agronomy, Plant Protection, Vegetable Crop Production)
DAIRY B.S., 74.
 (Husbandry, Manufacturing)
EDUCATION M.A., 147
 (Agriculture, Education, Physical Sciences, Social Sciences)
ELECTRICAL ENGINEERING B.S., 121.
ELECTRONIC ENGINEERING B.S., 123
ENGINEERING M.Eng., 118.
ENGINEERING TECHNOLOGY B.S., 125.
 (Air Conditioning-Refrigeration, Electronic, Manufacturing Processes, Mechanical, Welding)
ENGLISH B.A., 103.
ENGLISH M.A., 104.
ENVIRONMENTAL ENGINEERING B.S., 129.
 (Air Pollution Control, Air Conditioning-Refrigeration)
FARM MANAGEMENT B.S., 66.
FOOD PROCESSING B.S., 76.
 (Management, Meats)
FRUIT SCIENCE B.S., 71.
HISTORY B.A., 108.
HOME ECONOMICS B.S., 150.
 (Home Economics Education, Food Administration—Dietetics)
HOME ECONOMICS M.S., 150.
INDUSTRIAL ENGINEERING B.S., 131.
INDUSTRIAL TECHNOLOGY B.S., 133.
 (Industrial Sales and Technology, Industrial Education)
JOURNALISM B.S., 109.
 (Agricultural, Broadcast Media, Community, Business and Industrial, Home Economics, Public Relations Advertising, Photojournalism)
MATHEMATICS B.S., 167.
 (Applied Mathematics, Mathematics Teaching, Computer Sciences, Statistics)
MATHEMATICS M.S., M.A., 169.
MECHANICAL ENGINEERING B.S., 136.
MECHANIZED AGRICULTURE B.S., 62.
 (Management and Sales, Manufacturing, Service and Teaching)
METALLURGICAL ENGINEERING B.S., 140.
NATURAL RESOURCES MANAGEMENT B.S., 85.
ORNAMENTAL HORTICULTURE B.S., 79.
PHYSICAL EDUCATION B.S., 153.
PHYSICAL EDUCATION M.S., 155.
PHYSICS B.S., 172.
Poultry Industry B.S., 81.
PRINTING TECHNOLOGY AND MANAGEMENT B.S., 106.
 (Printing Management, Printing Education)
SOCIAL SCIENCES B.S., 98.
 (Social Services, Social Sciences, Government Service)
SOIL SCIENCE B.S., 83.
SPEECH B.A., 113.
TRANSPORTATION ENGINEERING B.S., 138.
TABLE OF CONTENTS

ACADEMIC CALENDAR, 4.

THE CALIFORNIA STATE COLLEGES, 7.

GENERAL INFORMATION, 11.
Education at Cal Poly, 13. The Campus, 14.
Special Instructional Services, 16.

ADMISSIONS AND REGISTRATION, 19.
Changes in Curriculum, 25.

DEGREES AND SCHOLASTIC REQUIREMENTS, 27.
Teacher Preparation Programs, 33. Academic Policies, 34.

STUDENT ACTIVITIES AND SERVICES, 39.
Student Activities, 40. Student Services, 41.

SCHOOL OF AGRICULTURE AND NATURAL RESOURCES, 55.
Agricultural Education Department, 61. Agricultural Engineering Department, 62.
Agricultural Management Department, 66. Animal Science Department, 69.
Crops Science Department, 71. Dairy Science Department, 74. Food Industries Department, 76.
Ornamental Horticulture Department, 79. Poultry Industry Department, 81. Soil Science Department, 83.
Veterinary Science Department, 86.

SCHOOL OF ARCHITECTURE AND ENVIRONMENTAL DESIGN, 87.

SCHOOL OF BUSINESS AND SOCIAL SCIENCES, 93.
Business Administration Department, 94. Economics Department, 97.
Social Sciences Department, 98.

SCHOOL OF COMMUNICATIVE ARTS AND HUMANITIES, 101.
Art Department, 102. English Department, 103. Foreign Language and Linguistics Department, 105.
Graphic Communications Department, 106. History Department, 108. Journalism Department, 109.
Music Department, 112. Philosophy Department, 112. Speech Department, 113.

SCHOOL OF ENGINEERING AND TECHNOLOGY, 115.
Aeronautical Engineering Department, 119. Electrical Engineering Department, 121.
Electronic Engineering Department, 123. Engineering Technology Department, 126.
Environmental Engineering Department, 129. Industrial Engineering Department, 131.
Industrial Technology Department, 133. Mechanical Engineering Department, 136.
Transportation Engineering Department, 138. Welding and Metallurgical Department, 140.

SCHOOL OF HUMAN DEVELOPMENT AND EDUCATION, 143.
Child Development Department, 145. Education Department, 147.
Psychology Department, 156.

SCHOOL OF SCIENCE AND MATHEMATICS, 157.
Biological Sciences Department, 159. Chemistry Department, 162. Computer Science and Statistics Department, 165.
Mathematics Department, 167. Military Science Department, 170.
Physics Department, 172.

COURSES OF INSTRUCTION, 175.

DIRECTORIES, 329.
Faculty and Staff, 335. Index, 408.
ACADEMIC CALENDAR—1970-71

1970

<table>
<thead>
<tr>
<th>JUNE</th>
<th>JULY</th>
<th>AUGUST</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T F S</td>
<td>S M T W T F S</td>
<td>S M T W T F S</td>
</tr>
<tr>
<td>1 2 3 4 5 6</td>
<td>1 2 3 4</td>
<td>1</td>
</tr>
<tr>
<td>7 8 9 10 11 12 13</td>
<td>6 7 8 9 10 11</td>
<td>2 3 4 5 6 7</td>
</tr>
<tr>
<td>14 15 16 17 18 19 20</td>
<td>12 13 14 15 16 17 18</td>
<td>9 10 11 12 13 14 15</td>
</tr>
<tr>
<td>21 22 23 24 25 26 27</td>
<td>19 20 21 22 23 24 25</td>
<td>16 17 18 19 20 21 22</td>
</tr>
<tr>
<td>28 29 30</td>
<td>26 27 28 29 30 31</td>
<td>23 24 25 26 27 28 29</td>
</tr>
</tbody>
</table>

SEPTEMBER

<table>
<thead>
<tr>
<th>S M T W T F S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>13 14 15 16 17 18 19</td>
</tr>
<tr>
<td>20 21 22 23 24 25 26</td>
</tr>
<tr>
<td>27 28 29 30</td>
</tr>
</tbody>
</table>

Summer Quarter, 1970

June 15............... Registration of all students. Beginning of college year. Beginning of summer quarter.
June 16............... Summer quarter classes begin.
June 23............... Last day to enroll for summer quarter. Last day to add courses.
June 30............... Last day to withdraw from classes without penalty.

August 4............... End of seventh week.
August 24-27.......... Final examinations.
August 27............... End of summer quarter.
August 28-September 13... Academic holiday.

Fee-Supported Summer Sessions, 1970

<table>
<thead>
<tr>
<th>First Session</th>
<th>Second Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 22</td>
<td>July 20</td>
</tr>
<tr>
<td>June 23</td>
<td>July 21</td>
</tr>
<tr>
<td>June 24</td>
<td>July 22</td>
</tr>
<tr>
<td>June 25</td>
<td>July 23</td>
</tr>
<tr>
<td>July 4</td>
<td></td>
</tr>
<tr>
<td>July 17</td>
<td>August 14</td>
</tr>
</tbody>
</table>

Final examinations to be held during the last day of classes.

Fall Quarter, 1970

September 14.............. Beginning of fall quarter for faculty.
September 16.............. Registration of new students.
September 18.............. Registration of continuing and returning students.
September 21.............. Fall quarter classes begin.
September 28.............. Last day to enroll for fall quarter.
Last day to add courses.
October 5. Last day to withdraw from classes without penalty.
November 9. End of seventh week.
November 11. Veteran's Day—academic holiday.
December 7-10. Final examinations.
December 10. End of fall quarter.

January 3. Christmas—academic holiday.

Winter Quarter, 1971

January 4. Beginning of winter quarter.
January 4-5. Registration of all students.
January 6. Winter quarter classes begin.
January 13. Last day to enroll for winter quarter.
January 20. Last day to add courses.
February 24. End of seventh week.
March 15-18. Final examinations.
March 18. End of winter quarter.

Spring Quarter, 1971

March 25. Beginning of spring quarter.
March 25-26. Registration of all students.
March 29. Spring quarter classes begin for all students.
April 3. Last day to enroll for spring quarter.
April 9. Good Friday—academic holiday begins at 12 noon.
April 12. Last day to withdraw from classes without penalty.
April 23. Last day to apply for June commencement.
Tentative Summer Quarter, 1971

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>M</th>
<th>T</th>
<th>W</th>
<th>T</th>
<th>F</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>JULY</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>AUGUST</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

- **May 17**...End of seventh week.
- **May 31**...Memorial Day—academic holiday.
- **June 8–11**...Final examinations.
- **June 12**...Commencement. End of spring quarter. End of college year for faculty.
- **June 13–July 5**...Academic holiday.

Fee-Supported Summer Sessions, 1971

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>M</th>
<th>T</th>
<th>W</th>
<th>T</th>
<th>F</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUNE</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>JUNE</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>JUNE</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>SEPTEMBER</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

First Session
- **June 21**...Registration for all students. Beginning of summer quarter.
- **June 22**...Summer quarter classes begin.
- **June 23**...Last day to enroll for summer quarter. Last day to add courses.
- **June 24**...Last day to withdraw from classes without penalty.
- **August 24**...End of seventh week.

Second Session
- **September 6**...Labor Day—academic holiday.
- **September 9**...Admission Day—academic holiday.
- **September 15-18**...Final examinations.
- **September 18**...End of summer quarter.

Fee-Supported Summer Sessions, 1971

- **June 14**...Pre-session.
- **June 18**...Registration for all students.
- **June 21**...Summer Sessions classes begin.
- **June 22**...Last day to enroll for 1-week term.
- **June 23**...Last day to enroll for 2-week term.
- **June 24**...Last day to enroll for 4-week term.
- **June 25**...End of 1-week term.
- **July 2**...End of 2-week term.
- **July 16**...End of 4-week term.

Final examinations to be held during the last day of classes.
THE CALIFORNIA STATE COLLEGES

The 19 California State Colleges, from Humboldt County in the north to San Diego in the south, comprise the largest system of public higher education in the Western hemisphere and one of the largest in the world. Current enrollment exceeds 227,000 full- and part-time students who are served by a faculty that numbers approximately 13,000.

Although San Jose State College, the oldest, was founded over a century ago, the California State Colleges were not drawn together as a system under an independent Board of Trustees until after passage of the Donahoe Higher Education Act by the Legislature in 1960.

Responsibility for the California State Colleges is vested in the Board of Trustees, whose members are appointed by the Governor. The Chancellor is the administrative officer of the Trustees. Together, the Trustees and the Chancellor set broad policy, while delegating responsibility for implementation to the colleges. The Academic Senate of the California State Colleges, consisting of elected representatives of the faculty at each college, recommends academic policy to the Board of Trustees through the Chancellor.

Each college in the system has a curricular character of its own. Programs leading to the bachelor's and master's degrees, as well as a limited number of joint doctorates, are master planned to anticipate and accommodate student interest and the educational and professional needs of the State of California. The primary responsibility of the faculty is the instructional process, with increasing recognition of the importance of the role of research as a necessary concomitant to high quality teaching.

The California State Colleges are now in the most dynamic period of their development. Prior to World War II, there were seven State Colleges with a peak total enrollment of 13,000. Since 1947, twelve new colleges have been established and sites have been selected for new campuses in Ventura, San Mateo, and Contra Costa counties. California State College, Bakersfield, will open its doors to students for the first time this year. Enrollment in the system is expected to go beyond 400,000 by 1980.
ADMINISTRATION, CALIFORNIA STATE COLLEGES

EX OFFICIO TRUSTEES

Ronald Reagan, B.A. State Capitol, Sacramento 95814
Governor of California and President of the Trustees
Ed Reinecke, B.S. State Capitol, Sacramento 95814
Lieutenant Governor of California
Robert T. Monagan, B.A. State Capitol, Sacramento 95814
Speaker of the Assembly
Max Rafferty, A.B., M.A., Ed.D. 721 Capitol Mall, Sacramento 95814
State Superintendent of Public Instruction
Glenn S. Dumke, A.B., M.A., Ph.D., LL.D., L.H.D. 5670 Wilshire Blvd.,
Chancellor of the California State Colleges Los Angeles 90036

APPOINTED TRUSTEES

Appointments are for a term of eight years and expire March 1 of the years indicated in parentheses. Names are listed in order of accession to the board.

Theodore Meriam, A.B. (1971) P.O. Box 370, Chico 95926
Albert J. Ruffo, LL.B., B.S. in E.E. (1971) 675 N. First Street, Suite 1200, San Jose 95112
Mrs. Philip Conley, B.A. (1972) 3729 Huntington Blvd., Fresno 93702
E. Guy Warren, B.A. (1973) P.O. Box 59, Hayward 94541
Daniel H. Ridder, B.A. (1975) 604 Pine Ave., Long Beach 90801
George D. Hart, A.B. (1975) 111 Sutter St., San Francisco 94104
Alec L. Cory, B.A., LL.B. (1973) 530 B St., Suite 1900, San Diego 92101
Edward O. Lee, B.A. (1974) 610 16th St., Rm 420, Oakland 94612
Dudley Swim, A.B., M.A. (1976) Rt. 2, Box 5000, Carmel 93924
Karl L. Wente, M.S. (1976) 5565 Tesla Rd., Livermore 94550
E. Litton Bivans (1977) 2431 Dallas St., Los Angeles 90031
William O. Weissich, B.S., J.D. (1977) 1299 Fourth St., San Rafael 94901
Robert A. Hornby, LL.D. (1978) P.O. Box 60443, T.A. Los Angeles 90060
Phillip V. Sanchez, A.B., M.A. (1978) 1015 E. Alluvial St., Fresno 93726

OFFICERS OF THE TRUSTEES

Governor Ronald Reagan
President
E. Guy Warren
Chairman
Alec L. Cory
Vice-Chairman
Chancellor Glenn S. Dumke
Secretary-Treasurer

5670 Wilshire Boulevard
The California State Colleges Los Angeles, California 90036
<table>
<thead>
<tr>
<th>College Name</th>
<th>President/Acting President</th>
<th>Address</th>
<th>Zip Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Jose State College (1857)</td>
<td>Robert E. Hill</td>
<td>5402 College Avenue, San Diego, California</td>
<td>92115</td>
</tr>
<tr>
<td>San Francisco State College (1899)</td>
<td>S. I. Hayakawa</td>
<td>1600 Holloway Avenue, San Francisco, California</td>
<td>94132</td>
</tr>
<tr>
<td>California State Polytechnic College (1901)</td>
<td>Robert E. Kennedy</td>
<td>3801 West Temple Avenue, Pomona, California</td>
<td>91766</td>
</tr>
<tr>
<td>California State College, Los Angeles (1947)</td>
<td>John A. Greenlee</td>
<td>5151 State College Drive, Los Angeles, California</td>
<td>90032</td>
</tr>
<tr>
<td>Sacramento State College (1947)</td>
<td>Bernard L. Hyink</td>
<td>6000 Jay Street, Sacramento, California</td>
<td>95819</td>
</tr>
<tr>
<td>California State College, Long Beach (1949)</td>
<td>Stephen Horn</td>
<td>6101 East 7th Street, Long Beach, California</td>
<td>90801</td>
</tr>
<tr>
<td>California State College, Fullerton (1957)</td>
<td>William B. Langsdorf</td>
<td>800 North State College Boulevard, Fullerton, California</td>
<td>92631</td>
</tr>
<tr>
<td>California State College, Hayward (1957)</td>
<td>Ellis E. McCune</td>
<td>25800 Hillary Street, Hayward, California</td>
<td>94542</td>
</tr>
<tr>
<td>San Fernando Valley State College (1958)</td>
<td>James W. Cleary</td>
<td>18111 Nordhoff Street, Northridge, California</td>
<td>91324</td>
</tr>
<tr>
<td>Stanislaus State College (1959)</td>
<td>Carl Gatlin</td>
<td>800 Monte Vista Avenue, Turlock, California</td>
<td>95380</td>
</tr>
<tr>
<td>Sonoma State College (1960)</td>
<td>Ambrose R. Nichols</td>
<td>1801 East Cotati Avenue, Rohnert Park, California</td>
<td>94928</td>
</tr>
<tr>
<td>California State College, Dominguez Hills (1960)</td>
<td>Leo F. Cain</td>
<td>1000 E. Victoria Street, Dominguez Hills, California</td>
<td>90247</td>
</tr>
<tr>
<td>California State College, San Bernardino (1960)</td>
<td>John M. Pfau</td>
<td>5500 State College Parkway, San Bernardino, California</td>
<td>92407</td>
</tr>
<tr>
<td>California State College, Bakersfield (1967)</td>
<td>Paul F. Romberg</td>
<td>615 California Avenue, Bakersfield, California</td>
<td>93304</td>
</tr>
</tbody>
</table>
GENERAL INFORMATION
<table>
<thead>
<tr>
<th>Major Curriculum</th>
<th>Men</th>
<th>Women</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Agriculture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ag. Business Management</td>
<td>375</td>
<td>53</td>
<td>428</td>
</tr>
<tr>
<td>Ag. Engineering</td>
<td>78</td>
<td>1</td>
<td>79</td>
</tr>
<tr>
<td>Animal Husbandry</td>
<td>347</td>
<td>137</td>
<td>484</td>
</tr>
<tr>
<td>Crops</td>
<td>109</td>
<td>4</td>
<td>113</td>
</tr>
<tr>
<td>Dairy</td>
<td>100</td>
<td>6</td>
<td>106</td>
</tr>
<tr>
<td>Farm Management</td>
<td>143</td>
<td>3</td>
<td>146</td>
</tr>
<tr>
<td>Food Processing</td>
<td>53</td>
<td>16</td>
<td>69</td>
</tr>
<tr>
<td>Fruit Production</td>
<td>33</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>Mechanized Ag.</td>
<td>129</td>
<td>1</td>
<td>130</td>
</tr>
<tr>
<td>Natural Resources Mgt.</td>
<td>79</td>
<td>9</td>
<td>88</td>
</tr>
<tr>
<td>Ornamental Horticulture</td>
<td>151</td>
<td>43</td>
<td>194</td>
</tr>
<tr>
<td>Poultry Industry</td>
<td>43</td>
<td>2</td>
<td>45</td>
</tr>
<tr>
<td>Soil Science</td>
<td>69</td>
<td>12</td>
<td>81</td>
</tr>
<tr>
<td>Totals</td>
<td>1,709</td>
<td>290</td>
<td>1,999</td>
</tr>
<tr>
<td>School of Applied Arts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business Administration</td>
<td>661</td>
<td>142</td>
<td>803</td>
</tr>
<tr>
<td>Child Development</td>
<td>2</td>
<td>193</td>
<td>195</td>
</tr>
<tr>
<td>English</td>
<td>59</td>
<td>345</td>
<td>404</td>
</tr>
<tr>
<td>Home Economics</td>
<td>4</td>
<td>717</td>
<td>721</td>
</tr>
<tr>
<td>Journalism</td>
<td>57</td>
<td>81</td>
<td>138</td>
</tr>
<tr>
<td>Physical Education</td>
<td>248</td>
<td>153</td>
<td>401</td>
</tr>
<tr>
<td>Printing</td>
<td>143</td>
<td>7</td>
<td>150</td>
</tr>
<tr>
<td>Speech</td>
<td>13</td>
<td>21</td>
<td>34</td>
</tr>
<tr>
<td>Totals</td>
<td>1,187</td>
<td>1,639</td>
<td>2,826</td>
</tr>
<tr>
<td>School of Applied Sciences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry</td>
<td>49</td>
<td>22</td>
<td>71</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>233</td>
<td>162</td>
<td>395</td>
</tr>
<tr>
<td>Chemistry</td>
<td>61</td>
<td>14</td>
<td>75</td>
</tr>
<tr>
<td>Computer Science</td>
<td>61</td>
<td>9</td>
<td>70</td>
</tr>
<tr>
<td>History</td>
<td>67</td>
<td>86</td>
<td>153</td>
</tr>
<tr>
<td>Mathematics</td>
<td>312</td>
<td>129</td>
<td>441</td>
</tr>
<tr>
<td>Physics</td>
<td>75</td>
<td>7</td>
<td>82</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>215</td>
<td>520</td>
<td>735</td>
</tr>
<tr>
<td>Totals</td>
<td>1,073</td>
<td>949</td>
<td>2,022</td>
</tr>
<tr>
<td>School of Architecture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Architecture</td>
<td>1,208</td>
<td>40</td>
<td>1,248</td>
</tr>
<tr>
<td>Architectural Engineering</td>
<td>102</td>
<td>0</td>
<td>102</td>
</tr>
<tr>
<td>City-Regional Planning</td>
<td>59</td>
<td>4</td>
<td>63</td>
</tr>
<tr>
<td>Totals</td>
<td>1,369</td>
<td>44</td>
<td>1,413</td>
</tr>
<tr>
<td>School of Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeronautical</td>
<td>334</td>
<td>2</td>
<td>336</td>
</tr>
<tr>
<td>Electrical</td>
<td>138</td>
<td>1</td>
<td>139</td>
</tr>
<tr>
<td>Electronic</td>
<td>621</td>
<td>5</td>
<td>626</td>
</tr>
<tr>
<td>Engineering Technology</td>
<td>144</td>
<td>1</td>
<td>145</td>
</tr>
<tr>
<td>Environmental</td>
<td>118</td>
<td>4</td>
<td>122</td>
</tr>
<tr>
<td>Industrial</td>
<td>110</td>
<td>1</td>
<td>111</td>
</tr>
<tr>
<td>Industrial Technology</td>
<td>348</td>
<td>4</td>
<td>352</td>
</tr>
<tr>
<td>Mechanical</td>
<td>380</td>
<td>0</td>
<td>386</td>
</tr>
<tr>
<td>Metallurgical</td>
<td>51</td>
<td>0</td>
<td>51</td>
</tr>
<tr>
<td>Totals</td>
<td>2,250</td>
<td>18</td>
<td>2,268</td>
</tr>
<tr>
<td>Graduates</td>
<td>411</td>
<td>340</td>
<td>751</td>
</tr>
<tr>
<td>College totals</td>
<td>7,999</td>
<td>3,280</td>
<td>11,279</td>
</tr>
</tbody>
</table>
EDUCATION AT CAL POLY

As one of the 19 colleges in the State College System, California State Polytechnic College, San Luis Obispo, offers educational programs in agriculture, applied arts, applied sciences, architecture, engineering, and preparation for elementary and secondary school teaching. Historically, Cal Poly's method of education and dedication to occupational-centered curricula has created for the College a distinctive role in higher education in California. The College is particularly noted for its emphasis on agriculture, business, engineering, and home economics, together with the closely-related supporting fields of natural sciences, physical sciences, and mathematics.

Although the basic purpose of the College is to prepare students to meet the requirements of specific occupations, it is also dedicated to helping the individual to achieve his or her maximum personal development. Each student pursues a program of required general education courses, and through an extensive co-curricular program receives an opportunity to combine specialized instruction with preparation for citizenship, leadership, and constructive community living. Students are also encouraged to obtain actual experience through individual and group projects, work-study programs, and internships. Faculty members, who are selected on the basis of academic qualifications, professional experience, and teaching ability, are encouraged to maintain a constant interplay between general principles and practical applications in all instruction, whether in the laboratory, classroom or field study.

In each program in the College, the student begins work in the major field of his choice during the freshman year. A concurrent sequence of general education and elective courses assists the student in relating this chosen area of study to other fields of knowledge. Practical educational experiences in the major field prepare the student for specific occupations and professions or advanced study. Additional details of curricula appear in the sections describing each school and department. Student and faculty participation in the development and improvement of both curricular and co-curricular programs characterizes the College's mode of operation.

HISTORICAL DEVELOPMENT

California State Polytechnic College began with the establishment in 1901 by the State Legislature of a vocational high school at San Luis Obispo. The institution served as a forerunner in vocational education for agriculture and industry in California. In 1921 its Board of Trustees was dissolved and the State Board of Education administered the school until July 1, 1961 when administration passed to the Trustees of the California State Colleges.

Cal Poly began offering junior college courses in 1927, and became a two- and three-year institution in 1933. In 1936 a degree transfer program was added, and in 1940 the first bachelor of science degrees were authorized.

The first baccalaureate exercises were held in 1942. Approval to grant the master of arts degree in education was received in 1949, and to grant the master of science degree in 1967.

From 1933 until his retirement in 1966, the late Dr. Julian A. McPhee was chief administrator of Cal Poly. On May 1, 1967 the Trustees of the California State Colleges named Dr. Robert E. Kennedy as president of Cal Poly.

Approximately 12,000 students are enrolled in the College in some 50 academic programs. Included are men and women students from 58 California counties, 42 of the 50 states, and 65 foreign countries.

The future growth of the College to an enrollment in excess of 12,000 is provided for by master plans for both academic and physical development approved by the Trustees. Support of the College by the people of California through the Legislature and the Trustees insures the continuation of a distinctive polytechnic program in higher education.
THE CAMPUS

The Cal Poly campus consists of over 5,000 acres adjacent to San Luis Obispo, a community of 30,000 located on U.S. Highway 101, midway between San Francisco and Los Angeles, and 12 miles from the beaches and marine facilities of California's Central Coast.

Due to the varied nature of the College's curricula, instructional facilities are diverse and suited to the up-to-date demands of modern technology. In addition to faculty offices, classrooms, and laboratories for instructional use, the College is served by several specialized facilities, particularly in agriculture, architecture, engineering, and the sciences.

Cal Poly has long been known as a friendly college which welcomes visitors to its campus. Maps suitable for a self-conducted tour are available from the information desk of the Administration Building for interested prospective students and parents and others. In addition, the College provides three educational tours for which printed guides are available. These include a campus tree walk, dairy tour, and a tour of the unique Shakespeare Press Museum. Arrangements for group visits to the campus may be made by contacting the Director, Information Services and/or the office of the dean of the respective academic school.

INSTRUCTIONAL FACILITIES

The outstanding agricultural programs of the College utilize such facilities as the Alan A. Erhart Agriculture building (which includes modern laboratories for animal husbandry, accounting, crops, dairy, farm management, and ornamental horticulture); several Agricultural Engineering shops (including farm mechanics, farm machinery, farm power, hydrology, rural electricity); the Food Processing building (which includes a creamery, meat laboratory, canning and freezing laboratories, and an instructional retail facility); soil science and veterinary science laboratories in the Science building; and an unexcelled complex of agricultural production units which are utilized instructionally in the College's student enterprise projects.

These agricultural units include a beef unit with feeding barns; 3800 acres of cattle range and pasture; a judging pavilion; a complete feed mill with storage facilities; a crops unit which includes washing, crating, and packing areas; and 750 acres of vegetable and field crops plus 30 acres of fruit and vine crops. Dairy unit includes a milking barn, feed barns, judging pavilion, and a complete creamery. In addition, a student project unit provides for 80 head of student-owned dairy project cattle. The horse unit includes barns, paddocks, and pasture for thoroughbred and quarter horses. A recently completed ornamental horticulture unit provides the most modern propagation and instructional facilities of their kind in the nation. Additional agricultural units are utilized instructionally for sheep, swine, and poultry production.

The instructional philosophy of the college as reflected in the extensive and modern agricultural facilities has also been incorporated in programs of engineering and technology, science, mathematics, graphic communications, physical education, home economics, and other areas in which Cal Poly has developed a reputation for excellence. These include laboratories for all phases of engineering such as aeronautical, electronic, environmental and industrial, mechanical, welding technology, and engineering technology.

A new computer science building provides computer capabilities for all instructional programs, particularly those in engineering, science, and mathematics. Two large science buildings provide fully equipped laboratories devoted to instruction in bacteriology, botany, chemistry, entomology, marine biology, microbiology, physics, plant pathology, and zoology.

Individual drafting and study cubicles in architectural laboratories give a distinctive appearance to new drafting classrooms as well as to some of the college's historical buildings which have been remodeled by the students themselves to provide design facilities in the School of Architecture and Environmental Design.

In addition to a 500-seat theater, a language laboratory, home economics and child development laboratories, college facilities include a live-in home management house. The graphic arts building, which houses the journalism program,
student newspaper, and radio station, includes the graphic communications department which ranges from the unique Shakespeare Press Museum to the most modern computer typesetting equipment for printing instruction.

The physical education facilities of the college are extensive. The men's gymnasium provides boxing, wrestling, and gymnastic rooms in addition to the main floor which contains three full-length cross-court basketball courts and seats 4,000 persons for athletic contests. Handball and tennis courts are adjacent to the gymnasium, along with a large playing field area for intramural sports and physical education classes. Two heated swimming pools are used both for physical education classes and for varsity water polo and swimming. The football stadium has a grandstand and bleachers seating 5,500 persons. There is also a spacious baseball field with permanent seating, and a 9-lane all-weather quarter-mile track. There is also a women's physical education building utilized for minor sports as well as for special women's physical education requirements.

The College's new four-story Administration building, Julian A. McPhee College Union, and Library serve all college personnel. A library addition, completed in 1962, more than doubled the size of the Walter F. Dexter Library. The enlarged facility offers 1,650 reader stations and book storage space for 150,000 volumes on four floors of stacks. Group study rooms, faculty reading room, typing rooms, a large curriculum library, and a browsing area for recreational reading are provided. Bookstacks throughout the Library are open to all readers, and professionally-trained librarians assist students and faculty in the use of library materials.

STUDENT SERVICES FACILITIES

On-campus Housing

Approximately 2,150 students are housed in twelve permanent residence halls. About one-third of these spaces are for women students. The newer halls provide space for study areas, recreation, television lounges, and laundry facilities.

Family Housing

The Housing Office maintains lists of available apartments, houses, and facilities in the area suitable for married students.

Dining Hall

A modern dining hall provides a variety of food services consisting of complete meals, an a la carte cafeteria, a snack bar, and vending service.

Health Center

The student Health Center is a well-equipped clinic and infirmary.

College Union

The Julian A. McPhee College Union is the center of campus social, cultural, and recreational activities. It includes restful lounges, conference and work rooms, student council chambers, program planning offices, billiards and bowling, craft shops, and food service. It also adjoins the new El Corral Bookstore and post office.

ACCREDITATION

The College is fully approved as a four-year degree-granting institution by the Western Association of Schools and Colleges (formerly Western College Association). In addition the College holds associate membership in the Northwest Association of Secondary and Higher Schools.

The Chemistry Department is fully approved and accredited by the American Chemical Society and students completing the appropriate curriculum are eligible for certification by the Society. The five-year curriculum leading to the Bachelor of Architecture degree in the School of Architecture is fully accredited by the National Architectural Accrediting Board.

Five curricula in the School of Engineering and Technology are accredited by the Engineers Council for Professional Development. They are: Aeronautical Engineering, Electrical Engineering, Electronic Engineering, Industrial Engineering, and Mechanical Engineering.
Instructional Services

SPECIAL INSTRUCTIONAL SERVICES

INSERVICE TRAINING IN AGRICULTURE

The College plays an active role in the inservice training of teachers of vocational agriculture by providing instructional staff and facilities for workshops and training programs co-operatively sponsored by the College and the State Bureau of Agricultural Education.

The College provides an annual one-week summer skills program. The content varies, depending upon the needs and desires of the teachers as these are expressed through the Bureau of Agricultural Education. College staff members provide up-to-date training in the technical phases of agriculture and also contribute to the professional improvement of teachers by offering instruction in teaching methods.

The annual summer conference of the California Agricultural Teachers Association is held at the College with an attendance of 400-500 persons. Facilities, special speakers, exhibits, and other services are provided by the College.

SERVICES TO VOCATIONAL AGRICULTURE

Services to vocational agriculture departments in the secondary schools of California are provided by the College staff through such activities as: visiting vocational agriculture departments to discuss with teachers and students dairy, animal husbandry, deciduous and citrus fruits, field and truck crops, poultry, farm mechanics, farm management, and other problems; writing for agricultural magazines; assisting high school vocational agriculture departments to solve educational and agricultural problems through correspondence; judging of livestock, poultry, crops and other products at fairs; furnishing of breeding stock and hatching eggs to improve herds and flocks owned by Future Farmers throughout the State; and preparing a variety of teaching aids. These services are provided by the College through a co-operative arrangement with the Bureau of Agricultural Education.

Other services to vocational agriculture are rendered by the Instructional Materials Program sponsored by the College to create a variety of visual aids for educational use.

SUMMER SESSIONS

The summer sessions are designed to meet the needs of regularly enrolled and visiting students and of teachers and others who wish to improve their professional competence. The College conducts two four-week summer sessions and a one-week pre-session. The course offerings are broad, leading to various degrees and credentials, as well as providing for continuing professional development in many fields.

Admission to the summer sessions does not require completion of the matriculation process. Registration in the summer session does not insure the privilege of enrollment in one of the regular quarters. Graduate students should consult the Graduate Study Bulletin regarding requirements for classified status and applicability of credit toward their degree objectives.

The summer sessions are supported by fees collected from the students who enroll in the courses. There is no application fee for summer sessions. Requests for application forms, information on course offerings and regulations should be addressed to the Associate Dean, Continuing Education.

SHORT COURSE AND WORKSHOP PROGRAMS

The College makes its facilities and instructional staff available for programs of special design appropriate to its education objectives. These professional short courses, workshops and conferences have included such titles as: Physical Education Workshop; American Institute of Floral Design Symposium; American Society for Engineering Education Mid-Year Conference; American Association of Physics Teachers Regional Conference; Multi-County Workshop for Teachers of Migratory Children; California Nurserymen's Refresher Course, San Luis Obispo County Development Association Conference; FFA Conference; California Mathematics Council Conference.
EDUCATIONAL OPPORTUNITY PROGRAM

The college participates in the Educational Opportunity Program jointly sponsored by Federal and State agencies for residents of California. Designed to help minority and low income students obtain a college education, it provides financial assistance, tutoring, curriculum advisement, counseling, and vocational guidance services. This College's program is especially attractive to students interested in its vocational and technical departments. California State College entrance requirements may be waived for a limited number of high school graduates and college transfers. Agencies authorized to nominate students for the program include high schools, community colleges, the Veterans Administration, and certain State agencies. For more information contact the Educational Opportunity Program Office.

INTERNATIONAL EDUCATION

The College is involved in a number of International Education programs, both on-campus and overseas. In addition to participating in the California State College systemwide study abroad program, the College provides technical assistance overseas through a contractual relationship with the Agency for International Development, U.S. Department of State. The College has five such projects in four areas of the world, Guatemala, Thailand, Zambia (Central Africa) and Botswana, Lesotho and Swaziland (South Africa). The College also provides on-campus training to students from foreign countries through an AID participant training contract. During the 1969-70 year, the college initiated a Peace Corps Intern program for Thailand which provides senior and graduate students an opportunity to obtain their pre-Peace Corps training on campus while completing their degree requirements.

STUDY ABROAD

California State Polytechnic College students who qualify may participate in academic year programs of study at a number of distinguished universities abroad. In 1970-71 the cooperating universities are: University of Aix-Marseille, France; Free University of Berlin and University of Heidelberg, Germany; University of Ghana; The Hebrew University of Jerusalem and Tel Aviv University, Israel; University of Florence, Italy; Waseda University, Tokyo, Japan; University of Granada and University of Madrid, Spain; University of Stockholm and University of Uppsala, Sweden; National University, Taiwan. Academic work successfully completed at the cooperating universities abroad may be applied toward the degree requirements of the College in accordance with its regulations.

Students are selected on the basis of academic, linguistic and personal qualifications. The criteria are:

a) Upper division or graduate standing by the beginning of the academic year abroad;

b) Academic achievement;

c) Proficiency in the language of instruction;

d) Faculty recommendations.

Cost to the student includes round trip transportation from San Francisco to the host university, room and board for the academic year, and medical insurance. In 1970-71 these costs are: Colombia, France, Germany, Spain, $2,300; Ghana, Italy, Japan, Sweden, $2,500; Israel, Taiwan, $2,000. Payments may be scheduled throughout the year.

Programs in Ghana, Israel, Italy, Japan, Sweden and Taiwan do not require previous linguistic preparation; applicants for all other programs must demonstrate adequate facility in the language of instruction at the host university.

Application for the 1971-72 academic year should be made early in the Fall semester of 1970. Detailed information may be obtained at the office of the Dean of Students, or by writing to the Office of International Programs, The California State Colleges, 1600 Holloway Avenue, San Francisco, Calif. 94132.
THE FOUNDATION

In 1940 a nonprofit corporation known as the California State Polytechnic College Foundation was organized. With faculty and administrative personnel as directors, the foundation has assumed the responsibility for financing and recording the project operations, operating and managing the cafeterias and housing facilities, and providing other services to students.

The foundation operates under lease agreements made with the Trustees of the California State Colleges and approved by the State Department of Finance. The provisions of these leases define the activities of the foundation and the use of its funds. The accounts are audited by the Department of Finance.

Through the foundation there is available a revolving fund from which students may borrow to finance their projects. No cosigner is required for a student to borrow from the foundation, but he must present a working plan, a budget, and a signed contract with the foundation before starting a project. Each student contributes a share from his earnings towards the project fund. Any losses in student projects are covered by the foundation from the fund contributed by project operators.

Typical agricultural projects include: Fattening steers, lambs, or swine; raising and breeding cattle, both beef and dairy, for a start towards future herds; growing crop projects, such as tomatoes, sweet corn, hay, and sugar beets; raising poultry, both meat birds and laying hens, and operating the hatchery; growing and marketing ornamental horticulture projects.

Engineering departments also conduct group projects.

THE ALUMNI ASSOCIATION

California State Polytechnic College San Luis Obispo, is the official headquarters of the Alumni Association, comprised of almost 3,000 former students and graduates as life members of the Association and an additional 1,000 annual members. The governing board of the Association consists of 16 sectional directors who provide representation throughout the State of California. In addition to the board of directors, a president and two vice presidents elected from among the directors serve two-year terms. Vice presidents direct the activities of northern and southern regions of the state, respectively. Other officers are the secretary-treasurer and the alumni director.

The Alumni Association strives to work for the best interest of the College in areas needing support. In addition, the Association maintains a graduate mailing list and supports the College in publishing a bi-monthly newspaper for graduates and former students.

The Cal Poly Alumni Association also grants yearly scholarships to worthy students and provides a short term loan fund for those needing temporary assistance.
ADMISSION REQUIREMENTS

Admission to California State Polytechnic College is open to qualified graduates of any high school and to other applicants who, in the judgment of the appropriate college authorities, possess equivalent preparation. Admission is limited to those students for whom adequate staff and facilities are available.

Guidance tests which are completed by incoming students are a part of the registration procedure and are given for the purpose of providing information for the student, his departmental adviser, and the counseling center. The departmental adviser uses guidance test results to assist in determining the courses most suited to the student's needs. These tests are not entrance examinations.

At the time of admission to the College all students are accepted into a specific major field of study. To conform to admission requirements, every student must submit an application for admission and two copies each of transcripts of previous high school and college training, including available test data. See also under "Matriculation."

Students may elect to be absent any one quarter without filing an application for readmission.

Transcripts and records presented for admission or evaluation will remain in the student's folder as a part of his permanent record upon completion of registration.

Transfer Credit and Residence Requirements

Persons who have attended junior colleges or four-year colleges will be given full credit for such college level courses as may be applicable to the pattern of course work in the California State Polytechnic College curriculum followed, and in general elective credit for those not so applicable.

Not more than 70 semester units (105 quarter units) may be allowed for credit taken in a junior college. No credit may be allowed for professional courses in education taken in a junior college.

A maximum of 36 quarter units of extension course credit may be applied toward the bachelor's degree. Not more than 18 quarter units of this may be transferred from another institution.

No limit is placed upon the number of transferable credits from a four-year college or university, except that no student will be granted a bachelor's degree in any of the various curricula with less than 50 quarter units in residence at least 30 of which must be among the last 40 units counted toward the degree.

Individuals transferring from colleges or universities will be considered for admission only on a conditional basis at California State Polytechnic College if they have been on probation at the college or university last attended.

Evaluation of in-service military training will be made on the basis of American Council on Education recommendations.

Filing Dates for Application for Admission or Readmission to the College

Applications for admission will be accepted beginning with the dates shown below and will be accepted until college capacities have been reached. Applicants are urged to file early.

Earliest date of submission

Fall quarter, 1970 .. January 1, 1970
Winter quarter, 1971 .. September 15, 1970
Spring quarter, 1971 .. December 15, 1970
Fall quarter, 1971 .. November 1, 1970
REQUIREMENTS FOR ADMISSION AS AN UNDERGRADUATE STUDENT

Requirements for admission to California State Polytechnic College are in accordance with Title 5, Chapter 5, Subchapter 2 of the California Administrative Code. A prospective applicant who is unsure of his status under these requirements is encouraged to consult with a school or college counselor or contact the College admissions office. Students registered for six units or less are subject to the same admission requirements as regular students. See also under "Matriculation."

It is not always possible for the college to accommodate all qualified applicants. When there is lack of facilities or qualified faculty to accommodate students applying for admission to a specified curriculum, the applicant will be notified of that fact and will be informed of alternatives open to him at that time. At the applicant's request his application and all supporting documents will be forwarded to any of the other 18 State Colleges where space is still available. No additional application fee is required.

ADMISSION AS A FRESHMAN

An applicant who has had no college work will be considered for admission under one of the following provisions. Except as noted, applicants for admission should complete and submit the results of the College Entrance Examination Board Scholastic Aptitude Test (SAT). Scores on the American College Test (ACT) will also be accepted but the former test is preferred.

California High School Graduates and Residents

An applicant who is a graduate of a California high school or a legal resident for tuition purposes must have a grade point average and total or composite score on the appropriate aptitude test which results in an eligibility index* placing him among the upper one-third of California high school graduates. The grade point average is based upon all high school work taken, excluding work completed in the freshman year as well as any courses in physical education or military science. The table below does not cover every case, but gives several examples of the test score needed with a given grade point average to be eligible for admission. The minimum eligibility index is SAT-3072 or ACT-741.

<table>
<thead>
<tr>
<th>Grade Point Average</th>
<th>Minimum SAT Score</th>
<th>Minimum ACT Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.21 and above</td>
<td>Eligible with any score</td>
<td></td>
</tr>
<tr>
<td>2.80</td>
<td>832</td>
<td>19</td>
</tr>
<tr>
<td>2.40</td>
<td>1,152</td>
<td>27</td>
</tr>
<tr>
<td>2.00</td>
<td>1,472</td>
<td>35</td>
</tr>
<tr>
<td>1.99 and below</td>
<td>Not eligible</td>
<td></td>
</tr>
</tbody>
</table>

Non-Residents Graduated from High Schools in Other States or Possessions

An applicant who is a non-resident for tuition purposes and who is a graduate of a high school in another state or a U.S. possession must have an eligibility index* which would place him among the upper one-sixth of California high school graduates. The minimum required eligibility index is SAT-3402 or ACT-826.

Graduates of High Schools in a Foreign Country

An applicant who is a graduate of a foreign high school must have preparation equivalent to that required of eligible California high school graduates. The college will carefully review the previous record of all such applicants and only those with promise of academic success equivalent to that of eligible California high school graduates will be admitted. Such applicants are not required to take the SAT or ACT test.

Non-High School Graduates

An applicant who is over 21 years of age, but has not graduated from high school will be considered for admission only when his preparation in all other ways is such that the college believes his promise of academic success is equivalent to that of eligible California high school graduates.

* The eligibility index is computed by multiplying the grade point average by 800 and adding it to the total SAT score or by multiplying the grade point average by 200 and adding it to 10 times the composite ACT score.
Admission to Two-Year Technical Curricula in Agriculture

Admission to two-year technical curricula in agriculture is available to high school graduates whose preparation and educational objectives are appropriate to the programs offered as determined by appropriate college authorities.

Other Applicants

An applicant not admissible under one of the above provisions should enroll in a junior college or other appropriate institution. Only under the most unusual circumstances will such applicants be permitted to enroll in the college. Permission is granted only by special action.

Recommended Preparation

Overall excellence of performance in high school subjects and evidence of academic potential provide the basis for admission to California State Polytechnic College. While no course pattern is required, the applicant to be properly prepared to undertake a full program of studies and to pursue the required program in general education is strongly encouraged to include the following subjects as minimally adequate background for college work:

1. College preparatory English.
2. Foreign language.
3. College preparatory mathematics.
4. College preparatory laboratory science.
5. College preparatory history and/or social science.
6. Study in speech, music, art, and other subjects contributing to general academic background.

ADMISSION AS AN UNDERGRADUATE TRANSFER

Any applicant who has attempted college work will be considered for admission under one of the following provisions. Applicants for admission who have not completed 60 semester units (90 quarter units) with a 2.0 (C) grade average should complete and submit the results of either the College Entrance Examination Board Scholastic Aptitude Test (SAT) or the American College Test (ACT).

Applicants with 60 or More Semester Units (90 Quarter Units)

An applicant who has completed 60 or more semester units or the equivalent may be admitted if he meets both of the following conditions. High school transcript and SAT or ACT results are not required.

1. He has attained a grade point average in all college work attempted of 2.0 (C) if he is a California resident or 2.4 (five-point scale) if he is not a California resident.
2. He was in good standing at the last college attended.

Applicants with Fewer Than 60 Semester Units (90 Quarter Units)

An applicant who has completed fewer than 60 semester units or the equivalent may be admitted if he meets the above scholarship and good standing requirements and he meets requirements currently in effect for first-time freshmen or, if he has been in full-time continuous enrollment at a college since his graduation from high school, he meets the requirements in effect for first-time freshmen at the time of his high school graduation. Requires submission of high school transcript and either SAT or ACT results.

Applicants with Particular Majors

An applicant who does not meet either of the above provisions may be admitted to the college if his desired major is such that 60 semester units of work appropriate to that major are not offered by the institution from which he seeks to transfer, and if he meets all of the following:

1. He has completed all appropriate course work offered.
2. He has attained a grade point average of 2.0 (C) in all college work attempted.
3. He was in good standing at the last college attended.
4. He can, in the judgment of the college, succeed in that degree objective.
Admissions

Other Applicants

Only under the most unusual circumstances will an applicant not meeting either of the above provisions be considered for admission. Permission is granted by special college action.

ADMISSION FROM SCHOOLS AND COLLEGES IN FOREIGN COUNTRIES

The official transcript of record and other credentials of an applicant for admission from a foreign country should be submitted in official English language translation. They will be evaluated under the general regulations governing other admissions. All application papers should be submitted to the Admissions Office at least three months before the opening of the quarter in which the applicant hopes to gain admittance. This early application is designed to allow sufficient time for the necessary correspondence relative to entrance and, if the applicant is admitted, will aid him in obtaining the necessary travel documents.

An applicant from a foreign country whose education has not been conducted in the English language may be admitted only after demonstrating that his command of the language will permit him to profit from instruction in this college. An applicant must take the Test of English as a Foreign Language (TOEFL) either in his own country or at a testing center in the United States.

REQUIREMENTS FOR ADMISSION AS A GRADUATE STUDENT

All students desiring to do graduate work must file for admission at the Admissions Office. This applies not only to graduates of other colleges, but to students at the California State Polytechnic College. Graduates of this college must reapply for admission as graduate students.

For admission as an Unclassified Graduate Student, a student shall have completed a four-year course and hold an acceptable baccalaureate degree from an accredited institution; or shall have completed an equivalent academic preparation as determined by the College. Two copies of each transcript of all undergraduate and graduate studies undertaken must be submitted.

An Unclassified Graduate Student may, upon application, be admitted to an authorized master's degree curriculum of the College in Classified Graduate Status upon completion of the requirements as specified by the College for the particular master's degree program.

See the Graduate Study Bulletin for further details.

GRADUATE COURSES TAKEN BY UNDERGRADUATES

Undergraduates who are within 12 quarter units of graduation may petition to use up to 9 quarter units of work in 400 or 500 series courses as graduate credit, when such courses are not required in order to receive the baccalaureate degree.

MATRICULATION

Matriculation refers to the complete process of being admitted to the college as a candidate for a certificate, degree, or credential and requires that the student who applies for admission as an undergraduate present a completed application for admission, college aptitude test results, statement of residence, and transcripts of his previous academic training including transcripts from high school and/or college. Applicants for admission as graduate students must present satisfactory evidence of their qualifications to enroll including two copies of transcript certifying graduation from an accredited college or university.

All students must complete the matriculation process.
REGISTRATION

All students must complete Form SC-50, Statement of Residence, in advance so that their residence status can be determined prior to registration.

All students are required to register as majors in a specific department of the College.

The schedule for registration and payment of fees is published in the "Class Schedule and Instructions for Registration" which is sold prior to the start of each quarter. Students should consult this booklet for detailed registration procedures.

Credit for course work completed is given only when the student is properly registered. A student is not properly registered unless his completed quarter registration forms, listing the program approved by his adviser, are on file in the Registrar's Office. Individuals are not admitted to courses unless they are registered as students at the College.

CHANGES IN CURRICULUM

Students who find that they are preparing for a profession which does not provide the type of education for which they have the greatest aptitude should contact their adviser and the college Counseling Center for advice and assistance in making curriculum changes. Students will be permitted to change their major curriculum after a minimum of one quarter in residence during which they follow the prescribed curriculum for their current major as far as possible. Admission to a new curriculum will depend on the availability of space within the limitations imposed by budget, faculty, and facilities.

Transfer from one curriculum to another does not in any way change a student's scholastic standing.

Upon transfer from a degree to a technical curriculum, at the College, a student's record is evaluated in terms of the technical curriculum. Courses completed prior to transfer which are applicable to the required courses in the technical curriculum will be transferred intact. The remaining courses completed prior to transfer must apply as electives up to, but not in excess of, the number of elective units specified in the technical curriculum. In the case of an excess of elective units, the student may choose which units shall apply. For purposes of computing the grade point average for graduation, only those courses transferred as outlined above and those taken subsequent to transfer will be used.

REVISION OF CURRICULAR REQUIREMENTS

A student remaining in continuous attendance in regular quarters and continuing on the same curriculum may, for purposes of meeting graduation requirements, elect to meet the graduation requirements in effect either at the time of his entering the curriculum or at the time of his graduation therefrom, except that substitutions for discontinued courses may be authorized or required by the dean of his school.

CURRICULUM DEVIATION

Although the College has specified a curriculum for each major, under certain conditions a student may be permitted some deviation from the established curriculum. Detailed instructions for applying for a curriculum deviation may be obtained from the Registrar's Office.
PROGRAM CHANGES

The student is held responsible for every course appearing on his official program card. Each change must be made on or before the applicable last date as published in the academic calendar and must be filed with the Registrar's Office on the proper form. During the first two weeks of each quarter students make program changes by presenting their Change of Program cards to instructors. Changes are not made on forms issued at the Registrar's Office during this period.

Changes which must be made on or before the last day to add courses include adding a class, increasing units in a course, changing from audit to credit. Changes which must be made on or before the last day for dropping classes without penalty include dropping a class (no penalty), reducing units in a course, changing a section of a course, changing from credit to audit. After the 7th calendar day, forms for the change of program may be obtained from the Registrar's Office.

The last day to drop classes without penalty during the regular quarters is the 14th calendar day following the day on which classes begin. After this day a student may withdraw from a course in which he is enrolled for credit only by accepting a grade based upon his standing in the course at the time of withdrawal. After the 14th calendar day, forms for withdrawing from class may be obtained from the Registrar's Office. The instructor will indicate on the form whether the student is to receive a grade of F (failure) or W (withdrew) for the course. The grade of W indicates that the student is passing (Grade A to D) in the course at the time of withdrawal. Except for college-recognized emergencies, no withdrawals from a course will be permitted after the end of the seventh week of instruction.

A special provision, applicable only to students in their first quarter at the College, permits the substitution, without prejudice, of a prerequisite course in a sequence of courses for a later course in the sequence through the end of the fourth week. Only the substituted course appears on the transcript and the grade is based on performance after the change.

Students who withdraw from college prior to the end of the quarter will receive a W or a WF grade in each course depending upon whether passing or failing work has been accomplished up to the time of withdrawal.
DEGREES AND SCHOLASTIC REQUIREMENTS
DEGREES OFFERED

Schools and Departments

<table>
<thead>
<tr>
<th>School of Agriculture and Natural Resources</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td>M.S.</td>
</tr>
<tr>
<td>General Agricultural Sciences</td>
<td></td>
</tr>
<tr>
<td>International Agriculture</td>
<td></td>
</tr>
<tr>
<td>Soil Conservation</td>
<td></td>
</tr>
<tr>
<td>Agricultural Management Department</td>
<td>B.S.</td>
</tr>
<tr>
<td>Agricultural Business Management</td>
<td></td>
</tr>
<tr>
<td>Farm Management</td>
<td>B.S.</td>
</tr>
<tr>
<td>Agricultural Education Department</td>
<td></td>
</tr>
<tr>
<td>Agricultural Engineering Department</td>
<td>B.S.</td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td></td>
</tr>
<tr>
<td>Power and Machinery</td>
<td></td>
</tr>
<tr>
<td>Soil and Water</td>
<td></td>
</tr>
<tr>
<td>Mechanized Agriculture</td>
<td></td>
</tr>
<tr>
<td>Management and Sales</td>
<td></td>
</tr>
<tr>
<td>Manufacturing</td>
<td></td>
</tr>
<tr>
<td>Service and Teaching</td>
<td></td>
</tr>
<tr>
<td>Animal Science Department</td>
<td>B.S.</td>
</tr>
<tr>
<td>Animal Science</td>
<td></td>
</tr>
<tr>
<td>Crops Science Department</td>
<td>B.S.</td>
</tr>
<tr>
<td>Crops Science</td>
<td></td>
</tr>
<tr>
<td>Agronomy</td>
<td></td>
</tr>
<tr>
<td>Plant Protection</td>
<td></td>
</tr>
<tr>
<td>Vegetable Crop</td>
<td></td>
</tr>
<tr>
<td>Fruit Science</td>
<td></td>
</tr>
<tr>
<td>Dairy Department</td>
<td>B.S.</td>
</tr>
<tr>
<td>Dairy</td>
<td></td>
</tr>
<tr>
<td>Husbandry, Manufacturing</td>
<td></td>
</tr>
<tr>
<td>Food Processing Department</td>
<td>B.S.</td>
</tr>
<tr>
<td>Food Processing</td>
<td></td>
</tr>
<tr>
<td>Management, Meats</td>
<td></td>
</tr>
<tr>
<td>Ornamental Horticulture Department</td>
<td>B.S.</td>
</tr>
<tr>
<td>Ornamental Horticulture</td>
<td></td>
</tr>
<tr>
<td>Poultry Industry Department</td>
<td>B.S.</td>
</tr>
<tr>
<td>Poultry Industry</td>
<td></td>
</tr>
<tr>
<td>Soil Science Department</td>
<td>B.S.</td>
</tr>
<tr>
<td>Natural Resources Management</td>
<td></td>
</tr>
<tr>
<td>Soil Science</td>
<td></td>
</tr>
<tr>
<td>Veterinary Science Department</td>
<td></td>
</tr>
</tbody>
</table>

School of Architecture and Environmental Design

Architecture	B.Arch.
Architectural Engineering	B.S.
City and Regional Planning	B.S.

School of Business and Social Sciences

Business Administration Department	B.S., M.B.A.
Business Administration	
Accounting, Economics, Finance	
and Property Management, Industrial Relations,	
Management, Marketing	
Economics Department	
Social Sciences Department	B.S.
Social Sciences	
Government Service	
Social Sciences, Social Services	

28
Schools and Departments

<table>
<thead>
<tr>
<th>Curricula with Options/Concentrations</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Communicative Arts and Humanities</td>
<td></td>
</tr>
<tr>
<td>Art Department</td>
<td>English</td>
</tr>
<tr>
<td>English Department</td>
<td></td>
</tr>
<tr>
<td>Foreign Language and Linguistics Department</td>
<td></td>
</tr>
<tr>
<td>Graphic Communications Department</td>
<td>Printing Technology and Management</td>
</tr>
<tr>
<td></td>
<td>Printing Education</td>
</tr>
<tr>
<td></td>
<td>Printing Management</td>
</tr>
<tr>
<td>History Department</td>
<td>History</td>
</tr>
<tr>
<td>Journalism Department</td>
<td>Journalism</td>
</tr>
<tr>
<td></td>
<td>Agricultural, Broadcast Media, Business and Industrial, Community, Home Economics, Public Relations Advertising, Photojournalism</td>
</tr>
<tr>
<td>Music Department</td>
<td></td>
</tr>
<tr>
<td>Philosophy Department</td>
<td></td>
</tr>
<tr>
<td>Speech Department</td>
<td>Speech</td>
</tr>
</tbody>
</table>

School of Engineering and Technology

<table>
<thead>
<tr>
<th>Curricula with Options/Concentrations</th>
<th>Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeronautical Engineering Department</td>
<td>Engineering</td>
</tr>
<tr>
<td>Electrical Engineering Department</td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td>Electronic Engineering Department</td>
<td>Electronic Engineering</td>
</tr>
<tr>
<td>Engineering Technology Department</td>
<td>Engineering Technology Air Conditioning-Refrigeration, Electronic, Manufacturing Processes, Mechanical, Welding</td>
</tr>
<tr>
<td>Environmental Engineering Department</td>
<td>Environmental Engineering Air Conditioning-Refrigeration Air Pollution Control</td>
</tr>
<tr>
<td>Industrial Engineering Department</td>
<td>Industrial Engineering</td>
</tr>
<tr>
<td>Industrial Technology Department</td>
<td>Industrial Technology Industrial Education, Industrial Sales and Technology</td>
</tr>
<tr>
<td>Mechanical Engineering Department</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>Metallurgical Engineering Department</td>
<td>Metallurgical Engineering</td>
</tr>
<tr>
<td>Transportation Engineering Department</td>
<td>Transportation Engineering</td>
</tr>
<tr>
<td>Schools and Departments</td>
<td>Curricula with Options/Concentrations</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>School of Human Development and Education</td>
<td></td>
</tr>
<tr>
<td>Child Development Department</td>
<td>Child Development</td>
</tr>
<tr>
<td>Education Department</td>
<td>Education Agriculture, Education, Physical Sciences, Social Sciences</td>
</tr>
<tr>
<td>Home Economics Department</td>
<td>Home Economics Food Administration—Dietetics, Home Economics Education</td>
</tr>
<tr>
<td>Men's Physical Education Department</td>
<td>Physical Education</td>
</tr>
<tr>
<td>Psychology Department</td>
<td>Physical Education</td>
</tr>
<tr>
<td>Women's Physical Education Department</td>
<td>Physical Education</td>
</tr>
<tr>
<td>School of Sciences and Mathematics</td>
<td></td>
</tr>
<tr>
<td>Biological Sciences Department</td>
<td>Biological Sciences Biology, Botany, Field Biology, Marine Biology, Medical Laboratory Technology, Microbiology, Plant Pathology/Entomology, Zoology</td>
</tr>
<tr>
<td>Chemistry Department</td>
<td>Biochemistry</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
</tr>
<tr>
<td>Computer Science and Statistics Department</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Mathematics Department</td>
<td>Mathematics Applied Mathematics, Computer Sciences, Mathematics Teaching, Statistics</td>
</tr>
<tr>
<td>Military Science Department</td>
<td></td>
</tr>
<tr>
<td>Physics Department</td>
<td>Physics</td>
</tr>
</tbody>
</table>
DEGREE REQUIREMENTS

Curricula leading to graduation with the degree of bachelor of science are offered in agriculture, engineering, applied arts, applied sciences and architecture. Occupational majors in these fields are described under the corresponding sections of this catalog. In addition, the College offers the following degrees: master of science, master of arts, bachelor of architecture, bachelor of arts, bachelor of vocational education. It also offers the two-year technical certificate in agriculture. Programs leading to teaching credentials authorizing service in the public schools are described under the heading “Teacher Preparation Programs”.

APPLICATION FOR GRADUATION

Students shall file application for graduation in the Registrar’s Office prior to the last date for filing such applications, as shown in the college calendar. Application forms and evaluations for graduation are available in the Evaluations Office.

DOUBLE MAJORS

The student will normally meet graduation requirements for a degree in one of the major curricula.

It is permissible for a student to be granted a bachelor's degree with two majors if the complete requirements of both major curricula have been met.

A student who desires to submit only one senior project covering two graduation majors must file a petition for special consideration prior to the date of commencing the senior project.

SECOND BACHELOR’S DEGREE

A qualified student who holds a bachelor's degree from this College or from another accredited institution may be awarded a second bachelor's degree in a different major when all requirements have been met and providing a minimum of 36 units of course work have been completed in residence after the requirements for the first degree have been fulfilled.

BACHELOR’S DEGREES

GENERAL REQUIREMENTS FOR GRADUATION

All candidates for the bachelor of science degree, the bachelor of arts degree, or the bachelor of architecture degree shall have completed the requirements in one of the listed curricula with a minimum “C” grade average for all units in the major, and shall have earned a total number of grade points at least equal to twice the number of units attempted. Transfer students, in their work taken at this college, must earn a number of grade points at least equal to twice the number of units attempted at this college. All candidates for these degrees shall have earned not less than 50 quarter units in residence, and shall have earned at least 30 of these units among the last 40 units counted toward the degree. (Extension credit or credit by examination may not be used to fulfill the residence requirement.)

Candidates for the bachelor of science degree from the School of Engineering must present a minimum of 192 to 210 quarter units of credit for graduation depending on the major. Candidates for the bachelor of science degree from the School of Agriculture (except agricultural engineering which requires 204 quarter units) must present a minimum of 198 units of credit for graduation.

Candidates from the School of Applied Arts and the School of Applied Sciences must present a minimum of 198 quarter units of credit for the bachelor of science degree and 186 quarter units for the bachelor of arts degree. A minor may be required for the bachelor of arts degree. Available fields include those designed for teaching credential purposes.

Candidates from the School of Architecture must present a minimum of 255 units for the bachelor of architecture degree, 210 units for the bachelor of science degree in Architectural Engineering and 198 units for the bachelor of science in City and Regional Planning.
General Education

GENERAL EDUCATION BREADTH REQUIREMENT

All candidates for the bachelor's degree must complete a minimum of 65 quarter units of general education as specified below. The curriculum for each major published in this catalog is designed to satisfy the general education breadth requirement. The requirement is met in different ways depending on the particular major. The student planning to transfer from another college should therefore consult the published curriculum for his major and plan his course work accordingly.

No course shall be used for this purpose if it has a prerequisite unless such prerequisite is also counted as general education. Only degree credit courses in the 100, 200, and 300 series may be counted as general education. No more than six units in the major academic discipline of the student may be counted as fulfilling the general education requirement.

Natural Sciences
At least 15 units chosen from courses in the natural sciences with no more than three courses having the same prefix and with at least one course in life science (Bact, Bio, Bot, Cons, Ent, Zoo) and at least one course in physical science (Astr, Chem, Geol, PSc, Phys). Maximum 24 units.

Social Sciences
At least 15 units chosen from courses in Ant, Ec, Geog, Hist, Pol Sc, Psy, Soc Sc, Soc. All students must take Hist 304, Hist 305 and Pol Sc 301. No more than two courses having the same prefix may be counted in this category. Maximum 21 units.

Humanities
At least 9 units chosen from Art, Dr, Literature (Eng), Mu, and Phil, including at least two courses in literature and philosophy, but no more than 3 units each in Art, Drama and Mu. Maximum 18 units.

Basic Subjects
Mathematical sciences (CSc, Math, Stat) (at least a 3-unit course), written communication (Eng) (one course), oral (Sp) or written communication (at least one course). Minimum 12 units, maximum 16 units.

Other Subjects
Physical education (5 units, including at least 2 units of health education and 3 units of physical education activity). Any course outside the student's major with not more than 3 units in one department. Minimum 5 units, maximum 11 units.

These courses are required to satisfy Section 40404 of the Administrative Code, but the units may also be counted as general education (Section 40405). Transfer students, certified as having completed the general education requirement, will have to complete this requirement separately if they have not already done so. (Social sciences and history majors will take an equivalent sequence.)

The President may designate another course as a substitute for health education upon receipt of a statement of contrary religious belief. The President may exempt a student from physical education activity upon receipt of medical authority and may exempt persons over 25 years of age. Any student may claim military service as a substitution for the physical education activity requirement.
Masters Degrees/Teacher Preparation

MASTER'S DEGREES

The College offers graduate programs leading to the master's degree in several areas. Curricula for the master's degrees are briefly outlined in the appropriate departmental sections of this catalog. For complete requirements for graduate study and for the master's degrees consult the Graduate Study Bulletin.

TEACHER PREPARATION PROGRAMS

California State Polytechnic College is accredited by the State Board of Education to recommend for the following credentials:

- Standard Teaching Credential with Specialization in Elementary Teaching
- Standard Teaching Credential with Specialization in Secondary Teaching

Recommended majors are:
- Agriculture, Biological Sciences, Chemistry, English, Home Economics, Industrial Technology (Industrial Arts), Mathematics, Physical Education (for men and women), Physics, and Social Sciences.

Recommended minors are:
- Art, Biological Sciences, Chemistry, English, History, Home Economics, Industrial Arts, Journalism, Mathematics, Music, Physical Education, Physical Sciences, Physics, Political Science, Speech, and (for the secondary credential only) Agricultural Science and Social Sciences.

For teaching credential requirements and procedures for entering the teacher education program consult the Education Department. A bulletin, Standard Teaching Credential Requirements, is available upon request.

ADMISSION TO CANDIDACY FOR TEACHING CREDENTIAL

The selection of candidates to prepare for teaching is accomplished through a three-step process, involving teacher education committees. These committees determine policies for the teacher education program, review the qualifications of all candidates, and hear appeals where rejection of candidates has occurred. The three steps leading to the final completion of the credential are:

Step 1. Approval to enter the teacher education program
Step 2. Approval to participate in student teaching
Step 3. Final approval for a teaching credential

A student who enters the college with the intention of earning a teaching credential must be approved as a candidate for the particular credential which he is seeking.

Admission to the college is not equivalent to being accepted for the teacher education program.

Requirements and procedures for qualifying for acceptance of candidacy may be secured in the Education Department Office. Prompt attention to the college's procedures is necessary since approval for candidacy is prerequisite to certain professional courses and student teaching.

Evaluation of the student's qualification is based on the following factors:

1. Academic Aptitude. The candidate shall demonstrate academic aptitude by showing a satisfactory score on a college aptitude test or by demonstrating compensating strength in other qualities.

2. Scholarship. Satisfactory scholarship on all work accepted by the College must be in evidence before approval of candidacy for the teaching credential.
 - Elementary credential—grade point average of 2.25
 - Secondary credential—grade point average of 2.50

3. Professional Aptitude. The candidate must demonstrate suitable aptitude and fitness for teaching and for adjusting to public school conditions. These qualities are evaluated by committees and are based on evidence provided through tests, interviews, and personal contacts.
Academic Policies

4. **Physical Fitness.** Evidence of good physical health must be shown before the time of student teaching.

5. **Fundamental Skills.** The candidate must demonstrate proficiency in the fundamental skills, as determined by observation, written tests, and individual examinations. Fundamental skills may include oral and written language and mathematics.

6. **Personality and Character.** The candidate is expected to possess personality and character traits in keeping with the standards of the teaching profession. Qualifications are evaluated by committees and are based on tests, observations, and interviews.

7. **Many-sided Interests.** The candidate must demonstrate diverse and well-balanced interests. He must be able to understand and interpret his major interest and field of study in suitable relationship to all others.

TWO-YEAR TECHNICAL CURRICULA

All candidates for a technical certificate shall have completed 98 quarter units of courses approved by the department granting the certificate, shall have been in residence at least two quarters immediately preceding graduation, shall have earned not less than 32 quarter units in residence, and shall have earned a total number of grade points at least equal to twice the number of units attempted.

ACADEMIC POLICIES

Academic Obligations

Each student is expected to be diligent in the pursuit of his course of study in order that both he and the State will receive maximum benefit from the educational opportunities provided.

Students are expected to satisfy the academic demands required by their instructors in such ways as they may set forth, in order to satisfy the instructor that they are performing their assignments in a proper manner.

An instructor, with the President’s approval, may at any time exclude from his course any student guilty of unbecoming or disorderly conduct toward the instructor or the class. The instructor may refer the case of misconduct to the Dean of Students for disciplinary action.

Class Attendance

Students are expected to be regular in attendance to keep the quality and quantity of work high. Absence from classes is regarded as serious, and no excuses for work missed are provided.

An excused absence can be allowed only by the instructor in charge of the class upon consideration of the evidence justifying the absence presented by the student. An excused absence merely gives the individual who missed the class an opportunity to make up the work and in no way excuses him from the work required.

Minimum Scholarship Requirements

Uniform minimum standards for academic probation or disqualification are in effect at all California State Colleges. Students at California State Polytechnic College will be placed on academic probation or will be disqualified under the following conditions:

1. A student will be placed on academic probation if his cumulative grade point average falls below 2.0 (C) either for all academic work attempted or for all such work attempted at this college. The student will be advised of probation status as promptly as possible.

2. A student will be removed from probation and restored to good standing when he earns a cumulative grade point average of 2.0 (C) for all academic work attempted and for all such work attempted at this college.
Academic Policies

3. A student on probation may be disqualified when his cumulative grade point average for all academic work attempted or for all such work attempted at this college is 7 or more grade points below 2.0 (C average). Such a student will be disqualified when his academic record, as indicated in the sentence above, falls below the following standards:

 a. If a freshman or sophomore student (less than 90 quarter units of college work completed) is 22½ or more grade points below a 2.0 (C average).
 b. If a junior student (90 to 134 quarter units of college work completed) is 13½ or more grade points below a 2.0 (C average).
 c. If a senior student (135 or more quarter units of college work completed) is 9 or more grade points below a 2.0 (C average).

4. A student to be disqualified will be so notified as soon as possible following the end of the quarter in which his achievement fails to meet conditions prescribed in No. 3, above. In any case, disqualification is to be effected by the close of the next quarter.

5. The dean of the school in which the student is enrolled as a major may make exceptions to these conditions when such action seems justified in individual cases.

6. A student who is disqualified for failure to maintain satisfactory academic progress will not be readmitted until at least one regular quarter has elapsed and then only after presentation to the college of satisfactory evidence that he has improved his chances of scholastic success. The request for readmission will be referred to the dean of the school in which the student wishes to enroll.

ACADEMIC PROBATION

Students with a cumulative grade point average of less than 2.0 may not participate on intercollegiate teams nor may they hold positions of leadership in student organizations or student government groups. This includes, but is not limited to, such groups as: athletic teams, debate teams, drama casts, judging teams, drill teams, Model U.N. delegation, rifle team, ASI councils, boards and committees. Such students may not hold an office in a student organization, nor may they be editors, managers, or hold similar positions on student publications. Students on academic probation may participate in such activities as club membership, intramurals, and music, that do not include travel and the official representation of the College.

The 2.0 cumulative grade point average is meant to be a minimum standard and certain groups may have set higher standards for specific positions or areas of responsibility that require considerable commitments of time and energy.

ELIGIBILITY FOR INTERCOLLEGIATE ATHLETICS

Eligibility for competition in intercollegiate athletics is regulated in general by the rules of the National Collegiate Athletic Association and specifically by current conference and college regulations.

1. Competition on a varsity team is open to a student in regular standing in a degree curriculum who, during the season of competition, is carrying at least 12 quarter units selected to provide substantial progress toward his educational objective.

2. The student must have at the beginning of his competition in any sport at least a C (2.0) cumulative grade point average in all college work attempted.

3. The student must have passed a minimum of 36 quarter units between seasons of competition.

4. Freshmen are not eligible for varsity competition in football or basketball.

5. A transfer student from a four-year college must after transfer spend at least one calendar year and pass 36 quarter units in at least two regular semesters or three regular quarters at this institution or a junior college, or combination of both, before being eligible for varsity competition.

6. A junior college transfer is eligible for varsity competition under any one of the following conditions:

 a. He is a graduate of a junior college.
 b. He has accumulated a minimum of 72 quarter units of transferable degree credit with a C (2.0) average at a junior college.
Academic Policies

c. He presents a minimum of 36 quarter units of transferable degree credit with a B (3.0) average from a junior college.
d. He presents a minimum of 36 quarter units of transferable degree credit from a junior college with a cumulative grade point average of 2.5, provided a minimum grade point average of 1.6 or better on the NCAA National Experience Table was predicted at the time of his graduation from high school.

A transfer with one year of junior college competition in a sport is permitted three years of varsity competition in that sport. A transfer with two years of junior college competition is permitted two years of varsity competition.

Grading System

The following grading system is in effect:

A—Superior
B—Better than average
C—Average
D— Barely passing
E—Incomplete
F—Failure
P—Passing (workshops only)
W—Withdraw from course without failure
WF—Withdraw from course failing

Grade points are assigned to the various grades (except grades P and E) as follows:

For each unit of Grade A—4 points
For each unit of Grade B—3 points
For each unit of Grade C—2 points
For each unit of Grade D—1 point
For each unit of Grade F or WF—0 point

Passing grades are marked A, B, C, D. Grade E indicates incomplete work. Grade E may be given to a student for either of the following reasons:

1. Passing in classwork, but unable to take final examination.
2. Passing in classwork completed and in final examination, but some assigned work not completed.

Grade E may be removed within one year from the time it is recorded by completing all unfinished work as the instructor may determine. The removal of grade E entitles the student to the number of units and grade points assigned to his completed grade. If not removed within the one-year period, the grade E remains on the student’s permanent record and credit for the course may be obtained only by repeating it.

No units or grade points will be assigned for the course in which grade E is assigned unless and until the grade is changed.

A student may repeat a course in which he has received a grade lower than C under the following condition: Each time the course is taken the student will be charged with units attempted and will receive the grade points earned. Unit credit is given only once for a repeated course and is recorded the first time the course is passed.

Except where noted in the specific course description, a student may not enroll in (except as an auditor) or receive credit by examination for any course in which he has received a grade of C or higher.

Course Numbering System

The numbering system used is a three-digit system. Courses are generally numbered according to the plan shown below.

The first digit indicates the level or year in which the courses are normally taught.

10-99—Special program courses
100-199—Freshman courses
200-299—Sophomore courses
300-399—Junior courses
400-499—Senior courses
500-599—Graduate courses
600-699—Professional courses
Academic Policies

The second digit indicates the type of course with numbers assigned as follows:

0 or 1—Lecture courses
2 or 3—Courses involving both lecture and laboratory
4 or 5—Courses composed entirely of laboratory work
6 or 7—Senior project or seminar
8 or 9—Graduate thesis or seminar

The third digit indicates the quarter in which the course is normally taught.

1, 4 or 7—Fall quarter course
2, 5 or 8—Winter quarter course
3, 6 or 9—Spring quarter course

Note: Courses numbered 10-99 are either non-degree credit short-courses or courses offered for foreign students under contract with the U.S. Agency for International Development. Courses numbered 600-699 are for professional advancement within a special field and do not carry credit for degree requirements in any of the curricula.

Maximum and Minimum Loads

The maximum load for regular students is 20 quarter units of work including audited courses and concurrent work at other colleges; the only exceptions are made with the advance approval of the student's major department head and completion of a petition to carry excess load which is available at the Registrar's Office. Regular credit will not be given for a course completed in any quarter unless the course appears on the student's approved program card for that quarter. Maximum load requirements may be waived only on presentation of evidence of ability to carry successfully such a group of courses. Maximum load for graduate students is 16 units per quarter.

RECORDS PROCEDURES

Holding of Records

Student records may be placed in a "Hold" status because of financial or other obligations to the college. While the student's records are so held, he will not be issued a "permit to register" nor will transcripts of his credits be released to anyone. The student's records will be held until the obligation is cleared to the satisfaction of the office or department placing the "Hold."

Transfer to Other Colleges

Students who plan to transfer from the California State Polytechnic College to another college or university should, at the earliest possible date, request that their transcript of record be forwarded by the Registrar's Office. Any evaluation of transcripts presented to another college or university will be made by the new institution in terms of its established policies.

Honorable Dismissal

Honorable dismissal is noted on the transcript of each student who graduates or withdraws from the college, unless he has been disqualified because of misconduct.

CREDIT POLICY

Credit by Examination

A student enrolled either as a regular or limited student may be permitted, at the discretion of his school dean, to obtain credit by examination for courses in subject matter fields in which he is especially qualified through previous education or experience and for which credit has not otherwise been given. A fee of $1 per unit is charged for such an examination. It may include written, oral, or skills tests, or a combination of all three types, and will be sufficiently comprehensive to determine that the student has essentially the same knowledge and skills as those students who successfully complete the course. A student is not permitted to obtain credit by examination in a course unless all prerequisites for the course as specified in this catalog have been satisfied. The grade received is entered on the student's permanent record. The length of the examination will be consistent with the unit value of the course.
Academic Policies

A credit by examination request will not be considered for a course for which a student has received a failing grade at Cal Poly or for which a student has previously unsuccessfully attempted credit by examination.

Units of credit received through this procedure may not apply toward the residence requirements for any of the degrees or credentials offered by the college.

Detailed instructions for applying for credit by examination may be obtained from the Registrar's Office.

Advanced Placement

The College offers credit and advanced placement for those students who achieve scores of 3, 4, or 5, on the College Entrance Board advanced placement examinations. A maximum of nine quarter units of lower division elective credit will normally be granted for such achievement upon submission of the examination results to the Associate Dean, Admissions and Records.

Students who wish advanced placement (credit for a particular subject) on the basis of such examination results may petition for such credit in lieu of elective credit on a form provided by the Registrar's Office. Granting of advanced placement is at the discretion of the dean of the school and department head involved.

Auditing of Courses

An auditor is a student who is attending courses for no credit. He must be registered with fees paid for the quarter in which the course he desires to audit is offered. Audited courses must be included on the student's study list with the designation "AUD" in the "units" column along with the number of units. A student may enroll to audit a course during the first week of instruction and no later than the last day to add a course. The deadline to change from audit to credit is the last day to add a course. A student may change from credit to audit no later than the last day to drop a course without penalty.

In cases where class sections must be limited in enrollment, preference will be given to students enrolling for credit.

The materials and service fee and non-resident tuition fee are determined on the basis of the total units for which the student is enrolled including courses audited.

Credit for Military Service

Nine quarter units of elective credit will be allowed toward graduation to any student with honorable discharge submitting evidence of satisfactory completion of one year of training in the military service of the United States.

In addition to the nine quarter units, 13½ quarter units of elective credit will be allowed toward graduation to any student submitting evidence that he has received a commission in the Army, Navy, Air Force, Coast Guard, or Marine Corps. Maximum total credit possible toward graduation for military service is 22½ quarter units. Credit is not given for completion of the six-month Reserve Training Programs or for college level General Educational Development Tests.

No grade points are assigned in connection with units of credit allowed for military service. The units allowed are not included in scholarship computations. In allowing for credit for inservice training, California State Polytechnic College follows the recommendations of the American Council on Education in terms of units allowed and subject matter covered.

HONORS

Candidates for bachelor's degrees are eligible for "Graduation with Honors" if at the end of winter quarter preceding commencement they have earned a 3.1 or better cumulative grade point average, including all college level work attempted at Cal Poly and all college level work accepted from other institutions.

The "President's Honors List" is compiled at the end of each academic year to honor those undergraduate students who have demonstrated consistent achievement, as represented by being named to the "Dean's Honors List" for each of the fall, winter, and spring quarters.

The "Dean's Honors List" is compiled at the end of each regular quarter to honor undergraduate students who have completed 12 or more units during the quarter with a grade point average which places them in the top 15 percent of the students in their school.

Entering freshmen who rank in the top five percent of high school graduates are granted "Honors at Entrance."
STUDENT ACTIVITIES AND SERVICES
Student Activities

STUDENT ACTIVITIES

The College provides an integrated program of classroom, laboratory instruction, gainful employment, and co-curricular activities. The latter are under the direction of the Associate Dean, Activities, who is responsible for initiating and coordinating a well-rounded program of activities designed to develop leadership qualities in all students.

STUDENT GOVERNMENT

All students are members of the student association known as the Associated Students of California State Polytechnic College at San Luis Obispo, Inc. The government of student affairs and the control of property are vested in the Student Affairs Council, the members of which are selected according to regulations established in the study body bylaws. In addition, there are boards established to oversee publications, athletics, music, College Union program, and Poly Royal. All interested students have an opportunity to participate in student government.

ATHLETICS

Intercollegiate competition is held under the rules and auspices of the National Collegiate Athletic Association. Conference competition is maintained in most sports as a member of the California Collegiate Athletic Association. A full program of intercollegiate competition is offered in football, basketball, baseball, track, wrestling, gymnastics, swimming, water polo, golf, and cross country, all of which are major sports. Awards are given to letter winners. Freshman competition is offered in sports where competition is available and sufficient interest warrants it. The Physical Education Department offers physical activities designed to provide a sound program of recreation, education in physical skills, and the give-and-take of games. Varsity teams in the intercollegiate sports offer opportunity for the more skilled. Intramural teams provide year-round competition in a dozen sports at an easier level of play to all who wish to enter. Trophies are awarded winners in touch football, track, horseshoes, basketball, volleyball, swimming, wrestling, badminton, softball, tennis and golf. For eligibility rules see ELIGIBILITY FOR INTERCOLLEGIATE ATHLETICS.

COLLEGE UNION PROGRAM

Most of the social programming on the campus is done by the College Union Program Board and its 11 committees. The board is affiliated with the Association of College Unions and it functions within policies and budgets of the Student Affairs Council. Committee membership is open to all interested students. The committees cover assemblies, dance, drama, films, fine arts, games and hobbies, outings, personnel, public relations, social, and special events.

PUBLICATIONS

Publications of the student body at the California State Polytechnic College, San Luis Obispo, are not only written and edited by students, but are also printed in the college's printing department as laboratory work for students majoring in printing. Editorial and photographic work for publications is handled primarily by students of the journalism classes. Mustang Daily is the official newspaper of the associated students. El Rodeo is the College yearbook. Alternative is the College literary magazine. Miscellaneous publications include the California Future Farmer magazine, a monthly magazine supported by and mailed to 19,000 Future Farmers of America members in nearly 200 California high schools; and the Mustang Handbook.
Each year during the spring the College has an open house exhibition and show conducted primarily by the Associated Students. This event is known as Poly Royal, "A Country Fair on a College Campus." Its purpose is to display work accomplished during the year by students. Each department of the college prepares displays that reflect the curriculum within that department and its relation to employment, as well as the activities and success of the graduates. Besides the shows and exhibits there are many entertainment features such as intercollegiate baseball, swimming, and rodeo. Other special events include dramatic presentations, aqua-cade, carnival, various judging contests that involve adult visitors, and a mathematics contest featuring students from high schools throughout the State.

CAMPUS ORGANIZATIONS

Clubs and organizations cover all departments and activities, and the opportunity exists for every student to take an active part in club life. There are departmental and professional organizations, hobby-interest clubs and many others serving the areas of honor societies, service clubs, residence groups, ethnic groups, and religious faith groups.

STUDENT SERVICES

The College provides a number of services designed to help the student in his college work. Some of the services are directed toward group activities and experiences, others toward helping students overcome individual problems.

Counseling and Testing

The Counseling Center, under the direction of the Associate Dean, Counseling and Testing offers service in vocational, educational, and personal counseling in accordance with the needs of the student. A well-equipped test center, under the direction of the Test Officer, is available to assist the students and counselors.

Advising

Each new student is assigned an adviser in his major department when he enrolls at college. This adviser helps the new student solve problems involved in becoming oriented to college life and helps to arrange a sound course of study for him. Returning students and college transfers are also assigned an adviser who helps the student arrange his instructional program.

Health Services

The staff and facilities of the Student Health Center are dedicated to the ideals of preventive, diagnostic and therapeutic medicine. These services are offered with an emphasis on health education. In general, the same approach as that of the student's own family physician is provided. The Health Center staff has several full-time physicians, registered nurses, and medical technologists. The Health Center is comprised of two units: a thirty-bed, fully-accredited hospital and an outpatient department. It provides a well-equipped clinic and hospital with facilities for minor surgery, pharmacy, laboratory, physical therapy, medical records, and diagnostic X-ray facilities.

The health program is financed by the student in three steps. For complete medical coverage, each regular student should participate in all three:

1) The materials and service fee allows limited outpatient care from 8 a.m. to 5 p.m., Monday through Friday.
2) An optional local health fee of $24 per academic year or $9 per individual quarter entitles the student to campus hospitalization and 24-hour emergency care by a college physician. Additional services under this program are physical therapy and prescription service in the campus pharmacy. Any full-time student, even without this prepaid campus health plan, may still avail himself of these benefits by paying a fee for service.
Student Housing

3) Supplementary major medical and hospital insurance is offered through the A.S.I. to cover major surgery and emergency expenses incurred away from campus.

A health statement on a form provided by the College is required of each student; the physical examination is optional. Chest X-rays and tetanus immunizations recommended for each new student are provided by the Health Center.

Foreign Student Services

Advisers are available to assist foreign students in making academic, personal and cultural adjustments to the campus and the community. It is required that every student from another country upon his arrival at the college present himself with his passport to the Foreign Student Office.

Student Housing and Dining Services

ON-CAMPUS HOUSING

On-campus residence hall facilities are available for both men and women students.

The College believes a stimulating intellectual and social environment in housing units is an important part of the student's education. Study is encouraged through the observance of regular quiet hours. Residents also have ample opportunity to participate in intramural activities, discussion groups, and social events with other halls. This environment also is recommended for foreign students to facilitate social, educational, and cultural adjustments. Each hall is staffed with professional personnel.

New students who wish to live in the residence halls should request on-campus housing when they apply to the College for admission. Assignment to available on-campus housing is made according to the date of acceptance for admission to the College.

Notification of the availability, or the unavailability, of on-campus housing after acceptance for admission to the College is normally made shortly after June 1 for the Fall Quarter.

Housing licenses are mailed to students accepted for on-campus housing. Signed licenses, accompanied by the required payment, must be returned by the deadline stated in the license. Failure to comply with the license stipulations automatically results in loss of housing assignment.

OFF-CAMPUS HOUSING

Privately owned and operated off-campus housing is available for both men and women students. The College does not inspect or supervise these facilities. Parents are responsible for the living arrangements of their sons and daughters.

Inquiries about off-campus housing should be made in person at the Housing Office.

FAMILY HOUSING

The Housing Office maintains a card file of apartments and rooms available to married students. It does not inspect or approve the facilities listed. Inquiries about the file should be made in person at the Housing Office.

DINING HALL

The Dining Hall provides a variety of food services designed to satisfy the varied desires of the student. The primary food service is a full-meal program for those students holding meal tickets. Two optional meal ticket plans are available. Plan 1 is a meal ticket providing 19 meals per week. Plan 2 is a meal ticket entitling the owner to his choice of any 12 meals each week.

In addition to the meal ticket program, a snack bar is available which offers a wide range of sandwiches, snacks, salads, desserts, and fountain items.

A vending area adjacent to the dining room and the new College Union provides hot and cold sandwiches, beverages, and miscellaneous snacks 24 hours a day.
FINANCIAL AID AND PLACEMENT

Placement

A centralized placement service is available to all students and alumni of the college. The Placement Office and instructional departments work together in assisting students to obtain the most suitable employment consistent with their preparation and experience.

A followup program conducted by the Placement Office includes contacting both the graduate and employer to appraise the effectiveness of the instructional programs in light of employer needs, and the satisfaction of employer and employee.

Teacher Placement

Every candidate for a credential should register with the Placement Office before or during the last quarter prior to completion of the credential requirements. Registration includes the preparation of personal data, and the listing of references for the confidential teacher placement folder which is sent by the Placement Office to school administrators who are considering the candidate for a teaching position. This folder is maintained permanently by the Placement Office for use whenever the teacher wishes to seek a new position. Cooperation of the candidate in keeping information in the folder up to date is necessary for most effective service.

Summer Employment

Students are encouraged to take summer employment in fields related to their major.

The Placement Office receives many summer job listings. Ranchers and businessmen visit the campus in person and large business concerns send recruiters to interview undergraduates for summer employment.

Part-time Employment

In addition to off-campus employment and opportunities for students to earn money through project activities, the College has established a policy of giving a maximum number of students experience by employing them to assist in the operations of the entire campus and farm. The number of campus jobs is greater than in the typical college where regular full-time employees do much more of the work.

Work Study Program

The College is participating in the Work Study Program which provides students who are eligible the opportunity of employment as set forth under the Economic Opportunity Act. Employment provisions under this program are parallel to those of other student employment on campus. Rates of pay vary depending on the job requirements and the skills of the worker. Information and applications may be obtained from the Financial Aid Counselor, Administration 213.

Financial Aid

The College has a variety of loan funds, scholarships, awards, and part-time employment opportunities designed to assist students financially. Students who must have assistance in order to complete their college work should read this section carefully. Additional information and applications may be obtained by writing to the Financial Aid Counselor.

SCHOLARSHIPS AND AWARDS

General Information

Scholarships awarded by the College are available to both entering and enrolled students who meet the scholastic and financial need requirements of the College scholarship funds. These scholarships are made available from various sources, usually corporations, individuals, or interested groups outside the campus. Approximately 225 scholarships are awarded yearly.
Financial Aid

How to Apply
To be considered for a scholarship, a student or prospective student must complete a scholarship application blank. Scholarship application blanks are available December 1st of each year and must be completed and returned before April 1st. Applications may be obtained by writing to the Financial Aid Counselor.

Selection Criteria
Applicants are judged upon their need, scholastic ability, character and participation in school and community affairs. In addition, certain scholarships require special conditions concerning field of study, residence, and other similar factors. Generally, students must have at least a "B" average to place high enough in the scholarship ratings to be granted an award. However, there are scholarships which are granted to students with a lesser grade average. In some cases need, special qualifications, or a specific field of study will compensate for a lower grade average. It is recommended that a student apply if in doubt.

Additional Information
More information on scholarships available is included in the booklet "Financial Aid for Students" published by the College which may be obtained on request from the Financial Aid Counselor.

Freshman Scholarships

<table>
<thead>
<tr>
<th>Dairy Manufacturing</th>
<th>Agricultural Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Challenge Creamery Scholarship, $200.</td>
<td>General Foods Funds Scholarships, $400 (5).</td>
</tr>
<tr>
<td>Th. R. and Valley Knudsen Foundation Scholarship, $500.</td>
<td>The E. C. Loomis and Sons Scholarships, $100.</td>
</tr>
<tr>
<td>Ornamental Horticulture</td>
<td>San Luis Obispo Cowbelles Scholarship, $100 and $200 (2).</td>
</tr>
<tr>
<td>Agnese Davey Scholarship, $300.</td>
<td>Leopold Edward Wrasse Scholarships, $500 (95).</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Miscellaneous</td>
</tr>
<tr>
<td>California State Grange Scholarships, $250 (2).</td>
<td>California State Grange Scholarships, $250 (2).</td>
</tr>
<tr>
<td></td>
<td>Agronomy Scholarship, $100.</td>
</tr>
<tr>
<td></td>
<td>Electrical Engineering</td>
</tr>
<tr>
<td></td>
<td>All Engineering Majors</td>
</tr>
<tr>
<td></td>
<td>Walter Wells, Sr., Memorial Scholarships, $500 (10).</td>
</tr>
<tr>
<td></td>
<td>U. S. Electrical Motors Division of Emerson Electrical Manufacturing Company Scholarship, $100.</td>
</tr>
<tr>
<td></td>
<td>General Scholarships, up to $500.</td>
</tr>
<tr>
<td></td>
<td>Alumni Association Athletic Scholarships, up to $500.</td>
</tr>
<tr>
<td></td>
<td>Lulu G. Bumphrey Scholarship, $200.</td>
</tr>
<tr>
<td></td>
<td>General Scholarships, $150 (4).</td>
</tr>
<tr>
<td></td>
<td>California State Employees' Association Scholarships, $150 (4).</td>
</tr>
<tr>
<td></td>
<td>California Firemen's Association Scholarship, $300.</td>
</tr>
<tr>
<td></td>
<td>Dorman/Munselle Associates Scholarship, $1,000.</td>
</tr>
<tr>
<td></td>
<td>ROTC Scholarships, fees, books, plus $50 monthly retainer fee.</td>
</tr>
<tr>
<td></td>
<td>Sears, Roebuck Foundation Home Economics Scholarship Awards, $300 (3).</td>
</tr>
<tr>
<td></td>
<td>Soroptimist Scholarship, $400.</td>
</tr>
</tbody>
</table>
Advanced Student Scholarships

AGRICULTURE

Agriculture or Agricultural Journalism
Hearst Foundation Scholarships, $500.
Agricultural Engineering
Tractor and Implement Group of California Scholarship, $500.
Agricultural Management
Western Fairs Association, $500 (2).
Agricultural Management, Food Processing or Crops
Lloyd Ackerman Memorial Scholarship, $500.
George Lievere Memorial Scholarship, $500.
Animal Husbandry
L. L. Bennion Scholarship, $250.
George A. Smith, Jr., Scholarship, $200.
Crops
Western Agricultural Chemicals Association Scholarship, $500.
Dairy
California Dairy Industries Association Scholarship, $600.
Th. R. and Valley M. Knudsen Foundation Scholarship, $500.

Farm Management
Carl Beck Scholarship Awards, $50 (2).
Emer Tribe Award.
Ornamental Horticulture
Agnese Davey Scholarship, $300.
California Association of Nurserymen's Scholarship, $150.
California Association of Nurserymen, Central Chapter, $100.
Louis Deigaard Memorial Award, $500.
Harry E. Rosedale Memorial Scholarship, $100.
Santa Barbara County Horticulture Society Scholarship, $100.
Wellington Davey Scholarship, $300.
Poultry Industry
Olson Brothers Poultry Scholarship, $500.
Poultrymen's Cooperative Association of Southern California Scholarship, $300.

Miscellaneous
Group Seven California Bankers Association, $500.
Kings River Prune and Apricot Scholarship, $200.
Louis Deigaard Memorial Award, $500.
Fredrick Peter Young Scholarship, $150.

APPLIED ARTS

Athletics
Interfraternity Council Athletic Scholarship, $300.

Education
John and Dorothy Manning Scholarship, $200.
Parent-Teachers Scholarships, $500 (3).

Journalism
John Healey Sigma Delta Chi Scholarship, $100.

Printing
John B. Long Memorial Scholarship, $200 (2).
Crown Zellerbach Foundation Scholarship, $500.

ARCHITECTURE

Richard Dobell Award, $100.
Dorman/Munselle Associates Scholarship, $1,000.
Falk and Booth Scholastic Award, $150.
Dr. Albert Gazin Award, $100.
Graham Paint Store Award, $50.
Gruen Associates Scholarship, $1,800.
Leisure Arts Award, $50 (3)

Lew Litzie Award, $100.
Santa Barbara Chapter—AIA Award, $100.
Southern Counties Gas Company and Southern California Gas Company, $300 (2); $400.
Fredrick Peter Young Scholarship, $150.
Financial Aid

ENGINEERING

Aeronautical Engineering
Aero Alumni Scholarship, $100.
Leo F. Philbin Memorial Scholarship, $100.

Electrical Engineering
Poly Phase Award
U. S. Electrical Motors Division of Emerson Electric Manufacturing Company Scholarships, $300 (3).

Electronic Engineering
Hewlett-Packard-Alumni Scholarship.
Clarence Radius Memorial Scholarship, $400.

Electrical or Electronic Engineering
Institute of Electrical and Electronic Engineers, Santa Barbara Section Scholarship, $100.

Environmental Engineering
Air Condition/Refrigeration Center of Los Angeles Scholarship, $400.
Alpac Scholarship, $350.
Lillard Company Scholarship, $350.

Mechanical Engineering
Larry Reid Scholarship, $250.
Metallurgical Engineering
Metallurgical Consultants, Inc. Scholarships, $150 (2).

Metallurgical Engineering
Solar, Division of International Harvester Co., Awards, $100 (5); $500.

Electrical or Electronic Engineering
Institute of Electrical and Electronic Engineers, Santa Barbara Section Scholarship, $100.

Miscellaneous
American Society of Heating, Refrigeration and Air Conditioning Engineers Scholarship, $250.
Minnesota Mining and Manufacturing Scholarships, $400 (3).
Raytheon Company Scholarship, $500.
Walter Wells, Sr. Memorial Scholarship, $500 (10).
Western Electrical Fund, $400.

GENERAL

Alumni Association Athletic Scholarships, up to $500.
California State Polytechnic College Women’s Club, $50 (4).
California State Employee’s Association Scholarships, $150 (4).
California State Firemen’s Association Scholarship, $300.

Julian A. McPhee Award.
ROTC Scholarships, fees, books, plus $50 monthly retainer fee.
Soroptimist Club of San Luis Obispo, $400.

OTHER SCHOLARSHIPS

Bank of America, N. T. & S. A. Scholarships
Four annual $200 scholarships are awarded at the Grand National Junior Livestock Exposition on the basis of excellence of performance in the farm home program in the production of livestock. Applicants are limited to those participating in this special event. These scholarships may be used at the California State Polytechnic College.

Business and Professional Women’s Club of San Luis Obispo
The Business and Professional Women’s Club of San Luis Obispo provides one annual $250 advanced scholarship for a woman student who is a resident of San Luis Obispo County and who will enroll at the California State Polytechnic College after the completion of two years of college work, either at Cal Poly or at another four-year college or junior college. Prospective applicants should contact the club secretary.

California Seed Association Scholarship
One annual scholarship of $150 is offered to a Future Farmers of America member in California by the California Seed Association. The applicant must have an outstanding home farming program in truck crops or seed production, or an outstanding record in crops judging; and must enroll in crops production at certain California agricultural colleges including California State Polytechnic College. Application forms are available from high school FFA chapter advisers.
Financial Aid

Union Pacific Railroad Scholarships

Four $200 scholarships are made available by the Union Pacific Railroad, Omaha, Nebraska. Applicants must have completed two or more years of vocational agriculture, or 4-H club work, including commendable projects. One scholarship is to be awarded to one resident in each of the following counties: Los Angeles, Riverside, San Bernardino, and Orange. Scholarships may be used at California State Polytechnic College, University of California, or Chaffey Junior College. All applications, however, must be submitted not later than April 15. Scholarships shall be used within the calendar year after the date of graduation from high school. All project books, a picture of the applicant, and, if possible, pictures of his project must accompany the application.

Safeway Stores, Inc., Scholarships

Two annual $200 scholarships are awarded at the Grand National Junior Livestock Exposition on the basis of excellence of performance in the farm home program in the production of livestock. Applicants are limited to those participating in this special event. The scholarship awarded to a Future Farmer must be used at California State Polytechnic College.

Santa Fe Scholarship

One annual scholarship of $250 is offered to a Future Farmers of America member in California by the A. T. and S. F. Railway. The scholarship may be used at certain agricultural colleges within the State, including California State Polytechnic College. Application forms are available from high school FFA chapter advisers.

South San Francisco and Stockton Union Stockyards Company Scholarships

Two annual $100 scholarships are awarded at the Grand National Junior Livestock Exposition on the basis of excellence of performance in the farm home program in the production of livestock. Applicants are limited to those participating in this special event. The scholarship award to a Future Farmer must be used at California State Polytechnic College.

Standard Oil Company of California Scholarships

Thirty annual scholarships of $300 each are offered by the Standard Oil Company of California to members of the Future Farmers of America and members of 4-H clubs in California. Any of these scholarships may be used at California State Polytechnic College or other colleges. Future Farmers should apply through their agriculture teachers, 4-H club members through their club leaders and county club advisers.

NATIONAL DEFENSE STUDENT LOAN PROGRAM

The College participates with the Federal Government and the State of California in making available loans to students under provisions of the National Defense Education Act.

Entering freshmen as well as students in advanced standing in any field of study are eligible, although the law provides that special consideration shall be given to (a) students with superior academic background who express a desire to teach in elementary or secondary schools, and (b) students whose academic background indicates a superior capacity or preparation in science, mathematics or engineering. Cal Poly has programs in all of these fields of learning.

The maximum loan to one individual is $1,000 in any one academic year, and no more than $5,000 total. Loans must be repaid with 3 per cent interest over a period of 10 years beginning one year after the individual ceases to be a full-time student at an institution of higher education. However, a borrower may have 10 per cent of the loan, and the interest thereon, cancelled for each full year of full-time public elementary or secondary school teaching, up to a maximum of 5 years and 50 per cent of the loan.

The deadline for submitting National Defense Student Loan Applications for the following school year is June 1.
STUDENT LOAN FUNDS

Student loan funds are available to provide temporary assistance to worthy students. Loans from these funds are made for varying periods of time, according to regulations determined by a faculty committee and in conformance with conditions prescribed in the establishment of the particular loan fund. Applications may be obtained from the Financial Aid Counselor, Administration 213.

The character and integrity of the student are the primary qualifications for obtaining a loan. Evidence of real need for such temporary assistance must be shown. Students who have spent funds far beyond the necessary school expenses will not be considered for loans, even though need is shown.

Agricultural Engineering Society Loan Fund
Alpha Zeta Loan Fund
Alumni Association Loan Fund
American Society of Heating, Refrigerating and Air Conditioning Engineers Loan Fund
Pete Bachino Memorial Loan Fund
Baer-Beck Fund
Edgar E. Bilodeau Loan Fund
Jed S. Blake Memorial Loan Fund
California Association of Refrigeration Service Engineers Loan Fund
California Association of Soil Conservation Districts Loan Fund
California Polytechnic Memorial Loan Fund
California Retired Teachers' Loan Fund
The California State Polytechnic Women's Club Fund
W. B. Camp Revolving Scholarships in Agricultural Journalism
W. B. Camp Educational Loan Fund
Margaret Chase Memorial Loan Fund

Thomas Comer Memorial Loan Fund
Harlan Diedrichson Fund
Court Evergreen, Independent Order of Foresters Loan Fund
Ralph Hoover Memorial Loan Fund
Horseshoeing and Animal Husbandry Loan Fund
Chris Jespersen Fund
Kema Fund
Lee Gird Levering Memorial Loan Fund
Lynn T. Lobaugh Memorial Loan Fund
William Mercer Memorial Loan Fund
1960 Football Team Memorial Fund
The Rotary Club Fund
Sears Roebuck Foundation Loan Fund for Foreign Students
George Sehlmeyer Memorial Fund
Telegram Tribune Loan Fund
Todd Farm Bureau Emergency Loan Grant
Wilder Memorial Loan Fund
The Wrasse Fund

UNITED STUDENT AID FUND

United Student Aid Fund is a private non-profit corporation which endorses low-cost loans by participating banks to college students. The College participates in this program by providing a specified amount of matching funds which allows the College to recommend students for such bank loans. Students who have completed their freshmen year may borrow from a bank up to $1,000 a year at 7 percent simple interest with repayment beginning after graduation or separation from college. For a student who qualifies under federal law, the federal government will pay all the interest until payments are due to begin.

Other organizations and funds also have provided matching amounts which make possible recommendation of additional student loans, some of them to specified categories of students. These organizations and funds (many of which also make student loans directly) are:

Alpha Zeta Loan Fund
Alumni Association Loan Fund
Architecture (A.I.A.) Fund
Baer-Beck Fund
California Cowbelles, Inc.
California State Polytechnic College Foundation
Joseph Cardani Memorial Loan Fund
Class of 1964 Loan Fund
Thomas W. Flower Memorial Fund
Green and Gold BBQ Fund
Jack Bertram and John Lee Loan Fund
Roy F. Metz Memorial Loan Fund
Clarence Radius Memorial Fund
Larry Reid Loan Fund
James Ritchie Loan Fund
Norman Sharpe Fund
Lester Whitney Memorial Fund
The California State Polytechnic Women's Club Fund
STUDENT GUARANTEED LOAN PROGRAM

Federal-sponsored long-term loan programs with largely the same terms as the National Defense Student Loan Program, but with no teacher cancellation provisions. For families with annual income under $15,000, an agency of the federal government will pay all of the interest while the student is in school.

EDUCATIONAL OPPORTUNITY GRANT PROGRAM

A grant-in-aid program intended to assist undergraduate students who, without substantial aid such as this, could not attend college. Eligibility is restricted to students from families with very low income. The aid must be matched by a National Defense Loan or similar aid.

Educational Opportunity Grant applicants must submit a Parents' Confidential Statement of Finances.

LAW ENFORCEMENT EDUCATIONAL GRANT PROGRAM

Grants for the mandatory fees required by the College are made available to in-service law enforcement officers through a Federal program. Applicants may enroll on a full or part-time basis and must agree to serve in the employing agency for a period of at least two years following completion of their studies.

MERLE HAMBLY FUND PROGRAM

A fund established by the California State Polytechnic College Student Wives Club provides for grants to assist the married student whose child has met with an accident or otherwise requires immediate medical care of an emergency nature.

FEES AND EXPENSES

STATE FEES

† Materials and service fee (fall quarter) .. $36.00
Nonresident tuition—U.S. ($1,480 annual maximum):
 For 14½ units or more (per quarter) ... 370.00
 For less than 14½ units (per quarter per unit or fraction of unit) 25.00
Nonresident tuition—Foreign ($800 annual maximum):
 For 14½ units or more (per quarter) ... 200.00
 For less than 14½ units (per quarter per unit or fraction of unit) 13.50
* Facilities fee (non-State funded), per quarter ... 2.00
Late registration fee ... 5.00
Transcript of record (no charge for first copy) ... 1.00
Course credit by special examination fee (per unit) 1.00
Summer session fee (per quarter unit) ... 16.00
Extension course fee (per quarter unit):
 Lecture and discussion courses .. 12.75
 Activity courses ... 16.25
 Laboratory courses .. 25.25
Conference, Short Course or Institute, per person Estimated Cost
Application fee (not refundable) ... 20.00
Change of program fee ... 1.00
Failure to meet administratively required appointment or time limit 2.00
Library fees ... 2.00
See schedule in library
Check returned for any cause ... 2.00
† Parking fee (nonreserved spaces, per quarter) ... 9.00
 Each alternate car in addition to fee for first vehicle 1.00
Special groups or sessions of one week or more, per week 1.00

Fees are subject to change upon approval by the Trustees of the California State Colleges.

* Effective fall quarter, 1970. Fee is $0.50 for 1970 summer quarter.
† Proportionate fees apply during summer session.
‡ Change in fee pending for winter and spring quarters.
Fees

OTHER FEES

<table>
<thead>
<tr>
<th>Description</th>
<th>Summer Quarter</th>
<th>Fall Quarter</th>
<th>Winter and Spring Quarters, Each</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associated student card fee</td>
<td>$5.00</td>
<td>$10.00</td>
<td>$5.00</td>
</tr>
</tbody>
</table>

College Union Fee

<table>
<thead>
<tr>
<th>Description</th>
<th>Fall Quarter</th>
<th>Winter and Spring Quarters, Each</th>
<th>Summer Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each student enrolled for over six units</td>
<td>$6.00</td>
<td>$5.00</td>
<td>$4.00</td>
</tr>
<tr>
<td>Each student enrolled for six units or less</td>
<td>$3.00</td>
<td>$2.50</td>
<td>$2.00</td>
</tr>
</tbody>
</table>

- **Optional medical fee (per quarter)**: $9.00

Living Expenses for Students Living in Campus Residence Halls

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room and Board</td>
<td></td>
</tr>
<tr>
<td>Room, per quarter, annual license required</td>
<td>$183.00</td>
</tr>
<tr>
<td>Board, per quarter (optional)</td>
<td>$165.00 to $225.00</td>
</tr>
<tr>
<td>Housing security deposit (payable prior to occupancy)</td>
<td>$20.00</td>
</tr>
</tbody>
</table>

Room payable in advance. Arrangements to pay in installments may be made upon application for campus housing. A service fee of $4.00 per quarter shall be charged for the right to make installment payments.

Students are required to furnish blankets, bed spreads, and study lamps.

Two optional meal ticket plans are available. Plan 1 is a meal ticket providing 19 meals per week at a cost of $600 per year or $225 per quarter. Plan 2 is a meal ticket entitling the owner to his choice of any 12 meals each week at a cost of $165 per quarter.

Typical Student Expenses

Following is an estimate of typical expenses per quarter for the average California resident student living in campus residence halls. Non-resident students should be prepared to pay additional tuition fees. Of the total amount, the student should be prepared to pay from $130 to $180, depending upon his major, at the time of fall quarter registration and approximately the same amount at the time of registration for other quarters.* Charges for room and board are payable in advance.

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associated student card (fall quarter, $10.00, winter and spring quarters, $5.00 each)</td>
<td>$10.00</td>
</tr>
<tr>
<td>College union fee (fall quarter, $6.00, winter and spring quarters, $5.00 each)</td>
<td>$6.00</td>
</tr>
<tr>
<td>Medical fee—optional (per quarter)</td>
<td>$9.00</td>
</tr>
<tr>
<td>Materials and service fee (per quarter)</td>
<td>$36.00</td>
</tr>
<tr>
<td>Facilities fee</td>
<td>$2.00</td>
</tr>
<tr>
<td>Room and board with optional annual meal ticket</td>
<td>$383.00</td>
</tr>
<tr>
<td>Books and supplies (estimated)</td>
<td>$75.00†</td>
</tr>
<tr>
<td>Laundry (estimated $10 per month)</td>
<td>$30.00</td>
</tr>
</tbody>
</table>

Estimated total per quarter (approximately 3 months): $551.00

* Students enrolling under the auspices of an agency supplying educational assistance should check in advance with the appropriate agency representative regarding payment of fees and/or costs.
† Beginning engineering and architecture students should be prepared to pay up to $150 in their first quarter.
Student Conduct

STUDENT CONDUCT

It is expected that all California State Polytechnic College students are enrolled for serious educational pursuits and that they will conduct themselves so as to preserve an appropriate atmosphere of learning. It is also expected that all students who enroll at the College are willing to assume the responsibilities of citizenship in the campus community. Association in such a community is voluntary, and any student may withdraw from it at any time that he considers the obligations of membership disproportionate to the benefits. While enrolled, students are subject to college authority which includes the prerogative of dismissing those whose conduct is inimical to the aims of an institution of higher education.

While enrolled, students are subject to the regulations governing discipline stated in Title 5 of the California Administrative Code, Sections 41300, 41301, and 41302, and to such rules and regulations as have been approved and promulgated by authority of the College President. Copies of 5 Cal Adm Code 41301 and 41302, which deal specifically with student disciplinary regulations, are distributed during each registration period. Other applicable regulations are contained in this Catalog, in the College Administrative Manual, and in other official College publications.

Student Disciplinary Procedures

The college has established procedures for student disciplinary matters which are included in the College Administrative Manual, the official college publication of policies and procedures which is available in the college library for easy reference. A portion of the Manual which is relevant to student disciplinary matters is quoted below:

Educating students to their responsibilities as good citizens of the College and of the community is a college-wide responsibility requiring the cooperation and understanding of the entire College. Title 5 of the California Administrative Code assigns to the College President responsibility for enforcement of student disciplinary regulations. The College President has delegated to the Dean of Students the responsibility and commensurate authority to administer student disciplinary regulations but has retained decision-making authority on final appeals at the local college level.

When the conduct or behavior of a student is such that he is alleged to be in violation of applicable provisions of the Education Code, regulations of the Board of Trustees, and college rules and orders issued thereunder, the case is referred to the Student Affairs Office. A preliminary investigation of the facts leading to the allegation is made by the Dean of Students or his designee. If the preliminary investigation reveals that there is reason to believe that an infraction has been committed by a student of the College, disciplinary procedures as described in this Manual will be initiated.

Disciplinary Probation

Students on disciplinary probation may not participate on intercollegiate teams nor may they hold positions of leadership in student organizations or student government groups. This includes but is not limited to such groups as: athletic teams, music groups, debate teams, drama casts, judging teams, drill teams, Model U.N. delegation, rifle team, ASI councils, boards and committees. Such students may not hold an office in a student organization nor may they be editors, managers, or hold similar positions on student publications.

Student Involvement in Disciplinary Procedures

Student Government includes a judicial branch, the Student Judiciary, which rules on the constitutionality of student actions within the bylaws of the Associated Students and which hears cases of alleged infractions of campus regulations referred to that body by the Dean of Students for the purpose of recommending appropriate sanctions to the Dean of Students. Students also conduct hearings in the residence halls with recommendations to the Dean of Students or his designee.
Student Conduct

In addition, students are represented on College Hearing Boards and College Appeal Boards which also include members of the faculty and the administrative staff and which make recommendations to the Dean of Students or to the College President, as appropriate in each case.

Procedural Due Process

In all matters of student discipline, each person charged with a violation is given every courtesy, privilege, and right under the law and within the context of the uniqueness of a public institution of higher learning.

Causes for Disciplinary Action

Causes for disciplinary action are cited in Section 41301 of Title 5 of the California Administrative Code:

- Expulsion, Suspension and Probation of Students. Following procedures consonant with due process established for the state college of which he is a student, any student of a state college may be expelled, suspended, placed on probation or given a lesser sanction for one or more of the following causes which must be state college related:
 - (a) Cheating or plagiarism in connection with an academic program at a state college.
 - (b) Forgery, alteration or misuse of state college documents, records, or identification or knowingly furnishing false information to a state college.
 - (c) Misrepresentation of oneself or of an organization to be an agent of a state college.
 - (d) Obstruction or disruption, on or off college property, of the state college educational process, administrative process, or other college function.
 - (e) Physical abuse on or off college property of the person or property of any member of the college community or of members of his family or the threat of such physical abuse.
 - (f) Theft of, or non-accidental damage to, state college property, or property in the possession of, or owned by, a member of the college community.
 - (g) Unauthorized entry into, unauthorized use of, or misuse of state college property.
 - (h) On state college property, the sale or knowing possession of dangerous drugs, restricted dangerous drugs, or narcotics as those terms are used in California statutes, except when lawfully prescribed pursuant to medical or dental care, or when lawfully permitted for the purpose of research, instruction or analysis.
 - (i) Knowing possession or use of explosives, dangerous chemicals or deadly weapons on state college property or at a state college function without prior authorization of the state college president.
 - (j) Engaging in lewd, indecent, or obscene behavior on state college property or at a state college function.
 - (k) Abusive behavior directed toward a member of the college community.
 - (l) Violation of any order of a state college president, notice of which had been given prior to such violation and during the academic term in which the violation occurs, either by publication in the campus newspaper, or by posting on an official bulletin board designated for this purpose, and which order is not inconsistent with any of the other provisions of this Section.
 - (m) Soliciting or assisting another to do any act which would subject a student to expulsion, suspension or probation pursuant to this Section.
 - (n) For purposes of this Article, the following terms are defined:
 - (1) The term ‘member of the college community’ is defined as meaning state college Trustees, academic, non-academic and administrative personnel, students, and other persons while such other persons are on state college property or at a state college function.
 - (2) The term ‘state college property’ includes:
 (A) real or personal property in the possession of, or under the control of, the Board of Trustees of the California State Colleges, and
(B) all state college feeding, retail, or residence facilities whether operated by a college or by a state college auxiliary organization.

(3) The term 'deadly weapons' includes any instrument or weapon of the kind commonly known as a blackjack, slung shot, billy, sandclub, sandbag, metal knuckles, any dirk, dagger, switchblade knife, pistol, revolver, or any other firearm, any knife having a blade longer than five inches, any razor with an unguarded blade, and any metal pipe or bar used or intended to be used as a club.

(4) The term 'behavior' includes conduct and expression.

(o) This Section is not adopted pursuant to Education Code Section 23604.1.

(p) The provisions of this Section as hereinabove set forth shall only apply to acts and omissions occurring subsequent to its effective date. Notwithstanding any amendment or repeal pursuant to the resolution by which any provision of this Article is amended, all acts and omissions occurring prior to that effective date shall be subject to the provisions of this Article as in effect immediately prior to such effective date.

Among the specific causes for which the College will take such disciplinary action are: the bringing or drinking of alcoholic beverages on campus; being intoxicated on campus; being convicted by a public law enforcement agency of a misdemeanor involving moral turpitude, or of a felony, resulting from behavior which indicates that the student's presence on campus would constitute a threat to the safety or welfare of the college community; repeated violations of college rules and regulations, including those pertaining to driving and parking of vehicles.

Disciplinary action varies with the severity of the violation. If the unacceptable behavior involves use of motor vehicles, the student may be restricted from driving or parking on campus. If the unacceptable behavior involves matters pertaining to on-campus housing or dining, the student may be restricted from living or dining on campus.
CHART OF RECOMMENDED JUNIOR COLLEGE PREPARATION FOR AGRICULTURE MAJOR CURRICULA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>Bio 110, Applied Biology</td>
<td>3</td>
<td>2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bot 121, General Botany</td>
<td>4</td>
<td>3</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio 123, Entomology</td>
<td>4</td>
<td>3</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zoo 131, General Zoology</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Zoo 132, General Zoology</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bio 221, Bacteriology</td>
<td>7</td>
<td>5</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Physical Sciences</td>
<td></td>
</tr>
<tr>
<td>Phys 104, Introductory Physics</td>
<td>6</td>
<td>4</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Phys 121-2-3, Physics for Engr.</td>
<td>12</td>
<td>8</td>
<td>X</td>
</tr>
<tr>
<td>Chem 121-2, Inorganic & Organic</td>
<td>12</td>
<td>8</td>
<td>X</td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
</tr>
<tr>
<td>Math 100-200, Basic Math</td>
<td>6</td>
<td>4</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Math 103-3, Ag. Math. or 112-14</td>
<td>6</td>
<td>4</td>
<td>X</td>
</tr>
<tr>
<td>Math 112-14, Algebra & Trig.</td>
<td>9</td>
<td>6</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Agriculture & Supporting Courses</td>
<td></td>
</tr>
<tr>
<td>AE 121-2, Ag. Mechanics</td>
<td>4</td>
<td>3</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>AE 132, Ag. Power & Machinery</td>
<td>4</td>
<td>3</td>
<td>X</td>
</tr>
<tr>
<td>SS 121, Sub...</td>
<td>4</td>
<td>3</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>EE 201 or 211, Economics</td>
<td>3</td>
<td>2</td>
<td>X</td>
</tr>
<tr>
<td>Ag 131-2, Basic Accounting</td>
<td>5</td>
<td>4</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ag Major or Related Courses</td>
<td>2</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>Subtotals (Semester Units)</td>
<td>4</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>General Education Courses</td>
<td></td>
</tr>
<tr>
<td>Maximum Transfer Units</td>
<td>105</td>
<td>70</td>
</tr>
</tbody>
</table>

1. The prospective transfer student should consult the curriculum requirements specified in this catalog for his particular major, including possible options and concentrations.

2. Recommended courses include English, American History, American Government, Psychology, Speech, Literature, Physical Education and Health, etc.
The School of Agriculture of the College prepares students in the field of agriculture with the main objective of giving them a full and broad understanding of basic factors involved in production, management, processing, distribution, marketing, sales and services in the fields of related business, to make efficient operators and managers. While the school stresses production techniques and basic management to benefit to the fullest extent those returning to the farm or entering employment in agricultural fields upon leaving college, it also requires a core of basic sciences related to the production courses of the major and a substantial block of general education subjects necessary to prepare the student to take his rightful place in a democratic society.

This preparation also provides the sound basis necessary for the student desiring to become a teacher of agriculture in California's secondary schools.

Curricula in the School of Agriculture are arranged so that a student receives a maximum of production courses in his major field early in the program. This means that even if a student terminates his formal education at any time prior to his graduation, he has acquired a background of fundamentals which makes him immediately employable in the occupational field of his choice. This system of taking production courses early in the curriculum makes it possible for the student to determine in a short time whether or not he is fitted for the curriculum he has selected. In addition, the early acquisition by the student of practical "doing" types of activities provides him with the incentive to learn the basic scientific explanations.

The School of Agriculture uses the California State Polytechnic College Foundation program of student projects to provide additional experience and practice to supplement regular production courses. This practical experience leads to the understanding of production and managerial problems that are important in the overall training of a student in agriculture.

Admission to the School of Agriculture requires high school graduation, with appropriate test scores and grades, but does not require a specific pattern of courses taken in high school. However, a student who anticipates enrolling in the School of Agriculture will find a strong background in mathematics and physical and biological sciences advantageous.

Curricula are offered in the following majors in the School of Agriculture: agricultural business management, agricultural engineering, animal science, crops science, dairy, farm management, food processing, fruit science, mechanized agriculture, natural resources management, ornamental horticulture, poultry industry, and soil sciences.

The Agricultural Education Department provides an additional program of courses required of prospective secondary agriculture teachers.

The Veterinary Science Department offers courses which support the animal production majors.

The courses offered in each agricultural curriculum may be grouped into four areas as follows:

1. Major agriculture—The required sequence of courses offered by the department in which the student expects to graduate. These courses constitute the core instruction leading to specific preparation for the production field of the student's choice.

2. Related agriculture—Supporting courses in agriculture selected from closely allied fields. They supplement the major agriculture block in (1).

3. Science and mathematics—Courses selected from scientific fields which provide basic biological, physical and social science, and mathematical background and support to the agricultural block in (1) and (2) above.

4. Humanistic-social—Courses which provide cultural background for intelligent living in a complex world society.
Agriculture

MASTER OF SCIENCE IN AGRICULTURE

The School of Agriculture offers a program of graduate study leading to the degree of Master of Science in Agriculture. This broadly-based program is designed to develop professional competencies for positions in agriculture and related industries, teaching, business, and government work which now require levels of preparation beyond the baccalaureate degree. Concentrations are currently available in the areas of General Agricultural Sciences, International Agriculture, and Soil Conservation.

CURRICULUM FOR THE MASTER OF SCIENCE IN AGRICULTURE DEGREE WITH A CONCENTRATION IN GENERAL AGRICULTURAL SCIENCES

(For College requirements see the Graduate Study Bulletin)

Courses in the program will include the following:

<table>
<thead>
<tr>
<th>Units</th>
<th>A. Courses in area of concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>1. The 24 units of 400 and 500 series courses must be distributed among a minimum of three departments in the School of Agriculture. Fifteen units must be at the 500 level.</td>
</tr>
</tbody>
</table>

B. Courses other than in the area of concentration

<table>
<thead>
<tr>
<th>Units</th>
<th>1. These are to be selected from 300-400-500 series courses as approved by the student's graduate adviser or committee from such areas as Agricultural Education and Education. Eight units must be at the 500 level.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

C. Electives from 300-400-500 level courses

<table>
<thead>
<tr>
<th>Units</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

CURRICULUM FOR THE MASTER OF SCIENCE IN AGRICULTURE DEGREE WITH A CONCENTRATION IN INTERNATIONAL AGRICULTURE

(For College requirements see the Graduate Study Bulletin)

A. Courses in the area of concentration:

<table>
<thead>
<tr>
<th>Units</th>
<th>ABM 515 International Agricultural Marketing</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ABM 516 Communication for Change in Developing Countries</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FM 520 World Agricultural Development</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Courses at the 500 level selected from the following in at least 8 units:

<table>
<thead>
<tr>
<th>Units</th>
<th>AE 520 Special Problems and Topics (1-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td></td>
</tr>
<tr>
<td>ASci 580 Graduate Seminar in Animal Nutrition (3)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>AgEd 522 Group Study in Agricultural Mechanics (3)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>VS 522 Seminar in Foreign Livestock Disease Problems (2)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>581 series Graduate Seminar in Agriculture (3)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Courses in agriculture to be chosen from the 300 level or above

<table>
<thead>
<tr>
<th>Units</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

B. Courses outside the area of concentration:

<table>
<thead>
<tr>
<th>Units</th>
<th>AgEd 580 Special Problems in Agricultural Education</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SocSc 590 Seminar in Social Sciences</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Courses selected from the following:

Geography, Political Science and History of one selected world regional area (Latin America, Africa south of the Sahara, North Africa and the Middle East, or Asia and the Far East), 300 or 400 level courses as approved by the student's graduate committee. The student must develop and demonstrate language competency as required by his graduate committee.

C. Electives from 300, 400, and 500 level courses

<table>
<thead>
<tr>
<th>Units</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

58
Agriculture

CURRICULUM FOR THE MASTER OF SCIENCE IN AGRICULTURE DEGREE
WITH A CONCENTRATION IN SOIL CONSERVATION
(For College requirements see the Graduate Study Bulletin)

A. Courses in the area of concentration:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRM 502 Resource Conservation</td>
<td>3</td>
</tr>
<tr>
<td>SS 508 Conservation Legislation</td>
<td>3</td>
</tr>
<tr>
<td>SS 321 Soil Morphology</td>
<td>3</td>
</tr>
<tr>
<td>SS 581 Graduate Seminar in Soils</td>
<td>3</td>
</tr>
<tr>
<td>SS 582 Graduate Seminar in Land Management</td>
<td>3</td>
</tr>
<tr>
<td>SS 599 Thesis or Internship</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

B. Courses other than in the area of concentration:

Courses to be selected from the 300-400-500 series outside the area of concentration and approved by the student's graduate committee.

At least 6 units must be in 500 level courses

C. Electives from 300, 400, and 500 level courses

<table>
<thead>
<tr>
<th>Electives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

45

TECHNICAL CURRICULA IN AGRICULTURE

In keeping with the collegewide policy of offering major courses which lead to occupational competency from the beginning of the first year of the four-year sequence, it is essential to provide opportunity for students who may find it impossible to complete four-year programs, to obtain as early as possible a concentration of production courses with a minimum of supporting material.

A technical two-year curriculum is available in each of the following agriculture areas: agricultural business management, mechanized agriculture, animal science, dairy husbandry and manufacturing, farm management, crops science, fruit science, food processing, ornamental horticulture, poultry industry, and soil science. These curricula include a smaller number of units of related and general education courses than are included in the degree programs. This permits the student to acquire the basic fundamentals in the major of his selection and a greater freedom of choice of subjects in agricultural production courses. A student not wishing to enroll in a degree curriculum will find that a two-year curriculum offers a maximum opportunity to select courses which will greatly assist him in agriculture after graduation. For admission requirements see "Requirements for Admission as an Undergraduate Student."

Upon completion of 98 selected units, a student may receive a technical certificate in the field of his major.

A student enrolled in the technical program will not be allowed to enroll for credit in any 300 or 400 series courses except when prior approval has been obtained by petition for special consideration.

The following is the two-year technical curriculum for animal husbandry. Other majors follow a similar pattern. Detailed curriculum information is available from the Dean of the School of Agriculture and department heads.

Freshmen

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feeds and Feeding (ASci 101)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market Beef Production (ASci 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elements of Swine Production (ASci 122)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elements of Sheep Production (ASci 123)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 121, 122)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>*Applied English Composition (Eng 100)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Math (Math 102)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>*Agricultural Biology (Bio 100)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>16⅔</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>

* These courses are taken in place of the required courses in the same subject matter fields listed in the degree curricula in the first two years and may not be used as credit toward a degree.

VS 100 is replaced by CrSc 100 for plant majors.

All two-year technical students are required to take Math 102. Students in Mechanized Agriculture are required to take Math 102 and 103.

59
A student enrolled in the technical program may not transfer to a degree program except by following the approved college procedure for such transfers.

The following specialization areas are available to two-year technical students in Animal Science: Beef Cattle Production, Horse Production, Feed Mill Operation. One of these may be selected with the approval of the adviser.

HORSESHOEING

The Animal Science Department offers a 12-week course in horseshoeing in the fall and spring quarters.

AGRICULTURAL ENTERPRISE PROJECT FACILITIES

The entire farm with its equipment, buildings, and livestock is available to students for their use in conducting a wide variety of agricultural enterprise projects.

The college foundation has some of the best breeding flocks and herds of livestock in the State. Many show champions have come from the beef herd, which includes Herefords, Angus, and Shorthorns, offsprings of which are sold to the students. All necessary equipment for beef cattle production—barns, dehorning and loading chutes, corrals, stock horses, etc., is available.

The college foundation swine herd consists of three major breeds—Poland Chinas, Yorkshires, and Hampshires. The facilities include a 12-unit farrowing house and outside lots and pastures for the brood sows. In addition there are 20 feeder units for student projects having a capacity of approximately 20 market hogs per unit. Student projects market between 700 and 800 far marker hogs each year.

The foundation breeding flock of sheep is made up of four breeds—Hampshire, Suffolk, Corriedale, Southdown. From 20 to 40 breeding ewes are maintained in each of the breeds, giving the students an opportunity of carrying on typical pure-bred breeding operations. There are student project facilities for approximately 400 to 500 market lambs that are fed for market each year. Students also have the opportunity of learning shearing and care of wool as well as lamb production.

The dairy herd includes purebred Jerseys, Guernseys, and Holsteins. Equipment includes all the necessary facilities for feeding and milking, care of calves and bulls, artificial insemination, milk testing, bottling, separating, and creamery operations. Students conducting dairy projects carry out their operations on a separate part of the college farm.

The poultry flock consists of between 3,500 and 4,000 birds. The equipment includes a modern incubator, egg-handling facilities, brooders and brooder houses, pens for trap-nesting and pedigree work, and related devices. A student assistant and the students themselves care for every operation under the supervision of the department head.

* These courses are taken in place of the required courses in the same subject matter fields listed in the degree curricula in the first two years and may not be used as credit toward a degree.

VS 100 is replaced by CrSc 100 for plant majors.

All two-year technical students are required to take Math 102. Students in Mechanized Agriculture are required to take Math 102 and 103.
The Ornamental Horticultural Department occupies a unit consisting of four greenhouses and three lath houses together with a sales unit and two large labs used for nursery instruction. Student projects are operated in all phases of nursery work. Equipment includes all of the essential machinery necessary for operation of a modern unit.

The Crops Department is well equipped with all types of machinery found on mechanized farms in California. All of the farming operations are carried on by students under the supervision of the Crops and Farm Departments through project class work or paid student labor. Orchards, vineyards, crop land, fruit and vegetable packing facilities and marketing outlets are available for instructional purposes.

The Agricultural Engineering Department operating and servicing all of the mechanized equipment at the college has many opportunities for students to learn practical farm machinery maintenance and repair. The major part of the maintenance work is handled by students under faculty supervision.

AGRICULTURAL EDUCATION DEPARTMENT
Department Head, H. H. Burlingham
Osmund S. Gilbertson

The primary function of the Agricultural Education Department is to provide for the preparation of teachers of agriculture for the public secondary schools of California. Specialized pre-professional and professional courses are offered for undergraduate and graduate students. The basic technological, scientific, and broad general education course work for agriculture teaching candidates is offered throughout the School of Agriculture and other schools of the college.

Undergraduate students interested in preparing to become teachers of agriculture must enroll in an agriculture major and obtain a B.S. degree in agriculture. The undergraduate major may be selected in any of the agricultural science, production or management fields. Graduate students will enroll as majors in agricultural education.

Undergraduate agriculture teacher candidates will need to use judiciously the elective time available in the major curriculum to complete courses additionally required for the teaching credential which are not normally specified in the undergraduate major. A teaching minor in a single academic subject must be selected from those available at the college. Course work toward the minor should be started in the first or second year in order to incorporate these courses in the total curriculum of the student. Information on available minors may be obtained from the Agricultural Education office. Undergraduate students preparing for the teaching of agriculture will be advised primarily by an adviser in the selected agriculture major. They may pursue a program in agricultural education with the assistance and approval of their major department adviser in course planning and scheduling. Curriculum sheets showing such programs for each of the majors are available from department advisers and the Agricultural Education Office.

Guidance in course selection to meet teaching credential requirements in agricultural education is available through advisers in the Agricultural Education Office.

Candidates for the Standard Teaching Credential with a Specialization in Secondary Teaching will apply for admission to the teacher education program in agriculture according to the procedures outlined under the section ADMISSION TO CANDIDACY FOR TEACHING CREDENTIALS of this catalog.

Information relative to the purposes, requirements, and procedures for the Master of Arts Degree in Education with a concentration in Agriculture may be found under the heading MASTER'S DEGREES in this catalog.

See COURSES OF INSTRUCTION section of this catalog for description of courses in Agricultural Education and other subjects.
A student in this department may choose one of two majors.

Agricultural Engineering. This major prepares students for engineering positions with farm machinery and equipment companies, manufacturers and distributors of irrigation equipment, government agencies such as the Soil Conservation Service and other positions requiring technical training in Agricultural Engineering. Concentration of study will be directed either toward Power and Machinery or Soil and Water.

Mechanized Agriculture. This major gives the student broad agricultural training with emphasis on the applied mechanical phases of agriculture. This curriculum is intended for the student who plans to own or manage a farm, teach vocational agriculture with emphasis on farm mechanics, or do sales and service work (manufacturing, wholesale or retail) in the farm machinery and equipment field.

Three areas of concentration are provided in this major, namely, Service and Teaching, Manufacturing, and Management and Sales.

This department also gives training in the mechanical and engineering phases of agriculture to students majoring in other departments of the School of Agriculture. Two buildings containing eight shops and laboratories and two classrooms, together with a large modern farm machinery and equipment building provide excellent facilities. A wide variety of makes, models, and types of tractors and farm machinery is available for class use and students are provided with ample opportunity for the application of mechanical and engineering know-how to practical production problems in using thousands of acres of college farm as a laboratory.

The curriculum in agricultural engineering is recognized as a professional curriculum by the American Society of Agricultural Engineers. The student branch of the ASAE offers an active program of professional and extra-curricular events. Enterprise project activity is also available and encouraged.

Students interested in the two-year technical certificate in Mechanized Agriculture should refer to the introductory statement for the School of Agriculture which describes this program. Detailed curriculum information is available from the department head.

CURRICULAR CONCENTRATIONS IN AGRICULTURAL ENGINEERING

Power and Machinery

A combination of engineering and agricultural courses designed to provide graduates with a technical and practical background for employment in the agricultural utility power and equipment field. Opportunities are available in such diverse areas as prime movers, soil conditioning and moving equipment, utility equipment, harvesting and product handling equipment, as well as agricultural structures and products processing.

Soil and Water

A combination of engineering and agricultural courses designed to provide graduates with a technical and practical background for employment in the field of soil and water. Water management opportunities are available in such areas as irrigation, drainage, hydrology, flood control, research, and administration.

CURRICULAR CONCENTRATIONS IN MECHANIZED AGRICULTURE

Teaching and Service

For those students interested in teaching agriculture, serving the branch house and dealer operations, and corporate and family farm and ranch equipment maintenance.
Agricultural Engineering

Manufacturing
For those students supporting job-shop and specialized equipment manufacturing operations.

Management and Sales
For those students joining large scale agricultural units involving field and processing operations and for those students serving the wholesale-retail merchandising and rental-leasing of equipment.

CURRICULUM IN AGRICULTURAL ENGINEERING

<table>
<thead>
<tr>
<th>Freshman</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Agricultural Engineering (AE 100)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 128)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Power and Machinery (AE 143)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Engineering Surveying (AE 237)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 141, 142, 143)</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Drafting (ET 141, 142)</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Manufacturing Process (MP 141, 142)</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Plant production elective</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 121, 122)</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17½</td>
<td>17½</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Structures Planning (AE 232)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Principles of Irrigation (AE 236)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Engineering Surveying (AE 238)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>General Biology (Bio 101)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 241)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Differential Equations (Math 242)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Physics (Phys 131, 132, 133)</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Engineering Mechanics (ME 211, 212)</td>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Report Writing (Eng 218)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Economics (Ec 201 or 211)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Fortran Program (CSc 101)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Elem. Probability and Statistics (Stat 211)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Manufacturing Processes (WM 141, 142)</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17½</td>
<td>18½</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulics (AE 312)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Dynamic Measurement (AE 338)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Off-the-road Locomotion (AE 326)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Electrical Circuit Theory (EE 201)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Engineering Economy (IE 403)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Strength of Materials Laboratory (Aero 229)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Thermodynamics (ME 302)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Engineering Properties of Agricultural Materials (AE 333)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Strength of Materials (Aero 207)</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>* Humanities elective</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>† Electives</td>
<td></td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

* To be selected in accordance with the General Education requirement.
† At least 18 units shall be selected with the approval of the adviser in a concentration. An additional 8 units must be selected from courses in the School of Agriculture.
Agricultural Engineering

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Structures Design (AE 433)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (AE 461, 462)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (AE 463)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>* Literature or Philosophy</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>* Social Science elective (other than history)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>† Electives</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

CURRICULUM IN MECHANIZED AGRICULTURE

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Agricultural Engineering (AE 100)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 128)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Agricultural Tractors and Equipment Skills (AE 141)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Agricultural Power and Machinery Management (AE 142)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 113, 114, 115)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Computer Applications to Agriculture (AM 250)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Agricultural Drafting (AE 133)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Manufacturing Processes (MP 151, 141, 142)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Manufacturing Processes (WM 141, 142)</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fundamentals of Metallic Arc Welding (WM 159)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Plant production elective</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Animal production elective</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Total</td>
<td>16½</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Building Construction (AE 231)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Power Transmission (AE 234)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Agricultural Power (AE 335)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Engineering Surveying (AE 237, 238)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>College Physics (Phys 121, 122, 123)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Botany (Bot 121)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Agricultural Business Sales and Service (ABM 201)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Agricultural Business Credit and Finance (ABM 203)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>* Humanities elective</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>† Electives</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>17½</td>
<td>17½</td>
<td>17½</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Equipment Projects (AE 344)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Products Handling (AE 323)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Agricultural Building Planning (AE 332)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Principles of Agricultural Machinery (AE 322)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Irrigation (AE 340)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 121, 122)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Report Writing (Eng 218)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Business Law Survey (Bus 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Economics (Ec 201 or 211)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Farm Records (FM 321)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>† Electives</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

*To be selected in accordance with the General Education requirement.
† At least 18 units shall be selected with the approval of the adviser in a concentration. An additional 8 units must be selected from courses in the School of Agriculture.
<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Equipment Industry Management (AE 321)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Principles of Agricultural Electrification (AE 324)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Electric Power and Controls (AE 325)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Senior Project (AE 461, 462)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (AE 463)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>* Literature or philosophy</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>† Electives</td>
<td>5</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Agricultural Engineering and other subjects.

* To be selected in accordance with the General Education requirement.
† At least 18 units shall be selected with the approval of the adviser in a concentration. An additional 8 units must be selected from courses in the School of Agriculture.
Two major curricula are offered by the Agricultural Management Department and are designed to prepare students for careers in agricultural business management or farm management.

Graduates in both the Agricultural Business Management and Farm Management majors have entered the fields of vocational agriculture teaching and agricultural extension service as well as government employment and agricultural industry.

Both majors are based upon a firm foundation in production agriculture as a basis for sound management preparation. Each program combines the agricultural and business training required for success in farm-related business careers or in farm management careers. The modern farmer is primarily a specialist who confines his operations largely to the production and management of crops and livestock. He depends upon farm-related businesses for increasing amounts of fertilizer, insecticides, machinery and equipment, commercial feeds, capital, and production supplies.

These two majors provide a large number of elective units so that a student may select a specific area of study to obtain either a broad background in agriculture or technical skills in specialized agricultural fields according to his interest and needs.

Interwoven throughout the curricula are general education courses in English, Economics, History, Mathematics, and Political Science which provide the basis for better citizenship and understanding of society.

AGRICULTURAL BUSINESS MANAGEMENT MAJOR

The Agricultural Business Management major prepares students for the many farm-related agricultural businesses and government agencies serving the farmer. Farm-related business functions involving agricultural products provide excellent career opportunities for those who are prepared in the business principles and procedures necessary for organizing, managing and representing the expanding farm-related businesses and industry.

FARM MANAGEMENT MAJOR

The Farm Management major prepares the student to operate and manage a farm or ranch. While the management of a farm should be the primary purpose of most students taking the curriculum, students also may plan to engage in allied work such as farm credit and farm appraisal or in management positions with agricultural enterprises.

CURRICULUM IN AGRICULTURAL BUSINESS MANAGEMENT

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Agricultural Business Mgt. (ABM 101)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Marketing Programs in California (ABM 102)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Business Organization (ABM 103)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103 or 113, 114)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 121)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>* Life Science</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>** Electives</td>
<td></td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>16⅔</td>
<td>16⅔</td>
<td>16⅔</td>
</tr>
</tbody>
</table>

* To be selected in accordance with the General Education requirement.
** At least 36 units shall be chosen with the approval of the adviser from other fields of agriculture. Twelve of the 36 units must be in a single agriculture major.
Agricultural Management

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Business Sales and Service (ABM 201)</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Cooperative Organization and Management (ABM 202)</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Business Credit and Finance (ABM 203)</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Business Machines Practice (ABM 241)</td>
<td>1</td>
</tr>
<tr>
<td>Principles of Accounting (Actg 221, 222)</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Economics (Ec 211)</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Marketing (FM 304)</td>
<td>3</td>
</tr>
<tr>
<td>* Humanities elective</td>
<td>3</td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>2</td>
</tr>
<tr>
<td>Report Writing (Eng 218)</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
</tr>
<tr>
<td>* Life Science</td>
<td>4</td>
</tr>
<tr>
<td>Elementary Probability and Statistics (Stat 211)</td>
<td>3</td>
</tr>
<tr>
<td>Statistical Methods (Stat 212)</td>
<td>3</td>
</tr>
<tr>
<td>** Electives</td>
<td>3</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Business Management and Government Policy (ABM 301)</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Business Sales Management (ABM 302)</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Property Management and Sales (ABM 321)</td>
<td>4</td>
</tr>
<tr>
<td>Advanced Agricultural Business Management (ABM 322, 323)</td>
<td>4</td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Public Speaking (Sp 202)</td>
<td>2</td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 121, 122)</td>
<td>4</td>
</tr>
<tr>
<td>Organic Chemistry (Chem 226)</td>
<td>4</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
</tr>
<tr>
<td>** Electives</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Labor Relations and Personnel Management (ABM 403)</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Business Operations Analysis (ABM 421)</td>
<td>4</td>
</tr>
<tr>
<td>Wholesaling and Retailing Agricultural Commodities (ABM 412)</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Business Communication (ABM 402)</td>
<td>3</td>
</tr>
<tr>
<td>Senior Project (ABM 461, 462)</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (ABM 463)</td>
<td>2</td>
</tr>
<tr>
<td>* Literature or Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>Business Law Survey (Bus 301)</td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td>3</td>
</tr>
<tr>
<td>** Electives</td>
<td>5</td>
</tr>
</tbody>
</table>

* To be selected in accordance with the General Education requirement.
* * At least 36 units shall be chosen with the approval of the adviser from other fields of agriculture. Twelve of the 36 units must be in a single agriculture major.
Agricultural Management

CURRICULUM IN FARM MANAGEMENT

Freshman F

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Farm Management (FM 104, 105, 106)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 121)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 113, 114)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Life Science</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>16½</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Application to Agriculture (AM 250)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Economic Analysis (FM 203)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Agricultural Marketing (FM 304)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Resources (FM 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Farm Records (FM 321)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soils Management (SS 122)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 211, 212)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Literature, Philosophy</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Report Writing (Eng 218)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Basic Accounting (Actg 131, 132)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Electives</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17½</td>
<td>16½</td>
<td>15½</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm Credit (FM 310)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Principles of Farm Management (FM 322)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>California Agriculture (FM 325)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm Appraisal (FM 326)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Agricultural Price Analysis (FM 333)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop Management Problems (FM 421)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 121, 122)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 226)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Elementary Probability and Statistics (Stat 211)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical Methods (Stat 212)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Business Law Survey (Bus 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Prices and Policy (FM 403)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear Programming in Agriculture (FM 405)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Farm Management Problems (FM 424, or FM 425, or FM 426)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Large Farm Accounting (FM 431)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (FM 461, 462)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (FM 463)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Humanities elective</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Agricultural Management, Agricultural Business Management, Farm Management and other subjects.

* At least 40 units shall be chosen with the approval of the adviser from other fields of Agriculture.

** To be selected in accordance with the General Education requirement.
The objective of the Animal Science Department is to educate men for the occupation of farming where beef cattle, sheep, and swine enterprises are an important part of the industry. The majority of graduates from the department are engaged in the livestock and farming business or are employed as ranch foremen or managers.

Livestock feeding yards, feed mills, stockyard companies, meat packers, commission firms, and other organizations servicing the livestock industry are sources of employment for graduates. Other employment fields include agricultural teaching, agricultural extension work, and agricultural research. The Department allows wide latitude in the selection of elective courses so that a student may pursue a secondary emphasis area or broaden the cultural base of his total college education.

Further aims and objectives of the Animal Science Department are to give students practical training in livestock farming and range management. The department maintains herds of three breeds of beef cattle, four breeds of sheep, three breeds of swine, and Thoroughbred and Quarter horses. These are used for laboratory and field study of management, feeding, breeding, and marketing.

Students are encouraged to carry on a project program of feeding, management, and marketing livestock through facilities furnished by the California State Polytechnic College Foundation. Large numbers of beef, cattle, sheep, and swine are fed and marketed by students each year. An abattoir provides facilities for training in slaughtering of meat animals and cutting, curing, and grading of meats. Students interested in the two-year technical certificates should refer to the introductory statement for the School of Agriculture which describes this program. Detailed curriculum information is available from the department head.

CURRICULUM IN ANIMAL SCIENCE

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeds and Feeding (ASci 101)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market Beef Production (ASci 121)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Elements of Swine Production (ASci 122)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Elements of Sheep Production (ASci 123)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 121 or 122)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 113, 114)</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Zoology (Zoo 131, 132)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16½</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>

* Math 102, 103 may be substituted for Math 113 with approval of adviser.
Animal Science

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Science electives</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Agricultural Engineering electives (AE 131, 133, 138, 141, 142, 335)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Anatomy and Physiology (VS 123)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Science (SS 121)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 121, 122)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 226)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Botany (Bot 121)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Forage Crops (CrSc 123)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16½</td>
<td>16½</td>
<td>15½</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Animal Nutrition (ASci 302)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Livestock Hygiene and Sanitation (VS 202)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Animal Parasitology (VS 203)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Animal Husbandry electives</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>American Government (PolSc 301)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Genetics (Bio 303)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Economics (Ec 201 or 211)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Farm Records (FM 321)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Farm Management (FM 322)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Biochemistry (Chem 328)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Approved Business course</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Breeding (ASci 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Reproductive Physiology (ASci 401)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Animal Nutrition (ASci 402)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Senior Project (ASci 461, 462)</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (ASci 463)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>* Literature, Philosophy</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>* Humanities elective</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>U.S. World Affairs (Hist 305)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Animal Science electives</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>†† Management elective</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Animal Science and other subjects.

* To be selected in accordance with the General Education requirement.
† Minimum of 15 units to be selected from 200–300 series courses in ASci.
†† To be selected from any 300–400 series course in ABM or FM.
Two major curricula are offered by the Crops Science Department and are designed to prepare students for field, fruit, or vegetable crops production, management, and related areas.

Graduates in both the fruit science and crop science majors have entered the vocational agriculture teaching and agriculture extension service fields as well as governmental employment in agronomy, horticulture, agricultural instruction, and crop grading. Positions in private industry are increasing and the demand for graduates with a practical knowledge of agriculture skills and techniques combined with the sciences and humanities provides placement of crops graduates in positions of responsibility and opportunities.

The department has 30 acres of deciduous and citrus orchard and vineyard with 100 varieties represented. Additional non-bearing acreage is available for class use and new plantings are under way. About 170 acres are devoted to student production enterprises in vegetable crops and in field crops. With an additional 500 acres of college farm cropland also available, there is ample opportunity to gain experience through part-time employment or profitable production projects. All departmental majors are encouraged to carry a project.

The use of packing and grading equipment has greatly enhanced the technological phases of instruction. Field trips are extensively used to supplement instruction concerning crops not common to the San Luis Obispo area.

Students interested in the two-year technical certificate should refer to the School of Agriculture introductory statement. Details of the program are available through the department head.

CROPS SCIENCE MAJOR

A student majoring in the crop science major may elect to specialize in agronomy, vegetable crop science, or plant protection in his junior and senior years. The concentrations allow the student to select course work that is more specific to his major interests.

Agronomy Concentration

This concentration prepares the student for production fieldwork, private or corporate crop production and management, governmental positions as an agronomist, and sales and service opportunities in the agricultural industry.

Vegetable Crop Concentration

This concentration is designed to prepare the student for employment as a vegetable crop fieldman and in vegetable shipping and processing. Private and corporate vegetable crops production is a major employment opportunity as is sales and service in the agricultural industry.

Plant Protection Concentration

This concentration prepares the student for sales and service in the weed and pest control areas as a fieldman with commercial pest control operations and with state and federal government, especially in the regulatory agencies.

FRUIT SCIENCE MAJOR

The fruit science major qualifies graduates for orchard and vineyard management and for related employment such as cannery or packing house fieldmen or fruit inspectors. Deciduous fruits, nut crops, citrus, avocados, grapes, berries, and less common fruit species are studied.
CURRICULUM IN CROPS SCIENCE

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concepts of Crop Production (CrSc 131)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combine Harvest Crops (CrSc 132)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Row Crops (CrSc 133)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Agricultural Engineering Elective</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Botany (Bot 121, 122 or 123)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>* Agricultural Mathematics (Math 102, 103, 114)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weed Control (CrSc 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commercial Seed Production and Processing (CrSc 231)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Vegetable Crops Production (VgSc 232)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 121, 122)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 226)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Management (SS 122)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fertilizers (SS 221)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics (Ec 201 or 211)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop Technology (CrSc 322)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Farm Records (FM 321)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Principles of Farm Management (FM 322)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Biochemistry (Chem 328)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>California Fruit Growing (FrSc 230)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Plant Pathology (Bot 323)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>*** Electives and courses to complete major</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Breeding (CrSc 304)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (CrSc 461, 462)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (CrSc 463)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Genetics (Bio 303)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>†† Management Elective</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Principles of Pest Control (CrSc 311)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** Literature, Philosophy</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>** Humanities elective</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>*** Electives and courses to complete major</td>
<td>4</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

* Math 113 may be substituted for Math 102 and 103 with adviser approval.

* To be selected in accordance with the General Education requirement.

** 18 of the elective units in the junior and senior years must be chosen with the approval of the adviser.

†† To be selected from any 300-400 series course in ABM or FM.
CURRICULUM IN FRUIT SCIENCE

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pomology (FrSc 131, 132, 133)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>*Agricultural Mathematics (Math 102, 103, 114)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Engineering electives</td>
<td>2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Botany (Bot 121, 122 or 123)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viticulture (FrSc 231)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit Plant Propagation (FrSc 232)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 121, 122)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 226)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Management (SS 122)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Plant Pathology (Bot 323)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weed Control (CrSc 221)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Engineering electives</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics (Ec 201 or 211)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruit Production (FrSc 331 or 332)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Principles of Pest Control (CrSc 311)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Code of California (CrSc 303)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Biochemistry (Chem 328)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Genetics (Bio 303)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilizers (SS 221)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Farm Records (FM 321)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Farm Management (FM 322)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Pomology (FrSc 421)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Breeding (CrSc 304)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Senior Project (CrSc 461, 462)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (CrSc 463)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Orchard Management (FrSc 436)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Field Crops (CrSc 230)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>** Management Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>** Literature, Philosophy</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>** Humanities elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Crops Science, Fruit Science, Vegetable Crop Science and other subjects.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Math 113 may be substituted for Math 102 and 103 with adviser approval.
** To be selected from any 300–400 series course in ABM or FM.
† † To be selected in accordance with the General Education requirement.
The dairy curriculum is designed to prepare students for employment in the various phases of the dairy industry, including husbandry and manufacturing, as well as the related and allied fields. The basic curriculum is arranged to serve all students within the major with further courses included in the two options of husbandry and manufacturing to provide depth of instruction in either field.

The curriculum provides adequate elective units under either option for students to select additional courses in the sciences, business, education, or other areas of their choice to prepare them for advanced degrees in the field, teaching, or the business world of the dairy industry. Recommendations in these various areas will be given by staff advisers.

Excellent facilities are provided for students selecting either of the options. The dairy herd includes purebred Jerseys, Guernseys, and Holsteins, located on a well-planned unit, where feeding, milking, calf raising, artificial insemination, and management are carried out. The college creamery is a new and modern plant, well equipped with the most modern processing equipment. Students are employed on a part-time basis to work in both the production and processing areas. A separate dairy located on campus provides an opportunity for students with dairy projects. This farm accommodates 80-100 head of project cattle owned and cared for by students. There are two 12-unit dormitories at this project farm.

CURRICULAR OPTIONS

Husbandry

The Dairy Husbandry Option emphasizes the preparation of students in production and management areas of the industry, including the selection, management, feeding and breeding of dairy cattle, and efficient, economical milk production.

Manufacturing

The Dairy Manufacturing Option emphasizes preparation for participation in the processing and distribution field, including sales, quality control, field work and dairy inspection.

CURRICULUM IN DAIRY

<table>
<thead>
<tr>
<th>Freshman</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elements of Dairying (DH 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy Feeds and Feeding (DH 101)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeding Dairy Cattle (DH 102)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market Milk (DM 133)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Agricultural Math (Math 102, 103 or 113, 114)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Zoology (Zoo 131)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Botany (Bot 121)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>4</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

17½ 16½ 16½
###Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk Production (DH 221)</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Dairy Products Judging (DM 233)</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Economics (Ec 201 or 211)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>* Literature or philosophy</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>* Humanities elective</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>6</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

###Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy Inspection (DM 332)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Dairy Product Merchandising (DM 303)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 121, 122)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 226)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Report Writing (Eng 218)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>10</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

###Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Project (DH 461, 462)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (DH 463)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Biochemistry (Chem 328)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>U. S. in World Affairs (Hist 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>† Management elective</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>10</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

HUSBANDRY OPTION (ADD COURSES BELOW TO BASIC CURRICULUM)

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH 142 Dairy Cattle Judging</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 121 Soils</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sophomore</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH 222 Commercial Dairy Herd Management</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VS 123 Anatomy and Physiology</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>VS 202 Livestock Hygiene and Sanitation</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Senior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH 422 Breed and Selection of Dairy Cattle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASci 402 Animal Nutrition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM 322 Farm Management</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MANUFACTURING OPTION (ADD COURSES BELOW TO BASIC CURRICULUM)

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM 132 Ice Cream Making</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sophomore</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM 232 Cheese Making</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM 236 Butter Making</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bact 322 Dairy Bacteriology</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM 431 Dairy Plant Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actg 221 Principles of Accounting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actg 222 Principles of Accounting</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Dairy Husbandry, Dairy Manufacturing and other subjects.

* To be selected in accordance with the General Education requirement.
† To be selected from 300-400 series courses in ABM or FM.
The Food Industries curriculum is designed to prepare students for employment in the various phases of the food processing and related industries. Instruction qualifies students for careers in production, quality control, marketing, and management. Students may also prepare for positions as food technologists or for graduate study in food science by taking additional courses in science as electives.

The curriculum provides applied knowledge of the technology of the industry that will enable the graduate to accomplish doing and management jobs connected with operations of the industry from field to market. Skills acquired in the production aspects of the processing business are coordinated with studies in science, business, and humanities.

The departmental laboratories include complete facilities for small scale commercial production of canned, frozen, dehydrated and concentrated fruit and vegetable products. Meats laboratories provide for complete processing of meat including slaughtering, cutting, curing, smoking and sausage manufacture.

A six quarter two-year certificate program in food processing is scheduled in the winter and spring quarters over a three-year period so students who elect this program may work for six months each year in the industry during the major production season.

CURRICULAR OPTIONS

Management

The Management Option emphasizes preparation for participation in production and management aspects of the industry.

Meats

The Meats Option provides experience in meat packing and processing operations correlated with related science and business aspects of the industry.

CURRICULUM IN FOOD PROCESSING

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey of Food Industry (FI 101)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food Processing Machinery (FI 122)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elements of Food Preservation (FI 123)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Introduction to Literature (Eng 207)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Mathematics for General Education (Math 100, 200)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>* Finite Mathematics for Business (Math 210)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Accounting (Actg 131, 132)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

15½ 16½ 15½

*Math 114, 115 and 131 or 141 may be substituted for Math 100, 200, and 210.
Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food Processing Operations (Fl 221, 222, 223)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Processed Food Inspection (FI 233)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Physics (Phys 104)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Refrigeration in Agriculture (EnvE 238, 239)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 121, 122)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 226)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Total: 16½ 17½ 16½

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food Plant Quality Control (Fl 321)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statistical Quality Control (Fl 332)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Packaging (FI 336)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sanitation and Waste Disposal (FI 232)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food Microbiology (Bact 421)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Industrial Relations (IR 214)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Biochemistry (Chem 328)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics (Ec 201 or 211)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Total: 17 16 17

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food Production Control (Fl 433)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Senior Project (Fl 461, 462)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (Fl 463)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>U. S. in World Affairs (Hist 305)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Report Writing (Eng 218)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>*Literature or Philosophy</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>9</td>
<td>12</td>
<td>7</td>
</tr>
</tbody>
</table>

Total: 17 17 16

MANAGEMENT OPTION (ADD COURSES BELOW TO BASIC CURRICULUM)

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FrSc 230 Calif. Fruit Growing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VgSc 230 General Vegetable Crops</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DM 230 General Dairy Manufacturing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ABM 203 Ag Business Credit and Finance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mktg 204 Marketing Principles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mgt 201 Principles of Management</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Actg 223 Cost Accounting and Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus 301 Business Law Survey</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FI 421, 422 Advanced Food Processing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*To be selected in accordance with the General Education requirement.

**Bot 121 may be substituted for FrSc 230 or VgSc 230.
<table>
<thead>
<tr>
<th>Level</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>ASci 121</td>
<td>Market Beef Production</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>ASci 122</td>
<td>Elements of Swine Production</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>FI 210</td>
<td>Meats</td>
<td>(3)</td>
</tr>
<tr>
<td>Sophomore</td>
<td>Zoo 131-2</td>
<td>General Zoology</td>
<td>(8)</td>
</tr>
<tr>
<td></td>
<td>FI 212</td>
<td>Meat Classification and Grading</td>
<td>(2)</td>
</tr>
<tr>
<td>Junior</td>
<td>FI 338</td>
<td>Sausage, Smoked and Canned Meats</td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td>Mgt 311</td>
<td>Industrial Management</td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td>VS 123</td>
<td>Anatomy & Physiology</td>
<td>(3)</td>
</tr>
<tr>
<td>Senior</td>
<td>FI 431</td>
<td>Meat Technology</td>
<td>(4)</td>
</tr>
</tbody>
</table>

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Food Industries and other subjects.
The ornamental horticulture curriculum offers the student a comprehensive preparation for attractive positions in the nursery, greenhouse, landscape, and florist industries. This includes both the production and sales-service areas of these major fields. The training stresses production and marketing of nursery plants, cut flowers, pot plants, and tropical foliage plants, landscape design, planting and supervision, and floral design and marketing.

Graduates of the Ornamental Horticulture Department qualify for management positions in nursery, greenhouse, and florist establishments, as well as supervisory positions in parks and grounds. Many of the graduates enter the field of teaching. Some of the most popular areas of employment include plant propagation, nursery sales, cut flower and pot plant production, greenhouse management, landscape design, cut flower and pot plant production, greenhouse management, landscape contracting and maintenance, the field of advising for fertilizer and pesticide companies, and floral design and floral shop management.

The facilities of the department include a student-operated commercial greenhouse range and nursery in which students carry on a project program involving wholesale and retail sales; and a student-operated florist shop in which the students design and sell floral pieces. Also included are 18,000 square feet of glass-houses, 2,500 square feet of lathhouses, coldframes, seedbeds, and an extensive field-growing and container-growing area. Large, modern, well-equipped laboratories adjoin the greenhouse range. Over 200 acres of landscaped campus area serve as an outdoor laboratory. The campus is planted with many interesting and unusual trees and shrubs from all over the world, as well as a large number of native plant materials.

Also available are the latest models of equipment necessary in nurseries, greenhouses, parks and grounds, landscaping, and florist shops. An extensive list of periodicals covering the field of ornamental horticulture is available to students. Through the staff, affiliation in several national and state horticultural organizations is maintained.

Students interested in the two-year technical certificate should refer to the introductory statement for the School of Agriculture which describes this program. Detailed curriculum information is available from the department head.

CURRICULUM IN ORNAMENTAL HORTICULTURE

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nursery Practice (OH 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Materials I (OH 122)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Floriculture (OH 123)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Landscape Drafting (OH 124)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Orientation to Ornamental Horticulture (OH 100)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant Materials II (OH 126)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 121, 122)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103 or 113, 114)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Botany (Bot 121, 123)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16½</td>
<td></td>
<td>16½</td>
</tr>
</tbody>
</table>
Ornamental Horticulture

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant Materials III (OH 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Landscape Design (OH 223)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Plant Propagation (OH 233)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>General Entomology (Ent 126)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Agricultural Surveying (AE 131)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Agricultural Tractors and Equipment Skills (AE 141)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics (EC 201 or 211)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Plant Pathology (Bot 323)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>*Electives</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total | 16½| 16½| 16½|

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertilizers (SS 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Accounting (Actg 131, 132)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 121, 122)</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Organic Chemistry (Chem 226)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Genetics (Bio 303)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business Law Survey (Bus 301)</td>
<td></td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>*Electives</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total | 17 | 17 | 16|

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diseases and Pests (OH 327)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Native Plant Materials (Bot 238)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Arboriculture (OH 421)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Senior Project (OH 461, 462)</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (OH 463)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**Plant Breeding (CrSc 304)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>**Biochemistry (Chem 328)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>**Management elective</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>§§Literature, Philosophy</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>§§Humanities elective</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fruit Crops (FrSc 230 or 332)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total | 17 | 16 | 16|

* At least 12 units to be selected with the approval of the adviser.
** To be selected from any 300–400 series courses in ABM or FM.
§ Plant physiology (Bot 322) may substitute for this requirement.
§§ To be selected in accordance with the General Education requirement.

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Ornamental Horticulture and other subjects.
POULTRY INDUSTRY DEPARTMENT
Department Head, Richard I. Leach

Roland K. Pautz Leo Sankoff

The poultry industry is an important part of agriculture and food production in California. This industry offers an increasing demand for young men trained in modern techniques of the industry. The function of this department is to prepare students for various major fields of commercial poultry production and the many allied services of the industry. Opportunities in the allied industry services are many as shown by the fact that graduates have worked in more than fifty kinds of jobs within the industry.

The college plant has facilities for more than 15,000 birds in the 12-acre poultry plant which maintains a commercially productive unit with six breeds of chickens, in addition to the turkey flock. The plant includes a modern 15,000 egg hatchery, poultry-dressing plant, and egg-handling facilities as well as most of the types of poultry-raising equipment commonly used in California.

Each poultry major has an opportunity to conduct commercially productive projects in market eggs, hatching eggs or meat birds which gives him additional experiences in the field of his major interest and practice in many business transactions. Advanced students may have opportunities to conduct technical management or developmental problems.

Students interested in the two-year technical certificate should refer to the introductory statement for the School of Agriculture which describes this program. Detailed curriculum information is available from the department head.

CURRICULUM IN POULTRY INDUSTRY

<table>
<thead>
<tr>
<th>Freshman</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poultry Industry Development (PI 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replacement Programs & Broiler Production (PI 122)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Poultry Feeding & Nutrition (PI 123)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 121, 122)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Mathematics (Math 102, 103 or 113, 114)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td></td>
<td></td>
<td>½</td>
</tr>
<tr>
<td>General Zoology (Zoo 131, 132)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Botany (Bot 121)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16½</td>
<td>16½</td>
<td>17½</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Poultry Selection and Egg Production (PI 221)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poultry Production Processing & Marketing (PI 222)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Poultry Incubation (PI 223)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Poultry Plant Design & Equipment (PI 233)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Agricultural Engineering or Welding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poultry Anatomy and Physiology (PI 231)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Economics (Ec 201 or 211)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>** Humanities elective</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Genetics (Bio 303)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>** Business Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>16½</td>
<td>17½</td>
<td>15½</td>
</tr>
</tbody>
</table>

** To be selected in accordance with General Education requirement.

To be selected from Bus 301, FPM 310, IR 118, Mgt 311.

81
Poultry

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Poultry Breeding (PI 321)</td>
<td>3</td>
</tr>
<tr>
<td>Hatchery Business Organization (PI 322)</td>
<td>4</td>
</tr>
<tr>
<td>Poultry Hygiene and Flock Health (PI 303)</td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>2</td>
</tr>
<tr>
<td>Farm Records (FM 321)</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Farm Management (FM 322)</td>
<td>4</td>
</tr>
<tr>
<td>** Literature, Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 121, 122)</td>
<td>4</td>
</tr>
<tr>
<td>Organic Chemistry (Chem 226)</td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Poultry Enterprise Supervision (PI 402)</td>
<td>3</td>
</tr>
<tr>
<td>Turkey Industry (PI 421)</td>
<td>3</td>
</tr>
<tr>
<td>Senior Project (PI 461, 462)</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (PI 463)</td>
<td>2</td>
</tr>
<tr>
<td>Animal Nutrition (ASci 402)</td>
<td>4</td>
</tr>
<tr>
<td>** Management Elective</td>
<td>3</td>
</tr>
<tr>
<td>U. S. in World Affairs (Hist 305)</td>
<td>3</td>
</tr>
<tr>
<td>Biochemistry (Chem 328)</td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td>11</td>
</tr>
</tbody>
</table>

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Poultry Industry and other subjects.

** To be selected in accordance with General Education requirement.
†† To be selected from any 300-400 series course in ABM or FM.
A student in this department may choose one of two majors.

Soil Science. This major prepares students for employment in positions which require a wide knowledge of agriculture, such as agricultural teachers, soil conservationists, land appraisers, fertilizer distributors, farm advisers, farm managers, or farm operators, and highly specialized positions, such as those of soil surveyors, laboratory technicians, college instructors, and soil specialists. Facilities of the department have been developed to provide laboratory and field house space and equipment to meet the needs of the program. Demonstration plots and the application of practices on the college farm are utilized to the fullest possible extent in the study of methods for putting knowledge to work.

Students interested in the two-year technical certificate in soil science should refer to the introductory statement for the School of Agriculture which describes this program. Detailed curriculum information is available from the department head.

Natural Resources Management. This major is an interdisciplinary program to prepare the student for analysis, planning, development, and management of outdoor recreational resources. Graduates enter employment with governmental agencies or private concerns as recreation administrators, managers, or researchers; as park managers or park specialists in natural and historic interpretation; and as conservation specialists in journalism, education, and fish and wildlife. The departmental facilities are developed to provide practice in the skills necessary for natural resources management. Field practices are exercised on special campus sites and on nearby public recreational areas.

CURRICULUM IN SOIL SCIENCE

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils (SS 121)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Management (SS 122)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Soil Materials (SS 123)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Crop Production (CrSc 121 or 122 or 230 or VgSc 230)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal Production (ASci 230 or DH 230 or PI 230)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 121 or 122 or 141)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Recreation Systems and Management (NRM 101)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>General Botany (Bot 121, 122)</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td></td>
<td>15½</td>
<td>16½</td>
<td>15½</td>
</tr>
</tbody>
</table>

$ A minimum of 9 units shall be chosen with the approval of the adviser from 100 or 200 series courses in mathematics.
Soil Science

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Conservation (SS 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fertilizers (SS 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruit Production (FrSc 131 or 132 or 230 or 332)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nursery Practices (OH 230 or 121)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Surveying (AE 131)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementary Probability and Statistics (Stat 211)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 121, 122)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 226)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics (Ec 201 or 211)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest Resources (NRM 102)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Approved conservation course</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Classification (SS 321)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Fertility (SS 322)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Use Planning (SS 433)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm Records (FM 321) or Basic Accounting (Actg 131)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm Management (FM 322)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry (Chem 328)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Entomology (Ent 126) or Pest Control (CrSc 311)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. S. in World Affairs (Hist 305)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Literature (Eng 207 or 208)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Physics (Phys 104)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved Science or Mathematics</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Microbiology (SS 422)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Chemistry (SS 423)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Physics (SS 432)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (SS 461, 462)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (SS 463)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** Approved Social Sciences course</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** Introduction to Philosophy (Phil 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** Plant Physiology or Pathology (Bot 322 or 323)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** Humanities elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>† Management Elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

** To be selected in accordance with the General Education requirement.
† To be selected from any 300–400 series course in ABM, FM, or Bus. Adm.
§ A minimum of 9 units shall be chosen with the approval of the adviser from 100 or 200 series courses in mathematics.
CURRICULUM IN NATURAL RESOURCES MANAGEMENT

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recreation Systems and Management (NRM 101)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest Resources (NRM 102)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Soils (SS 121)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>General Botany (Bot 121, 123)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Introductory Physics (Phys 104)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Mathematics</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agricultural Mechanics (AE 121, 122, 128, or 141)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photogrammetry (AE 145)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Landscape Drafting (OH 124)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Safety and First Aid (PE 121)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Total</td>
<td>15½</td>
<td>15½</td>
<td>15½</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Survey (NRM 223)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Resource Planning (NRM 224)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General Zoology (Zoo 131, 132)</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Livestock Hygiene and Sanitation (VS 202)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General Ecology (Bio 325)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Agricultural Surveying (AE 131)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Introduction to Literature (Eng 207 or 208)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Cultural Anthropology (Ant 201)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Physical Geology (Geol 201)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>16½</td>
<td>17½</td>
<td>17½</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Ecology (NRM 323)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Environmental Interpretation (NRM 326)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Business Law Survey (Bus 301)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Elementary Probability and Statistics (Stat 211)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 121)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Economics (Ec 201 or 211)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Technical Writing (Eng 219)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Philosophy (Phil 201)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>History of California (Hist 112)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>The U. S. in World Affairs (Hist 305)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

* A minimum of 9 units shall be chosen with the approval of the adviser from 100 or 200 series courses in mathematics.
Soil Science/Veterinary Science

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Development and Maintenance (NRM 429)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recreation Resource Management (NRM 438)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Senior Project (NRM 461, 462)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (NRM 463)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Soil Conservation (SS 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Game Bird Propagation & Mgt. (PI 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Multiple Use Water Management (AE 328)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Landscape Plants (OH 430)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Plant Ecology (Bot 326)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Humanities elective (Lit, Phil, Art, Dr, or Mu)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Political and Economic Geography (Geog 315)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business and Human Relations (IR 415)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Natural Resources Management, Soil Science, and other subjects.

VETERINARY SCIENCE DEPARTMENT

Wallace F. Glidden

Veterinary science courses are offered to supplement the major work provided in the animal science departments of the School of Agriculture. Keeping the college herds and flocks healthy provides the student with valuable laboratory opportunities in basic veterinary hygiene. Veterinary science courses are open as elective courses to students who have the proper prerequisites.

The department also supplies meat inspection service for the meats laboratory.
The School of Architecture offers three interacting degree programs: Architecture, Architectural Engineering, and City and Regional Planning. The student is kept aware that these programs have a common objective and that they are all aimed at the betterment of man’s physical environment. These programs endeavor to give the student a set of social values, a technical background, and a training which releases his creative faculties in a way which will make him effective in his profession and as a person.

The first two years of all three programs contain much common material and develop basic skills and background. A decision as to which program the student will pursue need not be made until the beginning of the junior year providing the basic curriculum for the first two years is followed without the substitutions indicated. The College is residential in nature with an interest in and concern for the student’s total time and being. The location of the College between the great population centers of San Francisco and Los Angeles is ideal for an architectural school in that it permits concentration and provides for environmental studies ranging from rural to large metropolitan complexes. There is a continual stream of visiting instructors. Field trips are arranged to various parts of the State as required work.

The excellent School facilities include design laboratories, dark rooms, soils laboratory, stress laboratory, shops, construction yard, project yard and grading galleries. An outlying area of 12 acres known as the “Canyon” is available for extensive experimental construction.

The School is a Member of the Association of Collegiate Schools of Architecture and maintains a Student Chapter of the American Institute of Architects and Scarab, the professional architectural fraternity.

All student work submitted for course credit becomes School property and will be returned only at the discretion of the instructor.

Recommended Preparation

The prospective transfer student should prepare himself by taking equivalent Mathematics, Physics and other General Education courses. Wherever possible, he should endeavor to include in his preparation as much as possible of the following 24 semester units of introductory architectural courses: Perspective 2, Freehand Drawing 1, Architectural Delineation 3, Architectural Design 10, Materials of Construction 2, Architectural Drafting 6.
The first two years of the Architecture, Architectural Engineering, and City and Regional Planning curriculums have been designed to introduce the student to material which is pertinent to all these disciplines. The student who is undecided as to his degree objective should follow the common two-year program shown without the substitutions indicated and may thereby delay his degree decision until the end of the sophomore year. The student who is certain of his degree objective or who makes his decision during his freshman or sophomore year may take advantage of the substitutions noted.

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descriptive Drawing (Arch 140)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Drawing and Perspective (Arch 144)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Materials of Construction (Arch 106)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Delineation (Arch 143, 146)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Introduction to Design (Arch 111, 132, 143)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 141, 142, 143)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>General Physics (Phys 131, 132)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Engineering Surveying (AE 237)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td></td>
<td>18½</td>
<td>17½</td>
<td>17½</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Design (Arch 251, 252, 253)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Urban Environment (CRP 211, 212, 243)</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Architectural Practice (Arch 231, 232, 233)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Strength of Materials (Arch 205, 206)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Engineering Problems—Digital Computers (Arch 250)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Physics (Phys 133)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Philosophy</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey of Economics (Ec 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td></td>
<td>18½</td>
<td>18½</td>
<td>17½</td>
</tr>
</tbody>
</table>

1. City and Regional Planning majors may substitute Math 200, 210, Stat 211.
2. City and Regional Planning majors may substitute Phys 121, 122, 123.
3. Architectural Engineering majors may substitute an elective for CRP 243.
4. City and Regional Planning majors may substitute 18 units of courses with School approval.
5. To be selected in accordance with the General Education requirement.
Architecture

CURRICULUM IN ARCHITECTURE

The educational preparation for the professional practice of architecture is of five year duration culminating in the Bachelor of Architecture degree. This program is accredited by the National Architectural Accrediting Board. Preparation for architecture spans several disciplines and requires a range of aptitudes. Not only must the architect be technically able and have a good aesthetic sense, but he must understand people and be sensitive to their needs. The program in architecture is broad in nature; however with a selection of elective work, areas of specialization can be included in the planning or engineering fields.

<table>
<thead>
<tr>
<th>Junior</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Design (Arch 351, 352, 353)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Architectural Practice (Arch 341, 342, 343)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Stress Analysis (Arch 304)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel and Timber Structures (Arch 305, 306)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Stress Analysis Laboratory (Arch 344)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Architecture (Arch 317, 318, 319)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electrical Systems Design (EE 324)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumbing and Building Sanitation (ME 333)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating and Air Conditioning (EnvE 306)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Business Law Survey (Bus 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Life Science</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total | 16 | 18 | 18 |

<table>
<thead>
<tr>
<th>Senior</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Design (Arch 451)</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Professional Practice (Arch 441, 442, 443)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Concrete and Masonry Structures (Arch 404, 405, 406)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (Arch 463)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>**Electives</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

| Total | 15 | 16 | 17 |

<table>
<thead>
<tr>
<th>Fifth Year</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Design (Arch 551)</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Design Project (Arch 571, 572, 573)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Engineering Economy (IE 403)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Literature</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Humanities</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>**Electives</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

| Total | 16 | 16 | 16 |

* To be selected in accordance with the General Education requirement.
** 10 units of electives must be approved by the School.
CURRICULUM IN ARCHITECTURAL ENGINEERING

The four year program in Architectural Engineering leads to the Bachelor of Science degree and has its major emphasis in the structural engineering of buildings. However, the program permits entry into many phases of the construction industry. The curriculum is creative in purpose with aptitudes in science and mathematics recommended. Students of architectural engineering are educated with architects in a way to give their work the same dedication. Graduates of this program will in general seek professional registration as civil and structural engineers.

<table>
<thead>
<tr>
<th>Junior</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Theory (Arch 314, 315, 316)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Architectural Practice (Arch 341, 342, 343)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Stress Analysis (Arch 304)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Steel and Timber Structures (Arch 305, 306)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Stress Analysis Laboratory (Arch 344)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 241)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics of Matrices (Math 204)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Numerical Methods (CSc 332)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>General Chemistry (Chem 124)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electrical Systems Design (EE 324)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Plumbing and Building Sanitation (ME 333)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Heating and Air Conditioning (EnvE 306)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>*Life Science</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>*Humanities</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>**</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Design (Arch 444, 445, 446)</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Design Theory (Arch 401, 402, 403)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>General Engineering (Arch 414, 415, 416)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Soil Mechanics and Foundations (Arch 421, 422)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Senior Project (Arch 461, 462)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (Arch 463)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>*Literature</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>**</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

* To be selected in accordance with the General Education requirements
The four year curriculum leading to a Bachelor of Science degree in City and Regional Planning is directed toward a very important emerging professional field which guides and designs the communities wherein we live. Inasmuch as the education of the student of planning is associated with that of the architect and the engineer, the program has an additional emphasis on design of the physical environment as well as on the process of planning. Aptitude demands on the student are less in the area of mathematics and more concerned with the activities of people and their values.

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning Theory (CRP 301, 302, 303)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Planning Laboratory (CRP 351, 352, 353)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Design for Planners (Arch 347, 348, 349)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Business Law Survey (Bus 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Political & Economic Geography (Geog 315)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>State and Local Government (Pol Sc 401)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Sociology (Soc 103)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Problems (Soc 303)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report Writing (Eng 218)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Literature</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Life Sciences</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>17</td>
<td>14</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning Theory (CRP 401, 402)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Planning Laboratory (CRP 451, 452, 453)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Senior Project (CRP 461, 462)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (CRP 463)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Design for Planners (Arch 447, 448, 449)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Urban Sociology (Soc 313)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>*Humanities</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>13</td>
<td>14</td>
</tr>
</tbody>
</table>

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Architecture and Architectural Engineering, City and Regional Planning and other subjects.

* To be selected in accordance with the General Education requirement.
SCHOOL OF BUSINESS AND
SOCIAL SCIENCES
SCHOOL OF BUSINESS AND SOCIAL SCIENCES

The School of Business and Social Sciences has two primary objectives: Education in the specific fields of Business Administration, Economics, and Social Sciences, and service to all schools of the College. This School, in providing that service, offers courses satisfying general education requirements that support major degree work throughout the college.

The School is organized in three departments and its broad objectives are in concert with the stated objectives of the college, which are to prepare students to meet the requirements of specific occupations and to help the individual to achieve maximum personal development. Specialized instruction in the school also prepares the student for citizenship, leadership, and constructive community living. Faculty members within this school are selected on the basis of academic qualifications and professional experience coupled with outstanding teaching ability.

Guiding all who work within the framework of this School is the ultimate objective of placing our graduates in responsible positions in both the private and public sector of our economy or in fields requiring further graduate education.

The following degrees are offered:

- B.S.—Business Administration
- B.S.—Social Sciences
- M.B.A.—Master of Business Administration

Choices of occupational concentrations are available to support the undergraduate majors in diverse fields of study.

Students may also concentrate in Social Sciences as part of the requirements for a Master of Arts in Education.

BUSINESS ADMINISTRATION DEPARTMENT

Department Head, Owen L. Servatius

Roy E. Anderson
Lawrence E. Baur
William M. Boyce
Erling A. Breckan
Wallace H. Burt
Richard A. Carsel
Charles A. Donohoe

John R. Jones
Paul Kenyon
Weston A. McCormac
Ernest C. Miller
Harold R. Miller
Eugene L. O'Connor
Howard R. O'Daniels

Philip H. Overmeyer
Gordon J. Paul
Rol W. Rider, Jr.
J. Weldon Rohner
Roger L. Sherman
Victor F. Wolcott

The Department offers an undergraduate program leading to the Bachelor of Science Degree in Business Administration with several concentrations available. A graduate program leading to a Master of Business Administration degree is offered to students from diverse undergraduate disciplines.

The undergraduate program prepares students for employment in the administrative and technical functions of business, labor unions, and governmental agencies. It combines courses in general education and a core of business subjects with a concentration in a specialized field in business. Opportunities for students are enhanced by the availability of elective courses in the Schools of Agriculture, Architecture, Engineering and Technology, Applied Arts, and Applied Sciences. Thus, the program provides both a broad and specialized educational experience.

The objective of the graduate program is to provide a comprehensive and flexible program of study for graduates from diversified academic backgrounds which will lay the professional foundation for careers of growing responsibility in the business community and related fields. The program encompasses a broad integrated approach to problem solving and decision making with opportunity for functional specialization. Requirements for the degree include completion of foundation courses prior to entry into the three-quarter integrated program of graduate study. Accelerated graduate foundation courses provide a flexible basis for completing all but five required undergraduate foundation courses. Thus, the degree requirements can be completed in one calendar year if these five foundation courses are completed by the student as an undergraduate.
CURRICULAR CONCENTRATIONS

Accounting
The accounting concentration provides training and practice for both public and private accounting areas.

Economics
This concentration stresses economic analysis as it applies to business and governmental decision making. It is designed to afford the student an opportunity to explore economic theory and its application to the American economy and to prepare students for entry positions in business or government, or for graduate studies.

Finance and Property Management
This concentration is designed as a flexible program for the student wishing to pursue opportunities in the fields of finance, insurance and real estate.

Industrial Relations
The two areas of interest within this concentration relate to labor-management relations and personnel management.

Management
This concentration stresses the managerial process and decision making fundamental to all levels and functional areas of the business and industrial enterprise. The management program offers both quantitative and general management emphases to satisfy the individual needs of the student relative to business or academic ambitions.

Marketing
Marketing includes all the business activities involved in directing the flow of goods and services from the original producer through intermediate processors to the consumer. This concentration emphasizes the management of marketing activities within the firm in coordination with all other activities to accomplish the firm’s objective.

CURRICULUM IN BUSINESS ADMINISTRATION

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Business Enterprise (Bus 101)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Relations (IR 118)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Principles of Speech (Sp 200)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>** Literature</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>** Natural Sciences</td>
<td>4</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics for General Education (Math 200)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Finite Mathematics for Business (Math 210)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>**</td>
<td>16½</td>
<td>16½</td>
<td>17½</td>
</tr>
</tbody>
</table>

* Unless already acceptable typists, majors will be required to take Bus 141 and/or Bus 142 during their freshman year.
** To be selected in accordance with the General Education requirement.
Business Administration

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Economics (Ec 211, 212, 213)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Accounting (Actg 221, 222)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Cost Accounting and Analysis (Actg 223)</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Industrial Relations (IR 214)</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Marketing Principles (Mktg 204)</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Management (Mgt 201)</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Introduction to Philosophy (Phil 201)</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Data Processing (CSc 100)</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Mathematics of Business (Math 215)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Elementary Probability and Statistics (Stat 211)</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Statistical Methods (Stat 212)</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>17 1/2</td>
<td>16 1/2</td>
<td>17 1/2</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Law (Bus 307, 308)</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Money, Credit and Banking (Ec 337)</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Financial Management (FPM 342, 343)</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Political and Economic Geography (Geog 315)</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>16</td>
<td>15</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Policies (Mgt 413)</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Business Organization (Mgt 414)</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Business and Human Relations (IR 415)</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Senior Project (Bus 461, 462)</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Undergraduate Seminar (Bus 463)</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Literature, Philosophy, Art or Music</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Social Sciences elective</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>7</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Accounting, Business, Business Administration, Economics, Finance and Property Management, Industrial Relations, Management, Marketing and other subjects.

CURRICULUM FOR THE MASTER OF BUSINESS ADMINISTRATION DEGREE

(For College requirements see the Graduate Study Bulletin)

I. Foundation Program: Complete the following undergraduate courses, their equivalent, or their counterpart graduate foundation courses.

A. Undergraduate foundation courses

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Bus 301</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>* CSc 101</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>* Ec 211, 212</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>* Mktg 204</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Actg 221, 222, 223</td>
<td>BA 510</td>
<td>Foundations in Accounting</td>
<td>(4)</td>
</tr>
<tr>
<td>FPM 342, 343</td>
<td>BA 520</td>
<td>Foundations in Finance</td>
<td>(2)</td>
</tr>
<tr>
<td>IR 214, 415; Mgt 201</td>
<td>BA 530</td>
<td>Foundations in Management</td>
<td>(3)</td>
</tr>
<tr>
<td>Math 131, 200, 210</td>
<td>Math 540</td>
<td>Foundations for Quantitative Methods</td>
<td>(4)</td>
</tr>
<tr>
<td>Stat 211, 212</td>
<td>Stat 540</td>
<td>Foundations in Statistics</td>
<td>(3)</td>
</tr>
</tbody>
</table>

* These courses would normally be taken as undergraduate electives or requirements prior to acceptance for graduate study.

** To be selected in accordance with the General Education requirement.

*** 27 of the elective units in the junior and senior years must be chosen with the approval of the adviser in a field of concentration.
II. Integrated Program

A. Core requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 501</td>
<td>Accounting for Planning & Control</td>
<td>3</td>
</tr>
<tr>
<td>BA 511</td>
<td>Micro-Economics</td>
<td>3</td>
</tr>
<tr>
<td>BA 512</td>
<td>Macro-Economics</td>
<td>3</td>
</tr>
<tr>
<td>BA 525</td>
<td>Business Finance</td>
<td>3</td>
</tr>
<tr>
<td>BA 584</td>
<td>Seminar in Human Resources Management</td>
<td>3</td>
</tr>
<tr>
<td>BA 508</td>
<td>Marketing Management</td>
<td>3</td>
</tr>
<tr>
<td>BA 527</td>
<td>Quantitative Methods I</td>
<td>3</td>
</tr>
<tr>
<td>BA 513</td>
<td>Operations Management</td>
<td>3</td>
</tr>
<tr>
<td>BA 506</td>
<td>Business and Society</td>
<td>3</td>
</tr>
<tr>
<td>BA 581, 582, 583</td>
<td>Seminar in Applied Decision Making (4, 4, 4)</td>
<td>12</td>
</tr>
</tbody>
</table>

B. Electives: Nine units to be selected from the following courses:

- BA 500, 509, 518, 522, 528 and any adviser-approved 400 or 500 level course

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

ECONOMICS DEPARTMENT

Acting Department Head, Fuad H. Tellew

George M. Eastham
Dominic Perello
Walter E. Rice

Bruce H. Roberts
Howard F. Smith
John R. Umbeck

The Economics Department serves all schools of the College by offering courses which will help students to understand the overall functioning of the American economy.

In addition, the Department offers courses tailored to the specific needs of various disciplines, and it supports the Master of Business Administration degree, as well as the Ethnic Studies Program.

An economic concentration designed to prepare business majors for entry positions in business or government or for graduate studies in economics is also provided. Employment opportunities for economists exist in industry, agriculture, and all levels of government in the capacity of professional economists, analysts, research assistants and general managers.
The Social Sciences Department serves all of the schools of the College in providing general education for citizenship. In general, the department seeks to provide the student with a better understanding of the society in which he lives, to develop in the student those skills and attitudes which are prerequisites for effective citizenship, and to prepare and encourage the individual toward intelligent and responsible social action.

The occupational objectives of the department are to train students for those numerous entry jobs in civil service, business, industry, and social welfare which require a bachelor's degree with a major in the social sciences, and to train those who expect to teach the social studies in elementary or secondary schools.

Students with majors in fields other than the social sciences may select courses which will aid in qualifying them for a variety of civil service positions.

The department offers a Bachelor of Science degree in Social Sciences. Opportunity for concentration in one of several areas of Social Science is provided.

The department also offers graduate courses which permit the student to qualify for a Master of Arts Degree in Education with a concentration in the field of social sciences.

CURRICULUM IN SOCIAL SCIENCES

Curricular Concentrations

Social Sciences

With proper selection of electives, this concentration leads to preparation for elementary or secondary teaching on completion of the fifth year. It also provides the student with a broad background for entry positions in business.

Social Services

By providing instruction in the social services area, this concentration prepares students to enter such fields as social work, corrections, probation, or parole.

Government Service

With proper selection of electives, this concentration provides students with preparation for entry positions in government at the local, state, and national level such as management analyst, personnel specialist, budget specialist, and administrative specialist.

<table>
<thead>
<tr>
<th>Freshman †</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Composition (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>¼</td>
<td>¼</td>
</tr>
<tr>
<td>Basic Mathematics for General Education (Math 100)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Natural Science</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>History of Civilization (Hist 101, 102, 103)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Political Science (Pol Sc 101, 102, 103)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>16½</td>
<td>16½</td>
<td>17½</td>
</tr>
</tbody>
</table>

* To be selected in accordance with the General Education requirement. Include one sequence course which meets for three quarters with a minimum of 9 units.

† Typing proficiency is required for graduation. A student who does not type may use one unit of elective credit to take Bus 141 to satisfy the requirement.
Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Philosophy (Phil 201)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Principles of Sociology (Soc 201, 202, 203)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Natural Science</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>History of the United States (Hist 201, 202, 203)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>16½</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature (Eng 211, 212, 213; or 311, 312, 313)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Public Speaking (Sp 202)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultural Anthropology (Ant 201)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Senior Project (Soc Sc 461)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philosophy (Phil 202 or 204)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 211, 212, 213)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>** Electives and courses to complete the major</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sociology (300 or 400 level)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (Soc Sc 462)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (Soc Sc 463)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Political Science or History</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Any 6 units from 300 or 400 level)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Geography (Geog 315)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Comparative Economic Systems (Ec 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social Psychology (Psy 401)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>** Electives and courses to complete the major</td>
<td>8</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See COURSES OF INSTRUCTION sections of this catalog for descriptions of courses in Anthropology, Archaeology, Geography, Political Science, Social Science, Sociology and other subjects.

* To be selected in accordance with the General Education requirement.
** From 18 to 28 of the elective units must be chosen with the approval of the adviser in a field of concentration.
SCHOOL OF COMMUNICATIVE ARTS
AND HUMANITIES
The School of Communicative Arts and Humanities provides a wide range of course offerings. Programs leading to the bachelor's degree are offered in English, Graphic Communications, History, Journalism, and Speech. The Master of Arts degree is offered in English.

Strong course offerings are outlined in the Art, Music, Philosophy, and Foreign Language and Linguistics Departments. Foreign language emphasis is in French and Spanish.

The School of Communicative Arts and Humanities offers courses related to and directly supporting curricula in agriculture and natural resources, architecture and

ART DEPARTMENT

Department Head, Bernice Loughran

Roger Bailey
David Bodlak
Bernard Dusek
Charles Jennings
Erna Knapp
John B. Rea

The art instruction program is intended to prepare students for whatever diverse needs they might encounter in their work in the art field. As a part of the general education program, emphasis is placed on those criteria involved in the aesthetic experience: visual consciousness in seeing one's environment, personal expression, and the necessary control of manipulative processes to achieve the desired results. Since art and design are increasingly relevant to many occupational fields, art courses are frequently required within various majors.

Students enrolled in one of the many teacher education majors may elect a minor in art. The pattern for this program is described in the teacher credential bulletin. Those interested in this program should consult an art instructor and file a card in the Art Department office.

102
The English Department serves all schools of the college by providing courses which will increase a student’s understanding, appreciation, and use of his language, in reading and composition. The department offers a variety of courses which, through close study of the works of acknowledged masters of language usage and through providing opportunities for the student himself to use language with greater accuracy and skill, contribute to the general education of majors in Agriculture, Engineering, Architecture, the Applied Arts and Applied Sciences.

The primary occupational objective of the department is the preparation of qualified teachers of English for elementary and secondary schools and for junior college. For this purpose the department offers a program leading to the B.A. degree for English teachers in the elementary and secondary schools, and a program leading to the M.A. degree for English instructors in the junior colleges. To produce teachers well versed in the areas of English commonly taught, the major curricula provide a balanced emphasis in study of the language and in the use of the language in composition and literature. A student majoring in English progresses through four significant steps in his education: first, a study of principles governing language, composition, and literature; second, a study of content illustrating these principles; third, application by the student of principles to content produced by himself and others; fourth, application of both principles and content to problems commonly met in the teaching situation.

For the purpose of assigning students to the appropriate level of training in language communication, a placement test is given. The test measures acceptable proficiency in language communication as revealed in sentence structure, appropriate usage, spelling, and paragraph units.

CURRICULUM IN ENGLISH

<table>
<thead>
<tr>
<th>Freshman</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Composition (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Fiction, Drama, Poetry (Eng 201, 202, 203)</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Speech (Sp 200)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of Civilization (Hist 101, 102, 103)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Natural Science</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>15½</td>
<td>14½</td>
<td>16½</td>
</tr>
</tbody>
</table>

* A minimum of 15 units of natural science is required for graduation. (See General Education Requirement). Include one sequence course which meets for three quarters with a minimum of 9 units.

** Satisfactory skill in typing is required for graduation. A student who does not type may satisfy the requirement by electing Bus 141, 142.
English

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>European Literature (Eng 211)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Composition (Eng 304, 305, 306)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>American Literature (Eng 311, 312, 313)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>* Natural Science</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultural Anthropology (Ant 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** Social Sciences (except history)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Junior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>British Literature (Eng 307, 308, 309)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Modern English Grammar (Eng 301, 302)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Shakespeare (Eng 210)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Children’s Literature (Eng 205) or Readings for Young Adults (Eng 316)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Techniques of Oral Reading (Sp 305)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Philosophy (Phil 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>** Art, Music, or Drama</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Senior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (Eng 461)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>History of the English Language (Eng 303)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Modern Novel (Eng 415) or Modern Poetry (Eng 416)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or Elizabethan Drama (Eng 419)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significant Writers (Eng 414, 417, or 418)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>7</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Curriculum for the Master of Arts Degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(For College requirements see Graduate Study Bulletin)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eng 502 Introduction to Critical Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Eng 503 Contemporary Language Study</td>
<td>3</td>
</tr>
<tr>
<td>Eng 504 Problems in Language</td>
<td>3</td>
</tr>
<tr>
<td>Eng 505 Problems in Composition</td>
<td>3</td>
</tr>
<tr>
<td>Eng 511 Problems in American Literature</td>
<td>3</td>
</tr>
<tr>
<td>Eng 512 Problems in British Literature</td>
<td>3</td>
</tr>
<tr>
<td>Eng 590 Graduate Seminar in English</td>
<td>3</td>
</tr>
<tr>
<td>Additional units in the Eng 300, 400 and 500 series, selected with advisory committee approval</td>
<td>15</td>
</tr>
<tr>
<td>Elective units in other departments, selected with advisory committee approval</td>
<td>9</td>
</tr>
<tr>
<td>Total Units</td>
<td>45</td>
</tr>
</tbody>
</table>

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in English, Foreign Language and other subjects.

* A minimum of 15 units of natural science is required for graduation. (See General Education requirement.) Include one sequence course which meets for three quarters with a minimum of 9 units.

** To be selected in accordance with the General Education requirement.
Foreign languages are offered to prepare the student for specific technical, vocational, literary, and cultural needs at home and overseas. Linguistic principles of language learning and language teaching focus on the understanding and use of the language studied. Modern English grammar, English as a second language or dialect, Spanish, French, and scientific German are offered at the undergraduate level. An introduction to teaching English as a second language/dialect, contemporary language study, and problems in language are offered at the graduate level.
The Graphic Communications Department offers a four-year curriculum leading to the Bachelor of Science degree. The curriculum is designed to prepare graduates for positions of responsibility in the printing and publishing industry or teaching graphic arts vocations in the high schools and junior colleges.

The program provides courses in general education together with a core of printing technology courses. The student is introduced to all stages of the printing processes during the first two years. A concentration in either printing management or printing education is selected for the junior and senior years. In addition, students are required to complete a number of courses in business administration or professional education, depending upon the concentration selected. A student who terminates his formal education prior to graduation will have sufficient training to qualify him for employment in the printing and publishing industry. However, the program is not designed to provide vocational education for the printing trade.

The Graphic Communications Department occupies 33,000 square feet of floor space in the modern Graphic Arts Building. Theory is taught in up-to-date classrooms incorporating the latest in teaching aids. Ten modern, well-equipped laboratories of printing equipment provide the student with diverse experience in the practical aspects of the industry.

Students seeking careers in business administration, architecture, journalism or other professions which commonly engage the services of printers or publishers will benefit significantly from an understanding of the printing processes, their requirements and limitations. The following courses are offered for non-majors only: Graphic Arts Processes (PT 127), Advanced Graphic Arts (PT 238), Screen Processes (PT 357), Survey of Lithography I (PT 338), Survey of Lithography II (PT 339). Non-majors will also find the following courses to be beneficial to acquiring a broad knowledge of printing processes: Introduction to Printing Technology (PT 101), Proofreading (PT 102), Graphics (PT 104), Theory of Color (PT 201), Tape Perforation (PT 341).

CURRICULAR CONCENTRATIONS

Printing Management
This concentration is designed as a flexible program for the student interested in pursuing employment as a printing plant manager, planner, quality control specialist, production control specialist, estimator, or printing salesman. The program also prepares the student for employment as a technical representative for manufacturers of graphic arts machinery and products.

Printing Education
This concentration is designed for the student interested in teaching printing in junior and senior high schools. The program requires the student to graduate with a major in printing, an academic minor and selected courses in professional education. Completion of the program requires a fifth year of graduate work. The Standard Teaching Credential with Specialization in Secondary Teaching is granted upon successful completion of this program.

CURRICULUM IN PRINTING TECHNOLOGY AND MANAGEMENT

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Printing Technology (PT 101)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Proofreading (PT 102)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Graphics (PT 104)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Printing Papers (PT 111)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typography (PT 122)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Binding and Finishing (PT 123)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Relief Plates (PT 126)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Letterpress (PT 132, 133)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Journalism History (Jour 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementary Probability and Statistics (Stat 212)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Statistical Methods (Stat 212)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Biology (Bio 110)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Art</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing Processes (MP 151)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td></td>
<td></td>
<td>16(\frac{1}{2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16(\frac{1}{2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16(\frac{1}{2})</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory of Color (PT 201)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Printing Management (PT 204)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copy Preparation for Reproduction (PT 223)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Composing Machines (PT 224, 225)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Process Camera (PT 227)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Stripping and Platemaking (PT 228)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Lithography (PT 229)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>**Automated Typesetting (PT 236)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Chemistry (Chem 124, 125, 126)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>*Literature</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>⅔</td>
<td>½</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17(\frac{1}{2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16(\frac{1}{2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16(\frac{1}{2})</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimating (PT 303)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory of Lithography (PT 312)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Publication Systems (PT 332)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 211, 212)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Social sciences (except History)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Report Writing (Eng 218)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic (Phil 202)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>**Electives and courses to complete major</td>
<td>9</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Project (PT 461, 462)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (PT 463)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Psychology of Business and Industry (Psy 302)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>**Electives and courses to complete major</td>
<td>12</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Printing Technology and Management and other subjects.

* To be selected with adviser approval in accordance with the General Education requirement.
** Satisfactory skill in typing required for this course. A student who does not type may satisfy the requirement by electing Bus 141.
Electives and courses to complete major

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Printing Technology and Management and other subjects.

*To be selected with adviser approval in accordance with the General Education requirement.
**Satisfactory skill in typing required for this course. A student who does not type may satisfy the requirement by electing Bus 141.
Electives and courses to complete major

29 of the elective units in the junior and senior years must be chosen with the approval of the adviser in a field of concentration.
HISTORY DEPARTMENT
Department Head, M. Eugene Smith

Lloyd N. Beecher Scott J. Maughan Joseph B. Romney
Robert E. Burton Edward L. Mayo Herman C. Voeltz
Ralph W. Dits Peter H. Molnar Jay C. Von Werlhof
James L. Fitts Barton C. Olsen William M. Wharton
Donald W. Hensel Max E. Riedlsperger

The History Department serves all schools of the college by offering general education courses in American democracy and in world affairs. It also provides an undergraduate major in history built on a broad social science base leading to a bachelor of arts degree. The history major provides strong preparation for elementary and secondary teaching and for employment in government and business. A minor in history is available for teaching credential purposes.

CURRICULUM IN HISTORY

<table>
<thead>
<tr>
<th>Class</th>
<th>Courses</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>History of Civilization (Hist 101, 102, 103)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Freshman Composition (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td></td>
<td>Principles of Political Science (Pol Sc 101, 102, 103)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Mathematics for General Education (Math 100)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Health Education (PE 107)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>15½</td>
<td>16½</td>
<td>15½</td>
</tr>
<tr>
<td>Sophomore</td>
<td>History of the United States (Hist 201, 202, 203)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td></td>
<td>Economics (Ec 211 or 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Principles of Sociology (Soc 201, 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public Speaking (Sp 201, 202)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cultural Anthropology (Ant 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General Psychology (Psy 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Electives</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15½</td>
<td>16½</td>
<td>16½</td>
</tr>
<tr>
<td>Junior</td>
<td>European Historiography (Hist 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>American Historiography (Hist 302)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U.S. in World Affairs (Hist 305)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>History at 300–400 level</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>History (other than U.S.) at 300–400 level</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>**Literature</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>**Literature or Philosophy</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>**Electives</td>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Senior</td>
<td>Senior Project (Hist 460)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>History at 300–400 level</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Social Sciences (other than History) at 300–400 level</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>**Philosophy or Art</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>**Electives</td>
<td>7</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in History and other subjects.

* Select according to General Education requirement; must include one sequence course for three quarters with a minimum of 9 units.
† Typing proficiency is required for graduation. A student who does not type may use one unit of elective credit to take Bus 141 to satisfy the requirement.
** To be selected in accordance with the General Education requirement.
*** At least 19 units must be at the 300–400 level. Two years of foreign language are highly recommended.
Modern journalism places a premium on specialists who have acquired familiarity with a specific field in addition to basic professional training. This college has trained "specialized journalists" exclusively. The Journalism Department offers a program leading to the bachelor of science degree in journalism with concentrations in different occupational areas of journalism—agricultural, community, industrial, and home economics.

All journalism majors must complete the basic curriculum which deals with fundamental journalistic aspects and supplementary courses in arts and sciences. Each major also must complete a certain number of required and elective courses in his particular field of concentration.

Regardless of concentration all journalism majors will be expected to serve as staff members on the school publications and news media and on journalism field teams. In addition to the 198 units required for a degree, the journalism major must complete an eight weeks' noncredit internship in a publishing, radio, advertising, public relations, business or industrial organization under an approved and supervised program. Such internships will take place normally during summers. Credit toward the internship requirement may be granted for journalism field team participation.

Enrollment in journalism courses is open to qualified students of all other departments who wish to gain skills in the techniques and methods of advertising, public relations, publicity, publications, and photography.

CURRICULAR CONCENTRATIONS

Agricultural Journalism
This concentration prepares for farm or farm-city careers in reporting, editing, radio and television news; publication production; advertising copywriting, layout, selling; public relations and publicity; photography; information. Twenty-one of the elective units must be chosen with the approval of the adviser.

Community Journalism
This concentration prepares for community newspaper operation and production; suburban news, advertising and business operation with emphasis on management and ownership; printing and publishing of small daily, weekly and semi-weekly publications; community broadcasting station operation and management. Twenty-three of the elective units must be chosen with the approval of the adviser.

Business and Industrial Journalism
This concentration provides training for editorial, advertising and promotion employment on trade and business publications and house organs; sales promotion, industrial relations and industrial publicity; production and management of specialized industrial publications and printing; internal and external public relations programming; trade association secretary-manager positions; advertising agency and broadcasting advertising with industrial emphasis; photography and graphic arts for industrial operations. Twenty-three of the elective units must be chosen with the approval of the adviser.

Home Economics Journalism
This concentration relates to women's publications; editorial, advertising and promotion; consumer organization public relations and sales promotion; community publications staff writing and editing with emphasis on women's home and family features; public utilities promotion and advertising of interest to homemaking and family interest groups; photography and broadcast news designed especially for women's special activities. Twenty-three of the elective units must be chosen with the approval of the adviser.
Journalism

Broadcast Media

This concentration emphasizes the nonentertainment aspects of radio and television broadcasting. The emphasis is on training the professional radio and television newsman in gathering, writing and presenting the news responsibly. Twenty of the elective units must be chosen with the approval of the adviser.

Public Relations Advertising

This concentration prepares a foundation in understanding the role of advertising and public relations in business and society; why the public relations and advertising function is important; methods used in the practice of advertising and public relations. Twenty of the elective units must be chosen with the approval of the adviser.

Photojournalism

This concentration prepares for opportunities in newspapers, magazines and television: training in still and movie film work, and in color and black and white. Emphasis is in using words and pictures together in understanding and interpreting today's society. Twenty-two units must be chosen with the approval of the adviser.

CURRICULUM IN JOURNALISM

F W S

Freshman †

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Journalism (Jour 118)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Literature (Eng 207)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Mathematics (Math 102, 103 or Math 100, 200)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>General Biology (Bio 101, 102, 103 or equiv.)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Basic Photography (Jour 221)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Advanced Photography (Jour 222)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Economics (Ec 211, 212)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>American Literature (Eng 311, 312, 313)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>General Physical Science (PSc 101, 102, 103 or equiv.)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Journalism History (Jour 201)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>News Writing (Jour 202)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Reporting I (Jour 203)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Sociology (Soc 105)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>U. S. in World Affairs (Hist 305)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Graphic Arts Processes (PT 127)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Editing and Copy Desk (Jour 233)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Feature Writing (Jour 302)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Broadcast Media News (Jour 333)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Global Geography (Geog 308)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Senior Project (Jour 461)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>7</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

§ From 18 to 27 of the elective units must be chosen with the approval of the adviser according to the field of concentration.
† Unless already acceptable typists, majors will be required to attain typing proficiency during their freshman year.

110
<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>State and Local Government (Pol Sc 401)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Senior Project (Jour 462)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (Jour 463)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Newspaper and Magazine Advertising (Jour 421)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Advertising Layout and Copywriting (Jour 425)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Applied Journalism Techniques (Jour 451, 452, 453)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Journalism Press Laws (Jour 402)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Public Relations (Jour 412)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Journalism and other subjects.

§ From 18 to 27 of the elective units must be chosen with the approval of the adviser according to the field of concentration.
The purposes of the courses in the Music Department are to give all musically inclined students the opportunity to participate in college musical organizations and to further their proficiency both in singing and in playing instruments; to give all students interested in music a broader insight into the general field of music through courses in appreciation, theory, harmony, and music history; and to provide the prospective teacher with basic skills and instructional techniques in music required for the general elementary credential.

It is necessary that the student have some previous experience with a musical instrument in order to try out for band, brass, chamber, and orchestral ensembles, and for dance orchestra. While previous experience in choral singing is helpful, it is not mandatory for the student trying out for the men's glee club and the women's glee club.

Students enrolled in one of the teacher education majors may elect a teaching minor in music. This program requires that a minimum of 30 units be taken, at least 18 of which must be 300 or 400 numbered courses. Those interested in this program should consult an instructor in the Music Department. Demonstration of music skill in piano may be by audition or by satisfactory performance in Mu 111, 112, 113. Participation in a music activity for at least three quarters is recommended.

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Music and other subjects.

The courses offered in the Philosophy Department are intended to give the student a more comprehensive view of the world than he might otherwise get. The program in philosophy should supplement the courses he takes in his major and should help him understand the relation of his field to other investigations, particularly to scientific, religious and social movements. The courses call attention to the perennial questions reflective people have asked concerning man and his world, and help the student to develop his own personal philosophy.

This program will acquaint the student with the developments in metaphysics (the nature of reality), epistemology (the means by which knowledge is acquired), axiology (value theory), and logic.

The courses in the Philosophy Department give all students the opportunity to participate in philosophical discussion and further their proficiency in expounding and defending philosophical positions.

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Philosophy and other subjects.
The Speech Department through its courses in speech, drama, and radio-television serves all schools of the College. Its offerings enable students to fulfill requirements in general education, to advance programs of preparation and vocational objectives in their chosen fields, and to enhance avocational pursuits and cultural development.

The primary objective of the department is to prepare prospective teachers of speech for positions in elementary and secondary schools. It also provides courses for students planning to enter many other fields related to the communicative arts and sciences.

The Speech Department offers an academic teaching major and a speech minor available to all teacher candidates. All speech majors must complete the basic speech curriculum and consult their advisers in the choice of electives to round out their programs and fulfill their minors. Both major and minor programs are geared not only to provide broad theoretical knowledge of the speech field, but also to give students extensive experience in diversified speech activities.

A variety of co-curricular activities is available for students interested in the speech arts. Intercollegiate forensic tournaments provide opportunities for Cal Poly speakers to compete with students from other universities and colleges in debate and other speech events. The college drama program annually presents six productions, three produced by the Speech Department, and three sponsored by the Drama Committee of College Program Boards. A broad spectrum of dramatic productions brings classical, musical, and modern plays to the college community. The college FM radio station KCPR provides experience for students in radio station operation, program production, and radio engineering. Additional speech activities include speechmaking to community audiences, programs of oral interpretation, and laboratory drama presentations.

CURRICULUM IN SPEECH

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principles of Speech (Sp 200)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Broadcasting, Debate, and Theater (Jour 214, Sp 215, Dr 220)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>History of Civilization (Hist 101, 102, 103)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essentials of Discussion (Sp 217)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forensic Activity (Sp 300)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argumentation and Debate (Sp 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voice and Phonetics (Sp 306)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Fiction, Drama, Poetry (Eng 201, 202, 203)</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics for General Education (Math 100)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey of Economics (Ec 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Literature or Philosophy</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

† To be selected in accordance with the General Education requirement.

113
Speech

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Composition—Non-Fiction (Eng 304)</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Speech Correction (Sp 302)</td>
<td>3</td>
</tr>
<tr>
<td>Industrial and Professional Speech (Sp 303)</td>
<td>3</td>
</tr>
<tr>
<td>Persuasion (Sp 304)</td>
<td>3</td>
</tr>
<tr>
<td>Techniques of Oral Reading (Sp 305)</td>
<td>3</td>
</tr>
<tr>
<td>Acting (Dr 320)</td>
<td>3</td>
</tr>
<tr>
<td>Directing (Dr 321)</td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
</tr>
<tr>
<td>United States in World Affairs (Hist 305)</td>
<td>3</td>
</tr>
<tr>
<td>* Electives</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Units: 16 15 15

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Shakespeare (Eng 210)</td>
<td>3</td>
</tr>
<tr>
<td>Stagecraft (Dr 322)</td>
<td>2</td>
</tr>
<tr>
<td>Discussion and Conference Leadership (Sp 403)</td>
<td>2</td>
</tr>
<tr>
<td>Advanced Oral Interpretation (Sp 405)</td>
<td>2</td>
</tr>
<tr>
<td>History and Criticism of Public Address (Sp 407, 408, 409)</td>
<td>3</td>
</tr>
<tr>
<td>Biblical Reference in Speechmaking (Sp 410)</td>
<td>3</td>
</tr>
<tr>
<td>Broadcast Media Practice (Jour 341)</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (Sp 463)</td>
<td>2</td>
</tr>
<tr>
<td>Senior Project (Sp 461)</td>
<td>2</td>
</tr>
<tr>
<td>* Electives</td>
<td>6</td>
</tr>
</tbody>
</table>

Total Units: 15 15 15

*At least 10 units must be at the 300–400 level.

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Speech, Drama and other subjects.
SCHOOL OF ENGINEERING
AND TECHNOLOGY

[Image of a person working on electronic equipment]
<table>
<thead>
<tr>
<th>Recommended J.C. Preparation in Terms of Cal Poly Courses</th>
<th>Cal Poly Engineering Majors Requiring Various Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics</td>
<td>Aero</td>
</tr>
<tr>
<td>Math 117, Math for Engrs.</td>
<td>4</td>
</tr>
<tr>
<td>Math 131, Technical Cale.</td>
<td>4</td>
</tr>
<tr>
<td>Math 132, Technical Cale.</td>
<td>4</td>
</tr>
<tr>
<td>Math 133, Technical Cale.</td>
<td>4</td>
</tr>
<tr>
<td>Stat 211, Elem Prob & Stat.</td>
<td>3</td>
</tr>
<tr>
<td>Math 141, Anal Geom & Cale.</td>
<td>4</td>
</tr>
<tr>
<td>Math 142, Anal Geom & Cale.</td>
<td>4</td>
</tr>
<tr>
<td>Math 143, Anal Geom & Cale.</td>
<td>4</td>
</tr>
<tr>
<td>Math 241, Anal Geom & Cale.</td>
<td>4</td>
</tr>
<tr>
<td>Math 242, Diff Equations</td>
<td>4</td>
</tr>
<tr>
<td>Physics</td>
<td></td>
</tr>
<tr>
<td>Phy 121, College Physics</td>
<td>4</td>
</tr>
<tr>
<td>Phy 122, College Physics</td>
<td>4</td>
</tr>
<tr>
<td>Phy 123, College Physics</td>
<td>4</td>
</tr>
<tr>
<td>Phy 131, Gen Phys for Engrs.</td>
<td>4</td>
</tr>
<tr>
<td>Phy 132, Gen Phys for Engrs.</td>
<td>4</td>
</tr>
<tr>
<td>Phy 133, Gen Phys for Engrs.</td>
<td>4</td>
</tr>
<tr>
<td>Phy 211, Optics & Atom Phys.</td>
<td>4</td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
</tr>
<tr>
<td>Chem 121, Gen Inorg Chem</td>
<td>4</td>
</tr>
<tr>
<td>Chem 122, Gen Inorg Chem</td>
<td>4</td>
</tr>
<tr>
<td>Chem 124, Gen Chem</td>
<td>4</td>
</tr>
<tr>
<td>Chem 125, Gen Chem</td>
<td>4</td>
</tr>
<tr>
<td>Chem 126, Gen Chem</td>
<td>4</td>
</tr>
<tr>
<td>Engineering & Supporting Courses</td>
<td></td>
</tr>
<tr>
<td>Engineering Drafting</td>
<td>--</td>
</tr>
<tr>
<td>Engr 251, Digital Comp Appl.</td>
<td>--</td>
</tr>
<tr>
<td>Mfg. Processes</td>
<td>--</td>
</tr>
<tr>
<td>Strength of Mat. Air 205 or Aero 205.</td>
<td>--</td>
</tr>
<tr>
<td>Engr Statics and Dynamics</td>
<td>--</td>
</tr>
<tr>
<td>Initial courses in Electricity and Electronics</td>
<td>--</td>
</tr>
<tr>
<td>Power Tech (IT 122-3), Tech Comp (IT 101), Hum Rel (IT 118).</td>
<td>--</td>
</tr>
<tr>
<td>General Education</td>
<td></td>
</tr>
<tr>
<td>Soc Sc (Pol 202, Pol Sci 201, Hist 204-5, Econ)</td>
<td>--</td>
</tr>
<tr>
<td>Humanities (Lit, Phil etc.)</td>
<td>--</td>
</tr>
<tr>
<td>Miscellaneous: PE (3), Health (2), Eng Comp & Writing (6),</td>
<td>--</td>
</tr>
<tr>
<td>Sp (2), Life Science (5), etc.</td>
<td>--</td>
</tr>
<tr>
<td>Maximum Transfer Units</td>
<td></td>
</tr>
</tbody>
</table>
The Engineers' Council for Professional Development defines engineering "as the profession in which a knowledge of the mathematical and natural sciences gained by study, experience, and practice is applied with judgment to develop ways to utilize economically the materials and forces of nature for the benefit of mankind."

Engineering at Cal Poly is strongly oriented toward preparing young people for immediate entry into the practice of engineering in the industrial world upon graduation from one of the four-year bachelor's degree programs. Each student selects his major as a freshman and takes at least one course per quarter in that major from the first quarter at Cal Poly. This process increases motivation to master the mathematics, basic science, and engineering science which constitute a very important half of each engineering curriculum.

Engineering graduates of Cal Poly are in great demand. They command high salaries and find an endless variety of engineering challenges awaiting them. They enter design, manufacturing, research, development, sales, maintenance, operation, etc. in industry, government, consulting firms, and many related activities. Increasing numbers find employment outside of the engineering profession in positions where an engineering education is either required or preferred.

Engineering curricula offered in the School of Engineering and Technology leading to the Bachelor of Science degree are: Aeronautical Engineering, Electrical Engineering, Electronic Engineering, Environmental Engineering, Industrial Engineering, Mechanical Engineering, Metallurgical Engineering, Transportation Engineering.

The School of Engineering also offers curricula leading to the Bachelor of Science degree in Engineering Technology and Industrial Technology.

Engineering Technology is defined by the Engineers' Council for Professional Development as that part of the technological field which requires the application of scientific and engineering knowledge and methods combined with technical skills in support of engineering activities, relating the craftsman to the field of engineering.

Industrial Technology provides professional preparation for students desiring careers in industrial sales, production supervision, industrial education, and closely related fields. The Industrial Sales and Technology option relates the applied aspects of engineering to business management. The Industrial Education option prepares graduates for industrial arts and trade-technical teaching positions in high schools and junior colleges.

COOPERATIVE PROGRAMS

The School of Engineering and Technology offers cooperative work-study programs in which students gain practical experience by working in industry or government installations, usually every other quarter, alternating periods of work and study. Under a cooperative program the students receive experience in their profession plus income during work periods.

In general, students under these programs will require more time to complete curriculum requirements, depending upon the time of starting and the nature of the individual's work-study plan. The College attempts to place students in programs which are to their best educational and financial advantage.

Students in a cooperative program are considered by the College to be continuing students while they are employed in industry. They may reside in College housing during work periods and may attend student activities provided they pay the activity fee.
MASTER OF ENGINEERING DEGREE

The Master of Engineering curriculum offers a broadly based program supported by the entire School and the Agricultural Engineering Department in the School of Agriculture and Natural Resources. It is not primarily a program for specialization in any one engineering discipline. It is designed as an interdisciplinary program for the generalist, the project leader, instead of for the specialist in one particular area.

In more detail, the objectives of the program are to provide:

1. The appropriate job-entry education for the more complex areas of engineering such as research and development, innovative design, and systems analysis and design.
2. Both updating and upgrading opportunities for practicing engineers.
3. Appropriate graduate preparation for further graduate study in engineering leading to the Doctor of Engineering or Ph.D. degree.
4. Quality preparation for teachers of pre-engineering, engineering technology, and most aspects of undergraduate engineering curricula.
5. A useful graduate education for foreign students for use in their homelands.
6. An excellent base for lifelong individual study for the graduate to keep current in his profession.

CURRICULUM FOR THE MASTER OF ENGINEERING DEGREE

(For College requirements, see the Graduate Study Bulletin)

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engr 599—An interdisciplinary design project thesis. (Units per quarter 2, 2, 5)</td>
</tr>
<tr>
<td>Mathematical Science—at least one course at the 500 level and not more than one course at the 300 level.</td>
</tr>
<tr>
<td>*Engineering courses at the 500 level in the area of concentration.</td>
</tr>
<tr>
<td>Engineering courses in one area other than the area of concentration—at least one course at the 500 level and not more than one course at the 300 level.</td>
</tr>
<tr>
<td>A physical science, a biological science, a social science, or an engineering science not used above. The concept is to give further strength in one related area of interest at the 300 level or above, such as economics, psychology, physics, mechanics, computers, etc.</td>
</tr>
<tr>
<td>Free electives at the 300 level or above. In some cases, these courses may be needed to complete prerequisites for courses required above.</td>
</tr>
<tr>
<td>45</td>
</tr>
</tbody>
</table>

* In 1970–71 students may select an area of concentration in Electrical Engineering, Electronic Engineering, or Mechanical Engineering.

** At least 24 units must be in courses organized primarily for graduate students (500 level).
The Aeronautical Engineering curriculum prepares students for engineering work dealing with the structure, propulsion, control, and ground support equipment for aircraft, missiles, and spacecraft. The problems faced by the aerospace industry offer an unusual engineering challenge. Much of the analysis must be accomplished at the very frontiers of knowledge yet products must nevertheless be designed and manufactured. Thus, an exceptionally wide gamut of engineering abilities is required within the industry.

The curriculum of the Aeronautical Engineering Department is accredited by the Engineers' Council for Professional Development. It places emphasis on both analysis and design. Supplementary to both is the basic work in drafting, shops, and laboratory. Throughout the entire four-year curriculum there is constant interplay between theory and application. Opportunities are available for advanced elective work in the student's field of special interest.

Graduates of the Aeronautical Engineering Department obtain employment in all phases of the aerospace industry such as general design, aerodynamics, stress analysis, flight testing, and field engineering.

The department has laboratories for fabrication, propulsion, structural test, and aerodynamics, and also has two design rooms and a hangar with adjoining airstrip.

The department sponsors a student chapter of the national society—the American Institute of Aeronautics and Astronautics.

CURRICULUM IN AERONAUTICAL ENGINEERING

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerospace Fundamentals (Aero 121, 122, 123)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>* Manufacturing Processes</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Digital Computer Applications (Engr 251)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applied Descriptive Geometry (ET 141)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 141, 142, 143)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>General Physics (Phys 131, 132)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Freshman Composition (Eng 104)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Literature (Eng 207)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General Biology (Bio 101)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Problems—Analog Computers (Aero 252)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength of Materials (Aero 207)</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Strength of Materials Laboratory (Aero 229)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Electric Circuit Theory (EE 201)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>General Physics (Phys 133)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Engineering Mechanics (ME 211, 212)</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 241)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Differential Equations (Math 242)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Advanced Engineering Mathematics (Math 318)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Chemistry (Chem 124, 125)</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Numerical Methods (Math 332)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Survey of Economics (Ec 201)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>† Literature or Philosophy</td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits:

Freshman: 16½
Sophomore: 17½

* To be selected from WM 141, 142, 251, 252; MP 141, 142, 143, 153, 154; IE 141.
† To be selected in accordance with the General Education requirement with adviser approval.
Aeronautical Engineering

Junior

<table>
<thead>
<tr>
<th>Course Grade</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerothermodynamics (Aero 301, 302, 303)</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Aerodynamics (Aero 306)</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Stress Analysis (Aero 324, 325)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Analog Computer Techniques (Aero 322)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronics (EL 321)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Instrumentation and Control Systems (EL 322)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theory of Materials (WM 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Technical Writing (Eng 219)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Total Credits</td>
<td>18</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course Grade</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight Mechanics (Aero 421)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aero Design (Aero 444, 445, 446)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Mechanical Vibrations (ME 316)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (Aero 461, 462)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (Aero 463)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Gas Dynamics I (Aero 404)</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Aircraft and Missile Propulsion Systems (Aero 401)</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Growth in American Democracy (Hist 304)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approved Aero elective (400 series)</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>† Social Sciences (except History)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>† Humanities elective</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td>17</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Aeronautical Engineering and other subjects.

† To be selected in accordance with the General Education requirement with adviser approval.
The Electrical Engineering Department prepares the graduate for a career as a professional engineer dealing with electrical energy. It provides a broadly based curriculum, fully supported by auxiliary subjects which increase the graduate's competence to develop his professional career. Students in the department may prepare themselves for employment in the electrical industry which offers a wide range of activity, or they may plan to continue their formal education in graduate school. Graduates are encouraged to seek registration as professional engineers.

Design by the scientific method is the central theme of the curriculum, which is accredited by the Engineers' Council for Professional Development. This theme is incorporated into every possible course situation throughout the entire curriculum and it is emphasized through extensive laboratory course work. As the student's education progresses he is confronted with realistic problems and is expected to utilize his capabilities to (1) recognize the essential technical problems to be solved, (2) use the scientific method in arriving at solutions, (3) evaluate the problem solutions taking into consideration tolerances, economics, reliability, and social impact in addition to strictly technical matters.

Attention is called to courses EE 104, 154, and 209 which are especially structured to assist junior college transfer students in their transition to the department curriculum.

Students are encouraged to participate in the two clubs sponsored by the department: Student Branch of the Institute of Electrical and Electronic Engineers, a technical organization; and the Poly Phase Club, a social club.

CURRICULUM IN ELECTRICAL ENGINEERING

<table>
<thead>
<tr>
<th>Class</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>Basic Circuits and Devices (EE 131, 132)</td>
</tr>
<tr>
<td></td>
<td>Orientation (EE 110)</td>
</tr>
<tr>
<td></td>
<td>Interpretation of Technical Drawings (ET 153)</td>
</tr>
<tr>
<td></td>
<td>Graphics and Standards (EE 146)</td>
</tr>
<tr>
<td></td>
<td>Analytic Geometry and Calculus (Math 141, 142, 143)</td>
</tr>
<tr>
<td></td>
<td>General Chemistry (Chem 124, 125)</td>
</tr>
<tr>
<td></td>
<td>General Physics (Phys 131, 132)</td>
</tr>
<tr>
<td></td>
<td>Freshman Composition (Eng 104)</td>
</tr>
<tr>
<td></td>
<td>Technical Writing (Eng 219 or Eng 105)</td>
</tr>
<tr>
<td>#</td>
<td>Manufacturing Processes</td>
</tr>
<tr>
<td></td>
<td>Health Education (PE 107)</td>
</tr>
<tr>
<td></td>
<td>Physical Education (PE 141)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Physical Electronics (EL 207)</td>
</tr>
<tr>
<td></td>
<td>Electron Devices (EL 209)</td>
</tr>
<tr>
<td></td>
<td>Electric Circuits (EE 232)</td>
</tr>
<tr>
<td></td>
<td>Digital Computer Applications (Engr 251)</td>
</tr>
<tr>
<td></td>
<td>Analytic Geometry and Calculus (Math 241)</td>
</tr>
<tr>
<td></td>
<td>Differential Equations (Math 242)</td>
</tr>
<tr>
<td></td>
<td>Advanced Engineering Mathematics (Math 318)</td>
</tr>
<tr>
<td></td>
<td>Introduction to Optics and Atomic Physics (Phys 211)</td>
</tr>
<tr>
<td></td>
<td>Engineering Mechanics (ME 211, 212)</td>
</tr>
<tr>
<td></td>
<td>Survey of Economics (Ec 201)</td>
</tr>
<tr>
<td>#</td>
<td>Manufacturing Processes</td>
</tr>
<tr>
<td></td>
<td>Strength of Materials (Aero 207)</td>
</tr>
<tr>
<td></td>
<td>General Psychology (Psy 202)</td>
</tr>
<tr>
<td></td>
<td>Physical Education (PE 241)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Sophomore</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Sophomore</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

† To be selected in accordance with General Education requirement with adviser approval.
To be selected from IE 141; MP 141, 142, 143.
Electrical Engineering

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromechanics (EE 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Engineering Electromagnetics (EE 302)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Network Synthesis (EE 322)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Linear Analysis with Analog Computer (EE 323)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Electromagnetic Machines (EE 331, 332)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Wave Propagation and Power Transmission (EE 321)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fluid Mechanics (ME 341)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electronic Circuits (EL 314, 316)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electronic Circuits Laboratory (EL 344)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ethics of Engineering (EE 326)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Technical elective</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total: 16 18 16

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Control Systems Design (EE 431)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Digital Computers (EE 432)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>* Electrical Engineering electives</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>** Senior Project (EE 461)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (EE 463)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Analog and Hybrid Computers (EE 427)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Thermodynamics (ME 302)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Heat Transfer (EnvE 313)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Technical elective</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>† Social Sciences (except History)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>† Literature or philosophy elective</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>† Humanities elective</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total: 18 18 15

See COURSES OF INSTRUCTION section of this catalog for description of courses in Electrical Engineering and other subjects.

* 6 units from EE 414, 415; EE 421, 422; EE 425, 426; or 3 units from EE 327, EE 402, EE 407, EE 428, and special project approved by adviser and department head.

** Normally, Senior Project will be completed in one quarter, but a student may, in conference with his adviser, elect EE 462 and use two quarters.

† To be selected in accordance with General Education requirement with adviser approval.
Electronic Engineering is a recognized branch of engineering which provides society with devices and systems of broad utility. By electronics our senses and abilities are amplified and extended. Hearing (radio), seeing (television and radar), feeling (instrumentation), calculating (digital and analog computers), and many other operations can be performed electronically to extend man's power of control and scope of communication.

The curriculum, which is accredited by the Engineers' Council for Professional Development, is concerned primarily with the development, design, and application of devices and systems which can perform such functions. Hence, the laboratory, shop, drawing-room, and computer center activities are of equal importance with the classroom lecture activity, providing constant interplay between the theoretical and the experimental aspects of engineering. The student works in an environment which encourages him to derive creative satisfaction from the solution of technological problems under practical conditions.

Preparation for a career in engineering actually begins in high school with the study of mathematics and science. Continued emphasis is placed on these subjects in the college curriculum. However, the freshman will recognize that in addition to these subjects there is planned career-preparation which deals directly with electronics. Not only do these studies in electronics contribute to a practical know-how and understanding of phenomena, but they also support mathematics and physics by showing early application of these studies. By the end of the freshman year the student will have had the opportunity to solve some appropriate problems on digital and analog computers.

The core of the program emphasizes two areas of study in the sophomore and junior years: basic circuit theory using modern methods of analysis in the complex frequency plane and linear transform theory, and the physics and circuitry of linear and nonlinear electronic devices. Continued studies in mathematics, science and other technologies provide the analytical and scientific background for an understanding of solid-state, vacuum, and gas devices.

With the skills and understandings provided by the sophomore-junior year courses, the student is ready in the senior year for specialization-in-depth in some areas and exploration of several advanced subjects in the field of electronics, such as microwave electronics, advanced communication theory, control systems, and network synthesis. Quantum electronics is explored in physics for application to optical communication with coherent light and in micro-integrated circuitry. Through proper selection of electives, students may direct their studies along lines of special interest or more intensive theoretical preparation for graduate study. Students interested in business management may elect advanced related courses in this field.

In contrast with the course of study at most colleges, the extensive sequence of courses in general education is spread uniformly throughout the four years, proceeding from written and oral communication through psychology, literature, and history, to economics and political science.

The department occupies a large and modern facility which has been designed for polytechnic education. Included are facilities for station W6BHZ operated by the Amateur Radio Club. The department also has a student branch of the Institute of Electrical and Electronic Engineers.
CURRICULUM IN ELECTRONIC ENGINEERING

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Circuits and Devices (EL 131, 132)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orientation (EL 110)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphics and Standards (EL 146)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life Science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interpretation of Technical Drawing (ET 153)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Manufacturing Processes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 141, 142, 143)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>General Physics (Phys 131, 132)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Writing (Eng 219 or Eng 105)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Chemistry (Chem 124, 125)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 17 1/2

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory Circuit Analysis (EL 201, 202)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introductory Circuits Laboratory (EL 241, 242)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Electrical Fields (EL 207)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron Devices (EL 209)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron Devices Laboratory (EL 249)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Computer Applications (Engr 251)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 241)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Equations (Math 242)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Engineering Mathematics (Math 318)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Manufacturing Processes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Mechanics (ME 211, 212)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature or Philosophy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 17 1/2

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Systems Analysis (EL 301, 302)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Networks Laboratory (EL 341, 342)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog Computer Laboratory (EL 343)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Circuits (EL 314, 315, 316)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Circuits Laboratory (EL 344, 345, 346)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Equipment Reliability (EL 309)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electromechanics (EE 304)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermodynamics (ME 302)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Transfer (EnvE 313)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials Engineering (WM 314)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Optics and Atomic Physics (Phys 211)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Survey of Economics (Ec 201)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature or Philosophy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Science (except History)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Credits: 18

* Chosen from IE 141, MP 141, 142, 143.
† To be selected with adviser approval in accordance with the General Education requirement.
Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic Fields (EL 401)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Digital Computers (EL 404)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Amplifier Theory (EL 405)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear Control Systems (EE 431)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Systems Engineering (EL 441, 442, 443)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Senior Project (EL 461, 462)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (EL 463)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid State Physics (Phys 412)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid State Physics Laboratory (Phys 452)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Humanities electives</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Electives</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

17 17 15

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Electronic Engineering and other subjects.

* Department head approval necessary for 9 of these units to be selected from EL 402, 406, 408, 411, 421, 422, 423, 425, and other advanced courses in the student's professional specialization.

+ To be selected with adviser approval in accordance with the General Education requirement.
The Engineers Council for Professional Development defines engineering technology: "Engineering technology is that part of the technological field which requires the application of scientific and engineering knowledge and methods combined with technical skills in support of engineering activities; it lies in the occupational spectrum between the craftsman and the engineer."

The engineering technologist is somewhat more specialized than the engineer, focusing on a narrower range of subject matter and skills. In general, he has less depth in basic and engineering sciences but more specific capability and education in the skills areas and in the more routine aspects of design and production.

Industry has an urgent need for increasing numbers of qualified engineering technologists. The college output of technologists is far below the demand, thus excellent opportunities exist for interested individuals.

Each student will select an option from the following list for his area of specialization.

CURRICULAR OPTIONS

Air Conditioning-Refrigeration Technology
Emphasizes heating, ventilating, air distribution, air conditioning and refrigeration systems. It leads to specialization in the environmental control field.

Electronic Technology
Emphasizes experimental and laboratory phases of the field with coverage of the principles and theory necessary for full comprehension of electronic instruments and essential design problems for units and systems.

Manufacturing Processes Technology
This option emphasizes machine tools and is excellent preparation for the production field both in specialized uses of machines and in supervision of machine operators.

Mechanical Technology
Emphasizes applied machine design, mechanical equipment and systems, mechanisms, and production.

Welding Technology
Emphasizes all aspects of the welding field including techniques, nondestructive testing, power sources, and production problems.

CURRICULUM IN ENGINEERING TECHNOLOGY

<table>
<thead>
<tr>
<th>Semester</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>F</td>
<td>W</td>
<td>S</td>
</tr>
<tr>
<td>Elements of Electronics (ET 124)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical Analysis (EE 122)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing Processes (WM 141, 142)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Manufacturing Processes (MP 143)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Manufacturing Processes (MP 141)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing Processes (MP 151)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics for Engineers (Math 117)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Calculus (Math 131, 132)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>College Physics (Phys 121, 122)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Total credits</td>
<td>15½</td>
<td>15½</td>
<td>16½</td>
</tr>
</tbody>
</table>
Engineering Technology

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Descriptive Geometry (ET 141)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Drawing Systems (ET 142 or 122)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing Processes (IE 141)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Metallic Arc Welding (WM 151 or 155)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Computer Applications (Engr 251)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Statics (ME 205)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Instrument Practices (ET 125 or EL 113, 153)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Calculus (Math 133)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>College Physics (Phys 123)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 121)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programming of Digital Computers (CSc 221)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Basic Accounting (Actg 131)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>16½</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanics of Materials (Aero 202)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallurgy for Engineering Technology (WM 335)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Dynamics (ME 206)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Machines (EE 231)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementary Probability and Statistics (Stat 211)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Literature (Eng 207)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Writing (Eng 219)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Survey of Economics (Ec 201)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>16</td>
<td>15</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Project (ET 461, 462)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (ET 463)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Fluid Mechanics (ME 311)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Thermodynamics (ME 301)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>*Life Science</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Industrial Management or Relations (Mgt 311 or IR 214)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>*Literature or philosophy</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

AIR CONDITIONING-REFRIGERATION TECHNOLOGY OPTION

(Add Courses Below to Basic Curriculum)

<table>
<thead>
<tr>
<th>Freshman</th>
<th>Junior</th>
<th>Senior</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET 121 Air Conditioning-</td>
<td>EnvE 201-2-3 Heating and</td>
<td>ET 331-2 Refrigeration Systems</td>
</tr>
<tr>
<td>Refrigeration Principles</td>
<td>Ventilating</td>
<td>(6)</td>
</tr>
<tr>
<td>(4)</td>
<td></td>
<td>ET 423 Air Conditioning Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ET 439 Instruments—Controls</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3)</td>
</tr>
<tr>
<td>Sophomore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET 123 Environmental</td>
<td>ET 321 Air Distribution Systems</td>
<td></td>
</tr>
<tr>
<td>Graphics</td>
<td></td>
<td>(3)</td>
</tr>
<tr>
<td>ET 201 Air Conditioning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refrigeration Codes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EnvE 251-2-3 Fluid Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*To be selected in accordance with the General Education requirement.
Engineering Technology

ELECTRONIC TECHNOLOGY OPTION
(Add Courses Below to Basic Curriculum)

Freshman
EL 131 Basic Circuits and Devices (3)

Sophomore
EL 132 Basic Circuits and Devices (3)
ET 231 Basic Circuit Analysis (4)
ET 232 Electronic Circuits I (4)

Junior
ET 233 Electronic Devices I (4)
ET 341 Electronic Devices II (4)
ET 342 Communication Systems (4)

Senior
ET 441 Digital Circuits (4)
ET 442 Automation Technology (4)
ET 443 Microwave Technique (4)

MANUFACTURING PROCESSES TECHNOLOGY OPTION
(Add Courses Below to Basic Curriculum)

Freshman
MP 125 Advanced Turning (3)

Sophomore
MP 142 Manufacturing Processes (1)
MP 154 Manufacturing Processes (1)
MP 221 Abrasive Machining and Finishing (2)
MP 222 Advanced Machining Processes (3)
IE 232 Dimensional Metrology (2)

Junior
MP 321–2–3 Tool Design (9)
ET 344 Advanced Machine Design (2)
IE 314 Production Control (2)
IE 233 Elements of Numerical Control Machining (2)

Senior
MP 434, 5, 6 Tool and Manufacturing Engineering (12)

MECHANICAL TECHNOLOGY OPTION
(Add Courses Below to Basic Curriculum)

Freshman
ME 131 Mechanical Systems (3)
ME 144 Mechanical Engineering Laboratory (1)

Sophomore
ME 132 Mechanical Systems (3)
ME 145–6 Mechanical Engineering Laboratory (2)
MP 142 Manufacturing Processes (1)
MP 154 Manufacturing Processes (1)
WM 121–2 Intro. to Metallurgy (2)
ET 320 Mechanisms (4)

Junior
ET 344 Advanced Engineering Drawing (2)
IE 232 Dimensional Metrology (2)
ME 231 Mechanical Equipment of Buildings (3)
ET 321 Air Distribution Systems (3)

Senior
ET 421–2 Applied Machine Design (8)
IE 351 Production and Process Planning (3)

WELDING TECHNOLOGY OPTION
(Add Courses Below to Basic Curriculum)

Sophomore
WM 359 Advanced Welding (1)
ET 235 Nondestructive Testing (5)
ET 236 Welding Power Sources (3)

Junior
ET 324–5–6 Advanced Welding Technology (13)

Senior
IE 314 Production Control (2)
ET 434–5–6 Welding Design (9)
MP 431 Tool Engineering (3)
IE 351 Production and Process Planning (3)

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Engineering Technology, Manufacturing Processes and other subjects.
ENVIRONMENTAL ENGINEERING DEPARTMENT

Department Head, Walter E. Holtz
Ray R. Allen
Harold M. Cota
Jan Doctor
Rodney G. Keif
Philip W. B. Niles
William J. Phaklides

Environmental Engineering is concerned with the interrelation of man, materials, and processes in a complex and changing environment. The broad field of Environmental Engineering includes Control of Air and Water Pollution, Industrial Hygiene, Reduction of Noise and Vibration, Air Conditioning, Heating, Ventilation, and Refrigeration.

The program offers a sound background in the fundamentals of thermodynamics, heat transfer, fluid mechanics, mass transfer, and physico-chemical characteristics of living and inanimate matter. The student will specialize in one of the curricular concentrations described below. The problem-oriented approach to instruction, in modern well-equipped laboratories, shops and design rooms, provides the student an excellent opportunity to gain understanding and experience as a joint exploration with the faculty.

A student branch of the American Society of Heating, Refrigeration, and Air Conditioning Engineers offers the student a vigorous program of technical and other activities, including field trips each year to the Los Angeles and San Francisco areas to study typical installations of systems.

Graduates obtain employment primarily with consulting engineers, manufacturers, contractors, and governmental agencies.

CURRICULAR CONCENTRATIONS

Air Conditioning and Refrigeration
This concentration prepares students to enter those phases of engineering dealing particularly with thermal systems and their control in a variety of applications ranging from cold storage plants and modern buildings to hypersonic aircraft and missiles.

Air Pollution Control
This concentration provides training in the field of air pollution control. An engineering approach to the subject prepares the student to enter careers in air quality management, and industrial, public and private agencies concerned with solving problems of air pollution.

CURRICULUM IN ENVIRONMENTAL ENGINEERING

<table>
<thead>
<tr>
<th>Freshman</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Descriptive Geometry (ET 141)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Graphics (ET 122, 123)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Manufacturing Processes (MP 143)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 141, 142, 143)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>General Physics (Phys 131)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Chemistry (Chem 124, 125, 126)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td></td>
<td></td>
<td>½</td>
</tr>
<tr>
<td>* Life Science</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* To be selected in accordance with the General Education requirement.
To be selected from MP 141, 142; IE 141; WM 141, 142.

17½ 17½ 17½
Environmental Engineering

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating and Ventilating (EnvE 201, 202)</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Fluid Systems (EnvE 231, 232)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Digital Computer Applications (Engr 251)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 241)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Manufacturing Processes (Math 242)</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Advanced Engineering Mathematics (Math 318)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Engineering Mechanics (ME 211, 212)</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>General Physics (Phys 132, 133)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Introduction to Literature (Eng 207)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Manufacturing Processes (Math 242)</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Social Sciences elective</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$#$ Electives and courses to complete major</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credits: 16½ 18½ 15½

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Process Control (EnvE 316)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Thermodynamics (ME 302)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>System Design (EnvE 341, 342)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Noise and Vibration Control (EnvE 307)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Thermal and Fluids Laboratory (EnvE 331, 332)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Heat Transfer (EnvE 313)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Environmental Air Quality (EnvE 325)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Strength of Materials (Aero 207)</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Electric Circuit Theory (EE 201)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Fluid Mechanics (ME 341)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$#$ Electives and courses to complete major</td>
<td>4</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Total Credits: 16 17 17

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced System Design (EnvE 441)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Mass and Energy Transfer (EnvE 401)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Senior Project (EnvE 461, 462)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (EnvE 463)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Electronics (EL 321)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>* Literature or Philosophy</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>* Humanities</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>American Government (PolSc 301)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>The U.S. in World Affairs (Hist 305)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Survey of Economics (Ec 201)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$#$ Electives and courses to complete major</td>
<td>10</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Credits: 18 18 15

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Environmental Engineering and other subjects.

* To be selected in accordance with the General Education requirements.
* To be selected from MP 141, 142; IE 141; WM 141, 142.

$\#$ To be selected in accordance with the General Education requirements.

$\#$ of the elective units must be chosen with the approval of the adviser according to the field of concentration.
Industrial Engineering is concerned with engineering systems and management systems. The analysis and synthesis of engineering systems utilizes and coordinates men, money, equipment, and materials to produce the desired quantity and quality of output, usually goods, at a specified time at minimum cost. The analysis and synthesis of management systems effectively utilizes the human resources through quantitative management decision models and management principles.

The industrial engineer becomes involved in the widest possible range of engineering activities including production, facilities planning, forecasting, quality and reliability assurance, systems economy, human factors and motivation, systems analysis, operations research, optimum resource allocation, data management, and the metrology of engineering test designs.

The curriculum is practically oriented so that industry eagerly seeks graduates who are immediately valuable without additional education. Sufficient theoretical work is included so that graduates are prepared for graduate work. The curriculum is accredited by the Engineers' Council for Professional Development.

Excellent industrial engineering laboratories are available and are used from matriculation until graduation to investigate and test theoretical principles.

CURRICULUM IN INDUSTRIAL ENGINEERING

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Industrial Engineering (IE 101)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Methods (IE 122)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Industrial Systems Analysis (IE 123)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Chemistry (Chem 124)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>* Manufacturing Processes</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Fundamentals of Technical Drawing (ET 131)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 141, 142, 143)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>General Physics (Phys 131, 132)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Literature (Eng 207)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>§ Life Science elective</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16½</td>
<td>17½</td>
<td>16½</td>
</tr>
<tr>
<td>Sophomore</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manufacturing Engineering Laboratory (IE 251)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial Costs and Controls (IE 239)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Man-Machine Systems (IE 223)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Digital Computer Applications (Engr 251)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 241)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Equations (Math 242)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Mathematics of Statistics (Stat 321)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Physics (Phys 133)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Chemistry (Chem 125)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Mechanics (ME 211, 212)</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Electric Circuit Theory (EE 201)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronics (EL 321)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>† Electives</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>17½</td>
<td>17½</td>
<td>17½</td>
</tr>
</tbody>
</table>

* MP 141, 142, 143; IE 141; WM 141, 142.
† 18 or 19 of the elective units must be chosen with the approval of the adviser.
§ To be selected in accordance with the General Education requirement.
Industrial Engineering

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations Research (IE 304, 305)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Industrial Linear Systems (IE 309)</td>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Manufacturing Design (IE 343)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Statistical Quality Control (IE 336)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Human Factors I (IE 319)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Strength of Materials (Aero 207)</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Instrumentation and Control Systems (EL 322)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Mathematics of Statistics (Stat 322)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fluid Mechanics (ME 341)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Thermodynamics (ME 302)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 211, 212)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Technical Writing (Eng 219)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social Sciences elective (except History)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>* Electives</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Economy (IE 414)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals of Supervision (IE 441, 442)</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Senior Project (IE 461, 462)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (IE 463)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>§ Literature or Philosophy elective</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>§ Humanities elective</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>* Electives</td>
<td></td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Industrial Engineering and other subjects.

* 18 or 19 of the elective units must be chosen with the approval of the adviser.
§ To be selected in accordance with the General Education requirement.
The curriculum of the Industrial Technology Department prepares graduates for employment in a broad range of professional positions in industrial management, industrial production, industrial marketing or industrial education. For those interested in employment in industry the course offerings qualify students for occupations in the mid-ground between engineering and business. For those planning, with a fifth year, to teach the technical subjects of industry there are both broad and specific offerings concerning course content and methods in all the major areas. Emphasis is placed upon the study of tools, machines, materials, processes and products. Special consideration is given to the industrial application of mathematics, physics and chemistry. Also of major importance is the development of the ability to work with people concerning matters of a technical nature.

Each student gains a substantial general education through courses in the areas of language communication, social sciences, mathematics, physical education and the arts. His ability to communicate in technical areas is further developed through courses in technical writing and technical drawing.

The Industrial Technology Department's facilities provide for instruction and laboratory experiences in drafting, wood technology, electricity, electronics, metal technology, power technology, and graphic arts.

CURRICULAR OPTIONS

Industrial Sales and Technology

The Industrial Sales and Technology option emphasizes preparation for professional positions in the manufacturing and marketing of industrial products. Students selecting management and production aspects of this option obtain positions as plant supervisor, production-control analyst, systems coordinator, materials expeditor, plant and product designer, technical writer, department head, executive trainee, personnel manager, product consultant, manufacturing specialist and training director. Management and production are concerned with effective manufacturing operations as they relate to people as well as materials and equipment. Students specializing in the marketing phase of the option are preparing for positions as manufacturers' sales representative, distributors' representative, liaison engineer, sales analyst, and sales manager.

Industrial Education

The Industrial Education Option is primarily concerned with an analysis of the materials, tools, processes, and occupations for today's industry. A broad base of industrial type experiences is provided. This foundation is supplemented with a specialized concentration in one or preferably two industries. In addition to practical laboratory experiences stressing understanding and skill, the student will develop ability to: (a) identify problems of an industrial education nature, (b) organize and present logical solutions to these problems, (c) effectively stimulate others in improving their understanding and performance in technical matters. Graduates of this option will be prepared for the many positions which require an extensive understanding of industrial manufacturing procedures plus the ability to work well with people and help them to become familiar with processes of industry. After experience in industry, they may qualify for positions of responsibility with in-plant technical training programs.

The student preparing to teach industrial arts in junior or senior high schools will follow the courses listed for this option and will, in addition, need to complete the requirements for a teaching minor, certain courses in professional education and a fifth year including graduate work in the major field. The Standard Teaching Credential with Specialization in Secondary Teaching is granted upon successful completion of this program.
Industrial Technology

CURRICULUM IN INDUSTRIAL TECHNOLOGY

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Computation (IT 101)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Introduction to Industrial Technology (IT 111)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Power Technology (IT 222, 223)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Graphic Arts Processes (PT 127)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Fundamentals of Technical Drawing (ET 151)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>* Manufacturing Processes</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Mathematics for Engineering (Math 117)</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Technical Calculus (Math 131)</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Human Relations (IR 118)</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Introduction to Literature (Eng 207)</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>General Relations (IR 118)</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Sketching (IT 248)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Electronics, D.C. and A.C. (IT 237, 238)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Industrial Electronic Circuits (IT 239)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>College Physics (Phys 121, 122, 123)</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Advanced writing course</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Economics (Ec 201 or 211)</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Introduction to Philosophy (Phil 201)</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Systems (IT 433)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Industrial Design (IT 446)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Audio Visual Methods (AV 432)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 121, 122)</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Industrial Relations (IR 214)</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Logic (Phil 202)</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Industrial Materials (IT 429)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Senior Project (IT 461, 462)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Undergraduate Seminar (IT 463)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Notes

* MP 141, 142, 143; IE 141; WM 141, 142.
** Eng 204 or 218 or 219.
Industrial Technology

INDUSTRIAL EDUCATION OPTION (ADD COURSES BELOW TO BASIC CURRICULUM)

Sophomore
- IT 125 Industrial Wood Processes (2)
- IT 236 Wood Technology ... (3)
- PT 238 Advanced Graphic Arts (3)

Junior
- Ed 312 Educational Psychology (3)
- Ed 401 Public Education in American Society (3)
- *300-400 series laboratory-type courses in Industrial Education specialties* .. (10)

Senior
- IT 330 Principles and Practices of Industrial Arts (5)
- *300-400 series laboratory-type courses in Industrial Education specialties* .. (9)

INDUSTRIAL SALES AND TECHNOLOGY OPTION (ADD COURSES BELOW TO BASIC CURRICULUM)

Sophomore
- Actg 131-2 Basic Accounting (6)
- Mkrg 204 Marketing Principles (4)
- Ec 212 Principles of Economics (3)
- IT 431-2 Mechanical Systems (6)
- IT 326 Product Evaluation .. (2)
- IT 331-2-3 Electronic Systems (9)
- Bus 301 Business Law Survey (3)

Junior
- IT 404 Customer Relations .. (2)
- IT 405 Industrial Marketing (2)
- Mgt 418 Quantitative Methods and Controls in Business (3)

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Industrial Technology and other subjects.

* Courses must be chosen with the approval of adviser in one or more of the following area-specialties: electronics, metals, drafting, wood, power technology, or graphic arts.
Mechanical engineering concerns itself primarily with the design, construction, and use of a wide variety of equipment ranging from manufacturing machinery and power generation equipment to consumer goods. Of primary concern to the mechanical engineer is the proper application of rigid, fluid, and thermal mechanics in the design and use of this equipment.

Graduates obtain employment primarily with manufacturers, contractors, public utilities, and governmental agencies. Types of work performed by graduates include design, engineering sales, engineering test, supervision of manufacture and erection.

The curriculum gives the student a thorough grounding in mechanical design and a choice of courses such as machine design, turbomachinery, and piping design, available in his senior year, that will augment and strengthen his background for such design. The curriculum is accredited by the Engineers' Council for Professional Development.

Laboratories are an important part of the student's education. He is enrolled in mechanical engineering laboratories from the beginning of his freshman year until his graduation. These laboratories include work in power generation, fuel study, fluid flow, heat transfer, vibration, and strength of materials.

As the Mechanical Engineering student advances in professional course work, he may choose Welding Engineering, Design of Piping Systems, Stress Analysis, Thermal Power Design, Mechanical Control Systems, Petroleum, or a concentration in Nuclear Engineering.

There are two organized student clubs in the Mechanical Engineering Department: a student branch of the Society of Automotive Engineers and the Mechanical Engineering Society. These clubs offer students an active program of professional and social activity.

CURRICULUM IN MECHANICAL ENGINEERING

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Systems (ME 131, 132)</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mechanical Engineering Laboratory (ME 144, 145, 146)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Applied Descriptive Geometry (ET 141)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Drawing Systems (ET 142)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Engineering Graphics (ET 143)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 141, 142, 143)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>* Manufacturing Processes</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>General Chemistry (Chem 124)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Physics (Phys 131, 132)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
</tbody>
</table>

* MP 141, 142, 143; IE 141; WM 141, 142.*
Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Mechanics (ME 211, 212)</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Strength of Materials (Aero 207)</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Strength of Materials Laboratory (Aero 229)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Digital Computer Applications (Engr 251)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metallurgy for Engineers (WM 306)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Electric Circuit Theory (EE 201)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 241)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Equations (Math 242)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Advanced Engineering Mathematics (Math 318)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>General Physics (Phys 133)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Freshman Composition (Eng 105)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Manufacturing Processes</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>** Electives and courses to complete major</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17½</td>
<td>17½</td>
<td>16½</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Design (ME 427)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Thermodynamics (ME 302, 303)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fluid Mechanics (ME 341, 342)</td>
<td>3</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Mechanical Vibration (ME 316)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Vibrations Laboratory (ME 317)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Heat Transfer (EnvE 313)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Instrumentation and Control Systems (EL 322)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Electronics (EL 321)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Energy Conversion Electromagnetics (EE 325)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>** Introduction to Optics and Atomic Physics (Phys 211)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>** Electives and courses to complete major</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design (ME 428)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Thermodynamics Laboratory (ME 343)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Senior Project (ME 461, 462)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (ME 463)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Principles of Economics (Ec 211)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>§ Social Sciences (except History)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>§ Life Science</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>§ Literature or Philosophy</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>§ Humanities elective</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>** Electives and courses to complete major</td>
<td></td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Mechanical Engineering and other subjects.

* MP 141, 142, 143; IE 141; WM 141, 142.
** Phys 212 and 1 unit technical elective may be substituted.
*** Of the total electives, 18–20 units must be chosen with the approval of the adviser in a field of concentration.
§ To be selected with adviser approval in accordance with the General Education requirement.
TRANSPORTATION ENGINEERING DEPARTMENT
Coordinator: Edward H. Baker

Transportation Engineering is concerned with all types and facets of the transportation problems of the State and the nation. It is a program related to Civil Engineering in several ways but is unique in its emphasis on all aspects of transportation and related or auxiliary facilities.

The transportation engineer faces a never ending series of interesting and difficult problems to meet the constantly increasing requirements for mobility of our people. Students completing this program will find a wide variety of positions in local, state and federal government service as well as highway, airfield, and dock construction firms to mention only a few areas of possible employment.

The curriculum includes surveying, structures, and transportation all based on broad general coverage of the engineering sciences, the basic sciences including mathematics, the social sciences, and the humanities. The program is oriented toward the practical problems of the industrial world but adequate scientific depth is maintained so that graduates will be readily accepted into graduate programs in transportation.

CURRICULUM IN TRANSPORTATION ENGINEERING

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Drafting (ET 141, 142)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Engineering Surveying (AE 237)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Problems—Digital Computers (Engr 251)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Manufacturing Processes</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 141, 142, 143)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>General Chemistry (Chem 124, 125)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Physics (Phys 131)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105 or 219)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Literature (Eng 207)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Life Science elective</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Sophomore</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength of Materials (Aero 207)</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Engineering Mechanics (ME 211, 212)</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Strength of Materials Laboratory (Aero 229)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Engineering Surveying (AE 238, 239)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Manufacturing Processes</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 241)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Equations (Math 242)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics of Statistics (Stat 321)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Physics (Phys 132, 133)</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 211, 212)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Urban Environment (CRP 211)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16½</td>
<td>16½</td>
<td>17½</td>
</tr>
</tbody>
</table>

* Select from MP 141, 142, 143; IE 141; WM 141, 142.
<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation Materials (TE 329)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Introduction to Traffic Problems and Transportation (TE 321)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Operations Research (IE 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Stress Analysis (Arch 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Steel & Timber Structures (Arch 305)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Fluid Mechanics (ME 341, 342)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Soil Mechanics and Foundations (Arch 421)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Concrete & Masonry Structures (Arch 404)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Electric Circuit Theory (EE 201)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Metallurgy for Engineers (WM 306)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Physical Geology (Geol 201)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Mathematics of Statistics (Stat 322)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>American Government (PolSc 301)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Literature or Philosophy</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Humanities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highway & Airfield Pavement Design (TE 421)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Geometric Design of Highways (TE 422)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Structural Steel Design (TE 423)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Transportation Systems Planning (TE 433)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Senior Project (TE 461, 462)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (TE 463)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Engineering Economy (IE 403)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Air Pollution (EnvE 324)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Thermodynamics (ME 302)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Advanced Materials Testing Lab (ME 349)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Electronics (EL 321)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>The U.S. in World Affairs (Hist 305)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Urban Sociology (Soc 313)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

To be selected in accordance with the General Education requirement.
The Welding and Metallurgical Engineering Department prepares students for employment as metallurgical engineers, and also provides service courses in welding and metallurgy to students in other departments of the college.

Students who graduate as metallurgical engineers are employed by private industry and government agencies to deal with problems of design and manufacture of metals and alloys, corrosion protection, nondestructive testing, application of materials to specific needs and requirements including process development. Typical position titles are metallurgist, metallographer, materials engineer, welding engineer, nondestructive test engineer, and inspection and quality control specialist.

The curriculum offers opportunity to pursue specialized metallurgical areas on an elective basis in the senior year.

The Welding and Metallurgical Engineering Department is well equipped with various laboratories and shops. The welding shop facilities include general arc and oxyacetylene equipment, as well as production prototypes for the automatic and inert-gas shielded welding processes.

There are two metallurgical engineering laboratories for student use. The metallography laboratory is equipped with the latest instruments for study of internal structures of metals and alloys. The metallurgy laboratory includes equipment for vacuum melting and processing, heat treatment, nondestructive testing, air melting furnaces, a "wet" laboratory, and a physical testing laboratory.

The department sponsors a combined student chapter of two national societies, the American Welding Society and the American Society for Metals. The chapter offers an active program of professional and social activity.

CURRICULUM IN METALLURGICAL ENGINEERING

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Metallurgy (WM 121, 122, 123)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>* Manufacturing Processes (WM 141, 142)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Communication (ET 153)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Physics (Phys 131, 132)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 141, 142, 143)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>§ Life Science</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>§ Literature</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16½</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>

* MP 141, 142, 143; IE 141.

§ To be selected in accordance with the General Education requirement.
Welding and Metallurgical Engineering

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Metallurgy (WM 221, 222)</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Digital Computer Applications (Engr 251)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering Mechanics (ME 211, 212)</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>General Chemistry (Chem 124, 125, 126)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>General Physics (Phys 133)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 241)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Equations (Math 242)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>§ Literature or Philosophy</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Survey of Economics (Ec 201)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Total</td>
<td>17 ½</td>
<td>16 ½</td>
<td>17 ½</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory of Materials (WM 301, 302, 303)</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Metallurgical Engineering (WM 324, 325, 326)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics of Statistics (Stat 321, 322)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Strength of Materials (Aero 207)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Chemistry (Chem 305, 306)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§ Humanities</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Theory of Materials (WM 421, 422, 423)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Applied Metallurgical Engineering (WM 424, 425, 426)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Senior Project (WM 461, 462)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (WM 463)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electric Circuit Theory (EE 201)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Electronics (EL 321)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Instrumentation and Control Systems (EL 322)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Approved Engineering Science electives (300 or 400 series)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermodynamics (ME 302)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>§ Social Sciences elective (except History)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>18</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Welding and Metallurgical Engineering and other subjects.

§ To be selected in accordance with the General Education requirement.
SCHOOL OF HUMAN DEVELOPMENT
AND EDUCATION
The School of Human Development and Education provides a number of services and functions within the total college framework.

Included in the range of offerings in the school are programs leading to degrees in Child Development (B.S.), Education (M.A.), Home Economics (B.S., M.S.), and Physical Education (B.S., M.S.).

The School, through the Education Department, assists in the coordination of a campus-wide teacher education program and prepares individuals who are seeking credentials. The College is accredited to recommend for the Standard Teaching Credential with a specialization in Elementary Teaching, and the Standard Teaching Credential with a Specialization in Secondary Teaching.

In addition to the courses offered as a part of the major curricula, the School of Human Development and Education also provides physical education and psychology courses for general education in all curricula. This service function includes providing courses related to and directly supporting the area of the major in all other Schools.

The College has long supported a co-curricular program, and to this end the School of Human Development and Education provides valuable experience in intramural sports activities. Specialized co-curricular activities include: California Association for Health, Physical Education and Recreation, Student California Teachers Association, Phi Upsilon Omicron (Home Economics), and others.
The interdisciplinary program in Child Development is designed to prepare persons interested in becoming specialists, teachers, and administrators for nursery schools and children's centers. In addition to providing actual experience in the guidance of children, this program provides the graduate with the knowledge and experience leading to a professional career in a variety of family service and child development programs.

The curriculum provides course work in anthropology, psychology, sociology, art, music, child development, and in the principles of program planning and administration. A nursery school laboratory on the campus and day care centers and nursery schools in the community provide students the opportunity to work with children.

The following table illustrates the distribution of units in the curriculum. The entire program totals 198 quarter units including elective units which vary depending upon the student's objective.

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child Development</td>
<td>44</td>
</tr>
<tr>
<td>Literature, Art and Music</td>
<td>17</td>
</tr>
<tr>
<td>Psychology, Sociology and Anthropology</td>
<td>30</td>
</tr>
<tr>
<td>Basic Subjects</td>
<td>67</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>39</td>
</tr>
</tbody>
</table>

CURRICULUM IN CHILD DEVELOPMENT

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientation to Home Economics (HE 101)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Beginning Family (CD 103)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>The Child, Family, and Community (CD 108)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Orientation to Art Materials (Art 232)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Orientation to Crafts (Art 233)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Music Theory (Mu 101)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105, 106)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Introduction to Sociology (Soc 105)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 121, 122)</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Mathematics for General Education (Math 100)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Child Development

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrition (HE 210)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Family and Community Health (CD 222)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child Development—Infancy (CD 232)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Child Development—Preschool Years (CD 233)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Children's Literature (Eng 205)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Basic Music (Mu 201)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Cultural Anthropology (Ant 201)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 226)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Survey of Economics (Ec 201)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>General Zoology (Zoo 131)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Natural History (Bio 127, 128, 129)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social Problems (Soc 303)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Social Stratification (Soc 323)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Personality and Mental Health (Psy 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Genetics (Bio 303)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Human Growth and Development (Ed 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Nursery School Programming (CD 319)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Nursery School Participation (CD 320)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Parent Education (CD 313)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Maternal and Child Nutrition (HE 310)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Basic Structure and Concepts of Mathematics (Math 327, 328)</td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Senior

* To Literature: 3
* To Philosophy: 3
* To Urban Sociology (Soc 313): 3
* To Psychological Testing (Psy 432): 3
* To Administration of Child Development Programs (CD 404): 2
* To Supervised Nursery School and Community Experiences (CD 403): 6
* To Family Development (CD 405): 3
* To Social Psychology (Psy 401): 3
* To Senior Project (CD 461, 462): 2
* To Undergraduate Seminar (CD 463): 2

| Electives | 7 | 3 | 8 |

17 17 16

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Child Development, Home Economics and other subjects.

* To be selected in accordance with the General Education requirement.
The Education Department staff, in addition to teaching professional courses, advises fifth-year and graduate students who are working toward initial and advanced credentials. All undergraduate students preparing to teach in the elementary or secondary schools may earn a baccalaureate major in: Agriculture, Biological Science, Chemistry, English, Home Economics, Mathematics, Physical Education, Physics, Social Sciences, or Technical Arts (Industrial Arts). Credential candidates must also earn a minor which should be selected as early as possible. The details of the requirements are available from the major department, the minor department, or the Education Department.

The Education Department offers the Masters' Degree in Education; professional courses in Elementary School Teaching, Secondary School Teaching, School Supervision (including elementary and secondary principalships), and Pupil Personnel Services.

Special emphasis is placed on the preparation of persons to teach vocational subjects in the schools including advisement for the Bachelor of Vocational Education Degree. Instruction is also given in some administrative and supervisory phases of vocational education.

Instructors in many departments at California State Polytechnic College help students develop competence in the subject to be taught and the methods of teaching. Each candidate for teaching is prepared to be a professional staff member in a public school. An institutional approach to teacher education is strengthened through the Coordinating Committee for Teacher Education composed of staff members in the major, minor and the education departments which provides over-all planning and direction for the teacher education program. Good relationships with community and school personnel enable teaching candidates to engage in a variety of experiences needed to become successful instructors.

The Education Department provides coordination for the following teacher credential programs which are accredited by the State Board of Education.

- Standard Teaching Credential—Elementary Specialization
- Standard Teaching Credential—Secondary Specialization

CURRICULUM FOR THE MASTER OF ARTS DEGREE IN EDUCATION

All programs with concentrations in the student's teaching major (Agriculture, Physical Sciences, or Social Sciences) require 45 units of acceptable work, including a minimum of 18 units of acceptable course work in the subject field of concentration (12 units of which must be in 500 series courses), and a minimum of 12 units of 500 series course work in Education.

All programs with a concentration in Education require 45 quarter units of acceptable graduate work, including a minimum of 18 units of 500 series course work in Education and a minimum of 12 units of course work acceptable for graduate work outside the field of Education. See Graduate Study Bulletin for further details.

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Education, Audiovisual Education and other subjects.
ETHNIC STUDIES DEPARTMENT
(Interdisciplinary Course Offerings)
Department Head, David J. Sanchez

Bernice B. Loughran, Art
Gloria Jameson, English
Donald W. Hensel, History
Stanley Brown, Education
Robert O. Boothe, Foreign Language

Marie S. Pfeiffer, Child Development
Fuad H. Tellew, Economics
Alexander Capurso, Music
Moon Ja Minn, Dance
John McKinstry, Social Sciences

The College presently offers in several departments a number of courses which are classified as ethnic studies designed to facilitate the study of various cultures and subcultures, their origins, development, contributions, and changing characteristics. The underlying premise is that in studying the society and culture of a people, a combination of several disciplines can be utilized to produce comparative insights and a more comprehensive knowledge. Although a major is not offered in ethnic studies, a proper selection of courses from this area may provide a student with an interdisciplinary minor, acceptable in some programs. The courses can be used to supplement the requirements for many degree programs, and some will satisfy the general education-breadth requirement.

The following courses are typical of those available in ethnic studies and students are referred to the current class schedule for cultures or areas to be emphasized within the courses in a given quarter.

Anthropology
Ant 201 Cultural Anthropology (3)

Art
Art 314 American Art (2)
Art 316 Non-Western Art (2)

Child Development
CD 301 Afro-American Pre-School Child (3)
CD 302 Mexican-American Pre-School Child (3)

Economics
Ec 300 Economic Problems (3)
Ec 325 Underdevelopment and Economic Growth (3)

Education
Ed 521 Teaching the Culturally Different Child (3)

English
Eng 124, 125, 126 English Composition for Foreign Students (3) (3) (3)
Eng 214 Afro-American Literature (3)
Eng 215 Mexican-American Literature (3)
Eng 414 Significant World Writers (3)
Eng 418 Significant American Writers (3)
Eng 504 Problems in Language (3)
Eng 522 Teaching English as a Second Language (3)

Foreign Language
Lang 101, 102, 103 Foreign Language—Independent Study (3) (3) (3)
(See course listing for specific languages)

Geography
Geog 201, 202, 203 Regional World Geography (3) (3) (3)
Geog 401 Area Geography (3)
Ethnic Studies

History
Hist 112 History of California (3)
Hist 307, 308, 309 Latin American History (3)
Hist 331 Afro-American History (3)
Hist 341 Mexican History (3)
Hist 381, 382 African History (3)
Hist 411, 412, 413 History of East Asia (3) (3) (3)

Philosophy
Phil 302 World Religions (3)

Physical Education
PE 141 Physical Education (Social folk dance) (½)

Political Science
Pol Sc 311 Inter-American Relations (3)
Pol Sc 402 Politics and Governments of Developing Areas (3)
Pol Sc 465 Contemporary Problems and Institutions of the Middle East and Africa (3)
Pol Sc 468 Contemporary Problems and Institutions of Africa South of the Sahara (3)

Sociology
Soc 303 Social Problems (3)
Soc 313 Urban Sociology (3)
Soc 315 Race Relations (3)
Soc 316 American Minorities (3)
Soc 323 Social Stratification (3)
Soc 344 Sociology of Poverty (3)

Music
Mu 208 Ethnic Music of the World (3)
The principal objectives of the Home Economics Department are to provide educational preparation for: (1) teachers of home economics in the secondary schools, (2) managers and dietitians in food service programs. In addition, persons with a more general interest in home economics will find the curriculum prepares for other occupational pursuits as well as provides a sound basis for successful family and personal life. Students are invited to consult with the department concerning their special interests in the field of home economics.

In addition to providing general education courses, the curriculum places considerable emphasis upon applied courses during the first two years and provides other courses basic to the advanced work in the later years.

CURRICULAR OPTIONS

Home Economics Education

The student preparing to teach home economics will follow the course listing for this option and will, in addition, need to complete the requirements for a teaching minor, certain courses in professional education, and a fifth year including graduate work in the major field. The Standard Teaching Credential with Specialization in Secondary Teaching is granted upon successful completion of this program.

Students interested in a general home economics program should follow this option, omitting the additional requirements for the teaching credential. Proper choice of elective courses will provide preparation for numerous positions such as home service adviser for utility firms, home economic journalist, and specialist in extension service, clothing and textiles, consumer education, home furnishings, or child care programs.

Food Administration—Dietetics

The Food Administration—Dietetics option provides the educational background for management of institutional and commercial food service programs. Membership in the American Dietetic Association is available to graduates following a one-year internship. In their junior year students concentrate in therapeutic or administrative dietetics or in business administration.

CURRICULUM IN HOME ECONOMICS

Freshman

Orientation to Home Economics (HE 101) ... 1
The Beginning Family (CD 103) ... 3
Introduction to Foods (HE 121) ... 5
Design Analysis for Home Economics (HE 122) 2
Freshman Composition (Eng 104, 105, 106) 3
Physical Education (PE 141) ... ½ ½ ½
Mathematics (Math 100, 113, 200, or Stat 211) 3
* Art .. 3
Health Education (PE 107) .. 2
Introduction to Sociology (Soc 105) .. 3
General Inorganic Chemistry (Chem 121, 122) 4 4
Electives and courses to complete major ... 2 8 2

17½ 17½ 17½

* To be selected in accordance with the General Education requirement.
Home Economics

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal and Home Management (HE 203)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Nutrition (HE 210)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child Development—Infancy (CD 232)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Child Development—Preschool Years (CD 233)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Cultural Anthropology (Ant 201)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Organic Chemistry (Chem 226)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Survey of Economics (Ec 201)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Zoology (Zoo 131)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td></td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

| Total | 16½ | 16½ | 16½ |

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meal Management (HE 321)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamics of Clothing (HE 341)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Advanced Nutrition (HE 328)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>* Literature</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Personality and Mental Health (Psy 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>11</td>
<td>11</td>
<td>14</td>
</tr>
</tbody>
</table>

| Total | 17 | 17 | 17 |

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home Management (HE 424)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Senior Project (HE 461, 462)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (HE 463)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>* Philosophy</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>7</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>

| Total | 15 | 15 | 15 |

HOME ECONOMICS EDUCATION OPTION

(Add Courses Below to Basic Curriculum)

Freshman

- HE 131 Clothing Construction (5)

Sophomore

- CD 319 Nursery School Activities (2)
- CD 320 Nursery School Participation (3)
- CD 322 Textiles (3)
- CD 323 Housing for Contemporaries (3)
- CD 405 Family Development (3)
- HE 423 Home Management Residence (3)

FOOD ADMINISTRATION—DIETETICS OPTION

(Add Courses Below to Basic Curriculum)

Freshman

- Actg 221-2 Principles of Accounting (8)
- Bus 206 Purchasing (3)
- Chem 328 Biochemistry (4)

Sophomore

- HE 425 Quantity Cookery (3)
- HE 426 Food Production and Management (3)
- HE 427 Equipment and Layout (3)
- HE 429 Diet Therapy (3)
- Bact 421 Food Microbiology (4)

* To be selected in accordance with the General Education requirement.
CURRICULUM FOR THE MASTER OF SCIENCE DEGREE
(For College requirements see the Graduate Study Bulletin)

A. Required:
<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE 523 Time Studies in Home Management</td>
<td>3</td>
</tr>
<tr>
<td>HE 525 Experimental Studies in Textiles</td>
<td>4</td>
</tr>
<tr>
<td>HE 528 Experimental Studies in Foods</td>
<td>4</td>
</tr>
<tr>
<td>CD 533 The Child in Contemporary Culture</td>
<td>4</td>
</tr>
<tr>
<td>HE 580 Graduate Seminar</td>
<td>3</td>
</tr>
</tbody>
</table>

B. Select at least three of the following courses:
<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE 328 Advanced Nutrition</td>
<td>3</td>
</tr>
<tr>
<td>CD 404 Administration of Child Development Programs</td>
<td>2</td>
</tr>
<tr>
<td>CD 405 Family Development</td>
<td>3</td>
</tr>
<tr>
<td>HE 426 Food Production Management</td>
<td>3</td>
</tr>
<tr>
<td>HE 427 Equipment and Layout</td>
<td>3</td>
</tr>
<tr>
<td>HE 429 Diet Therapy</td>
<td>3</td>
</tr>
<tr>
<td>HE 433 Historic Costume</td>
<td>3</td>
</tr>
<tr>
<td>HE 501 Management of Family Resources</td>
<td>3</td>
</tr>
<tr>
<td>HE 532 Problems and Trends in Interior Design</td>
<td>3</td>
</tr>
</tbody>
</table>

C. Courses outside the Home Economics Department:
Select from 400 and 500 series level and have Advisory Committee approval.

D. Thesis (HE 599)

Total Units

45

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Home Economics and other subjects.
PHYSICAL EDUCATION

MEN'S DEPARTMENT

Department Head, Robert A. Mott

Richard Anderson
Andrew Brennan
Victor Buccola
Francis S. Chestnut
Frank C. Egenhoff, Jr.
August E. Garrido
David W. Grosz

Sheldon Harden
Richard R. Harper
Dwayne G. Head
William Hicks
Vaughan Hitchcock
Leroy B. Hughes
James J. Jensen

Edward J. Jorgensen
Thomas J. Lee
Richard J. Purcell
James D. Sanderson
Clarence H. Ward
James L. Webb
Ernest J. Wheeler, Jr.

WOMEN'S DEPARTMENT

Acting Department Head, Mary Lou White

Melva Irvin
Moon Ja Minn
Evelyn I. Pellaton

Barbara Sevier
Mary L. Stallard

The major function of the Physical Education Departments is to provide both required and elective courses in physical education and health to meet the general education needs of all students. To supplement this general education, the departments administer an extensive intramural sports program for all students of the college. A second function of the departments is to prepare both men and women as secondary teachers in the fields of physical education and health. It is possible to have a curricular concentration in the field of recreation. A total of 28 units with advisor's approval may be taken in this area.

Because of an ideal geographical location and outstanding physical education facilities, the college has become a center for workshops held by the health and physical education organizations of the State.

Extensive outdoor facilities include a number of turfed areas for physical education classes and intramural sports activities. A football stadium, regulation baseball diamond with permanent stands and quarter-mile track provide outstanding facilities for intercollegiate athletic teams. Basketball, volleyball, handball, shuffleboard, all-weather tennis courts and two competitive swimming pools are used for instruction and student recreation.

The Men's Physical Education Building provides excellent facilities for all phases of the total physical education and intercollegiate athletic program. The main gymnasium has a championship basketball court and three intramural basketball courts. It also has a wrestling room, weight training area and a gymnastic room.

The women's program is centered in Crandall Gym which has adequate facilities for basketball, volleyball, badminton, gymnastics. A dance studio, pool, and an adaptive physical education laboratory are located in this area. A new Women's Physical Education complex is in design and will be constructed west of the Men's Physical Education facility.

CURRICULUM IN PHYSICAL EDUCATION

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman Composition (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics for General Education (Math 100, 200)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Safety and First Aid (PE 121)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community Recreation (PE 126)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Swimming and Water Sports (PE 123)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>General Physical Science (PSc 101, 102 or equiv.)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Zoology (Zoo 131, 132)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>16½</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>

153
Physical Education

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survey of Economics (Ec 201)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Sciences elective (except History)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intramural Sports (PE 233)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Human Anatomy (Zoo 337)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Physiology (Zoo 338, 339)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principles of Physical Education (PE 201)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apparatus and Gymnastics (PE 255 or 256)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>School and Community Health Education (PE 203)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Public Speaking (Sp 202)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sociology of Family Life (Soc 206)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Junior (Women)

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Literature or Philosophy</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Literature, Philosophy, or Arts</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Educational Psychology (Ed 312)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Team Sports for Girls (PE 324, 325, 326)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Elementary School Physical Education (PE 332)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Physiology of Exercise (PE 303)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Camping and Outdoor Education (PE 337)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Physical Education Activity (PE 341, 342, 343)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Kinesiology (PE 302)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Introduction to Dance (PE 334)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Senior (Women)

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Project (PE 461, 462)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (PE 463)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Dance (PE 446, 447, 448)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Individual and Dual Sports (PE 328)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Organization and Administration of Health and Physical Education (PE 401)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Tests and Measurements in Physical Education (PE 425)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Administration of School Health Education (PE 405)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Adaptive Physical Education (PE 406)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

Junior (Men)

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Literature or Philosophy</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Literature, Philosophy, or Arts</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Educational Psychology (Ed 312)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Football Coaching Theory and Practice (PE 321)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Track and Field Theory and Practice (PE 333)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Baseball Coaching Theory and Practice (PE 323)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Physical Education in Elementary Schools (PE 332)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Physiology of Exercise (PE 303)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Techniques of Officiating (PE 331)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Physical Education Activity (PE 341, 342, 343)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Kinesiology (PE 302)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Wrestling Coaching Theory and Practice (PE 327)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Electives

<table>
<thead>
<tr>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

To be selected in accordance with the General Education requirement.
Physical Education

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Project (PE 461, 462)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (PE 463)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Basketball Theory and Practice (PE 422)</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Minor Sports Theory and Practice (PE 441, 442, 443)</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Organization and Administration of Physical Education (PE 401)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Tests and Measurements in Physical Education (PE 425)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Administration of School Health Education (PE 405)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Athletic Training and Massage (PE 432)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Adaptive Physical Education (PE 406)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Electives</td>
<td>7</td>
<td>5</td>
<td>11</td>
</tr>
</tbody>
</table>

CURRICULUM FOR THE MASTER OF SCIENCE DEGREE

(For College requirements see the Graduate Study Bulletin)

<table>
<thead>
<tr>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required graduate level courses in physical education</td>
</tr>
<tr>
<td>(PE 501, 502, 511, 513 and 521)</td>
</tr>
<tr>
<td>Elective graduate level units in physical education</td>
</tr>
<tr>
<td>(Of these, six may be taken in PE 599, Thesis)</td>
</tr>
<tr>
<td>A maximum of 21 units may be taken outside of the Physical Education</td>
</tr>
<tr>
<td>Department in 300, 400, and 500 level courses. Of these, at least nine must</td>
</tr>
<tr>
<td>be taken in 500 level courses</td>
</tr>
</tbody>
</table>

45

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Physical Education and other subjects.
The Psychology program is designed to acquaint students with the facts, theories, and contemporary trends in psychology with the goal of effective application. The department faculty attempts to emphasize psychological applications to existing personal, social and technological problems wherever feasible and useful. Stress is placed upon individual student development of a more coherent and meaningful understanding of himself and of his interactions with others and with his environment.

The Psychology Department contributes to the overall college community through its participation in the general education program, as a source of electives for the various major areas, and as a resource for increased self-awareness and development.
SCHOOL OF SCIENCE AND MATHEMATICS
Clyde P. Fisher, Dean
Vance D. Lewis, Associate Dean

The School of Science and Mathematics offers curricula leading to the Bachelor of Science degree in Biochemistry, Biological Sciences, Chemistry, Computer Science, Mathematics, and Physics. Graduate programs leading to the Master of Arts degree in Mathematics, Master of Science in Biological Sciences, and Master of Science in Applied Mathematics are also offered. The Reserve Officer Training Corps (ROTC) program is made available to all male students of the college through the Military Science Department.

Courses offered by the School of Science and Mathematics meet the needs of several groups of students:

1. Students working toward Bachelor of Science, Master of Arts, or Master of Science degrees with majors in science and mathematics.

2. Students from all majors who need to meet the requirements in General Education. These courses are required so that every graduate will be better prepared to be a participating citizen and a productive member of the State, nation, and world.

3. Students in Agriculture and Natural Resources, Architecture and Environmental Design, Business and Social Sciences, Communicative Arts and Humanities, Engineering and Technology, Human Development and Education, and Science and Mathematics who require competency in subjects which support, complement, or are closely related to their areas of specialization.

4. Students planning to become elementary, secondary, or junior college teachers, who need background in science and mathematics.

The School of Science and Mathematics and the School of Human Development and Education cooperate to recommend candidates for the California Standard Teaching Credential with majors in Biological Sciences, Chemistry, Mathematics, and Physics. Teaching minors are offered in Botany, Chemistry, Mathematics, Physics, and Zoology. Students may concentrate in Physical Sciences as a part of the requirements for the Master of Arts in Education degree.
The department offers a complete undergraduate program leading to the Bachelor of Science degree. Students majoring in the department may concentrate interests in bacteriology, botany, entomology, zoology and other areas. Courses are offered to fulfill the biology requirements of other departments. For superior students a graduate program is offered leading to the Master of Science degree.

After earning a degree, students generally enter fields such as teaching, medical and biological laboratory technology, public health, wildlife management, agriculture, private, state and national park and forest services. A significant number of students also enter graduate or professional schools for advanced study of botany, entomology, microbiology, plant pathology, zoology, marine sciences, veterinary science, medicine, and dentistry.

Students are trained using modern facilities and instruments in a geographical area offering unusual opportunities for the study of a wide variety of plants and animals representative of both Northern and Southern California.

Courses designed for graduate students are numbered in the 500 series. Requirements for admission as a graduate student are given in the section on ADMISSIONS of this catalog. In addition, a candidate must provide test results of the Graduate Record Examination aptitude test and the advanced test in biology. Details of the curriculum for each student will be developed with his graduate committee and adviser.

In addition to the curricular concentrations listed below, the department offers the courses required for preprofessional training in medicine and the paramedical fields. In the teaching area, all the state requirements may be met for an academic major in biological sciences leading to credentials in secondary and in elementary teaching.

CURRICULAR CONCENTRATIONS

Applied Field Biology

This concentration is designed for students interested in wildlife management, fisheries, conservation, vertebrate pest control, and natural history.

Biology

The general biology program is designed for the student who wants the broadest possible training.

Botany

Plant structure, physiology, ecology, diseases and classification are the basis for courses leading to competency required for persons desiring positions as botanists.

Marine Biology

Students in this concentration may look forward to occupational and professional work in the rapidly expanding field of oceanographic studies and enterprises.

Medical Laboratory Technology

Concentration in this area prepares the student for his in-service training in a hospital.
Biological Sciences

Microbiology
This concentration is designed for students interested in bacterial and other microbiological aspects of food preservation, pollution or public health.

Plant Pathology and Entomology
Students are trained to recognize, evaluate and solve plant disease and insect problems. They may be employed as technicians in research or extension service, or may continue their studies at the graduate level.

Zoology
Invertebrate or vertebrate animals, terrestrial or aquatic species, macro or micro studies, form the basis of programs involved in the training of zoologists.

CURRICULUM IN BIOLOGICAL SCIENCES

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Botany (Bot 121, 122, 123) or General Zoology</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>General Inorganic Chemistry (Chem 121, 122)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Organic Chemistry (Chem 226)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics for Engineers (Math 117)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16½</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Zoology (Zoo 131, 132, 133) or General Botany</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>General Bacteriology (Bact 221)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Entomology (Ent 126)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>College Physics (Phys 121, 122, 123)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Principles of Economics (Ec 201 or 211)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Social Sciences (except History)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>16½</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecology (Bio 325)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genetics (Bio 303)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Composition (Eng 200 or 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Literature or Philosophy</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>* Humanities</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Senior Project (Bio 461)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Biochemistry (Chem 328)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Public Speaking (Sp 201)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>5</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Physiology (Bio 431)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (Bio 462)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (Bio 463)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>12</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

* To be selected in accordance with the General Education requirement.
** Of the total elective units 18-39 shall be chosen in a field of concentration in the Biological Sciences with the approval of the adviser. At least 10 of these must be in 300 or 400 courses.
1 Chem 124, 125 will substitute for Chem 121 and 122.
2 Math 100-200, 102-103, or 113-114 will substitute.
CURRICULUM FOR THE MASTER OF SCIENCE DEGREE

(For college requirements see the Graduate Study Bulletin)

<table>
<thead>
<tr>
<th>Units</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Courses in the general field of biological sciences</td>
</tr>
<tr>
<td></td>
<td>Selected from 300, 400 and 500 level courses. Three units each must be selected from courses having any four of the following prefixes: Bact, Bio, Bot, Cons, Ent, Zoo.</td>
</tr>
<tr>
<td></td>
<td>Courses in the major field of interest</td>
</tr>
<tr>
<td></td>
<td>Selected from 300, 400 and 500 level courses in the Biological Sciences Department.</td>
</tr>
<tr>
<td></td>
<td>Electives from 300, 400 and 500 level courses</td>
</tr>
<tr>
<td></td>
<td>Thesis (Bio 599)</td>
</tr>
<tr>
<td></td>
<td>Seminar in Biology (Bio 590)</td>
</tr>
</tbody>
</table>

Total: 45**

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Bacteriology, Biology, Botany, Conservation, Entomology, Zoology and other subjects.

***At least 18 of these units must be in 500 level courses, and all 45 units must be acceptable for graduate credit.
The Chemistry Department serves all schools of the College by offering courses which help provide scientific explanations for work taken by students in Agriculture, Engineering, Applied Arts and Applied Sciences. The department also contributes to the general education of all students by giving them a thorough foundation in the method and factual content of chemical science and the role it plays in society. The chemistry and biochemistry curricula lead to the bachelor of science degree.

Chemistry is the branch of science which deals with the composition and changes in composition of all substances. It is a description of the world at the atomic and molecular level. A science with a scope this broad offers many fields of specialization. Chemists analyze and synthesize such products as plastics, fibers, drugs, dyes and rocket fuels. The petroleum, textile, fertilizer, pharmaceutical, paint, paper and metal industries employ large numbers of chemists for quality control and development of new products. The occupational objectives of the curricula in chemistry are to qualify students for entry at the bachelor's level into positions in government service and industry and to help prepare teachers of the physical sciences. The curriculum in chemistry prepares the student to work at the bachelor's level as an organic, analytical, physical, or inorganic chemist. In addition, graduates have entered medical, dental, veterinary, pharmacy, medical technology, and graduate schools. Courses are taught in modern laboratories making use of the latest scientific instruments.

The Chemistry Department is fully approved and accredited by the American Chemical Society. Students who wish to be recommended for certification by the American Chemical Society must complete the equivalent of 6 quarter units in German or Russian (Lang 101 and 102, Foreign Language—Independent Study) and pass an examination demonstrating the ability to read scientific German or Russian. Use and application of German or Russian scientific literature is to be made in chemistry courses taken during the third and fourth year of the program and in the literature search for the Senior Project.

Graduate courses are offered which help to complete the requirements for the teaching credentials and for the master of arts degree in education with a concentration in the physical sciences.

Proper selection of electives in the curriculum in biochemistry permits specialization in nutritional, food, feed, pesticide, fertilizer or clinical chemistry. Students find employment in the laboratories of those companies devoted to the processing of food products and the production of agricultural and pharmaceutical chemicals. Positions for which the student may qualify include vitamin assay biochemist, food and drug chemist, meat technologist, fertilizer chemist, insecticide residue analyst and public health chemist.

It is recommended that the high school student planning to major in chemistry or biochemistry include at least two semesters of chemistry in his high school program. Students enrolling in General Chemistry or General Inorganic Chemistry are required to pass Chem 106, or the equivalent, or have the recommendation of their faculty adviser.
CURRICULUM IN CHEMISTRY

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Chemistry (Chem 121, 122, 126)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>General Chemistry Laboratory (Chem 143)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Oral or written communication</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 141, 142, 143)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Biological Sciences (Bio 101, Bot 121, or Zoo 131)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

Total: 16 ½

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantitative Analysis (Chem 331)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 226)</td>
<td></td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>* Approved Chemistry elective</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Physics (Phys 131, 132, 133)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 241)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics (Math 242 or Stat 211 and CSc 101)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>† Social Sciences elective (other than History)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>5</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Total: 17 ½

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic Chemistry (Chem 327, 338)</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Chemistry (Chem 305, 306)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Chemistry Laboratory (Chem 355, 356)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Approved Chemistry elective</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Introduction to Optics and Atomic Physics (Phys 211)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Literature</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>† Social Sciences elective (other than History)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>5</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

Total: 16 17 17

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Chemistry (Chem 437)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrumental Analysis (Chem 439)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Senior Project (Chem 461, 462)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Inorganic Chemistry (Chem 402)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (Chem 463)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>* Approved Chemistry elective</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Literature or Philosophy</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Humanities elective</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Total: 16 16 16

* To be chosen from: Chem 313, 328, 332, 342, 343, 400, 401, 403, 415, 416.
† To be selected in accordance with the General Education requirement.
Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Chemistry (Chem 121, 122, 126)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Organic Chemistry (Chem 226)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Oral or written communication</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Mathematics for Engineers (Math 117)</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 141)</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Mathematics (Math 142 or Stat 211)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Life science (Zoo 131 or Bot 121 or Bact 221)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16½</td>
<td>15½</td>
<td>16½</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantitative Analysis (Chem 331)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 327)</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Approved Chemistry elective</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Biochemistry (Chem 328, 329)</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Physics (Phys 121, 122, 123 or 131, 132, 133)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences elective (other than History)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Humanities elective</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>17½</td>
<td>16½</td>
<td>2</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biophysical Chemistry (Chem 337)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Physical Chemistry (Chem 305, 306)</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>*Physical Chemistry Laboratory (Chem 355, 356)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Approved Chemistry elective</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Literature or Philosophy</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved Chemistry elective (300 or 400 level)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (Chem 461, 462)</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (Chem 463)</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Literature or Philosophy</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Social Sciences elective (other than History)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>8</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

* Chem 335 and Chem 338 may be substituted.
The department offers a four-year program which leads to the bachelor of science degree in computer science, and also provides courses in computer technology and statistics to fulfill the needs of the college as a whole. Graduate level courses are offered in computer science and statistical fields.

Computer science courses offered by the department comprise those which deal with software, which includes programming languages and programming techniques to communicate with and effect the control of digital computers, and those which develop applications of computers to solve problems of scientific and business origins. Statistics courses include probability theory, applications of statistical procedures, and the mathematical models on which these statistical methods are based.

Graduates from the program in computer science are eagerly sought by the exciting and dynamic computer industry for positions as program analysts, systems engineers, applications programmers, and sales representatives. The curriculum has been designed to give them the ability to solve problems of wide variety through efficient utilization of modern computer concepts. Access to modern computing equipment is afforded through the college's computer center, which handles both educational and administrative applications. The statistics program prepares students for positions in industry and for graduate work in statistics. The department maintains for student use a calculating machine laboratory equipped with modern electrical and electronic calculators.

A student chapter of the Association for Computing Machinery is sponsored by the department. This active student organization supplements the department's activities in supplying vital contact with expert professional personnel from business and industry.

CURRICULUM IN COMPUTER SCIENCE

Freshman

<table>
<thead>
<tr>
<th>Course</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortran Programming (CSc 101)</td>
<td>F</td>
</tr>
<tr>
<td>Boolean Algebra (CSc 218)</td>
<td>W</td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 141, 142, 143)</td>
<td>S</td>
</tr>
<tr>
<td>General Physics (Phys 131, 132)</td>
<td></td>
</tr>
<tr>
<td>Freshman composition (Eng 104, 105)</td>
<td></td>
</tr>
<tr>
<td>Freshman composition (Eng 106) or Technical Writing (Eng 219)</td>
<td></td>
</tr>
<tr>
<td>* Biological Sciences</td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear Programming (CSc 219)</td>
<td></td>
</tr>
<tr>
<td>Digital Computer Symbolic Programming (CSc 221, 222)</td>
<td></td>
</tr>
<tr>
<td>Digital Computer Programming (CSc 304)</td>
<td></td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 241)</td>
<td></td>
</tr>
<tr>
<td>Differential Equations (Math 242)</td>
<td></td>
</tr>
<tr>
<td>Mathematics of Matrices (Math 204)</td>
<td></td>
</tr>
<tr>
<td>General Physics (Phys 133)</td>
<td></td>
</tr>
<tr>
<td>Principles of Economics (Ec 211, 212)</td>
<td></td>
</tr>
<tr>
<td>* Literature</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td></td>
</tr>
<tr>
<td>Basic Accounting (Actg 131, 132)</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
</tr>
</tbody>
</table>

* To be selected in accordance with the General Education requirement.
Computer Science

Junior

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Fortran Programming (CSc 301)</td>
<td>2</td>
</tr>
<tr>
<td>Systems Analysis (CSc 350)</td>
<td>3</td>
</tr>
<tr>
<td>Programming Languages (CSc 451)</td>
<td></td>
</tr>
<tr>
<td>Introduction to Numerical Methods (CSc 332)</td>
<td>3</td>
</tr>
<tr>
<td>Numerical Analysis (CSc 333)</td>
<td>3</td>
</tr>
<tr>
<td>Mathematics of Statistics (Stat 321, 322)</td>
<td>3</td>
</tr>
<tr>
<td>Literature or Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>General Chemistry (Chem 124)</td>
<td>4</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td>3</td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td>3</td>
</tr>
<tr>
<td>Control Analysis (IE 304)</td>
<td>2</td>
</tr>
<tr>
<td>Operations Research (IE 305)</td>
<td>2</td>
</tr>
<tr>
<td>Analog. Computer Techniques (EL 313)</td>
<td>3</td>
</tr>
<tr>
<td>Principles of Digital Computers (EL 404)</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>4</td>
</tr>
</tbody>
</table>

| Total | 17 |

Senior

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithmic Compilers (CSc 351)</td>
<td>3</td>
</tr>
<tr>
<td>Computer Programming Systems (CSc 452)</td>
<td>3</td>
</tr>
<tr>
<td>Multi-Programming Systems (CSc 453)</td>
<td>3</td>
</tr>
<tr>
<td>Senior Project (CSc 461, 462)</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (CSc 463)</td>
<td>2</td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td>3</td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td>3</td>
</tr>
<tr>
<td>Math of Stat (Stat 323) or Stat Qual Cont (IE 336)</td>
<td>3</td>
</tr>
<tr>
<td>Managerial Accounting (Actg 301)</td>
<td>4</td>
</tr>
<tr>
<td>Genetics (Bio 303)</td>
<td>3</td>
</tr>
<tr>
<td>Philosophy</td>
<td>3</td>
</tr>
<tr>
<td>Electives</td>
<td>5</td>
</tr>
</tbody>
</table>

| Total | 16 |

To be selected in accordance with the General Education requirement.
The Mathematics Department offers a complete program of college work leading to a bachelor of science degree in mathematics with options in applied mathematics, computer science, statistics, and mathematics teaching. The department also offers mathematics courses needed in all other curricula for developing vocational and professional proficiency and for general education. The occupational flavor generated by these close interdepartmental relations increases both the usefulness of and the demand for the graduates who complete one of the degrees in mathematical sciences.

High school students planning a mathematics major should have at least three, preferably four, years of high school mathematics, and two years of science. Scores from the College Entrance Examination Board Scholastic Aptitude Test are used to determine the students' relative facility and competence in mathematics.

A program of study which leads to a Master of Science degree in Applied Mathematics is offered. A graduate of this program will be qualified for advanced positions in industry, business, civil service, college teaching, or other scientific endeavors. A Master of Arts degree in Mathematics is offered to further the preparation of students who may be working for a junior college or a secondary teaching credential.

CURRICULUM IN MATHEMATICS

Curricular Options

Applied Mathematics
The Applied Mathematics Option emphasizes preparation for industrial and civil service employment.

Computer Sciences
The Computer Sciences Option provides a significant core of theoretical and practical courses for occupational and professional competence in this new field.

Mathematics Teaching
The Mathematics Teaching Option provides the undergraduate basis in the preparation of the student for teaching at the secondary level.

Statistics
The Statistics Option provides a specialization in the applications of statistics for wide industrial or business use as well as for many governmental agencies.
Mathematics

Freshman

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytic Geometry and Calculus (Math 141, 142, 143)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Fortran Programming (CSc 101)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics (Phys 131, 132 or Phys 121, 122)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>16½</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytic Geometry and Calculus (Math 241)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Computer Programming (CSc 221)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Differential Equations (Math 242)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Mathematics of Statistics (Stat 321)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mathematics of Matrices (Math 204)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physics (Phys 133 or Phys 123)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Economics (Ec 201 or 211)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>* Social Sciences (except History)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>* Oral and written expression</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>General Psychology (Psy 202)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td>½</td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>16½</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Literature or Philosophy</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>* Biological Sciences</td>
<td></td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>* Natural Sciences (except Physics)</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td>10</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Project (Math 461, 462)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Undergraduate Seminar (Math 463)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Literature</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>U.S. in World Affairs (Hist 305)</td>
<td>8</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Electives and courses to complete major</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

APPLIED MATHEMATICS OPTION (ADD COURSES BELOW TO MATHEMATICS CURRICULUM)

Junior and Senior Years

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 312 Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>Math 318, 319 Advanced Engineering Mathematics</td>
<td>7</td>
</tr>
<tr>
<td>CSc 332, Numerical Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Math 381 Modern Algebra</td>
<td>3</td>
</tr>
<tr>
<td>Math 404 Vector Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Math 408 Complex Variables</td>
<td>3</td>
</tr>
<tr>
<td>Math 412 Advanced Calculus</td>
<td>3</td>
</tr>
<tr>
<td>CSc 301 Advanced Fortran</td>
<td>2</td>
</tr>
<tr>
<td>Math 413 Advanced Calculus</td>
<td>3</td>
</tr>
</tbody>
</table>

COMPUTER SCIENCE OPTION (ADD COURSES BELOW TO MATHEMATICS CURRICULUM)

Sophomore Year

<table>
<thead>
<tr>
<th>Course Description</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSc 218 Boolean Algebra</td>
<td>3</td>
</tr>
<tr>
<td>CSc 304 Computer Programming</td>
<td>3</td>
</tr>
<tr>
<td>CSc 340 Cobol Programming</td>
<td>3</td>
</tr>
</tbody>
</table>

* To be selected in accordance with the General Education requirement.
Mathematics

Junior and Senior Years

CSc 301 Advanced Fortran (2) CSc 452 Computer Programming (3)
CSc 351 Algorithmic Compilers ... (3) CSc 332, 333 Numerical Analysis ... (6)
CSc 451 Programming (3) Stat 322 Math of Statistics (3)

MATHEMATICS TEACHING OPTION (ADD COURSES BELOW TO MATHEMATICS CURRICULUM)

Junior and Senior Years

Math 307 Theory of Equations (3) Math 411 Foundation of Geometry (3)
Math 312 Linear Algebra (3) Math 441 Theory of Numbers ... (3)
Math 381, 382 Modern Algebra ... (6) Math 442 College Geometry ... (3)
Math 402-3 Secondary School Math (6) Stat 322 Math of Statistics ... (3)

STATISTICS OPTION (ADD COURSES BELOW TO MATHEMATICS CURRICULUM)

Junior and Senior Years

Stat 322-3 Math of Statistics (6) CSc 332 Numerical Methods ... (3)
Stat 425-6 Probability Theory ... (6) Math 412 Advanced Calculus ... (3)
Math 312 Linear Algebra (3) *Bio 303 Genetics (3)
Math 318 Advanced Engineering ... (4) IE 336 Quality Control (3)

CURRICULUM FOR THE MASTER OF ARTS DEGREE
(For College requirements see the Graduate Study Bulletin)

I. Required:
Math 509, 510, 521, 580 .. 12

II. Select 12 units from the following:
Math 505, 506, 507, 508, 580, 596; Stat 527...................... 12

III. Select four courses from the following:
CSc 304, 332, 333, 351; Math 312, 313, 381, 382, 404, 405, 408, 409, 411, 412,
413, 441, 442 ... 12

IV. Elect 9 additional units with approval of adviser 9

V. Satisfactorily complete a terminal written and oral examination; or
complete Math 596, Graduate Thesis, for 6 units credit under IV.

Total units 45

CURRICULUM FOR THE MASTER OF SCIENCE DEGREE
IN APPLIED MATHEMATICS
(For College requirements see the Graduate Study Bulletin)

I. Required: Math 512, 516, 580, 593 12

II. Select four of the following courses: Math 513; CSc 531, 533; Stat
527, 528 .. 12

III. Select with approval of adviser 9 units in one area outside mathematical
Sciences (physics, engineering, economics, chemistry, etc.) 9

IV. Electives with approval of advisory committee to include at least 12 units
of mathematics, computer science, and statistics courses 12

Total units 45

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in
Computer Science, Mathematics, Philosophy, Statistics and Probability, and other subjects.

* Satisfies Biological Sciences General Education course requirement.
MILITARY SCIENCE DEPARTMENT
Department Head, Colonel William Hastie
Lt. Col. George L. Silva Capt. William A. Todd

PURPOSE

The production of qualified, educated junior officers for the United States Army is a vital part of the National Defense effort. The Military Science Department conducts ROTC (Reserve Officer Training Corps) classroom and leadership laboratory instruction for students who desire to fulfill their military obligation as commissioned officers. Additionally, certain outstanding students are offered direct commissions in the U.S. Regular Army. As in any other academic courses, credits accrued for completing Military Science courses are awarded toward college graduation. It is permissible for students not enrolled in the ROTC program to enroll in particular Military Science classes for elective credit based on the determination that the student load is within the capability of the assigned instructor group.

To be eligible for participation in ROTC, a student must be a regularly enrolled male student of this institution, have sufficient time remaining as a college student to permit completion of the advanced ROTC course prior to reaching his 28th birthday, and be physically, mentally and morally qualified. A physical examination is required for acceptance into the program. Students who anticipate enrollment in ROTC should arrange to have a report of physical examination completed prior to registration. ROTC scholarships are available; see under SCHOLARSHIPS.

ROTC removes most uncertainties connected with the student's military obligation. Senior students are given the opportunity to request the time they desire to be called to active duty, the branch of the army in which they desire to be commissioned, and the general geographical area in which they desire to be stationed while performing their active duty.

EQUIPMENT AND UNIFORMS

All necessary ROTC equipment, uniforms and text books are furnished to the student by the United States government free of charge. Title to this property, other than expendable items, remains with the government. Upon entry into active duty after graduation, each commissioned student is granted a special $300 uniform allowance to use for purchasing his own uniforms.

DRAFT DEFERMENT

Each regularly enrolled ROTC student may execute a deferment agreement with the United States government at the end of the first quarter of his freshman year. The agreement provides absolute draft deferment as long as the student remains enrolled in the ROTC program.

Graduating students who have completed the ROTC program and who apply to and are accepted by accredited institutions for graduate instruction, upon approval of the Department of the Army, are deferred from active duty to obtain a graduate degree.

FOUR YEAR PROGRAM

The four year elective ROTC program is a progressive course of instruction divided into a two year basic course and a two year advanced course.

Students with previous military service, or with Junior or Senior ROTC credit from another institution, may be granted advanced standing in the course. Students who will complete degree requirements in three academic years may enroll in freshman and sophomore ROTC courses concurrently and complete the four-year program in three years.

Army regulations permit a student to substitute related academic courses for one quarter of each of the last two years of the ROTC program. These academic courses are in place of the regular MSc winter quarter requirements during each of the junior and senior year sequences.
Military Science

Four year program students are required to attend only one summer training camp for a six week period following completion of their junior year. The government furnishes all uniforms, equipment, room, board, and medical care for students at camp. Additionally, each student is paid $240 and is provided a six-cents-per-mile transportation allowance from and to his home. Academic grades are awarded and five quarter units of credit granted for the successful completion of this summer camp.

Students who elect to enter the advanced course of ROTC instruction are paid $50 per month while they are enrolled in the advanced course. There is no obligation connected with the receipt of this subsistence allowance other than the willingness by the student to accept a reserve commission of Second Lieutenant if it is offered to him upon graduation and to serve a period of two years on active duty as a commissioned officer.

TWO YEAR PROGRAM

The opportunity offered by ROTC training is available in a special program to transfer students and to currently enrolled college students who were unable, for cogent reasons, to participate in the four year ROTC program.

To qualify for the two year program, the student must complete a special basic ROTC summer camp of six weeks duration. Those students currently enrolled at this college will complete the basic camp between their sophomore and junior years. Transfer students must complete the camp during the summer immediately prior to their matriculation at this college. It is important that potential transfer students who plan to participate in the two year ROTC program make their intentions known directly to the Head, Military Science Department, no later than 1 March of the year they plan to register at the college even though this date may precede the date of their final acceptance by the college.

The government will provide six-cents-per-mile transportation allowance to and from basic summer camp, and the rate of pay as an Army Private. All equipment, uniforms, room and board are furnished free while at camp. The basic summer camp is in addition to the advanced summer camp which must be taken at the end of the junior year as part of the advanced course. No college credit is given for the basic summer camp.

Upon successful completion of the basic summer camp, the student is admitted directly into the advanced ROTC course in September during his registration at the college. He is entitled then to the advanced course subsistence allowance and all other privileges of advanced course standing as enumerated above under the four year program.

FLIGHT INSTRUCTION PROGRAM

The Army ROTC Flight Instruction Program is offered to students in the second year of the advanced course. The student receives a basic introduction to the principles of flight in single engine, fixed-wing aircraft. The program is conducted as an extracurricular activity, without cost to the student. Each student receives 35 hours of ground instruction and 36½ hours of in-flight instruction.

The student must be enrolled in or have completed MS IV and must complete satisfactorily a physical examination and flight aptitude tests. Approval of the dean of the applicant's school and the Professor of Military Science is required.

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Military Science and other subjects.
PHYSICS DEPARTMENT
Department Head, Woodford E. Bowls
Lawrence H. Balthaser Robert E. Holmquist Arthur Z. Rosen
Joseph C. Boone Ray J. Holt Gordon A. Silver
Athol J. D. Brunk Aernat S. James Orvin E. Wagner
William E. Clements Herbert R. Kabat Leonard W. Wall
Walter E. Elliott W. Reed Langford Walter D. Wilson
Robert H. Frost Leon W. Magur Lloyd J. Work
Teymoor Gedayloo Kenneth S. Ozawa William L. Van Wyngaarden
David W. Hafemeister Ralph A. Peters Ralph S. Vrana
David M. Roach

The Physics Department serves all schools of the College by offering courses which help provide scientific explanations for work taken by students in Agriculture, Engineering, Applied Arts and Applied Sciences. The department also contributes to the general education of all students by giving them a thorough foundation in the method and factual content of the physical sciences and the roles which they play in society. The physics curriculum leads to the bachelor of science degree.

The occupational objectives of the curriculum in physics are to qualify students for entry at the bachelor's level into positions in government service and industry and to help prepare teachers of the physical sciences. Graduates are engaged in the development and design of products associated with electronics, aircraft, guided missiles, satellites, atomic power, petroleum, paper, metals, textiles and plastics.

Graduate courses are offered which help to complete the requirements for the teaching credentials and for the master of arts degree in education with a concentration in the physical sciences.

It is suggested that the high school student planning to major in physics include in his high school program as much as possible of the following: six semesters of college preparatory mathematics, two of physics and two of chemistry.

CURRICULUM IN PHYSICS

<table>
<thead>
<tr>
<th>Course</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological Sciences (Bio 101, Bot 121, or Zoo 131)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freshman Composition (Eng 104, 105, 106)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Manufacturing Processes (MP 141, 142)</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Health Education (PE 107)</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 141)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 141, 142, 143)</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>General Chemistry (Chem 121, 122)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Organic Chemistry (Chem 226)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>General Physics (Phys 131, 132)</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16½</td>
<td>16½</td>
<td>17½</td>
</tr>
<tr>
<td>Sophomore</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economics (Ec 201 or 211)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Physical Education (PE 241)</td>
<td></td>
<td>½</td>
<td>½</td>
</tr>
<tr>
<td>Analytic Geometry and Calculus (Math 241)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Differential Equations (Math 242)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fortran Programming (CSc 101)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>General Physics (Phys 133)</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Introduction to Optics and Atomic Physics (Phys 211)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Nuclear Physics (Phys 213)</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Introductory Nuclear Physics Laboratory (Phys 243)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Electrical Circuits (Phys 206, 207)</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Electrical Measurements Laboratory (Phys 256, 257)</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>General Education elective</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Humanities</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>17½</td>
<td>16½</td>
<td>16½</td>
</tr>
</tbody>
</table>

* To be selected in accordance with the General Education requirement.
** Chosen from Astr 101, Geol 201, 202, Biological Sciences, Social Sciences (other than History).
<table>
<thead>
<tr>
<th>Junior</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Engineering Mathematics (Math 319)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Analysis for Science (Math 304)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat (Phys 301)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytic Mechanics (Phys 302, 303)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid State Physics (Phys 406)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid State Physics Laboratory (Phys 456)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waves and Vibrations (Phys 212)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantum Mechanics (Phys 405)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomic Physics (Phys 401)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomic Physics Laboratory (Phys 441)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Optics (Phys 223)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior</th>
<th>F</th>
<th>W</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Government (Pol Sc 301)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth of American Democracy (Hist 304)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. S. In World Affairs (Hist 305)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Sciences (other than History)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature or Philosophy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity and Magnetism (Phys 306, 307)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Physics (Phys 403)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nuclear Physics Laboratory (Phys 443)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantum Mechanics (Phys 407)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior Project (Phys 461, 462)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undergraduate Seminar (Phys 463)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electives</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

See COURSES OF INSTRUCTION section of this catalog for descriptions of courses in Physics and Physical Science and other subjects.

* To be selected in accordance with the General Education requirement.
COURSES OF INSTRUCTION
GAS FLOW

\[
\begin{align*}
G &= \frac{Q}{963} \\
G &= \frac{Q}{n + P_2} \\
G &= \frac{Q}{2}
\end{align*}
\]
ACCOUNTING

Actg 131, 132 Basic Accounting (3) (3)
A study of accounting to show how records are kept, their uses and limitations. For the student who needs a general knowledge of accounting. Not applicable for credit toward major in business administration. 2 lectures, 1 two-hour laboratory.

Actg 221, 222 Principles of Accounting (4) (4)
Principles and practices of fundamental accounting theory. 3 lectures, 1 two-hour laboratory.

Actg 223 Cost Accounting and Analysis (4)
Accounting for cost control applicable to production, distribution, and service enterprises. Analysis and interpretation of financial statements. 3 lectures, 1 two-hour laboratory. Prerequisite: Actg 132 or 222

Actg 301 Managerial Accounting (4)
Relationship of accounting to business. Analysis of accounting principles and procedures to needs of business. 4 lectures. Prerequisite: Actg 132 or 222

Actg 304, 305 Tax Accounting (3) (3)
Analysis of the federal and state tax laws and their application to taxpayers. Estate and other succession taxation, gift taxation, and income taxation of fiduciaries. 2 lectures, 1 two-hour laboratory. Prerequisite: Actg 222

Actg 321, 322, 323 Advanced Accounting (4) (4) (4)
Advanced accounting theory and practice including consolidated financial statements. Problems of valuation and income determination relating especially to cash, accounts receivable, inventories, and installment sales. 3 lectures, 1 two-hour laboratory. Prerequisite: Actg 222

Actg 331 Accounting Systems (3)
Installation and operation of accounting systems in business with special attention to internal control. Application of the latest techniques in the use of modern methods of handling numbers with special reference to accounting and statistical methods. 2 lectures, 1 two-hour laboratory. Prerequisite: Actg 223

Actg 332 Advanced Cost Accounting (4)
Process and standard costs; overhead costs, budgeting. Use of cost accounting data in economic analyses and managerial control. 3 lectures, 1 two-hour laboratory. Prerequisite: Actg 223

Actg 333 Accounting for Governmental and Non-Profit Organizations (2)
Accounting for governmental and non-profit organizations with emphasis on fund accounts. Budgetary and encumbance procedures and special reporting requirements. 2 lectures. Prerequisite: Actg 132 or 222

Actg 346, 347 Auditing (3) (3)
Principles and procedures of the verification of accounts and the preparation of working papers and the completed audit report. 2 lectures, 1 two-hour laboratory. Prerequisite: Actg 323 or consent of instructor.

Actg 452, 453 C.P.A. Review (3) (3)
Intensive study of advanced accounting problems as found in C.P.A. examinations. Designed for those preparing for C.P.A. examination, and for those planning to enter field of private business accounting. 1 lecture, 2 two-hour laboratories. Prerequisite: Actg 323
Aeronautical Engineering

AERONAUTICAL ENGINEERING

Aero 101 Aircraft and Missile Fundamentals (3)
Fundamentals of aircraft and missile systems. Field trips conducted to existing departmental laboratories permit students to operate, and to see in operation, equipment used by aeronautical engineers. Not for aeronautical engineering majors. 3 lectures.

Aero 121, 122, 123 Aerospace Fundamentals (2) (2) (2)
Introduction to the engineering profession including the aeronautical and aerospace fields. Engineering approach to problem-solving and analysis of data obtained from experiments. Basic nomenclature and design criteria used in the aerospace industry. Applications to basic problems in the field. 2 laboratories.

Aero 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

Aero 202 Mechanics of Materials (5)
Stresses, strains, deflections due to axial, torsional, and flexural loading. Statically indeterminate members and columns. Dynamic and repeated loading. Emphasis on problem-solving. May not be substituted for Aero 207. 5 lectures. Prerequisite: ME 205 or equivalent.

Aero 207 Strength of Materials (5)
Stresses, strains, and their relations applied to axial, torsional, and flexural loads. Statically indeterminate axial members, beams, and shafts. Columns, dynamic loads, repeated loads. 5 lectures. Prerequisite: ME 211

Aero 229 Strength of Materials Laboratory (1)

Aero 240 Additional Engineering Laboratory (1-2)
Total credit limited to four units, with not more than two units in any one quarter. 1 or 2 laboratories.

Aero 252 Engineering Problems—Analog Computers (1)
Solution of selected engineering problems by means of analog computers. 1 laboratory. Prerequisite: Math 141

Aero 301, 302, 303 Aerothermodynamics (5)
Properties and characteristics of fluids, fluid statics and dynamics, the thermodynamic relations, the properties of subsonic and supersonic flow, both laminar and turbulent. 5 lectures, fall; 4 lectures, 1 laboratory, winter and spring. Prerequisite: ME 211, Math 318

Aero 306 Aerodynamics (5)
The standard atmosphere, compressible flow, airspeed measurements, types of fluid flow, airfoil theory, wing theory, lift, drag, expansion waves, normal and oblique shock waves, aircraft performance, stability and control. 5 lectures. Concurrent: Aero 303

Aero 322 Analog Computer Techniques (3)
The solution of typical problems and dynamics that an aeronautical engineer might encounter by use of analog computer techniques. 1 lecture, 2 laboratories. Prerequisite: Aero 252
Aeronautical Engineering

Aero 324, 325 Stress Analysis (4) (4)
Analysis of airplane and missile structural components; combined stress and failure theories; column and sheet-stringer panel analysis. Shear-resistant and tension-field beams; single and multi-cell box beams; unsymmetrical and tapered beams.Bulkhead and cutout analysis; analysis of indeterminate structures. Laboratory tests of typical aircraft structural components. Experimental methods of stress analysis. 3 lectures, 1 laboratory. Prerequisite: Math 242, Aero 207

Aero 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter.

Aero 401, 402 Aircraft and Missile Propulsion Systems (4) (3)
Flightcraft power plant types, components, characteristics, and requirements. Principles of thrust and energy utilization. Thermodynamic processes and performance of turboprop, turbojet, ramjet, and rocket engines. Fall: 3 lectures, 1 laboratory. Winter: 3 lectures. Prerequisite: Aero 303

Aero 403 Rocket Propulsion (3)

Aero 404, 405 Gas Dynamics (3) (3)
Fundamental theory of one dimensional gas dynamics. Shock wave propagation, normal and oblique shocks, Rayleigh line flow, Fanno line flow, Prandtl-Meyer function, supersonic wind tunnel, and measurement methods. 3 lectures. Prerequisite: Aero 303

Aero 406 Introduction to Boundary-Layer Theory (3)
Concept of the boundary-layer. Boundary-layer equations, the similarity concept, fundamental similarity solutions, the thermal boundary-layer. 3 lectures. Prerequisite: Aero 303 or equivalent.

Aero 408 Advanced Flightcraft Structural Analysis (3)
Indeterminate structures, frame analysis, treatment of plates and shells, shear lag and deformation, effect of skin cutouts, application of structural theory to the design of flightcraft components. 3 lectures. Prerequisite: Aero 325

Aero 409 Flight Testing (3)
Flight test instrumentation, obtaining of data and methods of data reduction for determining aircraft and engine performance, aircraft stability and control and structural integrity. Evaluation of hydraulic, electrical, communication, control, and air conditioning systems. Compliance with specifications. Severe environmental operation. 3 lectures. Prerequisite: Aero 303

Aero 411, 412, 413 Space Technology (3) (3) (3)
Motion of a body in the central force field. Space vehicle trajectories, guidance systems, power generators for interplanetary travel, structural loading, and principles of space vehicle design. 3 lectures. Prerequisite: Aero 303

Aero 415 Aerodynamics of Stability and Control (3)
Longitudinal stability and control. Static and dynamic stability, wing moments and balance. Factors influencing the stability of the complete airplane. Lateral and directional stability. Design and operation of control surfaces. Compressibility effects. 3 lectures. Prerequisite: Aero 303

Aero 416 Unconventional Aircraft (3)
Introduction to analysis of rotary wing aircraft, VTOL, STOL, and lifting body vehicles. Types of flight control mechanism. Performance and stability of vehicles. 3 lectures. Prerequisite: Aero 303

179
Aeronautical Engineering/ABM

Aero 417 Structural Dynamics (4)
Effect of shock and vibration loads on aircraft and missile structures. Thermal loading and other transient loads imposed by the vehicle mission. 4 lectures. Prerequisite: ME 316

Aero 419 Analysis of Aeronautical Systems (3)
Application of elementary systems analysis and operation analysis techniques to the project development phase of an aerospace vehicle or system. 3 lectures.

Aero 421 Flight Mechanics (3)
Analytical and graphical methods for the determination of flight characteristics of aircraft and aerospace vehicles. 1 lecture, 2 laboratories. Prerequisite: Aero 306

Aero 444, 445, 446 Missile and Aircraft Design Laboratory (4) (4) (4)
Preliminary layout of a typical transport aircraft and a space vehicle using design and calculation techniques developed in previous aeronautical engineering courses. Design of selected component structures and preparation of necessary drawings. 2 lectures, 2 laboratories.

Aero 457, 458 Aeronautical Engineering Laboratory (3) (3)
Use of laboratory instruments to develop the technique of obtaining engineering measurements, special assigned problems in the field of aeronautics. 1 lecture, 2 laboratories. Prerequisite: Aero 303

Aero 461, 462 Senior Project (2) (2)
Selection and completion of a project which is typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time. Prerequisite: Senior standing.

Aero 470 Selected Advanced Topics (1-3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

AGRICULTURAL BUSINESS MANAGEMENT

ABM 101 Introduction to Agricultural Business Management (3)
Changes occurring in agriculture, careers in commercial agricultural businesses and public agricultural service agencies, development and growth of farm related industries, kinds of agricultural businesses, operational characteristics of commercial agricultural industries. 3 lectures.

ABM 102 Agricultural Marketing Programs in California (3)
California marketing orders and agreements, integration and contract farming; their implications and effects on farming and marketing institutions. 3 lectures.

ABM 103 Agricultural Business Organization (3)
Development, types and forms of farm related businesses. Agricultural businesses considered from standpoint of primary functions, services and problems including such factors as business organization, records, information, location, production, business with banks, labor and government. Emphasis on California farm related industries. 3 lectures.

ABM 201 Agricultural Business Sales and Service (3)
Growth and opportunities in agricultural sales. Factors involved in developing sales program for the farm operation. Application of successful selling principles and practices in providing farm operators with agricultural materials, supplies, equipment and services. Consideration given to sales and service for farm related businesses and non-agricultural customers. Selling aspects involved in marketing of farm products by farm related businesses. 3 lectures.
ABM 202 Agricultural Cooperative Organization and Management (3)

Purpose, types and organization of cooperatives. Emphasis on California agricultural cooperatives, their characteristics, operation and problems. 2 lectures, 1 two-hour laboratory.

ABM 203 Agricultural Business Credit and Finance (3)

Investment, finance and credit requirements of agricultural businesses serving production, processing and distribution channels of agricultural products and services. Financial principles and credit management as applied to agricultural businesses; financial procedures and problems in establishing and managing the farm-related business. 3 lectures. Prerequisite: Acrg 221 or consent of instructor.

ABM 211 Fair Management (3)

Principles and procedures in organizing, managing and promoting fairs. Emphasis on California and Western fairs. Career opportunities, programs and problems in fair management and growth of fairs in America. A two-day field trip is included to a county or district fair. 3 lectures.

ABM 230 General Agricultural Business Management (3)

Agricultural business growth, opportunities, functions and services, organization and operation. Emphasis on California agricultural businesses and industries. A general course for non-Agricultural Business Management majors. 3 lectures.

ABM 241 Agricultural Business Machines Practices (1)

Evolution, application, and costs of calculator type machines. Basic calculator procedures, practices, and techniques needed to work agriculturally related statistical problems. 1 activity.

ABM 301 Agricultural Business Management and Government Policy (3)

Agricultural business policy, objectives and formulation, resource allocation and production adjustments; government subsidies, acreage controls, storage, crop insurance, forward prices, consumer subsidies, economic, social and political influences. 3 lectures. Prerequisite: Ec 211

ABM 302 Agricultural Business Sales Management (3)

Organizing and coordinating agricultural machinery, crop, livestock, poultry, fertilizer, insecticide and other farm and farm related sales and service programs. Planning, policies, pricing, sales control records, training salesmen, advertising, supervising salesmen, and evaluating sales performance as related to needs and demands of farm and farm related agricultural businesses. 3 lectures. Prerequisite: ABM 201

ABM 303 Agriculture—Consumer Relationships (2)

Basic facts, public opinion and ways of developing greater understanding of agriculture, its nature, characteristics, problems and relationship to non-farm persons. Consumer education programs and procedures. 2 lectures.

ABM 305 Farm Group and Commodity Organizations (2)

Survey of farmers' efforts to study and seek solutions to individual and industry-wide problems through organized group effort. Major farm organizations, policies and services to members. 2 lectures.

ABM 306 Government Agricultural Service Agencies (2)

Programs and services performed by government agencies on behalf of farm and off-farm agricultural industries. Designed for students who may use services of, who may advise others of such services, or who may seek a career in such agencies. 2 lectures.

ABM 321 Agricultural Property Management and Sales (4)

Land economic, legal and real estate principles in the investment, development, leasing, mortgaging and transferring of agricultural real estate. 3 lectures, 1 two-hour laboratory.
ABM 322 Advanced Agricultural Business Management (4)
Agricultural business management with primary emphasis on economic analysis; application of economic principles to the solution of basic pricing, output, and resource use problems encountered by the individual agricultural business firm. 3 lectures, 1 two-hour laboratory. Prerequisite: Ec 211

ABM 323 Advanced Agricultural Business Management (4)
Agricultural business management with primary emphasis on cost accounting procedures, policy formation, financial, fiscal and material resources management. Includes budgets, business statements and other planning and control procedures. Agricultural business insurance, taxation, office management, and related phases in management of the agricultural business firm. 3 lectures, 1 two-hour laboratory. Prerequisite: Actg 222 and ABM 322 or consent of instructor.

ABM 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

ABM 402 Agricultural Business Communication (3)
Principles, methods and materials for communicating ideas, information and skills to management, staff members, stockholders, customers and general public. Agricultural business public relations programs. Organization and presentation of surveys, studies, reports and publications. 2 lectures, 1 two-hour laboratory. Prerequisite: Eng 218 and senior standing.

ABM 403 Agricultural Labor Relations and Personnel Management (3)
Agricultural labor trends and problems as determined by changes occurring in farming and farm related industries. Labor-management relations in agriculture; principles and procedures in organizing and managing the agricultural business personnel program. 3 lectures. Prerequisite: Senior standing.

ABM 412 Wholesaling and Retailing Agricultural Commodities (3)
The field of wholesaling and retailing agricultural commodities including auctions, commission houses, commission merchants, food brokers, carlot receivers, jobbers, shippers and supply houses. Principles of buying and selling; terms and trade customs. 3 lectures. Prerequisite: Ec 211, FM 304

ABM 421 Agricultural Business Operations Analysis (4)
Principles and procedures in agricultural business operations analysis and research. Evaluation of programs and problems to achieve optimal decisions. Production and financial data, statistics, pricing, costs, inventories, production level, and plant expansion or contraction. 3 lectures, 1 two-hour laboratory. Prerequisite: ABM 322, Stat 212

ABM 427 Agricultural Estate Planning (4)
Principles and procedures in agriculture estate planning and conservation. Determining agriculture estate assets, taxes, property valuation, property transfers, beneficiaries and needs, gifts, insurance, business estate, employee estate, wills, trusts, and administration of trusts and estates. 3 lectures, 1 activity period. Prerequisite: ABM 321

ABM 443 Field Studies in Agricultural Business Management (2)
California commercial agricultural businesses. Visitation to selected industries. Organization, operation, services and problems considered. One week in field and one week laboratory analysis and evaluation of data obtained on the trip. Prerequisite: Senior standing or consent of instructor.

ABM 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.
ABM 463 Undergraduate Seminar (2)
Student presentation and leadership; group participation under faculty supervision on new agricultural business developments. 2 lectures.

ABM 515 International Agri-Business Marketing (3)
Problems and techniques of U.S. international marketing. Sales promotion, advertising, and market research for agricultural commodities. Tools, equipment, and supplies for agriculture in the developing countries. 3 lectures. Prerequisite: FM 304, 307 or consent of instructor.

ABM 516 Communication for Change in Developing Countries (3)
Analysis of literature, techniques and procedures for planning and carrying out agricultural information programs in developing countries. Current relevant information for foreign agricultural producers. 3 lectures. Prerequisite: FM 307

ABM 581 Graduate Seminar in Agricultural Business Management (3)
Current trends and characteristics of agricultural business and industry. Opportunities and requirements for becoming established in farm-related businesses. 3 lecture-discussions.

AGRICULTURAL EDUCATION

Ag Ed 202 Introduction to Agricultural Education (2)
Overview of agricultural education programs including goals and purposes. Kinds of classes and types of programs. Qualifications essential to success in teaching agriculture. Visits to high school agriculture departments. 2 lectures.

Ag Ed 403 Teaching Plans in Agricultural Education (3)
Preparation for student teaching. Orientation to classroom situation. Development of teaching units and daily lessons. Class demonstrations in teaching procedures. 1 lecture, 2 activity periods.

Ag Ed 470 Selected Advanced Topics (1-3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

Ag Ed 520 Program Development in Agricultural Education (3)
Study of career opportunities in agriculture. Program development in such areas as the Future Farmers of America. Supervised practice. Development of up-to-date approaches in an integrated program. Operating policies and procedures. 3 lectures.

Ag Ed 521 Curriculum and Methods in Agricultural Education (3)
Principles and methods of determining course objectives, content, and calendar. Methods, procedures, and materials adapted for use by the teacher in classroom, shop, and field instruction. Concurrent with student teaching. 3 lectures.

Ag Ed 522 Group Study in Agricultural Mechanics (3)
Agricultural mechanics in the vocational agriculture programs. Organizing a course of study and implementation of program. Demonstrations, practice teaching and analysis of teaching techniques. 1 lecture, 2 laboratories.

Ag Ed 523 Adult and Continuation Education in Agriculture (2)
Organization, history, philosophy, administration and teaching of classes for out-of-school youth and adults. Surveys and plans for development of rural and urban adult education programs. Young Farmer program. Techniques and methods of leadership. 2 lectures.

Ag Ed 525 Student Teaching in Agricultural Education (3-12)
One quarter conducted under the direction of a selected supervising teacher of agriculture. Participation in all phases of the agricultural education program. Principles and practices in departmental organization and administration. Prior approval is necessary.
Ag Education/Ag Engineering

Ag Ed 580 Special Problems in Agricultural Education (1-3)

The student will select, plan, and develop under direction and supervision a
specific problem of value to the program of agricultural education. Research,
planning, and development may be through group or individual study. Total credit
limited to six units with not more than three units in any one quarter. Prior ap-
proval is necessary.

Ag Ed 621 (A-Z) Technical Agricultural Developments (1½)

Group study of new scientific and technical developments in agriculture. Offered
during a one-week summer period and during other approved periods for teachers
of agriculture. 1½ units of professional credit available for minimum attendance
of 27 hours.

Ag Ed 631 (A-Z) Professional Conference in Agriculture (1½)

A series of lectures, seminars, and discussions of problems in agricultural educa-
tion and developments in agriculture led by specialists in the field. For professional
improvement of teachers of agriculture. Offered during a one-week summer period.
1½ units of professional credit available for minimum attendance of 27 hours.

AGRICULTURAL ENGINEERING

AE 100 Agricultural Engineering (1)

Professional opportunity. Solution of agricultural engineering problems requiring
coordinated mathematical, graphical and written expression. 1 lecture.

AE 121 Agricultural Mechanics (2)

Identification and use of tools and materials; tool sharpening and care; concrete
mixes and materials; simple electric wiring; metal work; pipe fitting; basic wood-
working; estimating quantities and costs. 1 lecture, 1 laboratory.

AE 122 Agricultural Mechanics (2)

Design, construction and repair of production equipment for specific farming
enterprises. Construction of livestock, dairy, crops, soils, poultry and horticultural
equipment. Students register for this course in sections according to their specific
major. 1 lecture, 1 laboratory. Prerequisite: AE 121 or demonstrated equivalent
ability.

AE 128 Agricultural Mechanics (2)

Selection of materials for farm construction. Plans, interpretation and bills of
materials. Development of skills in wood and metal working. Concrete proportion-
ing and quality tests. 1 lecture, 1 laboratory. Prerequisite: completed or concurrent
college drafting.

AE 130 Irrigation Practices (2)

Application of good irrigation practices on the farm. Choice and evaluation of
methods; soil, water, and plant relationships; when and how much water to apply;
water measurement; water quality and drainage; elements and operation of Irriga-
tion systems. 1 lecture, 1 laboratory. Prerequisite: SS 121, Math 103

AE 131 Agricultural Surveying (2)

Introduction to basic surveying techniques as applied to agriculture. Keeping
field notes; land measurement by tape; differential and profile leveling; contour
and plane table mapping; land surveying and identification; fundamentals of land
grading. 1 lecture, 1 laboratory. Prerequisite: Math 103

AE 133 Agricultural Drafting (2)

A basic course in technical drawing oriented toward working drawings of farm
shop projects. Freehand sketching and instrument techniques. Multiview projection
and pictorial drawings. 2 laboratories.
AE 134 Agricultural Electrification (3)
Fundamentals of electric wiring and code regulations; selection, installation and maintenance of electric motors. For students other than degree majors in Agricultural Engineering or Mechanized Agriculture. 2 lectures, 1 laboratory. Prerequisite: Math 103 or 113

AE 141 Agricultural Tractors and Equipment Skills (2)
Skills in the practical operation of tractors and equipment. Supervised operational practice on modern farm and utility industrial equipment in production agriculture and light earth moving operations. 2 laboratories.

AE 142 Agricultural Power and Machinery Management (4)
Evaluation of agricultural tractors and machinery performance. Power applications and hydraulic systems. Evaluation of performance of tillage, seeding and planting, weed control, hay and grain harvesting, and farm processing equipment. Emphasis on management. Selection, operation, maintenance, and cost analysis. 3 lectures, 1 laboratory.

AE 143 Power and Machinery (4)
Performance of tractors and machinery. Evaluation of tillage, planting, and harvesting operations. Analysis and development of optimum mechanical systems. 3 lectures, 1 laboratory.

AE 145 Survey of Aerial Photogrammetry (3)
Object recognition, three-dimensional equipment, and interpretation. Print alignment, stereoscopic viewing, scales, elevation determination, and application. Familiarization with geological, agricultural, land and crop management, engineering surveys, construction data, topographic detail, drainage elevation and control. Color photo techniques and uses for pest and disease location and control. 2 lectures, 1 laboratory. Prerequisite: Math 103 or 114

AE 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

AE 228 Cotton Ginning (4)
Cotton fiber production, cultural practices, harvesting methods and equipment; cleaning, drying and ginning methods including survey of equipment, its use and management; fiber quality measurements, packaging, storing and selling cotton products. 3 lectures, 1 laboratory.

AE 230 Agricultural Blacksmithing (2)
Fundamentals of forging and its application to agriculture. New and repair work involving bending, shaping, hardening, tempering, and annealing. 1 lecture, 1 laboratory.

AE 231 Agricultural Building Construction (3)
Development of practical skills in carpentry and light construction. Selection of materials. Agricultural buildings repaired, constructed, or modified during laboratory periods. 1 lecture, 2 laboratories. Prerequisite: AE 121 or AE 128

AE 232 Agricultural Structures Planning (3)
Environmental factors affecting crop storage structures and animal housing. Insulation, heating, ventilation, water supply, and waste disposal. Functional planning of production systems. 2 lectures, 1 laboratory. Prerequisite: Phys 132 and college drafting.

AE 234 Agricultural Power Transmission (3)
Elements of the transmission, measurement and utilization of power in agriculture. Problem solution, engineering reports, graphical studies, pumping machinery and engine cycles. 2 lectures, 1 laboratory. Prerequisite: AE 142
Ag Engineering

AE 236 Principles of Irrigation (4)
Fundamental characteristics of soil, water, and plants as they affect irrigation practices: consumptive use; water rights, supplies and schedules; water quality and salinity; irrigation methods and evaluation. 3 lectures, 1 laboratory. Prerequisite: Math 141, SS 121

AE 237 Engineering Surveying (2)
Selection, care and use of tapes, levels and transits. Keeping field notes; land measurement by tape; differential and profile leveling, and the plotting of profiles. Introduction to the transit; field operation; introduction to traverses. 1 lecture, 1 field period. Prerequisite: Math 115 or equivalent; college drafting.

AE 238 Engineering Surveying (2)
Use of the transit: traverses, coordinates, triangulation, area and balanced survey calculations. Cross sections, land grading, and volumes. Topographic and contour by stadia-transit mapping. 1 lecture, 1 field period. Prerequisite: AE 237

AE 239 Engineering Surveying (2)
Parabolic curves, circular curves, cross sectioning, setting slope stakes, measuring earth volume, cuts and fills as applied to road beds, public land surveys, photogrammetry. 1 lecture, 1 field period. Prerequisite: AE 238

AE 312 Hydraulics (4)
Static and dynamic characteristics of liquids, flow in open and closed channels, uniform and non-uniform flow, flow measurement, pumps. 3 lectures, 1 laboratory. Prerequisite: Phys 132, ME 211

AE 315 Hydrology (3)
Collection, organization and use of precipitation and runoff data, flood frequency and economics of structures, stream gauging and use of hydrograph, principles of groundwater management and flood routing. 3 lectures. Prerequisite: Math 141

AE 320 International Agricultural Mechanization (3)
Agricultural mechanization abroad. Farm machinery design in Europe and Japan. Traditional farming methods and tools in tropics. Problems of agricultural mechanization in developing countries. Agricultural engineering education, research and extension in various developed and developing countries. 3 lectures. Prerequisite: AE 142 or 143

AE 321 Agricultural Equipment Industry Management (4)
Management and operation of the farm equipment industry. Study of sales, service, parts and product education policies on manufacturer, distributor and dealer level. 3 lectures, 1 laboratory. Prerequisite: AE 142

AE 322 Principles of Agricultural Machinery (3)
Principles and evaluation of agricultural power units and machines. Soil-equipment mechanics and tractor-implement combinations. 2 lectures, 1 laboratory. Prerequisite: AE 142

AE 323 Agricultural Products Handling (3)
The application of product handling techniques and equipment to the processing of agricultural commodities. 2 lectures, 1 laboratory. Prerequisite: Math 114 or consent of instructor

AE 324 Principles of Agricultural Electrification (3)
Power distribution and DC and AC circuit fundamentals. Principles of wiring layout. Materials, code regulations and electrical measurements applicable to various agricultural uses. 2 lectures, 1 laboratory. Prerequisite: Phys 123
AE 325 Agricultural Electric Power and Controls (3)
Single-phase and three-phase electric motors and protective devices for agricultural use. Identification, selection, installation, and maintenance of various types. Operating characteristics and drives. Applications of electronic controls to agriculture. 2 lectures, 1 laboratory. Prerequisite: AE 324

AE 326 Off-the-Road Locomotion (4)
Sources and systems for supplying power to off-the-highway vehicles. Theory of traction, soil equipment mechanics, prime mover and implement combinations. 3 lectures, 1 laboratory. Prerequisite: AE 143, ME 302

AE 327 Agricultural Process Engineering (4)
Thermodynamics and mass transfer principles applied to air, water, air-water mixtures, drying, heating, refrigeration, fluid flow, size reduction, fan laws and materials handling. 3 lectures, 1 laboratory. Prerequisite: AE 312 and ME 302

AE 328 Multiple Use Water Management (4)
Water occurrence, quality and measurement. Water conservation and treatment. Multiple use of water in private, local, state and federal projects. 3 lectures, 1 laboratory.

AE 329 Tropical Rural Development (4)
Economic considerations, traditional methods and techniques, available materials, analysis of low cost improved equipment. Market road system planning and construction. Water supply and sanitation, low cost rural housing, food storage and farm structures. 2 lectures, 2 laboratories.

AE 331 Irrigation Systems Design (3)
Choosing adapted irrigation methods, design of surface and sprinkler irrigation systems, land grading calculations for optimum grades and economic soil movement. 2 lectures, 1 laboratory. Prerequisite: AE 236 and 312, or AE 340 and approval of instructor

AE 332 Agricultural Buildings (3)
Selection of buildings, storage units, and related equipment for production agriculture. Environmental factors affecting crop storage and animal housing. Farmstead layouts. Working drawings and cost estimates. 2 lectures, 1 laboratory. Prerequisite: Junior standing and a course in drafting.

AE 333 Engineering Properties of Agricultural Materials (3)
Principles of analyzing the mechanical, electrical, thermal, rheological and optical characteristics of agricultural materials. 2 lectures, 1 laboratory. Prerequisite: Aero 207, AE 338, Chem 122

AE 335 Agricultural Power (3)
Principles of spark ignition and compression ignition engines, including liquefied petroleum gas equipment, and related accessories. Service, trouble-shooting and repair procedures of engines and transmissions. 2 lectures, 1 laboratory.

AE 336 Agricultural Power Analysis (3)
Selection and application of internal combustion engines. Theory of combustion, fuels, and lubricants; power and its measurement. Factors affecting horsepower output and engine efficiency. Advanced power transmission, electrical systems. 2 lectures, 1 laboratory. Prerequisite: AE 335, Phys 123

AE 338 Dynamic Measurement (4)
Types and application of transducers, receivers, recorders and automatic controls in agriculture. 3 lectures, 1 laboratory. Prerequisite: AE 327, EE 201

AE 339 Agricultural Mechanics Skills (3)
Advanced shop skills. Carpentry, electricity, plumbing, surveying, power mechanics, tractor equipment operation and maintenance. 1 lecture, 2 laboratories. Prerequisite: Junior standing.
AE 340 Irrigation (4)
Soil-plant-water relationships, consumptive use rates and irrigation schedules, water quality, salinity and drainage; evaluations of irrigation methods, water rights and irrigation institutions. Flow of water in pipes and canals, water measurement, wells, and pumps. 3 lectures, 1 laboratory.

AE 341 Gasoline Engine Diagnosis (2)
Use of modern engine testing equipment in the evaluation of engine components and accessories such as: cylinder condition, ignition systems, electrical systems, and fuel systems. 1 lecture, 1 laboratory. Prerequisite: AE 335 or equivalent

AE 342 Diesel Engine Diagnosis (2)
Diagnosis and service of diesel fuel systems. Use of modern test and service equipment in evaluating and servicing these systems. 1 lecture, 1 laboratory. Prerequisite: AE 335 or equivalent

AE 344 Agricultural Equipment Projects (3)
Design and construction of special agricultural equipment related to any agricultural enterprise. 1 lecture, 2 laboratories. Prerequisite: AE 122 or 128; college drafting

AE 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems in agriculture. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

AE 414 Irrigation Engineering (4)
Problems of irrigation water supply and distribution found in irrigation districts or large farms; influence of soils, crops and climate on frequency, rate and duration of water delivery; design of open and closed conduits, float valves, pumps and reservoirs; costs and engineering economics of irrigation systems for efficient water delivery and use. 3 lectures, 1 laboratory. Prerequisite: AE 312, 331

AE 421 Equipment Engineering (4)
Design and construction of specialized agricultural equipment. 2 lectures, 2 laboratories. Prerequisite: Aero 207, ME 324, ME 212, WM 142

AE 422 Equipment Engineering (4)
Analysis and design of equipment with emphasis on man-machine-plant-automata relationships and concepts. 3 lectures, 1 laboratory. Prerequisite: AE 421

AE 425 Utility-Industrial Equipment (4)
Cost analysis of utility and industrial equipment with emphasis on management, selection, operation and maintenance. Evaluation of performance of bulldozers, earth-moving equipment, cranes, air compressors and rigging. 3 lectures, 1 laboratory. Prerequisite: IE 403

AE 431 Closed Circuit Hydraulics (3)
Proper selection and maintenance of machine components using standardized design procedures and manufacturer's design literature. 2 lectures, 1 laboratory. Prerequisite: AE 234 or 312

AE 433 Agricultural Structures Design (3)
Structural analysis and design of agricultural service and processing buildings. Emphasis on use of wood and metals in light construction. 2 lectures, 1 laboratory. Prerequisite: AE 232, Aero 207

AE 434 Reinforced Concrete (3)
Mechanics of reinforced concrete; working stress and ultimate strength. Design of beams, columns, floor systems, foundations and retaining walls. 2 lectures, 1 laboratory. Prerequisite: AE 433
AE 435 Drainage (3)
Flow of water in porous media; intrinsic permeability and hydraulic conductivity; flow nets; wells and groundwater; design of subsurface drains. 2 lectures, 1 laboratory. Prerequisite: AE 236 and AE 312, or AE 340 and approval of instructor.

AE 437 Conservation Engineering (3)
Principles of soil and water conservation including the fundamentals of soil mechanics used in the design of compacted earth fills. Practice in the design of important types of soil and water conservation structures. 2 lectures, 1 laboratory. Prerequisite: AE 312, SS 202.

AE 439 Agricultural Mechanics—Facility Management (3)
Major factors and techniques in planning, organizing and managing agricultural mechanics instruction shops and facilities. For students preparing to teach agriculture. 2 lectures, 1 laboratory. Prerequisite: minimum of 8 units of Agricultural Engineering and Welding & Metallurgical courses.

AE 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

AE 463 Undergraduate Seminar (2)
Group discussion of current agricultural engineering topics presented by individual members of the class. Topics or papers presented by guest speakers. Placement opportunities and requirements. 2 lectures.

AE 470 Selected Advanced Topics (1-3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

AE 520 Special Problems and Topics (1-3)
Individual or group investigation, research, studies or surveys of selected problems. Total credit limited to 3 units. Prerequisite: consent of instructor.

AE 521 Engineering of Agricultural Equipment (3)
Harvesting machines analyzed from the mechanical, operational, and economic standpoint. Emphasis on optimum harvesting systems. 2 lectures, 1 laboratory. Prerequisite: AE 333, 422 or equivalent.

AE 533 Advanced Irrigation System Design (4)
Design and economic evaluation of complex sprinkler and surface irrigation systems. 3 lectures, 1 laboratory. Prerequisite: AE 331 or equivalent.

AE 581 Graduate Seminar in Agricultural Engineering (3)
Group study of current engineering problems and recent developments as they relate to agriculture. Problem identification, statement and research methodology are emphasized in problem solution. 3 seminars.

AE 599 Engineering Report (2) (2) (5)
Directed study with limited supervision of important, practical engineering problem-solving. Preparation of a comprehensive report. Total credit limited to 9 units with maximum of 5 units per quarter. Prerequisite: consent of instructor.

AGRICULTURAL MANAGEMENT

Ag Mgt 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.
Ag Mgmt/Ag Animal Sci

Ag Mgt 212 Agricultural Economics (3)
Changes in agriculture and agricultural production in response to changing economic conditions. Optimum methods of agricultural production. Impact of technological change. Evaluating market structure and price formulating factors for agricultural products and inputs. 3 lectures. Prerequisite: Ec 211

Ag Mgt 250 Computer Application to Agriculture (2)
Use of "library" programs available for agriculture and auxiliary equipment available at commercial computer centers. Automated record keeping systems. Statistical and other computer programs applied to agricultural problems. 2 activities.

Ag Mgt 470 Selected Advanced Topics (1-3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

ANIMAL SCIENCE

A Sci 101 Feeds and Feeding (4)
Simple use of food nutrients. Identification and classification of feeds for each class of livestock. The digestion and utilization of feeds. Feeding standards and computation of simple rations for livestock. Economy in feeding and purchasing feeds by nutritive values. 3 lectures, 1 laboratory.

A Sci 121 Market Beef Production (4)
Breeds, market classes, and grades of beef cattle. Selection of feeder cattle. Management practices in purchasing and fattening cattle using farm grown feeds. Study of cattle feeding operations carried on at the college. Marketing of beef cattle. 3 lectures, 1 laboratory. Prerequisite: A Sci 101

A Sci 122 Elements of Swine Production (4)
History, development and importance of swine industry. Types, breeds, market classes and grades of swine. Basic principles and practices of swine feeding and management. 3 lectures, 1 laboratory.

A Sci 123 Elements of Sheep Production (4)
Survey of the types of sheep operations in California. Breed study, market classes, and grades identification. Commercial fattening of lambs in dry lot and irrigated pasture programs. Calendar of operations for the various types of sheep enterprises. 3 lectures, 1 laboratory.

A Sci 131 Basic Equitation (3)
Grooming, saddling, bridling, mounting, seat and hands. Horsemanship both under saddle and bareback. Basic care of the horse. Study of types of horse gear and equipment. Designed to teach basic riding to students with no previous experience. 1 lecture, 2 laboratories.

A Sci 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

A Sci 221 Sheep Management (4)
Detailed study of managerial practices for both commercial and purebred sheep enterprises. Performance testing and carcass evaluation techniques. The preparation and merchandising of the wool clip. Introduction to wool processing. 3 lectures, 1 laboratory. Prerequisite: A Sci 101, 123
Animal Science

A Sci 222 Commercial Beef Management (4)
Care and management of a breeding herd of commercial cattle in California. Range and farm lands suited to beef production. Factors affecting cost of production. Improvement of breeding herd. Trends in the industry. 3 lectures, 1 laboratory. Prerequisite: A Sci 101, 121

A Sci 223 Swine Management (4)
Management practices involved in commercial and purebred swine enterprises. Methods of production and marketing, performance testing programs and carcass evaluation techniques. Nutritional requirements, rations, diseases and parasites, facilities and equipment. 3 lectures, 1 laboratory. Prerequisite: A Sci 101, 122

A Sci 226 Livestock Judging (3)
Application of visual appraisal techniques to the selection of beef cattle, sheep, swine and horses. 1 lecture, 2 laboratories.

A Sci 229 Range Management (4)
Characteristics of rangeland, identification of range plants, management practices to maintain range resources and increase production of forage and livestock. 3 lectures, 1 laboratory. Prerequisite: SS 121, A Sci 121 or 230, a botany or crops science course.

A Sci 230 General Animal Science (4)
For non-animal science majors. Selection, feeding, and management of sheep, swine, and cattle, and their uses on California farms. 3 lectures, 1 laboratory.

A Sci 232 Elements of Horse Management (3)

A Sci 234 Horseshoeing (2)
Fundamentals of horseshoeing, anatomy and physiology of the horse's foot, pastern, and legs. Trimming feet, fitting and nailing shoes. Normal shoeing, corrective shoeing. 1 lecture, 1 laboratory combined.

A Sci 302 Applied Animal Nutrition (3)
Feedstuff evaluation and analysis. Advancements in feedstuff evaluation and application to ration formulation. Principles and practices in livestock ration formulation. Linear programming principles as applied to computer formulated rations. 2 lectures, 1 laboratory. Prerequisite: A Sci 101, Chem 226

A Sci 304 Animal Breeding (3)
Application of genetics to the improvement of farm animals. Improving production through a study of mating systems including outbreeding, inbreeding, selection techniques, performance testing and evaluating, herd records, indexing and progeny testing. Setting up and organizing improved breeding programs using modern techniques and equipment. 3 lectures. Prerequisite: Bio 303

A Sci 322 Beef Husbandry (4)
Purebred cattle business including selection of foundation stock, herd bulls; breeding programs; pedigrees; facilities and equipment; feeding breeding herd, sale cattle, show cattle; marketing purebred cattle; and general management problems. 3 lectures, 1 laboratory. Prerequisite: A Sci 101, 121, 222

A Sci 332 Range Technology (4)
Fundamentals of rangeland survey and inventory. Application of ecology in range evaluation. Analysis of range condition and capacity. Development of plans for effective improvement and utilization of rangeland. 3 lectures, 1 laboratory. Prerequisite: A Sci 229

191
Animal Science

A Sci 333 Horse Husbandry (3)

A Sci 334 Feed Mill Operation (3)
Study of general operation of a feed mill including a survey of the industry, buying, storing, grinding, weighing, mixing, packaging, handling, and delivery of formula feeds. Also a study of flow of materials, preventive maintenance and safety in a mill. 2 lectures, 1 laboratory. Prerequisite: A Sci 101 and 1 year production courses, or A Sci 230, PI 230 or DH 230

A Sci 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head

A Sci 401 Reproductive Physiology (3)
Intensive study of reproductive efficiency of farm animals. Anatomy and physiological factors involved in reproduction. Male and female systems, pregnancy, estrual behavior, semen collection and evaluation, artificial insemination, pregnancy testing, and hormone therapy. 2 lectures, 1 laboratory. Prerequisite: VS 123

A Sci 402 Animal Nutrition (4)
The metabolism of proteins, carbohydrates, fats, minerals, and vitamins. Relationship of proper nutrition to livestock production. 3 lectures, 1 laboratory. Prerequisite: A Sci 302 or equivalent, Chem 328

A Sci 434, 435 Specialized Horse Enterprises (3) (3)
Early schooling of the young horse through advanced training. Use of the snaffle bit, hackamore, half-breed and Spanish bits. Gentling and ground work. Training in collection, turning, backing, leads, trailer loading, rope work, cattle work. For advanced students. 1 lecture, 2 laboratories. Prerequisite: A Sci 333 or appropriate experience.

A Sci 441 Advanced Livestock Judging (2)
Intensive practice in livestock judging in preparation for livestock judging team to compete in intercollegiate contests. 2 laboratories. Prerequisite: A Sci 226

A Sci 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

A Sci 463 Undergraduate Seminar (2)
Major developments in the chosen field of the student. Discussion of new developments, policies, practices, and procedures. Each individual is responsible for the development and presentation of a topic in his chosen field. 2 lectures.

A Sci 470 Selected Advanced Topics (1-3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

A Sci 504 Ruminant Nutrition (4)
Concentrated study of ruminant nutrition. The physiological and biochemical aspects of digestion, absorption, and metabolism. Significance of rumen microorganisms related to energy, protein, and vitamin metabolism. Current research techniques employed in ruminology. 3 lectures, 1 laboratory. Prerequisite: A Sci 101, 402
A Sci 580 Seminar in Animal Nutrition (3)
Current findings and problems in the field of animal nutrition. Effects of new experimental research on the livestock industry. 3 lectures.

A Sci 581 Graduate Seminar in Animal Production (3)
Current findings and research problems in the field and their application to the industry. 3 lectures.
Anthropology/Archaeology

ANTHROPOLOGY

Ant 201 Cultural Anthropology (3)

The meaning and significance of culture to human beings. Examination of how cultures differ in their impact on behavior. How cultures develop and change. 3 lectures.

ARCHAEOLOGY

Ar 301 California Archaeology (3)

The California Indians; field studies in locating, surveying, and analyzing aboriginal sites; excavation of a site; laboratory techniques for recording, preserving, and reporting of artifacts; relating observations and finds to the natural environment in which a site is located. Integrating knowledge of natural and social sciences to use of archaeology. 2 lectures, 1 laboratory.

ARCHITECTURE AND ARCHITECTURAL ENGINEERING

Arch 106 Materials of Construction (3)

The use and application of building materials, structural makeup of buildings. 3 lectures.

Arch 111 Introduction to Design (2)

Familiarization with the professional fields of architecture, engineering and city planning. Introduction to the design process and development as a basis for architectural analysis. 2 lectures.

Arch 132 Introduction Design (2)

Continuation of Arch 111 stressing critical evaluation of man's environment. 1 lecture, 1 laboratory. Prerequisite: Arch 111 or consent of school.

Arch 140 Descriptive Drawing (1)

Exercises in drawing without mechanical aids. Total credit limited to 3 units, not more than 1 unit in any one quarter. 1 laboratory.

Arch 143 Introduction to Design (2)

Continuation of Arch 132. Study of visual phenomena with application to elementary composition dealing with line, area, color and materials. 2 laboratories. Prerequisite: Arch 132 or consent of school.

Arch 144 Introduction to Drawing and Perspective (3)

Basic techniques used in graphic communication. Orthographic and isometric projection. Mechanical perspective, shades and shadows. 3 laboratories.

Arch 145, 146 Delineation (2) (2)

Three-dimensional representations with various drawing media which enable the student to express his architectural ideas. 2 laboratories. Prerequisite: Arch 140, 144 or consent of school.

Arch 147 Graphics (7)

Covers material in Arch 144, 145, 146. Primarily for transfer students. 7 laboratories.

Arch 148 Introduction to Design (6)

Covers material in Arch 111, 132, 143. Primarily for transfer students. 3 lectures, 3 laboratories.
Arch 205, 206 Strength of Materials (3) (3)
Physical properties of construction materials. Moment and shear diagrams; axial and eccentric loading; deflection. Sizing of structural members of homogeneous and compound materials. 3 lectures. Prerequisite: Phys 131, Math 142 or consent of school.

Arch 207 Strength of Materials (6)
Covers material in Arch 205, 206. Primarily for transfer students. 6 lectures. Prerequisite: Phys. 131, Math 142 or consent of school.

Arch 231, 232, 233 Architectural Practice (3) (3) (3)
Construction techniques and working drawings for wood frame and steel frame structures. Theory and application of laws and codes affecting buildings. Theory and application of cost estimating procedures. 1 lecture, 2 laboratories. Prerequisite: Arch 106 or consent of school.

Arch 234 Architectural Practice (9)
Covers material in Arch 231, 232, 233. Primarily for transfer students. 3 lectures. 6 laboratories. Prerequisite: Arch 106 or consent of school.

Arch 237, 238 Architectural Photography (2) (2)
Photographic and presentation techniques applicable to architectural subjects. 1 lecture, 1 laboratory. Prerequisite: Arch 144, Jour 221 or consent of instructor.

Arch 240 Additional Engineering Laboratory (1-2)
Total credit limited to 4 units with not more than 2 units in any one quarter. 1 or 2 laboratories.

Arch 241, 242, 243 Watercolor (1) (1) (1)
Outdoor sketching with watercolor. 1 laboratory. Prerequisite: Arch 146

Arch 244, 245, 246 Advanced Delineation (2) (2) (2)
Architectural presentation for third, fourth, and fifth year students in Architecture. Development of further proficiency in drawing techniques through projects and critiques. 2 laboratories. Prerequisite: Arch 146

Arch 247 Form and Materials (2)
Design explorations with architectural ceramics, metals, plastics, wood and stone. 2 laboratories. Prerequisite: Arch 140, 144

Arch 250 Engineering Problems—Digital Computers (2)
Solution of selected engineering problems by means of digital computers. 2 activities. Prerequisite: Math 142

Arch 251, 252, 253 Basic Design (3) (3) (3)
Continuation of Arch 143. Development of design skills through studies of spatial problems of increasing architectural complexity. Circulation, flow, and human needs with respect to architecture. One designated field trip required. 3 laboratories. Prerequisite: Arch 143, 146 or consent of school.

Arch 301, 302 History of Non-Western Architecture (3) (3)
Ancient American, Far Eastern and Central Asian periods of architecture; philosophies and conditions which influenced them. For architects and others. 3 lectures. Prerequisite: Junior standing in the College.

Arch 304 Stress Analysis (3)
Stress analysis of statically determinate and indeterminate structures. 3 lectures. Prerequisite: Arch 206 or consent of school.

Arch 305, 306 Steel and Timber Structures (3) (3)
Design of steel members and connections, ties, trusses, plate girders, and determinate frames. Vertical and lateral loading. Light frame wood buildings, trusses, glued laminated wood arches, and connections. 3 lectures. Prerequisite: Arch 304 or consent of school.
Architecture

Arch 307 Stress Analysis, Steel & Timber Structures (9)
Arch 307 will cover material presented in Arch 304, 305, and 306. 9 lectures. Prerequisite: Arch 206 or consent of school.

Arch 312 Home and Community Design (3)
For students not majoring in architecture. Historical development of the home and city and the effect of location, climate, social and technological factors on homes and cities. Considerations and design methodology; furniture, landscape, and relation of home to community environment. 3 lectures.

Arch 314, 315, 316 Design Analysis (2) (2) (2)
For engineering students. Studies in architectural design with emphasis on structural relationships. Arch 314, 315: 2 lectures; Arch 316: 2 activities. Prerequisite: Arch 233, 253

Arch 317, 318, 319 History of Architecture (3) (3) (3)
Periods of architecture; philosophies and conditions which influenced them. 3 lectures. Prerequisite: Eng 105

Arch 320 Color and Environment (2)
Theory and systemization of visible spectrum as it applies to architectural environment. Includes visual and psychological effects of color. Exercises pertain primarily to interior design. 1 lecture, 1 laboratory. Prerequisite: Arch 253, Psy 202

Arch 321 Photography of Historic Structures (2)
Photographic techniques used in the documentation of historic sites and structures. Emphasis on use of the camera as a recording instrument. 1 lecture, 1 laboratory. Prerequisite: Basic skills and consent of instructor.

Arch 322, 323 Model Analysis (2) (2)
Development of structural understanding by non-mathematical methods through the observation of models under load conditions. Introduction to model techniques of stress determination. 1 lecture, 1 laboratory. Prerequisite: Arch 206

Arch 324 Architectural Acoustics (2)
Design of hearing conditions in architectural spaces; sound distribution and diffusion; properties of structures and surface materials; room shapes as affecting acoustics with architectural considerations paramount. 2 lectures. Prerequisite: Phys 132, Arch 253

Arch 325, 326 Architectural Lighting (2) (2)
Influence of natural and artificial light on space, form, the human being and his architectural environment. Design of artificial lighting environments, sources of illumination, effects on textures, colors, illusions and moods, reflectance, absorption, glare control, diffusion and distribution, lighting economics, analysis of fixtures, controls. 1 lecture, 1 activity. Prerequisite: Phys 133 and Junior standing.

Arch 341, 342, 343 Architectural Practice (2) (2) (2)
Continuation of Arch 233. Masonry and concrete structures. Theory and application of specifications. Coordination with Architectural Design. 2 laboratories. Prerequisite: Arch 233, 253; Concurrent: Arch 351, 352, 353

Arch 344 Stress Analysis Laboratory (1)
Standard tests of structural materials and structural components. Use of test equipment and strain gages. 1 laboratory. Prerequisite: Arch 206

Arch 346 Computer Analysis of Structure (2)
Solution of structural problems using existing programs. Creation of mathematical models from physical problems and solution by digital computer. 2 activities. Prerequisite: Arch 250, 305
Architecture

Arch 347, 348, 349 Design for Planners (2) (2) (2)
Three dimensional design with emphasis on spatial relationships and urban forms. The physical city. Effect of color, texture and scale, open spaces. Landscaping and architecture. 2 laboratories. Prerequisite: CRP 243, Arch 253

Arch 350 Advanced Descriptive Drawing (2)
Advanced programs in descriptive drawing as continuation of Arch 140. 2 laboratories.

Arch 351, 352, 353 Architectural Design (4) (4) (4)
Continuation of Arch 253. Development of logical analysis and creative abilities through application of skills to the solution of architectural problems. 4 laboratories. Prerequisite: Arch 206, 233, 253

Arch 357 Industrial Presentation Techniques (2)
Graphic presentation for industrial engineers. Symbols, techniques, and freehand drawing. Construction drawings and flow diagraming. 2 laboratories.

Arch 400 Special Problems for Advanced Undergraduates (1-2)
Individual or group investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter.

Arch 401, 402, 403 Design Analysis (2) (2) (2)
Continuation of Arch 316. 2 activities. Prerequisite: Arch 316

Arch 404, 405, 406 Concrete and Masonry Structures (2) (2) (2)
Elements and design of concrete and masonry structures. Vertical and lateral loading in multi-story buildings. 2 lectures. Prerequisite: Arch 306, 344; Math 143; Phys 133

Arch 407 Plastic Design of Steel Structures (3)
Theory of plastic design, structural engineering methods used to design steel frameworks with plastic theory. 3 lectures. Prerequisite: Arch 306

Arch 409 Survey of Foundation Engineering (3)
Fundamentals of foundation engineering, evaluation of soil reports, principles of determination of bearing capacity, soil classification, selection of types of foundations, evaluation of expansive properties of foundation soils, discussion of basic laboratory tests. 3 lectures. Prerequisite: Arch 306

Arch 411 Matrix Analysis of Structures (2)
Analysis of structural systems by matrix algebra techniques primarily applicable to solution by digital computers. 2 lectures. Prerequisite: Arch 250, 306, Math 204

Arch 412 Dynamics of Framed Structures (2)
Analysis of stresses and deflections in structures subjected to dynamic loads. Emphasis is on matrix algebra development primarily applicable to solution of problems by digital computer. 2 lectures. Prerequisite: Arch 250, 306, Math 204

Arch 414, 415, 416 General Engineering (2) (2) (2)
Topics which serve to supplement and unify the professional engineering background. 2 lectures. Prerequisite: Arch 306, 344; Math 204; Chem 124; Phys 133

Arch 417, 418, 419 History of Architecture (2) (2) (2)
Arch 319 continued. Periods of architecture; philosophies and conditions which influenced them. 2 lectures. Prerequisite: Arch 319

Arch 421, 422 Soil Mechanics and Foundations (3) (3)
Principles and applications of soil mechanics; types of foundation construction; design of foundations for buildings and bridges. 2 lectures, 1 laboratory. Prerequisite: Arch 306; Math 204, 241; Phys 133; Chem 124
Architecture

Arch 423 Advanced Foundation Engineering (2)
Analysis of foundation systems for large buildings, bridges, etc. Evaluation of test results, model analysis, special topics relative to foundation engineering, advanced work in triaxial testing, pore pressure effects, and slope stability analysis. 2 lectures. Prerequisite: Arch 422 or Arch 424

Arch 424 Soil Mechanics and Foundations (6)
Covers material in Arch 421, 422. Primarily for transfer students. 4 lectures, 2 laboratories.

Arch 426 Experimental Stress Analysis (3)
Stress determination by model analysis. Brittle coatings, photoelastic methods and strain gauges. Advanced topics. 2 lectures, 1 laboratory. Prerequisite: Arch 444

Arch 441, 442, 443 Professional Practice (2) (2) (2)
Comprehensive projects in architecture involving office organization. Contract documents. Ethics. Drawings for buildings with coordinated engineering and specifications. Field trips. 2 activities. Prerequisite: Arch 306, 343

Arch 444, 445, 446 Structural Design (5) (5) (5)
Stress analysis of long-span structures, arches, influence lines, built-up girders, multiple-storied rigid frame structures, prestressed concrete, shells and domes. Dams and bridges. Advanced topics from current engineering practice. One designated field trip required. 5 laboratories. Prerequisite: Arch 306, 316, 343, 344; Math 204, 241

Arch 447, 448, 449 Design for Planners (2) (2) (2)
Continuation of Arch 347, 348, 349 dealing with problems of increasing size and complexity. 2 laboratories. Prerequisite: CRP 243, 303, 353

Arch 451 Architectural Design (5)
Continuation of Arch 353. Problems of increasing architectural complexity with emphasis placed on comprehensive solutions. 5 laboratories. 15 units required, no more than 5 units per quarter. Prerequisite: Arch 306, 343, 353

Arch 458 Computer Applications in Spatial Design (2)
Organization, analysis and optimization of three dimensional spaces using digital computer. Application of logic to spatial design decisions. Use of problem oriented languages and survey of current field applications. 2 activities. Prerequisite: Math 143, Arch 250, 4th year standing.

Arch 461, 462 Senior Project (2) (2)
Selection and completion of a comprehensive type project under faculty supervision. Problems to involve the students' technical and creative skills. Construction encouraged. 120 hours minimum total time. Prerequisite: Arch 306, 343

Arch 463 Undergraduate Seminar (2)
Discussion and lectures on problems of practice and the building industry. Professional ethics. Students present organized material on some subject of interest in architectural engineering or architecture. 2 activities. Prerequisite: Senior standing

Arch 465 Housing Seminar (3)
Survey of urban housing in the industrial age; qualitative analysis of aspects of planning the individual unit and the position of housing units within the urban fabric; problems of housing rehabilitation; investigation of criteria for programming housing; examination of organizational forms of housing; housing needs in various population groups. 3 lectures. Prerequisite: Soc 313 and 4th year standing.

Arch 470 Selected Advanced Topics (1–3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.
Architecture/Art

Arch 523 Urban Design Analysis (3)
Analysis of cities based on visual design excellence. Compositional qualities of form, space, light, materials and color. Spatial sequencing and imageability qualities. 1 lecture, 2 laboratories.

Arch 551 Architectural Design (5)
Continuation of Arch 451. Stressing professional initiative and responsibility in integrating architectural design theory and practice with fields influencing the shaping of the total environment. 5 laboratories. 15 units required, no more than 5 units per quarter. Prerequisite: Arch 406, 443, CRP 243, and 15 units of Arch 451

Arch 571, 572, 573 Design Project (2) (2) (2)
A comprehensive architectural design project chosen by the student which will challenge his technical, creative and organizational abilities. Project to involve community or field contact on a team basis. Construction or projects involving other disciplines encouraged. 2 laboratories. Concurrent: Arch 551, 552, 553

ART

Art 201, 202 Fundamentals of Drawing (3) (2)
Analysis and practice in functional drawing, basic design, and study of form. Development of individual techniques. 3 or 2 activity periods.

Art 211, 212 Art History (3) (3)
The chronological study of the significant art and artists in world history. In addition to painting and sculpture, considerable emphasis will be given to the applied arts of each period. 3 lectures.

Art 231 Introduction to Art (3)
Designed to further understanding of painting, sculpture and graphic arts. Development of vocabulary and useful criteria for evaluation. 3 lectures.

Art 232 Orientation to Art Materials (3)
Manipulation and experimentation with a wide variety of art media and techniques. Evaluation of expressive and design qualities in group and individual projects. 3 activity periods.

Art 233 Orientation to Crafts (3)
Basic experiences in three dimensional processes in contemporary crafts with the materials of clay, glass, metal, wood and leather. Emphasis on design as presented through materials and their properties. 3 activity periods.

Art 255 Functions of Design (2)
Survey of design in areas pertinent to the environment. Lecture-discussion related to current design trends. Involvement of the individual in his environment. 2 lectures.

Art 314 American Art (2)
Development of art in any one or more of the ethnic groups or cultures within the western hemisphere. Course will bear a descriptive subtitle. 2 lectures. May be repeated to a total of 6 units. Prerequisite: Art 211, 212 or permission of the instructor.

Art 316 Non-Western Art (2)
Development of art in any one or more of the non-western ethnic groups or cultures. Course will bear a descriptive subtitle. 2 lectures. May be repeated to a total of 6 units. Prerequisite: Art 211 or 212 or permission of the instructor.
Art 321 Applied Color and Design (3)
Study of lines, planes, masses, textures, color, and aspects of space as elements in the structure of the plastic arts. Balance, rhythm, and proportion of any two or more of these elements as utilized in the fine and applied arts. Experience in simple media. 2 lectures, 1 activity period. Prerequisite: Art 231 or consent of instructor.

Art 324, 325, 326 Advanced Crafts (2) (2) (2)
Applied principles of general design and color theory in ceramics, metal work, textile design, simple woodworking, and other craft materials. Emphasis on skill development, material handling, and current methods of applied design. 2 activities. Prerequisite: Art 233 or 321, or consent of instructor.

Art 340, 341 Painting Techniques (2) (2)
Physical characteristics of painting media, creative understanding of pictorial space and color. 2 laboratories. Prerequisite: Art 321, 345, or consent of instructor.

Art 345 Advanced Drawing (3)
Development of methods and techniques in the figurative study of form and structure. Emphasis on relating drawing to individual solutions of problems. 3 activities. Prerequisite: Art 201 and consent of instructor.

Art 347 Sculpture (2)
Introduction to the elements of three dimensional form through the exploration of sculptural techniques. Technical problems in modeling, casting, carving, welding, and other techniques of assembly. 2 activities.

Art 348 Art Metal (2)
Experience in design and creation of jewelry, small sculpture and holloware. Classroom work in copper, brass, silver and gold includes cutting, joining, tooling, and casting techniques. 2 activities.

Art 349 Ceramics (3)
Introduction to ceramic materials and processes; design, slab, coil and wheel forming, glazing; related instruction and evaluation. 3 activities. Prerequisite: Art 233 or consent of instructor.

Art 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Senior standing and consent of instructor.

Art 421 Curriculum and Instructional Procedures in Art (3)
Content, organization and scope of art curriculum in elementary and secondary schools. Evaluation of teaching approaches and procedures that encourage creativity in the arts. 3 lectures.

Art 425 Contemporary Art (3)
Principles of art as expressed in contemporary culture, particularly in the fine and graphic arts. Influence of art expression in developing and expressing individual personality. 3 lectures.

Art 446 Advanced Ceramics (3)
Advanced clay construction, decorating, glazing and firing with emphasis on the use of the potter's wheel. Development of appropriate design. Ceramic theory as a basis for criticism. 3 activities. Prerequisite: Art 349
ASTRONOMY

Astr 101 Elementary Astronomy (3)
Descriptive astronomical properties of the earth, solar system, stars and galaxies. Opportunities for descriptive observations and star identification. Not open to students who have completed former PSc 321, 311 or 312. 3 lectures.

Astr 311 The Solar System (4)
Quantitative and descriptive properties of the solar system including properties of the planets and possible origins of solar system. 3 lectures, 1 laboratory. Prerequisite: Phys 132; Phys 211 strongly recommended.

Astr 312 Stars and Galaxies (4)
Quantitative and descriptive properties of the stars and galaxies including stellar structure and evolution, structure and make-up of our galaxy and the universe. 3 lectures, 1 laboratory. Prerequisite: Phys 132; Phys 211 strongly recommended.

AUDIOVISUAL EDUCATION

AV 329 Commercial Illustration (3) (Offered as PT 335)
Preparation and evaluation of original art copy for commercial use. Laboratory problems in drawing, layout, lettering for single and multiple color runs. Study of various approaches to registration; uses of color and texture in art copy. 1 lecture, 2 activity periods.

AV 431 Audiovisual Instruction: Methods and Materials (3) (Offered as ED 421)
Visual and auditory methods and materials of value in classroom teaching in elementary and secondary schools. Lecture, lecture-demonstration, discussion, previewing, and laboratory work. Planning and correlating use of audiovisual techniques in the classroom. 2 lectures, 1 laboratory. Prerequisite: Ed 312 or consent of instructor.

AV 432 Audiovisual Training for Business and Industry (3) (Offered as ED 422)
Industrial uses of visual and auditory materials in planning training aids, mass communication materials, demonstrations, mockups, models, and conference leading techniques. Planning, previewing, and skill development for business and industry. 2 lectures, 1 laboratory. Prerequisite: Psy 302 or consent of instructor.

AV 433 Audiovisual Production Workshop (3) (Offered as ED 423)
Analysis of advanced problems of instruction, production of materials in relation to these problems, using audiovisual materials and methods. Skill development in problem-solving through contact with materials, equipment, and methods employed in audiovisual communication. 2 lectures, 1 laboratory. Prerequisite: AV 431 or 432, or consent of instructor.

BACTERIOLOGY

Bact 221 General Bacteriology (4)
Morphology, metabolism, classification and identification; bacteriology of air, soil, water, and foods with applications to industry, agriculture, medicine, and public health. 2 lectures, 2 laboratories. Prerequisite: One quarter of college chemistry or Bot 121 or Zoo 131

Bact 322 Dairy Bacteriology (4)
Advanced course for practical work demonstrating the domestic and industrial importance of micro-organisms involved in milk and dairy products: milk, milk powders, fermented milks, evaporated and condensed milks, butter, cheese, cheese starters, and ice cream. 2 lectures, 2 laboratories. Prerequisite: Bact 221
Bacteriology/Biology

Bact 333 Industrial Microbiology (4)
Sanitary and industrial applications of microbiology stressing food, dairy, water, air and sewage; practical aspects of environmental sanitation emphasized. 2 lectures, 2 laboratories. Prerequisite: Bact 221

Bact 342 Sanitary Inspection and Control (2)
Domestic and commercial contamination, epidemiology, stressing practical applications of hygienic practices and methods of correcting and eliminating health hazards. 2 laboratories. Prerequisite: Bact 221

Bact 402 General Virology (3)
Characteristics and classification of animal viruses. Methods for collection of specimens, cultivation and identification of pathogenic viruses. 3 lectures. Prerequisite: Bact 221

Bact 421 Food Microbiology (4)
Physiological activities of microorganisms involved in the preparation, preservation, deterioration and toxicity of foods and related products. Sanitary and public health implications. 2 lectures, 2 laboratories. Prerequisite: Bact 221. Recommended: Chem 226

Bact 423 Public Health Microbiology (4)
Detailed study of pathogenic yeasts, molds, viruses, and bacteria in relation to public health. 2 lectures, 2 laboratories. Prerequisite: Bact 221

Bact 424 Bacterial Cytology and Physiology (4)
Cellular structure and life processes of bacteria; chemical composition, growth and metabolism. General biological implications. 3 lectures, 1 laboratory. Prerequisite: Bact 221, Chem 226. Recommended: Chem 328

Bact 436 Marine Microbiology (4)
Harmful and beneficial marine bacteria and allied microorganisms. Role played by marine microorganisms as biochemical, geological and hydrobiological agents. 2 lectures, 2 laboratories. Prerequisite: Bact 221

Bact 590 Seminar in Bacteriology (1)
Problems and topics in advanced bacteriology selected according to the interest and needs of the students enrolled. Maximum of 3 units. Prerequisite: Graduate status and evidence of satisfactory preparation in bacteriology.

BIOLOGY

Bio 100 Agricultural Biology (3)
Basic biological principles applied to agriculture. This course may not be substituted for General Zoology or General Botany. 2 lectures, 1 demonstration and discussion hour. Not open to degree students for degree credit.

Bio 101 General Biology (3)
Principles of cellular biology, heredity, ecology, and evolution, with emphasis on their relationship to human affairs. Not open to students who have completed Bot 121 or Zoo 131. 3 lectures.

Bio 102 Plant Biology (3)
Structural and functional aspects of plants, with emphasis on seed producers. Not open to students who have completed Bot 121. 3 lectures. Prerequisite: Bio 101
Bio 103 Animal Biology (3)
Structural and functional aspects of animals, with emphasis on man. Not open to students who have completed Zoo 131. 3 lectures. Prerequisite: Bio 101

Bio 127 Natural History (3)
Scope of natural history; formation and identification of features in the physical environment; natural history survey of arachnids, myriapods, and insects. 1 lecture, 2 laboratories.

Bio 128 Natural History (3)
Natural history survey of the plant and animal kingdom; field study and identification of marine intertidal organisms. 1 lecture, 2 laboratories.

Bio 129 Natural History (3)
Principles of field biology and ecology; laboratory and field study of wildflowers, land communities, and freshwater communities; emphasis is on California natural history. 1 lecture, 2 laboratories. Prerequisite: Bio 128

Bio 200 Special Problems for Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

Bio 242 Biological Techniques (3)
Problem recognition, scientific method, scientific literature, instrumentation, and the preparation of specimens for scientific study. 1 lecture, 2 laboratories. Prerequisite: Bot 121, Zoo 131 or Bio 129

Bio 255 Microtechnique (2)
Methods of preparing plant and animal tissues for microscopic study with emphasis on paraffin embedding techniques and staining. 2 laboratories. Prerequisite: Bot 122 or Zoo 132

Bio 301 Human Ecology (3)
Examination of the ways in which man is dependent on his environment, his ability to modify it, and the results of such modification. 3 lectures. Prerequisite: One quarter of biological science.

Bio 303 Genetics (3)
Principles of heredity and variation. 3 lectures. Prerequisite: one quarter of college biology and one quarter of college mathematics.

Bio 304 Advanced Genetics (2)
Recent advances in genetics and cytogenetics. 2 lectures. Prerequisite: Bio 303

Bio 313 Radiation Biology (2)
Interaction and effect of radiation on living cells and organisms. Review of production and characteristics of non-ionizing and ionizing radiation, isotope characteristics useful in the study of bio-systems, health hazards, and health safety problems. 2 lectures. Prerequisite: Phys 123, Chem 121 or 124 and one of the following: Bio 101, 110, Bot 121, Zoo 131

Bio 315 Evolution (2)
Modern concepts of evolutionary mechanisms. 2 lectures. Prerequisite: Bio 303

Bio 325 General Ecology (3)
Study of the interrelationships between plants and animals and their environment in terrestrial, marine, and freshwater situations. 2 lectures, 1 laboratory. Prerequisite: Bio 129 or both Bot 122 and Zoo 132

Bio 328 Marine Biology (4)
Biological and environmental studies of marine organisms, with emphasis on their economic importance. 2 lectures, 2 laboratories. Prerequisite: Bio 129 or both Bot 122 and Zoo 133, or consent of instructor.
Biology

Bio 331 Biosystematics (3)
Major principles of classification, taxonomy, speciation, and nomenclature. Designed primarily for biology majors. Term report required. 2 lectures, 1 laboratory. Prerequisite: Ent 126, Bio 129 or both Bot 123 and Zoo 133

Bio 343 Radiation Laboratory Techniques (2)
Demonstrations and exercises in the use of radioisotopes and the operation of radiation detecting instruments. 2 laboratories. Prerequisite: Bio 313 (may be taken concurrently).

Bio 344 Genetics Laboratory (2)
Laboratory techniques in genetics. 2 laboratories. Prerequisite: Bio 303

Bio 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of the department head.

Bio 423 General Cytology (4)
Detailed study of the structure and function of animal and plant cells. 3 lectures, 1 laboratory. Prerequisite: Bio 303 and either Zoo 133 or Bot 123

Bio 424 Electron Microscopy (3)
Biological applications of electron microscopy including techniques of specimen preparation, design of experiments, interpretation of results and limitations. 1 lecture, 2 laboratories. Prerequisite: Zoo 131, Bot 121 or instructor’s consent.

Bio 431 General Physiology (4)
The functioning, control, and integration of physiological phenomena at various levels from cell to organism. 2 lectures, 2 laboratories. Prerequisite: Chem 226; Bot 122 or Zoo 132

Bio 437 Marine Resources (4)
Present and potential biological and physical resources of the sea with consideration of means for their best utilization. Identification and ecology of pertinent organisms. 3 lectures, 1 laboratory. Prerequisite: Bot 122 and Zoo 133

Bio 442 Quantitative Biology (3)
Design of biological experiments with emphasis on their statistical and computer analysis. 3 lectures. Prerequisite: Junior standing in biology and Math 212

Bio 461, 462 Senior Project (2) (2)
Projects are selected from typical problems which graduates may meet in areas of their future employment. Results are presented in both oral and written reports. Minimum 120 hours total time.

Bio 463 Undergraduate Seminar (2)
Study and discussion of recent developments in the field of biology. 2 meetings. Prerequisite: Senior standing.

Bio 470 Selected Advanced Topics (1-3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

Bio 500 Individual Study (1-3)
Advanced study planned and completed under the direction of a member of the department faculty. Open only to graduate students who have demonstrated ability to do independent work. Enrollment by petition. Prerequisite: Graduate standing and consent of instructor.

Bio 515 History of Biology (3)
Critical survey of the historical development of experimental designs for the solution of biological problems. 3 lectures. Prerequisite: Graduate standing.
Bio 521 Curriculum and Methods in Biological Sciences (3)
Objectives, content, techniques, materials, and recent trends of successful instruction in secondary school biology. 3 lectures. Prerequisite: Graduate standing; evidence of satisfactory preparation in biology, botany and zoology.

Bio 524 Developmental Biology (3)
Developmental phenomena of higher and lower plants, vertebrate and invertebrate animals at the molecular, cellular, histological and organ levels. Each quarter will emphasize a different biological description. 3 units per quarter. May be repeated to a maximum of 9 units. 2 lectures, 1 laboratory. Prerequisite: Graduate standing and evidence of satisfactory preparation in biology.

Bio 535 Bioanalysis (3)
Clinical aspects of hematology, serology, immunology, parasitology, and clinical chemistry. Preparation of bio-technologists for state examinations and clinical and industrial laboratory work. 2 lectures, 1 laboratory.

Bio 590 Seminar in Biology (1)
Problems and topics in advanced biology selected according to the interest and needs of the students enrolled. Maximum of 3 units. 1 lecture. Prerequisite: Graduate status and evidence of satisfactory preparation in biology.

Bio 599 Thesis (3) (3) (3)
Individual research under the general supervision of the staff, leading to a graduate thesis of suitable quality. Prerequisite: Graduate standing and consent of instructor.

BOTANY

Bot 121 General Botany (4)
Introduction to structures and functions of seedbearing plants. 2 lectures, 2 laboratories.

Bot 122 General Botany (4)
Structure and relationships of plant groups from bacteria to angiosperms, emphasis on nonseedbearing plants of economic importance. 2 lectures, 2 laboratories. Prerequisite: Bot 121

Bot 123 General Botany (4)
Introduction to classification and identification of vascular plants, emphasizing the families of major economic importance; field and herbarium techniques. 2 lectures, 2 laboratories. Prerequisite: Bot 121

Bot 238 Native Plant Materials (3)
Identification, habits of growth, cultural requirements and landscape use of native California plants suitable for landscape purposes. 2 lectures, 1 laboratory. Prerequisite: Bot 123

Bot 322 Introductory Plant Physiology (4)
A consideration of the principal physiological processes of plants including water relations, mineral nutrition, photosynthesis, respiration, and growth of the plant. 3 lectures, 1 laboratory. Prerequisite: Bot 121 and Chem 226

Bot 323 Plant Pathology (4)
A comprehensive study of the causes and effects of disease in plants. Designed to lead to an understanding of the science and modern control methods. 3 lectures, 1 laboratory. Prerequisite: Bot 122 or Bot 123

Bot 325 Plant Nematology (4)
Plant parasitic nematodes, their morphology, classification, and the damage they cause plants, alone or in combination with other pathogens. 2 lectures, 2 laboratories. Prerequisite: Bot 323, Ent 126
Botany/Business

Bot 326 Plant Ecology (4)
Effects on plant growth and development of the following environmental factors: soil, water, temperature, light, atmosphere, topography, organisms, and fire. 3 lectures, 1 laboratory. Prerequisite: Bot 123

Bot 334 Morphology of Vascular Plants (4)
Phylogenetic relationships of the plant kingdom as illustrated by comparative morphology of the vascular plants including living and fossil forms. 2 lectures, 2 laboratories. Prerequisite: Bot 123

Bot 335 Plant Anatomy (4)
Microscopic study of vascular plants dealing with the origin, development and structure of cells, tissues and organs. 2 lectures, 2 laboratories. Prerequisite: Bot 122

Bot 337 Algology (4)
Classification of marine and fresh-water algae. Consideration of ecological, physiological and economic aspects. 2 lectures, 2 laboratories. Prerequisite: Bot 122

Bot 343 Advanced Plant Taxonomy (3)
Systems of plant classification and principles on which they are based; use of morphology, cytogenetics, and ecology in classification; rules of botanical nomenclature. 2 lectures, 1 laboratory. Prerequisite: Bot 123

Bot 426 Mycology (4)
Comparative morphology and nuclear behavior of the fungi. A summary of the science with special attention given to forms important in agriculture, medicine and industry. 2 lectures, 2 laboratories. Prerequisite: Bot 122, Zoo 132, or consent of instructor.

Bot 433 Advanced Plant Physiology (4)
Advanced topics in plant physiology. Substructure and function of plant cell walls, cell walls as barriers against infection, plant cell enzymes and cell membranes, plant metabolism, cell wall extension, pigment systems. Application of physiology to taxonomic problems and disease resistance. 2 lectures, 2 laboratories. Prerequisite: Bot 322 or equivalent.

Bot 531 Advanced Plant Pathology (4)
Relationships of plant hosts with their parasites. Methods and materials used in diagnosis of plant diseases and in plant disease research. 2 lectures, 2 laboratories. Prerequisite: Bot 323

Bot 590 Seminar in Botany (1)
Problems and topics in advanced botany selected according to the interest and needs of the students enrolled. Maximum of 3 units. 1 lecture. Prerequisite: Graduate status and evidence of satisfactory preparation in botany.

BUSINESS

Bus 101 The Business Enterprise (4)
Orientation to the Business Administration program. Examination of the business enterprise, stressing its historical, environmental, and economic setting. Business organization and functions. 4 lectures.

Bus 103 Business Reports (3)
Organization and presentation of different types of business reports, including source determination, investigation, writing, and distribution. 3 lectures.

Bus 141, 142 Typing (1) (1)
Designed to teach the fundamentals of the touch system in the shortest time. Training in making out business forms and writing business letters. 3 one-hour periods.
Business

Bus 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

Bus 206 Purchasing (3)
The purchasing function as it applies primarily to manufacturers, utilities and institutions. Representative cases in each major area are studied and emphasis is given to the function of the purchasing department of the company in relation to and in cooperation with other major divisions of the enterprise. 3 lectures.

Bus 301 Business Law Survey (3)
An overview of the field of business law patterned to needs of non-majors. Scope is the same as for Bus 307-308, though in less depth. 3 lectures. Not applicable for credit in Business Administration curriculum. Junior standing or consent of instructor.

Bus 307 Business Law (4)
American law sources, courts, contracts, agency, bailments, carriers, and sales law. 4 lectures. Prerequisite: Junior standing or consent of instructor.

Bus 308 Business Law (4)
Negotiable instruments, partnerships, corporations, real property, personal property, domestic relations, community property, wills and administration, trusts, insurance, suretyship, bankruptcy. 4 lectures. Prerequisite: Bus 307

Bus 319 Business Research (3)
Information gathering principles and techniques used in study and analysis of business activities. 3 lectures. Prerequisite: Stat 212 or consent of instructor.

Bus 321, 322 Business Applications of Data Processing (3) (3)
Programming the computer using current, user-oriented symbolic language appropriate to typical business applications. Systems analysis. Systems and program flow charting. Data input, storage, processing, and output media and techniques. 2 lectures, 1 two-hour laboratory. Prerequisite: CSc 100 or ability to program in COBOL; Actg 131 or 221 or consent of instructor.

Bus 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Senior standing or consent of instructor.

Bus 401 Techniques for Teaching Business Subjects (3)
Organization and correlation of materials and techniques in business. Organization of course outlines, teaching units, and instruction sheets. 3 lectures.

Bus 404 Business and Government (3)
Development of legal controls of business, with emphasis on problems in constitutional and administrative area; legal aspects of business organization; anti-trust laws and competition; securities regulation; consumer protection. 3 lectures. Prerequisite: Bus 301 or 307 or consent of instructor.

Bus 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Formal report is required. Required minimum of 120 hours.

Bus 465 Undergraduate Seminar (2)
Seminar in developments in business with emphasis on business ethics and morals. 2 meetings. Prerequisite: Senior standing or special permission.

Bus 470 Selected Advanced Topics (1-3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.
BUSINESS ADMINISTRATION

BA 500 Independent Study (1-3)
Advanced study planned and completed under the direction of a member of the department faculty. Open only to graduate students who have demonstrated ability to do independent work. Enrollment by petition. Prerequisite: Consent of the department head.

BA 501 Accounting for Planning and Control (3)
Application of accounting to management planning, control and information systems. Case and problem analysis in budgetary control, standard and direct costing, decentralized profit control, inter-division transfers, and long-range planning. 3 lectures. Prerequisite: BA 510 or equivalent.

BA 506 Business and Society (3)
Modern business organization as a quasi-economic, legal-social entity including examination of widely held views, philosophical and ethical considerations, conceptual foundations, and customer-employee-government-stockholders-public interrelationships. 3 lectures. Prerequisite: Bus 301 or equivalent.

BA 508 Marketing Management I (3)
Detailed analysis of marketing management, policy planning or strategy formulation, organizing, directing and coordinating marketing activities. 3 lectures. Prerequisite: Mktg 204 or equivalent.

BA 509 Marketing Management II (3)
Application of quantitative and qualitative tools, introduced in previous quarters of the integrated program, to marketing problems. 3 lectures. Prerequisite: BA 508 or consent of instructor.

BA 510 Foundations in Accounting (4)
Principles and practices of fundamental accounting. Introduction to cost accounting and financial statement analysis. 4 lectures. Prerequisite: Graduate standing.

BA 511 Micro-Economics (3)
Analysis of production, demand, supply, costs, market structures, factor pricing, and policy decision making by business firms and consumers. 3 lectures. Prerequisite: Ec 212 or equivalent.

BA 512 Macro-Economics (3)
Analysis of aggregative economics. Theories of income, output, employment; growth of the economy; economic policies. 3 lectures. Prerequisite: Ec 212 or equivalent.

BA 513 Operations Management (3)
Application of analytical tools to problems in operations and production systems. Emphasis on models and techniques in operations planning and control and systems design for management. 3 lectures. Prerequisite: BA 527 or equivalent.

BA 518 Labor Relations in the Public Sector (3)
History of labor relations at the federal-state-local level. Comparative relations between union organizations, policies, and practices within the public and private sectors. Emphasis will be placed on current issues. 3 lectures. Prerequisite: BA 584 or consent of instructor.

BA 520 Foundations in Finance (2)
Problems of financing current and fixed assets from internal and external sources. Emphasis on analysis, planning and control. 2 lectures. Prerequisite: Graduate standing.
Business Administration/Chemistry

BA 522 Money and Capital Markets
Capital markets and non-bank financial intermediaries. Factors that affect supply, demand, and interest rates in these markets. 3 lectures. Prerequisite: BA 511 or consent of instructor.

BA 525 Business Finance (3)
Complex issues and models related to financial management and policy. Problems in capital budgeting, optimal financial structure, working capital management, and financing dynamic growth; case analysis and simulation to correlate theory and application. 3 lectures. Prerequisite: BA 501 and 511 or equivalent.

BA 527 Quantitative Methods I (3)
Applications of mathematical and statistical techniques to business and economic problems of broad significance to management. Case analysis and numerical solution by computer. 3 lectures. Prerequisite: Math 540 and Stat 540 or equivalent and consent of instructor.

BA 528 Quantitative Methods II (3)
Additional specialized business problems. Optimization of probabilistic processes and analysis of risky decisions using appropriate mathematical and statistical techniques. Case analysis, numerical solution and simulation by computer. 3 lectures. Prerequisite: BA 527 or equivalent and consent of instructor.

BA 530 Foundations for Management (3)
Examination of major theories and conceptual ideas relating to the nature and behavior of formal organizations; historical development of organizational theory and structure. Current issues. 3 lectures. Prerequisite: Graduate standing.

BA 581, 582, 583 Seminar in Applied Decision Making (4) (4) (4)
Problem definition and management decision making. Case analysis, demonstrations, simulations, role playing, and management games aimed at integrating and synthesizing material in the graduate curriculum. Application of analytical tools. Human resources implications. Dynamic functional and environmental factors. 4 meetings. Prerequisite: Graduate standing.

BA 584 Seminar in Human Resources Management (3)
Class discussion and selected readings relating to the management of people in organizations. Manpower policy, behavioral science research, utilization of minority and hard-core personnel, industrial relations ramifications. 3 meetings. Prerequisite: BA 530 or equivalent.

CHEMISTRY

Chem 106 Introductory Chemistry (3)
Metric system, density, chemical symbols, chemical formulas, nomenclature, kinetic-molecular theory, chemical equations, gas laws, the concept of the mole, molarity, normality and stoichiometric calculations. An introductory course in chemistry, not open to students who have credit for a college chemistry course. 3 lectures. Prerequisite: Math 103 or equivalent.

Chem 121 General Inorganic Chemistry (4)
Fundamental principles including atomic structure, bonding, nomenclature, chemical equations, states of matter, solutions, some non-metals. Not open to students with credit for Chem 124. 3 lectures, 1 laboratory. Prerequisite: Chem 106 or recommendation of faculty adviser.

Chem 122 General Inorganic Chemistry (4)
Electrochemistry, equilibria, non-metals with application to fertilizers, colloids, an introduction to metals and nuclear chemistry. Not open to students with credit for Chem 125. 3 lectures, 1 laboratory. Prerequisite: Chem 121
Chemistry

Chem 124 General Chemistry (4)
General principles including atomic structure, nuclear chemistry, and oxidation-reduction. Primarily for engineering majors. Not open to students with credit for Chem 121. 3 lectures, 1 laboratory. Prerequisite: Chem 106 or recommendation of faculty adviser.

Chem 125 General Chemistry (4)
Continuation of Chem 124. Introduction to the carbon compounds emphasizing fuels and synthetic polymers. Not open to students with credit for Chem 122. 3 lectures, 1 laboratory. Prerequisite: Chem 124

Chem 126 General Chemistry (4)
Chemical equilibria, compounds of the metals, qualitative analysis of the metal ions in the laboratory. 3 lectures, 1 laboratory. Prerequisite: Chem 122 or 125

Chem 143 General Chemistry Laboratory (1)
Additional laboratory to be taken with Chem 126. Includes semi-micro qualitative study of the nonmetals. 1 laboratory. Prerequisite: Chem 122 or 125

Chem 200 Special Problems for Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

Chem 226 Organic Chemistry (4)
The fundamental concepts of organic chemistry with applications to agricultural and industrial processes. 3 lectures, 1 laboratory. Prerequisite: Chem 122 or 125

Chem 305 Physical Chemistry (3)
Physical and molecular constitution of gases; kinetic theory; atomic structure; elementary chemical thermodynamics and thermochemistry; chemical statistics; introduction to phase equilibria. 3 lectures. Prerequisite: Phys 123 or 133, Chem 126, Math 141

Chem 306 Physical Chemistry (3)
Phase equilibria, solutions; distillation theory; colligative properties; electrochemistry with analytical applications; non-ideal systems, chemical kinetics, radioactivity. 3 lectures. Prerequisite: Chem 305

Chem 313 Chemical Process Principles (3)
Fundamental terms, concepts, and principles used in the chemical processing industries. 3 lectures. Prerequisite: Chem 226 or consent of the instructor.

Chem 327 Organic Chemistry (5)
A more complete study of the types of organic compounds along with some reaction mechanisms. The laboratory is largely organic preparation. 3 lectures, 2 laboratories. Prerequisite: Chem 226

Chem 328 Biochemistry (4)
Fundamental chemistry of carbohydrates, proteins, fats, vitamins, enzymes and hormones as applied to their function in plant and animal metabolism. Special reference to the chemistry involved in the use, analysis and manufacture of feeds, foods and other agricultural products. 3 lectures, 1 laboratory. Prerequisite: Chem 226

Chem 329 Biochemistry (4)
Applied cellular biochemistry, nucleic acids, protein synthesis, virus, molecular geometry, antimetabolites, antibiotics, hormones, pharmacodynamics and laboratory animal techniques. 3 lectures, 1 laboratory. Prerequisite: Chem 328
Chemistry

Chem 331 Quantitative Analysis (4)
Analytical techniques of industrial significance stressing titrimetric procedures in the laboratory based on acidimetry, alkalimetry and redoximetry. Applications of chemical equilibrium and methods of problem solving. 2 lectures, 2 laboratories. Prerequisite: Chem 126

Chem 332 Quantitative Analysis (4)
Analytical techniques stressing procedures based upon titrimetric precipitometry, gravimetric analysis and continuation of redoximetry. Properties of precipitates and colloids as applied to industrial analytical chemistry. 2 lectures, 2 laboratories. Prerequisite: Chem 331

Chem 335 Quantitative Physiological Chemistry (3)
Quantitative determination of metabolites in biological fluids. Medical laboratory techniques in analysis of serum, blood and urine for glucose, nitrogenous substances, electrolytes, hormones, enzymes; blood gas analysis and blood pH determination. 1 lecture, 2 laboratories. Prerequisite: Chem 328

Chem 337 Biophysical Chemistry (4)
Physical methods for studying biological systems. A study of biopolymers and cellular organelles based on bioenergetics. 3 lectures, 1 laboratory. Prerequisite: Phys 123, Chem 328, 331

Chem 338 Organic Chemistry (5)
A continuation of Chem 327, including carbohydrates, sulfur compounds, heterocyclic compounds, natural products, stereochemistry, steroids, reaction mechanisms, organic preparations in the laboratory. 3 lectures, 2 laboratories. Prerequisite: Chem 327

Chem 342 Laboratory Glassblowing (1)
Techniques of glassblowing applied to the making of simple laboratory apparatus. 1 laboratory. Prerequisite: Chem 121 or 124

Chem 343 Qualitative Organic Analysis (4)
The experimental determination of the identity of organic compounds. Special reference to those compounds used in agriculture. 1 lecture, 3 laboratories. Prerequisite: Chem 327

Chem 355 Physical Chemistry Laboratory (1)
Experimental studies of gases, solutions, thermochemistry and chemical equilibria. 1 laboratory. Corequisite: Chem 305

Chem 356 Physical Chemistry Laboratory (1)
Experimental studies of phase rule, electrochemistry and chemical kinetics. 1 laboratory. Corequisite: Chem 306

Chem 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of the department head.

Chem 402 Inorganic Chemistry (3)
A systematic study of important elements based on periodic grouping and atomic structure with emphasis on chemical bonding, coordination compounds, and acid-base relationships. 3 lectures. Prerequisite: Chem 306 or permission of instructor.

Chem 403 Advanced Organic Chemistry (3)
A detailed study of the mechanisms of organic reactions and related topics. 3 lectures. Prerequisite: Chem 327, 305 or permission of instructor.

Chem 415 Advanced Physical Chemistry 1 (3)
Chemical structure. Fundamentals of quantum chemistry, spectroscopy, and the electronic structure of atoms and molecules. Contemporary bonding theories. 3 lectures. Prerequisite: Chem 437
Chemistry

Chem 416 Advanced Physical Chemistry II (3)
Molecular spectra, magnetic resonance spectra, statistical thermodynamics and applications, chemical kinetics and rate theory, advanced electrochemistry. 3 lectures. Prerequisite: Chem 415

Chem 428 Biomacromolecules (4)
Cell growth, differentiation, and control. Biochemical genetics, genetic code, protein synthesis and conformation. Physical methods for enzyme systems. 3 lectures, 1 laboratory. Prerequisite: Chem 329

Chem 434 Advanced Biochemistry (4)
Intermediary metabolism, hereditary molecular diseases, enzyme kinetics, bioenergetics, photosynthesis. Agricultural and industrial applications. 3 lectures, 1 laboratory. Prerequisite: Chem 329

Chem 435 Food Analysis (4)
Techniques used commercially in the chemical analysis of seed and cereal crops, fruit and vegetable crops, forage crops, meat and meat products, milk and dairy products, eggs and poultry products. Vitamin determinations, microbiological assay, quality control, taste testing, legal specifications, grading and labeling. 3 lectures, 1 laboratory. Prerequisite: Chem 328

Chem 436 Agricultural Chemicals (4)
Chemistry of fungicides, insecticides, rodenticides, plant growth regulators, soil conditioners, and fertilizers. Special reference to the analysis, manufacture, toxicology, legal specification, and regulations. 3 lectures, 1 laboratory. Prerequisite: Chem 328

Chem 437 Physical Chemistry (4)
Physical chemistry of the liquid and solid states. Chemical bonding and molecular structure; spectroscopy, diffraction, electrical and magnetic properties of molecules. Surface chemistry and catalysis. 3 lectures, 1 laboratory. Prerequisite: Chem 306 and 356 or consent of instructor.

Chem 439 Instrumental Analysis (4)
Optical, electroanalytical and other techniques of modern instrumental analysis. Current industrial applications. Laboratory work in instrumental methods is emphasized. 2 lectures, 2 laboratories. Prerequisite: Chem 331, 306, and 356

Chem 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

Chem 463 Undergraduate Seminar (2)
Oral presentations of current developments in chemistry based on periodical literature. 2 meetings.

Chem 470 Selected Advanced Topics (1–3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Chem 305, 327 or consent of instructor.

Chem 513 Advanced Inorganic Chemistry (3)
Selected topics concerning the structures and related properties of inorganic compounds. 3 lectures. Prerequisite: Graduate standing.
CHILD DEVELOPMENT

CD 103 The Beginning Family (3)
Relationships and adjustments in family living with emphasis on the beginning stage of the family life cycle. For both men and women. 3 lectures.

CD 108 Child, Family, and Community (2)
Influence of family, society, and cultural forces on behavior of children. Role of parents, teachers, and professional workers on the healthy personality development of the child. Field trips and home visits required. 2 lectures.

CD 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

CD 222 Family and Community Health (2)
Principles in individual, family, and community health related to psychology, physiology, sociology, and economics. 2 lectures. Prerequisite: Sophomore standing.

CD 232 Child Development—Infancy (3)
Basic principles of development. Growth and development from conception through infancy. Characteristic behavior patterns of the young child in relation to environment. Field trips and observations required. 3 lectures. Prerequisite: Psy 202, CD 103

CD 233 Child Development—Preschool Years (3)
Development and behavior of the preschool child on the basis of current knowledge in child development. Intellectual, physical, emotional, social, and moral development of the preschool child. Controlled observations in the laboratory nursery school. 3 lectures. Prerequisite: Psy 202, CD 232

CD 301 Afro-American Pre-School Child (3)
Cultural and environmental factors that influence the growth and development of the pre-school Afro-American child. Field trips are required. 3 lectures. Prerequisite: Sophomore standing.

CD 302 Mexican-American Pre-School Child (3)
Cultural and environmental factors that influence the growth and development of the pre-school Mexican-American child. Field trips are required. 3 lectures. Prerequisite: Sophomore standing.

CD 313 Parent Education (2)
Nature, extent, and significance of the parent education movements; home and school relationships; methods and resources; training professional lay leaders; local and state program; present trends and future developments. 2 lectures. Prerequisite: Junior standing.

CD 319 Nursery School Programming (2)
Application of principles of development to planning the nursery school program. Emphasis given to planning specific creative activities appropriate for the nursery school child. 2 lectures. Prerequisite: CD 233, junior standing.

CD 320 Nursery School Participation (3)
Experience in application of principles of development, maturation, and guidance of young children in a group situation. 1 lecture, 2 laboratories. Prerequisite: CD 233, 319, junior standing or above.

CD 403 Supervised Nursery School and Community Experience (6)
Participation, teaching, and allied activities in a day care center, private nursery school, or cooperative nursery school under the supervision of a selected nursery school teacher or community action director. Consultation with college supervisors. Prerequisite: CD 313, consent of instructor.
Child Development/City Planning

CD 404 Administration of Child Development Programs (2)
Preparation for administering nursery school and day care centers. Minimum and recommended standards for housing, equipment, outdoor play space, teacher-child ratio, health supervision, meal planning, selection of personnel. Program planning and supervision. 2 lectures. Prerequisite: CD 319, 320

CD 405 Family Development (3)
Dynamics of family interaction at each stage of the life cycle. Emphasis on developmental tasks, socio-economic and cultural influences, and family differences. 3 lectures. Prerequisite: Senior standing.

CD 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision, the project to be related to a probable field of employment. Results of the study are presented in a formal report. Minimum of 120 hours total time.

CD 463 Undergraduate Seminar (2)
Study and discussion of current developments in the field of child development. 2 lectures. Prerequisite: Senior standing.

CD 470 Selected Advanced Topics (1-3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

CD 533 The Child in Contemporary Culture (4)
Development of children in the home and family in relation to contemporary society. Emphasis upon research findings. Responsibility in the Child Care Laboratory and selected field experiences. 2 lectures, 2 laboratories. Prerequisite: CD 233 or consent of instructor.

CITY AND REGIONAL PLANNING

CRP 211, 212 Introduction to Urban Environment (3) (3)
History and analysis of social and technological factors which have influenced the physical growth of cities. Philosophical approaches. Problems of growth and the development of various theories of city planning. Recommended for all majors. 3 lectures. Prerequisite: Eng 105

CRP 243 Introduction to Urban Environment (2)
Design applications of CRP 211, 212. 2 laboratories. Prerequisite: CRP 212

CRP 301, 302, 303 Planning Theory (2) (2) (2)
Planning theory and related topics. Environmental engineering and public health. 2 lectures. Prerequisite: CRP 243, Arch 253

CRP 304 Zoning (2)
Zoning theory and legal background. Historical and current land districting practices. Zoning as a device to guide urban growth; the zoning ordinance, the districting plan; relationship to the general plan. Economic and social ramifications. New concepts. 2 lectures.

CRP 351, 352, 353 Planning Laboratory (4) (4) (4)
Case study application of planning theory to the community, its components, and to the city and the region. Relationships of city spaces and structures. Re-development. Field trips. Individual, team, and interdisciplinary approaches. Computer applications. 4 laboratories. Prerequisite: CRP 243, Arch 253

CRP 400 Special Problems for Advanced Undergraduates (1-2)
Individual or group investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter.
CRP 401, 402, 403 Planning Theory (2) (2) (2)
Advanced planning theory and related topics. Law and human ecology. 2 lectures. Prerequisite: CRP 243, 303, 353

CRP 411 Implementation Techniques (2)
Procedures in enlisting and sustaining community interest in city and regional plan implementation. Field trips. 2 lectures. Prerequisite: Arch 349

CRP 418 New Town Planning (2)
History, present situation and future of new town planning in the United States. Relationship to other countries. 2 lectures. Prerequisite: Arch 243

CRP 451, 452, 453 Planning Laboratory (4) (4) (4)
Continuation of CRP 351, 352, 353. 4 laboratories. Prerequisite: CRP 243, 303, 353

CRP 457 Planning Information Systems (2)
Use of a problem-oriented system to retrieve statistical information pertinent in planning. 2 activities. Prerequisite: Math 211, Arch 250, 4th year standing.

CRP 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time. Prerequisite: Senior standing.

CRP 463 Undergraduate Seminar (2)
Discussion and lectures on problems of the planning field. Students to select current topics, research, organize material, arrange for exhibits, guest speakers and present topics in open meetings. 2 meetings.

CRP 470 Selected Advanced Topics (1-3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

COMPUTER SCIENCE

CSc 100 Data Processing (2)
Functions and applications of automatic data processing equipment. Fundamentals of high speed processing of information and computation, with applications to analysis and information retrieval for decision making. Analysis and discussion of typical situation problems. 2 lectures.

CSc 101 Fortran Programming (1)
Emphasis on programming techniques for mathematical analysis. Business and science applications. 1 activity.

CSc 110 Computers and Computing (3)
Applications of computers in modern society. Survey of the development of the art of computing and of computing devices from ancient times to the modern digital computer. Relationship of mathematics to computing procedures. How computers are programmed. 3 lectures.

CSc 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

CSc 218 Boolean Algebra and its Applications (3)
Boolean Algebra; applications to the algebra of propositions; applications to switching, control, and computation circuits. 3 lectures.

215
CSc 219 Linear Programming (3)
Introduction to linear programming, the simplex and the dual problems. Use of linear programming techniques to solve scheduling problems and transportation problems. 3 lectures. Prerequisite: 6 units of college mathematics.

CSc 221 Digital Computer Symbolic Programming (3)
Coding of general purpose and special purpose digital computers, preparation of programs for general purpose computers, sub-routines. 3 lectures. Prerequisite: CSc 101 or equivalent.

CSc 222 Digital Computer Symbolic Programming (3)
Extension and amplification of language studied in CSc 221. Use of auxiliary storage, writing of subroutines, advanced programming techniques. 3 lectures. Prerequisite: CSc 221

CSc 301 Advanced Fortran Programming (2)
Programming in extended Fortran language with emphasis on program efficiency and advanced features. Comparison of Fortran implementations. 2 lectures. Prerequisite: CSc 101 and junior standing.

CSc 304 Digital Computer Programming (3)
Principles and techniques of programming for a large modern digital computer. Assembly program usage, subroutines, timing problems, and data processing. 3 lectures. Prerequisite: CSc 221 or consent of instructor.

CSc 332 Introduction to Numerical Methods (3)
Numerical solution of algebraic and transcendental equations and systems of equations, finite differences, interpolation, numerical integration, and numerical solution of ordinary differential equations. 3 lectures. Prerequisite: Math 242 or consent of instructor.

CSc 333 Numerical Analysis (3)
Continuation and expansion of CSc 332. Methods for the solution of equations and systems of equations, interpolation, the solution of ordinary and partial differential equations; emphasis on methods suitable for the application of electronic digital computers. 2 lectures, 1 activity period. Prerequisite: CSc 332 and ability to program in Fortran.

CSc 340 Cobol Programming (3)
Structure of the Common Business-Oriented Language (COBOL). Coding fundamentals and program logic. Writing of complete Cobol programs applied to typical business data processing problems. 3 lectures. Prerequisite: Bus 321 or another programming course.

CSc 350 Systems Analysis (3)
Analysis of administrative and management problems to develop systems utilizing automatic data processing equipment. New and improved procedures, methods and organizational structure to obtain desired objectives. 3 lectures. Prerequisite: Bus 321 or a course in computer programming.

CSc 351 Algorithmic Compilers (3)
Formal languages, their decomposition and compiling. Binding and localizing variables using block structures in the analysis of compilers. Dynamic allocation of storage between sections of a process. 3 lectures. Prerequisite: CSc 304 or equivalent.

CSc 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies or surveys of selected problems. Total credit limited to 4 units, with not more than 2 units in any one quarter. Prerequisite: Permission of the department head.

CSc 451 Programming Languages (3)
Selected digital computer programming languages and their adaptability to various fields of application. 3 lectures. Prerequisite: CSc 304 or equivalent.
CSc 452 Computer Programming Systems (3)
Design of assembly systems, macro instructions, program intercommunication and linkage. Structure and use of program libraries. Input and output programming systems, debugging systems and source language debugging. Assembly systems and software. Batch processing and executive systems. 3 lectures. Prerequisite: CSc 304 or equivalent.

CSc 453 Multi-programming and Multi-processor Systems (3)
Interrupt, sequential, and multi-programming systems. Priorities and scheduling. Time sharing systems. Use of bulk memory. Simple two-processor systems and programming. System and language requirements. 3 lectures. Prerequisite: CSc 452 or equivalent.

CSc 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

CSc 463 Undergraduate Seminar (2)
Reports and discussions by students through seminar methods, based on their senior projects and on other topics relating to computer usage and programming which are of interest to persons preparing for a career in computer science. 2 activity periods.

CSc 470 Selected Advanced Topics (1-3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

CSc 531 Numerical Analysis (3)
Approximations to functions useful in computers including minimax approximations. Numerical solution of linear systems with special reference to computer applications and to error analysis. 3 lectures. Prerequisite: CSc 332.

CSc 533 Numerical Solution of Partial Differential Equations (3)
Numerical procedures for solution of parabolic, elliptic, and hyperbolic partial differential equations, with emphasis on computer techniques. Analysis of convergence and stability problems. 3 lectures. Prerequisite: CSc 333.
Conservation/Crops

CONSERVATION

Cons 311 Introductory Conservation (2)
Basic principles and problems of conservation. Organization, control and inter-
relationships of government and private agencies dealing with the conservation of
natural resources. 2 lectures. Prerequisite: Junior standing.

Cons 431 Game Management (4)
General principles, problems and techniques of increasing the harvest of water-
fowl, upland game and big game. The identification and life histories of important
western game species. 3 lectures, 1 laboratory. Prerequisite: Bio 325 or ASci 229
or Zoo 326

Cons 433 Inland Fisheries (4)
Habitat improvement, harvesting and propagation of trout and warmwater fish.
Identification and life histories of important western species. Farm pond manage-
ment. 3 lectures, 1 laboratory. Prerequisite: Bio 325 or Chem 226

CROPS SCIENCE

CrSc 100 General Agricultural Pest Control (4)
Identification and control of common pests of agriculture. Safe use of pest con-
trol materials. Natural and chemical control of injurious insects, rodents, birds and
diseases in the field and in storage. 3 lectures, 1 laboratory. For technical students
only.

CrSc 123 Forage Crops (4)
Production, harvest, and utilization of principal California forage crops. Identifi-
cation and utilization of forage plants studied in the field. A one-day field trip is
required. 3 lectures, 1 laboratory.

CrSc 131 Concepts of Crop Production (4)
Production principles for field and vegetable crops. Fundamental botany, taxon-
omy and cultural practices. Soil tillage, fertilization, seed selection, planting and
harvesting methods, irrigation, weed control, pest control, and crop rotation.
Production practices for cotton and sugar beets. 3 lectures, 1 laboratory. Credit
will not be allowed for both CrSc 131 and CrSc 230

CrSc 132 Combine Harvest Crops (4)
Production, adaptation, distribution, and utilization of major crops harvested by
combine including cereals, large seeded legumes, milo, flax, corn, and safflower.
Field trips to major California cereal production areas. 3 lectures, 1 laboratory.
Prerequisite: CrSc 131 or VgSc 230

CrSc 133 Row Crops (4)
Adaptation, production, and utilization of major row crops such as potatoes, sweet
corn, tomatoes, artichokes, garlic, onions, asparagus, and peas. 3 lectures, 1 labora-
tory. Prerequisite: CrSc 131 or VgSc 230

CrSc 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total
credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Per-
mission of department head.

CrSc 221 Weed Control (4)
Identification, life histories, and control of common, noxious, and poisonous
California weeds. Weed control chemicals and equipment for cultivated crops, irri-
gation systems, range, wastelands. 3 lectures, 1 laboratory. Prerequisite: Sophomore
standing

218
CrSc 223 Vertebrate Pest Control (3)
Vertebrate pests injurious to agriculture crops, livestock, and stored products, with emphasis on ground squirrels, rats, mice, birds, gophers, and other animals. Life habits, identification, control methods, and materials. Related laws and regulations. 2 lectures, 1 laboratory.

CrSc 230 General Field Crops (4)
Production, harvest, and use of important cereal and field crops in California. Production areas, crop rotations, disease and pest control. 3 lectures, 1 laboratory. Credit will not be allowed for both CrSc 131 and 230.

CrSc 231 Commercial Seed Production and Processing (4)
Production and processing of certified and commercial seed including seed analysis, germination, quality control, cleaning and storage techniques, and seed laws. 3 lectures, 1 laboratory. Prerequisite: CrSc 132 or 133.

CrSc 303 Agricultural Code of California (3)
Services and procedures of the California Agricultural Code. Provisions of the Agricultural Code and other laws affecting agricultural industries, particularly plant industries. Grain warehouse inspection, seed inspection, county agricultural departments, plant quarantine and standardization. 3 lectures.

CrSc 304 Plant Breeding (4)
Application of principles of plant improvement through selection, hybridization, and utilization of hybrid vigor. 3 lectures, 1 laboratory. Prerequisite: Bio 303.

CrSc 305 Agricultural Inspection and Services (3)
Purpose and functions of county departments of agriculture and the related functions within the State Department of Agriculture. Basic background material to qualify students for the eight specific County Inspectors Examinations. 3 lectures. Prerequisite: CrSc 303.

CrSc 311 Principles of Pest Control (4)
Principles of controlling insects and vertebrate pests of importance to California field, fruit and vegetable crop production. Sprays, dusts, fumigants, poisons, sanitation, and cultural controls. Application methods and equipment will be stressed. 3 lectures, 1 laboratory.

CrSc 321 Crop Disease and Pest Control (4)
Study and field identification of disease and insect pests of field, fruit and vegetable crops. Prevention and control of specific insect, disease and nematode problems. Pesticide chemicals including formulations, compatibility and modes of action. 3 lectures, 1 laboratory. Prerequisite: CrSc 311, Ent 126, Bot 323.

CrSc 322 Crop Technology (4)
Grades and laboratory tests for quality of California field crops. The effects of harvesting, storage, and quality control on market value and processing. 3 lectures, 1 laboratory. Prerequisite: CrSc 132, 133.

CrSc 323 Tropical Crop Production (4)
Production distribution, adaptation and utilization of major field and vegetable crops of economic importance in tropical and subtropical areas. 3 lectures, 1 laboratory.

CrSc 325 Hay and Processed Forage Crops (3)
Intensive study of hay, dehydration and silage making procedures. Storage facilities, grades and market values, anti-oxidants and feed additives that affect bloat and feed quality. 2 lectures, 1 laboratory. Prerequisite: Chem 121.

CrSc 330 Irrigated Pasture and Range (4)
Identification, production, utilization of irrigated pasture crops and range plants. A study of grazing systems and the merits of mixtures and non-mixtures. A field trip to a production area may be required. 3 lectures, 1 laboratory. Prerequisite: CrSc 131 or CrSc 230.
Crops/Dairy Husbandry

CrSc 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head

CrSc 410 Crops Physiology (3)
Practical studies in plant nutrition, soil-water-plant relationships, seed physiology, growth regulators, pesticide reactions, and controlled environments. 3 lectures. Prerequisite: Bot 122, SS 221, Bot 126 or 223, and Chem 328

CrSc 411 Experimental Techniques and Analysis (4)
Principal methods of experimental design and analysis of collected data. Field practice in planning and lay-out with emphasis on management of agronomic and soils experiments. 3 lectures, 1 laboratory. Prerequisite: Junior or senior standing and Math 103 or equivalent.

CrSc 421 Oil and Fiber Crops (4)
Culture, harvest, grading, and marketing of cotton, flax, safflower, castor beans, minor oil and fiber crops. Field trips to major centers of production and marketing are required. 3 lectures, 1 laboratory. Prerequisite: CrSc 131 or 230

CrSc 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

CrSc 463 Undergraduate Seminar (2)
Oral presentation and leadership of group study on recent developments in the major field. 2 lectures.

CrSc 470 Selected Advanced Topics (1–3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

CrSc 521 Advanced Field Crop Production (4)
Production and management of field crops under both intensive and extensive cultural practices; interaction between the various growth factors at various levels of production and interaction of cultural practices and plant requirements. 3 lectures, 1 laboratory. Prerequisite: Permission of the instructor.

CrSc 581 Graduate Seminar in Crop Production (3)
Group study and oral reports on current technical problems and research results pertaining to field and vegetable crops production or marketing. 3 lectures.

DAIRY HUSBANDRY

DH 101 Dairy Feeds and Feeding (2)
Identification and classification of feeds; simple use of food nutrients, protein, fat, and carbohydrates; methods of preparing feeds; relative values of common feeds for each class of livestock with special attention to dairy cattle, the use of byproduct feeds. 2 lectures.

DH 102 Feeding Dairy Cattle (2)
Balancing dairy cattle rations. Feeding practices and nutritional requirements. 2 lectures. Prerequisite: DH 101

DH 121 Elements of Dairying (4)
General introductory dairying course. General information on statistics and opportunities in the dairy industry. Composition and food value of dairy products. Common tests to determine quality of products. Principles and practices of the feeding and management of dairy cattle. 3 lectures, 1 laboratory.
DH 133 Fitting and Showing Dairy Cattle (2)
Selection, preparation, presentation of dairy cattle for shows, sales, and photographing. 1 lecture, 1 laboratory.

DH 142 Dairy Cattle Judging (2)
Selection of dairy cattle with consideration to breed characteristics and conformation. Correlation between type and production. 2 laboratories.

DH 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

DH 221 Milk Production (4)
Factors affecting milk production. Dairy production problems and methods. Practice in many of the frequently used dairy production skills. 3 lectures, 1 laboratory. Prerequisite: DH 102, 121, 142

DH 222 Commercial Dairy Herd Management (4)
Commercial dairy practices from the standpoint of cost of feeding and management. Visits are made to successful dairy farms. 3 lectures, 1 laboratory. Prerequisite: DH 221

DH 230 General Dairy Husbandry (4)
Selection, breeding, feeding, and management of dairy cattle. Composition and food value of dairy products. Dairy industry statistics and opportunities. Producing and handling products. A general course for other than dairy majors. 3 lectures, 1 laboratory.

DH 233 Advanced Dairy Cattle Judging (2)
Advanced practice in the comparative judging of dairy cattle. Detailed scoring and classifying cattle on conformation with extensive training on giving oral reasons. Visits to breeding establishments and shows. Judging teams may be selected in this class. 1 lecture, 1 laboratory. Prerequisite: DH 142

DH 301 Advanced Dairy Cattle Feeding (2)
Nutrition requirements of dairy cattle. Successful, economical feeding practices. 2 lectures. Prerequisite: DH 102

DH 323 History of Breeds and Pedigrees (4)
Origin of modern dairy cattle breeds, organization of cattle clubs. Breed families and herds. Practice in compiling pedigrees. 3 lectures, 1 laboratory. Prerequisite: DH 221

DH 326 Purebred Dairy Herd Management (4)
Methods and problems in establishing, breeding, feeding, and management of a purebred dairy herd and farm. Visits are made to leading purebred dairy farms and to purebred cattle sales. 3 lectures, 1 laboratory. Prerequisite: DH 222, 233, 301, 323

DH 330 Artificial Insemination (2)
Techniques in the collection, evaluation, processing, storage and shipment of semen. Insemination procedures. Fertility problems. Record keeping. 1 lecture, 1 laboratory. Prerequisite: DH 121 or AH 121, VS 123 or VS 100

DH 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

DH 422 Breeding and Selection of Dairy Cattle (4)
Evaluation of inherited characteristics in dairy cattle from an economic standpoint. Proving and selecting sires and dams. 3 lectures, 1 laboratory. Prerequisite: Bio 303, DH 142

Dairy Husbandry

221
Dairy Husbandry/Dairy Manufacturing

DH 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

DH 463 Undergraduate Seminar (2)
Reports on student papers, bulletins, periodical articles, and dairy research experiments. Sources of dairy husbandry information. Practice in oral reporting. Late developments and research work in the dairy industry. 2 lectures.

DH 470 Selected Advanced Topics (1–3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

DH 519 Advanced Animal Genetics (3)
Application of advanced genetic principles to a program of animal improvement. Mating systems, methods of selection and expected gains. Genetic basis of estimates or heritability, repeatability, genetic correlation, and the development of economical selection indices. 3 lectures. Prerequisite: Bio 303 and permission of instructor.

DH 581 Graduate Seminar in Dairy Production (3)
Current findings and research problems in the field and their application to the industry. 3 lectures.

DAIRY MANUFACTURING

DM 132 Ice Cream Making (4)
Calculating and processing ice cream mixes. Proper equipment and methods required to freeze, package, harden and distribute ice cream and related products. Practice in the college creamery as well as inspection of commercial plants. Manufacture of sherbets and ice milk. Survey of the imitation ice cream field, processing of vegetable fats, etc. 3 lectures, 1 laboratory. Prerequisite: DH 121

DM 133 Market Milk (4)
Buildings, equipment and methods used to handle, process and distribute market milk. Judging and grading market milk. Practice in the college creamery and sales room as well as in commercial plants. 3 lectures, 1 laboratory. Prerequisite: DH 121

DM 220 Dairy Product Consumer Education (2)

DM 230 General Dairy Manufacturing (4)
Nontechnical presentation of the methods and problems involved in modern creamery operation. Testing, flavoring and manufacturing butter, various cheeses, ice cream, market milk, and related products. Elective course for non-dairy students. Survey course for dairy husbandry majors. 3 lectures, 1 laboratory.

DM 232 Cheese Making (4)
Equipment and methods needed to manufacture, package, cure and market various types of cheese. Practice in the college creamery. 3 lectures, 1 laboratory. Prerequisite: DH 121, Bact 221, DM 133

DM 233 Dairy Products Judging (2)
Theory and practice in the scorecard grading of butter, cheese, ice cream, cottage cheese, and market milk. 1 lecture, 1 laboratory. Prerequisite: DM 232
DM 236 Buttermaking (4)
 Equipment and methods needed to handle and process manufacturing cream. Churning, packaging, storing, and marketing butter. Theory of continuous buttermaking. Practice in college creamery. 3 lectures, 1 laboratory. Prerequisite: DH 121, DM 132

DM 303 Dairy Product Merchandising (2)
 Product promotion, advertising, merchandising. State and national programs. Independent advertising and sales promotion programs. 2 lectures.

DM 331 Condensed and Dry Milk (4)
 Processing, packaging, and marketing of evaporated and condensed milk and dry milk powders. Field trips are made to study commercial plants, methods and equipment. Mojonnier analysis and other routine tests. 3 lectures, 1 laboratory. Prerequisite: DH 121, DM 132, Bact 222

DM 332 Dairy Inspection (2)
 California dairy codes and score cards used for dairy plants and farms. Quality tests of dairy products. Practice in inspecting and scoring dairy farms and factories. Organizational structure of inspection services. Laws governing pricing and marketing. Role of antibiotics and pesticides in modern dairying. 1 lecture, 1 laboratory. Prerequisite: DH 121, DM 133, Bact 221

DM 333 Advanced Dairy Products Judging (2)
 Judging and scoring of milk, butter, cheddar cheese, ice cream and cottage cheese. Commercial scoring with emphasis on the finer points of competitive grading and scoring. 2 laboratories. Prerequisite: DM 233

DM 431 Dairy Plant Management (4)
 Basic management principles applied to the Dairy Industry. Industrial organization and control. Dairy plant location, design facilities and layout. Elements of successful salesmanship, advertising, and marketing. Survey of overhead allocation and of financing and depreciation applied to the dairy industry. Study of significant operating ratios and comparative analysis of financial statements. 3 lectures, 1 laboratory. Prerequisite: Senior standing.

DRAMA

Dr 200 Special Problems for Undergraduates (1–2)
 Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

Dr 220 Introduction to Theater (3)
 Theatrical terminology, basic stagecraft and lighting, stage management, theater practice. Historical development of the theater. 2 lectures, 1 two-hour laboratory.

Dr 320 Acting (3)
 Basic acting techniques, improvisation, characterization, pantomime and movement. 2 lectures, 1 two-hour laboratory.

Dr 321 Directing (3)
 Script analysis, motivation and blocking of action, preparation of the prompt book. Direction of practice scenes. 2 lectures, 1 two-hour laboratory.

Dr 322 Stagecraft (2)
 Scenery design, construction, painting, lighting, costumes, and make-up. 2 two-hour laboratories. Prerequisite: Sp 200 or 201

Dr 327, 328 Theatrical History and Literature (3) (3)
 History of the theater and correlated studies of representative plays from 500 B.C. to 1660 A.D., and from 1660 A.D. to present. 3 lectures. Prerequisite: Dr 220
Drama/Economics

Dr 331 Applied Theater Practices (2)
Preparation of a play for public presentation, including acting, stage management, make-up, publicity and house management. Maximum of 6 units credit may be earned. 2 laboratories.

Dr 347 Children's Theater (3)
Role-playing, group dramatization, and related activities. For students preparing to teach in the elementary school. 1 lecture, 2 laboratories. Prerequisite: Sp 200 or 201

Dr 422 Stage Scenery and Lighting Design (3)
Stage scenery and lighting design from the study of the script through the rendering of elevations and the construction and lighting of models. Light and color as used in scenery design. 3 lectures. Prerequisite: Dr 220

ECONOMICS

Ec 105 Consumer Economics (3)
Consumer-producer relationships, money management, buying methods; investments, insurance, and housing; agencies that help the consumer. 3 lectures.

Ec 201 Survey of Economics (3)
Selected topics in economics with focus upon the overall functioning of our economy. 3 lectures. Prerequisite: Sophomore standing. Successful completion of freshman English recommended.

Ec 211 Principles of Economics (3)
How the economic system works. Analysis of the forces which determine the levels of national income, output, employment and prices. 3 lectures. Prerequisite: Sophomore standing. Successful completion of freshman English recommended.

Ec 212 Principles of Economics (3)
Introductory analytical economics. Principles and applications in the allocation of scarce resources; the pricing and output problems of the firm; distribution of factor income; and their effects in the national economy. 3 lectures. Prerequisite: Ec 211 or consent of instructor.

Ec 213 Principles of Economics (3)
Application of economic principles in an increasingly complex world. 3 lectures. Prerequisite: Ec 212

Ec 300 Economic Problems (3)
Specific current problems selected with reference to the needs of the students. 3 lectures. Prerequisite: Ec 201 or 211

Ec 301 Introduction to Managerial Economics (3)
Fundamental principles and analytical tools of economics useful in business decision making; applications to management through case study of actual business and managerial situations. 3 lectures. Prerequisite: Ec 212 or consent of instructor.

Ec 304 Comparative Economic Systems (3)
Analysis of economic principles and institutions applicable to capitalism, socialism, and communism. 3 lectures. Prerequisite: Ec 212

Ec 311, 312, 313 Intermediate Economic Analysis (4) (4) (4)
Economics of prices, markets; demand, supply, returns, and costs; employment, income; factor pricing and income distribution; welfare and economic progress. Analytical model building, analysis and policy decision making in business firms, households and government. 4 lectures. Prerequisite: Ec 213 or equivalent; Math 200, 210, Stat 211, 212 or equivalent.
Economics/Education

Ec 317 Development of Economic Analysis (3)
Analysis of ideas related to the development of economic theory in the Western civilization from the Greeks through the classical, neoclassical, and Keynesian to the current post-Keynesian concepts. 3 lectures. Prerequisite: Junior standing and satisfactory completion of Ec 211, 212, 213, or equivalent.

Ec 324 American Economic History (3)
Topical economic analysis of major events and institutions of American economic history as viewed against their causes, origin and development. Economic development of America from an underdeveloped nation. Agriculture, transportation, monetary and banking policies, business, labor, and growth of governmental activities. 3 lectures. Prerequisite: Ec 213

Ec 325 Underdevelopment and Economic Growth (3)
Economic Development: the less developed world and the American interest. 3 lectures. Prerequisite: Ec 211 or 201

Ec 337 Money, Banking and Credit (3)
Institutions and principles of money flow and money markets as they relate to the business enterprise. 3 lectures. Prerequisite: Ec 201 or 211

Ec 401 International Trade (3)
The United States and the world economy; mechanism of exchange; balance of payments. 3 lectures. Prerequisite: Ec 201 or 211

Ec 402 Public Finance (3)
Principles of government financing and its various economic and social effects; collecting, spending and administration of public funds, particularly at state and local levels. 3 lectures. Prerequisite: Ec 212 or consent of instructor.

Ec 406 Business Fluctuations and Forecasting (3)
Causes and measurement of business fluctuations. Techniques of forecasting. 3 lectures. Prerequisite: Ec 201 or 211, Stat 212

Ec 413 Labor Economics (3)
Wage determination theory, basic economic factors that affect the labor movement, economic impact of union activities on employment, output, income, wages, prices, and national economic policy. 3 lectures. Prerequisite: Ec 212 or consent of instructor.

Ec 414 Monetary and Fiscal Policies (4)
National economic fluctuation models and related corrective monetary and fiscal policies on income, employment, output, growth and prices. 4 lectures. Prerequisite: Ec 313, 337

Ec 582 Seminar in Economic Problems (1-3)
Selected problems at an advanced level; distribution of income, private and public finance, economic mobilization, and international trade. 1 to 3 meetings. Prerequisite: 9 units of economics and graduate standing or consent of the instructor. Maximum of 6 units credit may be earned.

EDUCATION

Ed 203 Efficient Reading (2)
Development of reading efficiency required in modern business, industry, and the professions. 1 lecture, 1 activity. Prerequisite: Eng 104

Ed 304 Human Development (3)
Human development with emphasis on the years up to adolescence. The physical, mental, emotional, and social aspects of development and behavior. Controlled observation in the public schools. Required for California elementary teaching credential. Recommended for secondary teacher candidates. 2 lectures, 1 activity. Prerequisite: Junior standing, Psy 202
Education

Ed 312 Educational Psychology (3)
How students learn in school, motivation and classroom management, nature of
the learning process and adolescent development. Observations at appropriate grade
levels. Required for California secondary teaching credential. Recommended for
elementary teacher candidates. 3 lectures. Prerequisite: Psy 202

Ed 322 Community Laboratory (2)
Learning experiences in cooperation with youth club activities and educational
agencies. Application of knowledge and skills acquired in college classrooms. Supervised
activities with children and adults in educational programs. 1 lecture, 1 activity.
Total credit limited to 4 units. Prerequisite: Ed 304, 312, or permission of the
instructor.

Ed 401 Public Education in American Society (3)
Development of public education in United States and California. Purpose and
structure of the school system. Observations in the public schools. Prerequisite for
application to teacher education program. Required for California elementary and
secondary teaching credentials. 3 lectures.

Ed 403 Teaching Procedures in the Secondary School (3)
Practical skills and techniques of teaching; instruction planning, classroom control,
demonstration teaching, communication media, and public school observations. 3
activity periods. Required for California secondary teaching credential. Prerequisite:
Ed 312

Ed 415 Early Childhood Education (3)
Brief history of the kindergarten and nursery school program. Study of the
needs, behavior and development of young children and how they affect readiness
for learning. 3 lectures.

Ed 418 Principles of Adult Education (3)
Purpose, significance, scope and methods of teaching as applied to adult educa-
tion. 3 lectures.

Ed 431 Teaching Procedures in the Elementary School (3)
Introduction to procedures used in elementary school teaching, development
of skills in planning units of work and lessons for all areas of the curriculum,
use of audiovisual materials, preparation for student teaching. 3 activities. Prereq-
quisite: Advanced standing and Ed 304

Ed 434 Curriculum and Methods in Elementary School Reading (3)
Teaching reading, reading readiness, psychology of learning to read, instructional
materials, evaluating growth, developing independent reading skills, recreational
reading. 2 lectures, 1 activity. Prerequisite: Advanced standing.

Ed 439 School Observation and Participation (3–5)
Supervised observation and participation in public schools, including experience
as teacher aide or instruction assistant. Weekly seminars relating principles to
improved participation practice. Prerequisite: Ed 312, Ed 401 (may be taken
concurrently)

Ed 440 Student Teaching (3–12)
Student teaching includes participation, teaching, and allied activities under the
direction of a selected regular teacher in a public school in consultation with
college supervisors. The application for student teaching must be approved prior
to registration for Ed 440. A grade below C is unacceptable for recommendation
for a credential.

Ed 441 Practicum (2)
Practices and problems of student teaching in the elementary grades, develop-
ment of effective teaching techniques, emphasis on current classroom experiences.
1 lecture, 1 activity. Taken concurrently with student teaching.
Education

Ed 442 Curriculum and Methods in Kindergarten-Primary Education (3)
Objectives, methods, and curriculum for the kindergarten-primary grades. Acquisition of appropriate materials, and construction of instructional aids. 2 lectures, 1 activity. Prerequisite: Advanced standing.

Ed 443 Curriculum and Methods in Elementary School Language Arts (3)
Methods and materials for teaching language usage, spelling, handwriting, listening and speaking. 2 lectures, 1 activity. Prerequisite: Advanced standing.

Ed 444 Curriculum and Methods in Elementary School Science (3)
Curriculum, methods, and teaching procedures in elementary school science. 2 lectures, 1 activity. Prerequisite: Advanced standing and approval of credential advisor.

Ed 445 Curriculum and Methods in Elementary School Social Studies (3)
Curriculum, methods, and teaching procedures in elementary school social studies with emphasis on the California program. 2 lectures, 1 activity. Prerequisite: Advanced standing and approval of credential advisor.

Ed 470 Selected Advanced Topics (1–3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

Ed 500 Individual Study (1–3)
Advanced study planned and completed under the direction of a member of the department faculty. Open only to graduate students who have demonstrated ability to do independent work. Enrollment by petition. Prerequisite: Consent of the department head, the graduate major adviser, the supervising faculty member, and Ed 524

Ed 501 Philosophy of Education (3)
The function of philosophy; the meaning of education; significance of present philosophical points of view; education aims and values; democracy and education; the relationship of various philosophical outlooks to educational methods and subject matter. 3 lectures.
Education

Ed 503 Counseling and Guidance (3)
The philosophy, techniques, and administration of individual and group guidance programs. Individual counseling. The assessment of students' interests, abilities, and achievement with respect to educational and vocational choice, and school and life orientation. 3 lectures.

Ed 504 Measurement and Evaluation in Secondary School Teaching (3)
Instructional objectives, evaluation, and testing achievement in school courses. Constructing, administering, and evaluating tests for classroom use. Grading techniques and procedures. 3 lectures.

Ed 506 Evaluation in the Elementary School (3)
Appraising the results of instruction in terms of educational objectives. Pupil growth as a product of environment, health, attitudes, and mental ability. Value of cumulative records, reports to parents, and teacher-made tests as evaluation devices. 3 lectures. Prerequisite: Student teaching experience or approval of instructor.

Ed 507 Staff-Administrator Relationships (3)
Personnel administration of schools and school systems, including conditions of employment, salary, security, and retirement benefits. Problems of staff morale evaluated in terms of selection, promotion, assignment, and opportunities for professional improvement. 3 lectures. Prerequisite: Valid teaching credential.

Ed 508 Educational Sociology (3)
Sociological backgrounds of school children; effects of social, economic, and political trends and issues on education; problems of leisure, recreation, and occupations; modern interpretations of democratic ideology. Sociological problems are utilized to define the social objectives of the school. 3 lectures.

Ed 510 School Finance and Business Management (3)
A consideration of the sources of public school support in California and the formulas by which funds are distributed to educational agencies. Budgets, audits, accounting, financial statements, insurance salaries and retirement, purchasing and managing of plants, equipment, and supplies. 3 lectures. Prerequisite: Valid teaching credential, or consent of instructor.

Ed 511 School Law (3)
The legal problems affecting schools, using as sources the California Administrative Code, Title 5, the Education Code, the Attorney General's opinions, and interpretations of the state and federal courts. 3 lectures. Prerequisite: Valid teaching credential or consent of instructor.

Ed 512 Secondary School Administration (3)
The three major phases of the work of the secondary administrator; his function as a leader of people, his duties as a director of education, and his techniques as an organizer and manager, including teacher-administrator relationships. 3 lectures. Prerequisite: Valid teaching credential or consent of instructor.

Ed 513 Federal, State, County, and City School Administration (3)
Objectives of public school administration and an overview of all levels of organization; problems in state, county, and city school organization, particularly as related to California; federal government and education; issues involved in federal support. 3 lectures. Prerequisite: Valid teaching credential or consent of instructor.

Ed 515 Secondary School Curriculum (3)
Advanced study of problems in secondary curriculum development; social and psychological backgrounds; techniques in curriculum development; communication problems in curriculum work; group processes in curriculum development; evaluation of curriculum programs. 3 lectures. Prerequisite: Valid teaching credential or consent of instructor.
Ed 516 Secondary School Supervision (3)
The administrative organization of supervision. City and county supervisory methods and procedures in secondary schools. Evaluation of present practices. In-service improvement of instruction through supervision. Group processes and communication problems in supervision work. 3 lectures. Prerequisite: Valid teaching credential or consent of instructor.

Ed 517 School-Community Relationships (3)
The school and public relations. The administrator's relationship with community groups and organizations. Effect upon the public schools of community and patrons. Public administration as it affects the community's educational program. Operation of urban and rural schools, vocational education, education for adults, special school programs and auxiliary agencies. 3 lectures. Prerequisite: Valid teaching credential or consent of instructor.

Ed 518 Problems in Teaching Reading (3)
Reading problems in the elementary school including diagnosis of reading deficiencies, remediation, and suitable reading material. 3 lectures. Prerequisite: Ed 434, 440

Ed 519 Teaching the Gifted Child (3)
The nature of the growth and development of gifted children, including physical, social, and achievement aspects. Methods of identifying giftedness, gifted children, and children with special abilities. Study of selected programs for teaching gifted children in California and other states. 3 lectures.

Ed 520 Elementary Reading Programs (3)
School reading programs and classroom organization. Application of research findings to teaching reading. Survey of innovative programs in elementary school reading. For teachers and supervisors. 3 lectures. Prerequisite: Ed 434 or permission of instructor.

Ed 521 Teaching the Culturally Different Child (3)
Cultural factors that inhibit learning in the school; problems and needs of the disadvantaged child; classroom procedures and materials to facilitate learning and increase educational achievement; preparation for teaching in depressed areas. 3 lectures.

Ed 523 Remedial and Special Education (3)
Theory and practice of diagnosing educational and psychological difficulties affecting the ability of children to profit from education. Case study and case conference approaches to understanding and assisting children with learning difficulties. 3 lectures. Prerequisite: Ed 503, Psy 432

Ed 524 Investigative Techniques (3)
Principles and methods of planning and carrying out systematic investigations dealing with learning, teaching, curriculum, instructional planning, pupil personnel services, and other related areas. 3 lectures. Prerequisite: Math 100, Psy 202

Ed 525 The Teacher's Role in Guidance (3)
Application of procedures in teaching and in conducting guidance activities. Use of techniques to implement the role of the teacher in guidance. Case studies, case conferences, parent-teacher conferences, teacher-pupil conferences. 3 lectures.

Ed 527 The Junior College (3)
The purpose, history, organization and curriculum of the junior and community college. For persons teaching and planning to teach in the junior college. 3 lectures.

Ed 528 Advanced Counseling Theory and Procedures (3)
Advanced practice in vocational, personal, and educational counseling for students in the pupil personnel program. Counseling theory and procedures, educational and career planning. Application of theory to practical counseling situations. 3 lectures. Prerequisite: Ed 503, 525
Education

Ed 529 Supervision of Vocational and Practical Arts Education (3)
Methods of designing and implementing programs of vocational and practical arts education (applied arts) including agriculture, business, diversified co-operative, distributive, work experience education, homemaking, industrial arts, and trade technical education. 3 lectures.

Ed 531 Elementary School Supervision (3)
Principles and techniques of educational leadership in curriculum development. Curriculum improvement, working effectively with the staff, evaluation of instruction. Group processes and communication problems in supervision work. 3 lectures. Prerequisite: Valid teaching credential.

Ed 532 Elementary School Administration (3)
Principles and practices of organizing and administrating the elementary school, including teacher and pupil personnel management, leadership techniques, instructional problems, special services, school plant, local school finances. Practical applications to elementary schools. 3 lectures. Prerequisite: Valid teaching credential.

Ed 539 Educational, Occupational and Community Information (3)
Collecting occupational, educational and community information including community resources such as agencies and organizations that provide services to individuals or groups. Sources and techniques of collecting and imparting such information stressed. 3 lectures. Prerequisite: Ed 503

Ed 541 Administration of Pupil Personnel Services (3)
Organization of pupil personnel services programs, their administration, their evaluation. Use of community resources and a study of laws relating to children and child welfare. 3 lectures. Prerequisite: Ed 503

Ed 544 Work Experience Education (3)
Organization, coordination, supervision, and laws related to work experience education. 3 lectures.

Ed 546 Supervised Field Experience in Counseling (3)
Practical application in the public schools or college counseling center of interviewing, counseling, test administration and interpretation, case conference techniques, use of counseling records and other principles and procedures in counseling. Besides field experience, weekly seminar sessions with college staff to be included. Prerequisite: Ed 541 and consent of instructor.

Ed 550 Vocational Education in the United States (3)
Curriculum and purpose of vocational and practical arts education in secondary schools, junior colleges and private enterprise in the United States. 3 lectures.

Ed 578 Elementary School Curriculum
Issues, trends and theories of evaluation and development of elementary school curriculum. 3 lectures. Prerequisite: Graduate standing.

Ed 581 Graduate Seminar in Education (1–3)
Group study of contemporary problems in education. Trends, developments, and issues. Total credit limited to 6 units. Prerequisite: Graduate standing.

Ed 588 Administration or Supervision Field Work (3)
Supervised field work in school administration or supervision at the elementary or secondary level; specific assignments made to cover important aspects of school administration or supervision. Prerequisite: Valid teaching credential, Ed 531 or 516, Ed 532 or 512, and consent of instructor.

Ed 590 Seminar in Supervision of Student Teachers (3)
Organization, responsibilities, problems, and procedures in supervising, directing, and evaluating student teachers and student teaching activities. 3 lecture-discussions.
ELECTRICAL ENGINEERING

EE 104 Electric Circuits (5)
Covers lecture material in EE 132, 133. For transfer students, who have completed at least one year of calculus. 5 lectures.

EE 122 Electrical Engineering Analysis (4)
Elements of electricity. Basic electrical and electronic devices. Simple passive and active circuits. For non-EE majors. 3 lectures, 1 laboratory.

EE 132 Electric Circuits (3)
Definitions, units, experimental laws applied to circuits. Mathematical and laboratory techniques of analysis. 2 lectures, 1 laboratory.

EE 133 Electric Circuits (4)
Definitions, units, experimental laws applied to circuits. Mathematical and laboratory techniques of analysis. 3 lectures, 1 laboratory.

EE 151 Orientation (1)
Familiarization with the field of electrical engineering. Development of techniques useful to the student in his academic progress. 1 laboratory.

EE 154 Electric Laboratory (2)
Covers laboratory material in EE 132, 133. For transfer students. 2 laboratories.

EE 200 Special Problems for Undergraduates (1–2)
Individual investigation, research, studies or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

EE 201 Electric Circuit Theory (4)
Fundamental electric laws. Electric circuits and circuit theorems. Magnetism and magnetic circuits. Analysis of alternating current, single and three phase circuits using symbolic method (complex phasors). Transmission lines, coupled circuits and transients. For non-electrical engineering majors. 3 lectures, 1 laboratory. Prerequisite: Math 242, Phys 133

EE 209 Basic Electrical Engineering (8)
Combines content of EE 201, 325. Primarily for transfer students. 6 lectures, 2 laboratories.

EE 231 Electric Machines (4)
Physical and electrical characteristics of the more common types of DC and AC machinery. Provides background facilitating selection of appropriate machine for a specific job. For non-EE majors. 3 lectures, 1 laboratory. Prerequisite: EE 122 or basic circuits course.

EE 232 Electric Circuits (6)
Complex frequency and operational methods of analysis. Coupled circuits. Two-port systems. Topology of networks. Polyphase systems. 5 lectures, 1 laboratory. Prerequisite: EE 133, EL 207

EE 240 Additional Engineering Laboratory (1-2)
Total credit limited to 4 units, with not more than 2 units in any one quarter. 1 or 2 laboratories.

EE 253 Engineering Problems Solutions (1)
Electrical Engineering

EE 302 Engineering Electromagnetics (4)
Electric and magnetic fields. Maxwell's equations. Introduction to traveling waves and radiation. 4 lectures. Prerequisite: A basic circuit course and one year of calculus.

EE 304 Electromechanics (3)
Magnetically-coupled circuits. Torque and power. Rotating machines. 3 lectures. Prerequisite: EE 222 or EL 202

EE 321 Wave Propagation and Power Transmission (4)
Electromagnetic wave propagation. Power and signal transmission. Analysis of transmission lines and power systems. Symmetric loads and faults. Use of AC network analyzer. 3 lectures, 1 laboratory. Prerequisite: EE 221

EE 322 Network Synthesis (4)
The pole-zero concept of networks. Network analysis and synthesis in the frequency domain. Design of filters. 3 lectures, 1 laboratory. Prerequisite: EE 133 or equivalent.

EE 323 Linear Analysis with Analog Computer (4)
Laplace transform calculus and analog techniques applied to linear systems analysis. 3 lectures, 1 laboratory. Prerequisite: Math 318, EE 322

EE 324 Electrical Systems Design (3)

EE 325 Energy Conversion Electromagnetics (4)
The fundamentals of electro-mechanical energy conversion. Theory of operation and operating characteristics of transformers, D.C. machines and A.C. induction and synchronous machines. Electrical control devices and systems. For non-electrical engineering majors. 3 lectures, 1 laboratory. Prerequisite: EE 201

EE 326 Ethics in Engineering (2)
Introduction to business and legal aspects of engineering. Ethics as applied to the practice of engineering. 2 activities.

EE 327 Illumination (3)
Theory and practice of illumination. Mechanical and electrical problems in installation and control of lighting sources. Measurement of light. 2 lectures, 1 laboratory. Prerequisite: Consent of instructor.

EE 331, 332 Electromagnetic Machines (4)(4)
Transformers. Direct current machines. Analysis in the steady state and transient modes. Alternating current machines. Generalized, operational and dynamic analysis. Unbalanced operations. 3 lectures, 1 laboratory. Prerequisite: EE 304

EE 344 Electromechanics Laboratory (1)
Transformers and induction machines. 1 laboratory. Concurrent: EE 304

EE 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter.

EE 402 Control Systems Engineering (3)
An advanced course in analysis and design of control systems based on root-locus, frequency domain and computer approach. Non-linear sampled data and self-adaptive systems. 3 lectures. Prerequisite: EE 431 or consent of instructor.
EE 407 Power Systems Engineering (3)
Equivalent circuits. Sequence impedances. Symmetrical components. Faults and sudden loads. 3 lectures.

EE 414, 415 Energy Conversion (3) (3)
Energy sources, conversion, and storage, with specific consideration of resources, chemical fuels, electrochemical fuels, electrochemical systems, semiconductors, thermoelectricity, thermionic generators, solar energy, and related topics. 3 lectures. Prerequisite: ME 302, Chem 124

EE 421, 422 Electrical Engineering Design (3) (3)
Application of engineering analysis to design problems. Creative thinking emphasized. Group and individual assignments. 1 lecture, 2 laboratories. Prerequisite: Senior standing in Electrical Engineering or consent of instructor.

EE 424 Analog Computation (2)
Analog techniques. Systems simulation. Design aids. 1 lecture, 1 laboratory. Prerequisite: Math 242

EE 425, 426 Plant Electrical Design (3) (3)
Principles of plant layout. Feeder design. Illumination codes. 1 lecture, 2 laboratories. Prerequisite: Consent of instructor.

EE 427 Analog and Hybrid Computation (4)
Analog computing elements. Speed and accuracy of computation. Analog and hybrid simulation. Use of relays, multipliers, and function generators. Hybrid computation, using memory and decision making. Automatic optimization by hybrid technique. 2 lectures, 2 laboratories. Prerequisite: Engr 251 and EE 323, or consent of instructor.

EE 428 Dynamic Instrumentation (3)
Electrical measurement of non-electrical phenomena. Transducers. Transmission systems. Recorders. Theory and operation. 2 lectures, 1 laboratory. Prerequisite: Consent of instructor.

EE 431 Linear Control Systems Design (4)
Automatic feedback control systems. Design of linear systems. 3 lectures, 1 laboratory. Prerequisite: EE 323 or EL 302

EE 432 Digital Computers (3)
Theory and design. Application to control. 2 lectures, 1 laboratory. Prerequisite: Consent of instructor.

EE 442 Control Systems Laboratory (1)
Individual study of advanced control systems. 1 laboratory. Prerequisite: Consent of instructor.

EE 444 Power Systems Analysis (1)
Solutions of unsymmetrical fault and stability problems on the A.C. analyzer. 1 laboratory. Concurrent: EE 407

EE 451 Senior Electrical Engineering Laboratory (1)
Individual project fabrications resulting from student's creativity and employing previously learned skills of analysis and synthesis. Emphasis on professional development. 1 laboratory. Prerequisite: Senior standing in Electrical Engineering.

EE 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

EE 463 Undergraduate Seminar (2)
Reports and discussions on library study and laboratory research in approved individually selected topics in electrical engineering. 2 meetings.
Electrical/Electronic Engineering

EE 470 Selected Advanced Topics (1–3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

ELECTRONIC ENGINEERING

EL 111, 112 Introductory Electronics (2) (2)
Basic principles of charge control in solids and vacuum. Fundamentals of electronic components and unit circuits. Application of unit circuits in selected electronic systems. 2 lectures.

EL 113 Electronic Instruments (2)
Analysis of selected basic electronic instruments and their application to measurement in the field of electronic engineering. Introduction to both the analog and digital computers with solution of appropriate mathematical problems. 2 lectures. Prerequisite: EL 112, Math 141 or 131, Phys 131 or 121

EL 146 Graphics in Electronics (1)
Schematic drafting and delineation. Electronic and industrial symbols. Printed circuits. Technical sketching. 1 laboratory. Prerequisite: ME 151, EL 102

EL 151, 152 Experimental Electronics (1) (1)
Experimental study of the properties of components, unit circuits, and selected electronic systems. 1 laboratory. Concurrent: EL 113

EL 153 Electronic Instruments Laboratory (1)
Directed projects investigating the more common electronic instruments and their use in measuring voltages, current, waveform, frequency, and phase. Introductory study of elements of the analog and digital computers. 1 laboratory. Concurrent: EL 111

EL 200 Special Problems for Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

EL 201, 202 Introductory Circuit Analysis (5) (3)
Electric and magnetic circuits. Power and energy relationships. Integrated transient and steady-state analysis of linear direct and alternating current circuits with use of mesh and node approach. Network theorems, determinants, duality, phasor and complex-frequency concepts, exponential Fourier analysis. 5 lectures, 3 lectures. Prerequisite: Math 143, Phys 132

EL 207 Introduction to Electrical Fields (4)
Introduction to fundamental physical concepts underlying electronics, with particular reference to basic electric and magnetic field theory for application to the control of charged particles. 3 lectures, 1 two-hour laboratory. Prerequisite: Phys 132, Math 143

EL 209 Electron Devices (3)
Physical and analytical study of various electron devices with primary emphasis on semiconductor material, diode and transistor theory. Transistor circuit models and biasing. 3 lectures. Prerequisite: EL 207, Phys 211

EL 240 Additional Engineering Laboratory (1–2)
Total credit limited to four units, with not more than two units in any one quarter. 1 or 2 laboratories.

EL 241, 242 Introductory Circuits Laboratory (1) (1)
Selected laboratory experiments in the subject matter of EL 201, 202. Emphasis placed on laboratory procedure in collecting, correlating, graphing, and evaluating data. 1 laboratory. Concurrent: EL 201, 202

234
EL 249 Electron Devices Laboratory (1)
Fundamental experiments in investigating the physical and electrical properties of semiconductor and electron tube devices. Emphasis on collecting, correlating, graphing, and evaluating laboratory data. 1 laboratory. Concurrent: EL 209

EL 301, 302 Linear System Analysis (3) (3)

EL 309 Electronic Equipment Reliability (3)
Reliability prediction and reliability design, including redundancy and the allocation problem. Computer reliability prediction and analysis of variability. 3 lectures. Prerequisite: EL 314, Engr 251

EL 313 Analog Computer Techniques (3)
Course designed for mathematics, science and engineering majors other than electronic and electrical. Fundamental principles of analog computers, field of application in science and engineering. Programming techniques. Simulation of linear and non-linear systems. 2 lectures, 1 two-hour laboratory. Prerequisite: Math 242

EL 314 Electronic Circuits (3)
Analysis and design of linear, small-signal electronic amplifiers; stabilization and biasing techniques; feedback. 3 lectures. Prerequisite: EL 202, 209, Math 242

EL 315 Electronic Circuits (3)
Analysis and design of power amplifiers, tuned amplifiers, oscillators, modulators, detectors and frequency converters. Graphical and piecewise-linear analytical techniques are emphasized. 3 lectures. Prerequisite: EL 301, 314

EL 316 Electronic Circuits (3)
Analysis and design of pulse, digital, gating, counting and timing circuits. Piecewise-linear analytical techniques are emphasized. 3 lectures. Prerequisite: EL 301, 314

EL 321 Electronics (4)
Thermionic and semiconductor electronic devices and circuits. Amplifiers, oscillators, pulse forming and shaping, frequency response, modulation, detection and computer logic circuits. 3 lectures, 1 laboratory. Prerequisite: EE 201

EL 322 Instrumentation and Control Systems (4)
Principles of transducers and instruments. Measurement of pressure, strain, velocity, acceleration, temperature, etc. by means of electronic devices. Instrumentation systems and measurement error sources. Principles of automatic control. Control of velocity, acceleration, temperature, etc., by means of feedback control systems. Interrelationships between transducer, power amplifier and actuator. 3 lectures, 1 laboratory. Prerequisite: EL 321

EL 341, 342 Networks Laboratory (1) (1)
Experimental study of signal and network characteristics, frequency selective networks, and transmission lines. Use of transmission lines as circuit elements, impedance charts. 1 laboratory. Concurrent: EL 301, 302

EL 343 Analog Computer Laboratory (1)
Laboratory study of analog computers and auxiliary equipment. Solution of engineering problems and simulation of physical systems on the analog computer. 1 laboratory. Prerequisite: EL 315

235
EL 344, 345 Electronic Circuits Laboratory (1) (1)
Laboratory analysis of principally solid state circuitry comprising voltage current and power amplifiers, tuned and untuned, at audio and radio frequencies. Study of modulated waves and frequency conversion. 1 laboratory. Concurrent: EL 314, 315

EL 346 Electronic Circuits Laboratory (1)
Laboratory analysis of pulse, digital and timing circuits using principally solid state circuitry. Pulse-forming techniques. 1 laboratory. Concurrent: EL 316

EL 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter.

EL 401 Electromagnetic Fields (3)
Static and quasi-static fields: laws of Coulomb, Gauss, Faraday, and Ampere. Boundary value problems. Development of Maxwell's equations and the wave equation with emphasis on physical concepts. Investigation of traveling waves in various media. 3 lectures. Prerequisite: EL 207, Math 318

EL 402 Microwave Engineering (3)
Application of Maxwell's equations and boundary value problems, to wave guide structures. Microwave equivalent circuit theorems. Passive microwave devices including treatment of microwave propagation in ferrites. Measurement principles and technique. 3 lectures. Prerequisite: EL 401

EL 404 Principles of Digital Computers (3)
Organization of typical digital computer. Combinational and sequential switching circuit analysis and synthesis with emphasis on modern electronic devices used in the design of electronic computers. Properties of modern high-speed memory systems. Coding systems. 3 lectures. Prerequisite: EL 316, 321, or consent of instructor.

EL 405 Advanced Amplifier Theory (3)
Analysis and design of modern electronic amplifiers and amplifier systems with advanced techniques. Pole-zero analysis, wide-band, lowpass and high-frequency, bandpass amplifiers design using Y and S parameters. Noise analysis. 3 lectures. Prerequisite: EL 302, 316

EL 406 Communication Theory (3)
A unified treatment of various types of transmission systems with emphasis on the role of system bandwidth and noise in limiting the transmission of information. Single-side-band AM and various types of pulse modulation systems are included. 3 lectures. Prerequisite: EL 405

EL 408 Digital Computer Systems (3)
Design and interconnection of various parts of a digital computing system. Survey of various input/output and other peripheral units and problems of interfacing these with the central processing unit. Design of sequential circuits with emphasis on control circuitry required in the main frame of a modern computer. 3 lectures. Prerequisite: EL 404

EL 411 Passive Network Synthesis (3)
Modern circuit synthesis concepts and methods as applied to typical communication and control systems. Treatment of the approximation problem and techniques of network realization. 3 lectures. Prerequisite: EL 302

EL 421 Principles of Solid-State Microelectronics (3)
EL 422 Semiconductor Devices and Models (3)
Physical operation of modern semiconductor devices including high frequency, high power, and switching characteristics. Fundamental solid-state mechanisms that contribute to device performance. Modeling theory to relate these mechanisms to usable equivalent circuits. 3 lectures. Prerequisite: Phys 412, EL 315

EL 423 Microwave Electronics (2)
Klystron amplifiers, reflex oscillators, magnetrons, traveling wave tubes, solid state signal sources, masers, and parametric amplifiers. 2 lectures. Prerequisite: EL 401

EL 425 Active Network Synthesis (3)
Selected topics in modern network synthesis, using active devices as negative impedance converters, to satisfy prescribed one and two-port immittance and transfer functions using only R and C elements. 3 lectures. Prerequisite: EL 302, 315

EL 441, 442, 443 Electronic Systems Engineering (1) (1) (1)
Advanced laboratory study dealing with subject matter of the senior lecture courses. Work takes on the aspects of project engineering. 1 laboratory. Concurrent registration in a senior year lecture course.

EL 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects results are presented in a formal report. Minimum 120 hours total time.

EL 463 Undergraduate Seminar (2)
Discussion of new developments in the fields of communications and industrial electronics, with particular reference to fields of employment. Job analysis. 2 lectures.

EL 470 Selected Advanced Topics (1–3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

ENGINEERING

Engr 201 The Role and Function of Engineering in Society (3)
Development of technology and the engineering method. Evaluation of technology, problems and responsibilities of the engineering profession to society, and case studies of significant engineering successes and failures. 3 lectures.

Engr 251 Digital Computer Applications (2)
Programming techniques and procedures with applications to several selected engineering problems from a variety of course situations. Actual problem solutions by means of a digital computer will be required. 2 activities. Prerequisite: Math 131 or 141 or concurrent.

Engr 410 Engineer Examination Review (2)
Review of engineering fundamentals including mathematics, statics, dynamics, strength of materials, fluid mechanics, electricity, thermodynamics, heat transfer, chemistry, and economics, in preparation for Engineer-in-Training and Professional Engineer examinations. Not acceptable for graduate credit. 2 lectures. Prerequisite: Senior standing in Engineering, Architecture, or Agricultural Engineering.

Engr 438, 439 Systems Engineering (3) (3)
Preliminary design of a complex engineering system. Emphasis on overall problems involved. Requires concentrated study of some aspect or component of the system. Opportunity for creative engineering practice. Written and oral reports made by the entire design team. 3 activities.
Engineering

Engr 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their field of employment. Project results are presented in a formal report. Minimum 120 hours total time.

Engr 463 Undergraduate Seminar (2)
New developments, policies, practices, and procedures. Each individual is responsible for the development and effective presentation of topics in his area of special emphasis. 2 meetings. Prerequisite: Senior standing.

Engr 503 Advanced Structural Analysis (3)
Deformations of aircraft structures due to static and dynamic loads. Computation of natural mode shapes and frequencies. Determination of dynamic stress fields in aircraft due to transient motions caused by external forces. 3 lectures. Prerequisite: ME 427 or senior level structural design course.

Engr 504 Vehicular Design (3)
Selected vehicular design problem involving the use of creative and analytical talents, and engineering judgment. 3 lectures. Prerequisite: Engr 503

Engr 505 Theoretical Aerodynamics (3)
Fundamentals of analytical aerodynamics, potential flow, vortex theory, circulation, Kutta Joukowski theorem, lifting line theory, three dimensional lift and drag of wings, performance, stability and control. 3 lectures. Prerequisite: Aero 303 or equivalent.

Engr 506 Elements of Rocket Propulsion (3)
Analysis and design of liquid and solid rockets using basic design parameters such as droplet atomization, droplet and partial combustion, heat transfer, combustion stability and control, and thermochemical computations. Prerequisite: Aero 401 or equivalent.

Engr 511, 512 Electric Machines Theory (3) (3)
Advanced topics in electric machines theory and design. 3 lectures. Prerequisite: EE 332 or equivalent.

Engr 513, 514 Control Systems Theory (3) (3)

Engr 515 Control Systems Seminar (3)
Seminar discussion of recent and current literature. One seminar period, 3 or 4 hours. Prerequisite: Engr 514

Engr 520 Analog Computation and Simulation (3)
Principles and practice of analog computation and simulation; programming and scaling techniques. Application to problems in engineering, mathematics, and physics with emphasis on non-linear techniques including function multiplication and generation, output devices. 2 lectures, 1 two-hour activity. Prerequisite: EL 343 or equivalent.

Engr 521 Digital Systems (3)
Organization of digital systems, primarily the modern general purpose, high speed digital computer; arithmetic units, control units, memories, peripheral equipment. Cost and speed trade-offs in the design of such systems. 3 lectures. Prerequisite: EL 404

238
Engr 522 Computation Systems (3)
Organization of modern electronic computation systems (digital and analog), their capabilities and limitations. Design and applications of hybrid (analog and digital) computation systems. 2 lectures, 1 two-hour laboratory. Prerequisite: EL 521.

Engr 523, 524 Microwave Engineering (3) (3)
Application of Maxwell's equations to wave guide theory. Circuit theory for wave guiding systems. Passive microwave devices including ferrites, cavity resonators, periodic structures and filters. Microwave measurement, principles and techniques. Microwave devices such as klystrons, magnetrons, traveling wave tubes, masers, parametric amplifiers and solid-state sources. 3 lectures. Prerequisite: EL 401 or equivalent.

Engr 532 Industrial Ventilation and Exhaust Systems (3)
Environmental contamination, dispersion mechanisms, unit operations of manufacturing and processing systems. Fans, injectors, natural drafts, control velocities. 3 lectures. Prerequisite: Graduate status.

Engr 533 Aerosol Technology (3)
Definition, theory and measurement of particle properties, particle statistics, size distribution, particle transport, gas cleaning, sampling of airborne contaminants. 3 lectures. Prerequisite: Graduate status.

Engr 534 Advanced Design of Air Pollution Control Systems (3)
Comprehensive problems in air conservation. Methods of analysis, design of unit operations and processes for environmental engineering facilities. 3 lectures. Prerequisite: Graduate status.

Engr 541 Advanced Operations Research (3)
Models for mathematical programming and operations research. Mathematical programming topics in linear programming, network analysis, and dynamic programming. Operations research models will include queuing, inventory models, simulation, and Monte Carlo. Special analysis problems in non-linear programming and integer programming. 3 lectures. Prerequisite: IE 333, Math 219, Stat 322, or consent of instructor.

Engr 542 Reliability Engineering (3)
Theory and techniques for determining the reliability of systems and system elements. Influence of failures in series, parallel, and redundant designs. Failure modes and effects. Frequency distributions of failures and failure rates. Methods of estimating, predicting, measuring, and testing for reliability and effectiveness. 2 lectures, 1 laboratory. Prerequisite: IE 336; Stat 322, 425; or consent of instructor.

Engr 543 Advanced Human Factors (3)
Theory and application of man-machine relations and system design. Concepts of mathematical models, human information input channels, decision making based on capability of human operator. 2 lectures, 1 laboratory. Prerequisite: IE 435, Psy 202, Stat 321, a course in biology, graduate status, or consent of instructor.

Engr 550 Kinematic Analysis and Design (3)
Analysis and design of mechanical linkages by means of geometric and algebraic methods. Optimization studies. 3 lectures. Prerequisite: ME 324 or equivalent.

Engr 551 Mechanical Systems Analysis (3)
Specific mechanical systems by means of mathematical models and/or physical models; pertinent variables. 3 lectures. Prerequisite: Graduate standing in engineering.

Engr 561 Electronic Processes in Metals (3)
Nature of metallic bond, bond theory, role of Fermi surfaces, electrical and magnetic properties, semimetals, superconductors, liquid metals. 3 lectures. Prerequisite: Phys 412, 452
Engr 562 Mechanical Metallurgy (3)
Analysis of stress and strain in solids; elements of theory and elasticity and plasticity, and applications in metal forming. Residual stresses, theory of dislocations, theory of recrystallization, effects of temperature and rate of loading; fracture mechanics, fatigue and creep. 3 lectures. Prerequisite: WM 306 or consent of instructor.

Engr 563 Metallurgical Physical Chemistry and Thermodynamics (3)
Theory and application of principles to solid state reactions. Behavior of metals and materials. 3 lectures. Prerequisite: Chem 412, 413, ME 302 or equivalent, Engr 562 or consent of instructor.

Engr 564 Theory of Stress Corrosion Cracking (3)
Stress corrosion cracking, hydrogen embrittlement, liquid metal embrittlement, corrosion fatigue, and other failure modes induced by specific environment. 3 lectures. Prerequisite: WM 424, Chem 413, ME 212.

Engr 599 Design Project (Thesis) (2) (2) (5)
Each individual or group will be assigned an industrial design project for solution under faculty supervision as a thesis requirement for the Master of Engineering degree. An appropriate experimental or analytical thesis may be accepted.

ENGINEERING TECHNOLOGY

ET 121 Air Conditioning and Refrigeration Principles (4)
Introduction to principles of commercial and industrial air conditioning and refrigeration systems. Installation, service maintenance, and cost estimating. 3 lectures, 1 laboratory. Prerequisite: Phys 121

ET 122, 123 Environmental Graphics (2) (2)
Principles and practices of mechanical and architectural graphics applied to the development of the spatial concepts essential to the design and installation of environmental systems. 1 lecture, 1 laboratory.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET 124</td>
<td>Elements of Electronics (3)</td>
<td>Fundamentals of electronic components and unit circuits. Application of unit circuits in electronic systems. Introduction of electronic instrumentation and industrial control. Properties of components and functions of basic circuits. Introduction to both the analog and digital computers with application to engineering problems. 2 lectures, 1 laboratory.</td>
</tr>
<tr>
<td>ET 125</td>
<td>Electronic Instrument Practices (4)</td>
<td>Analysis of selected electronic instruments and transducers, their application in the field of measurement. Testing for and repair of malfunctioning equipment. Instrumentation used in measuring voltage, current, waveform, frequency and phase. 3 lectures, 1 laboratory. Prerequisite: ET 124</td>
</tr>
<tr>
<td>ET 131</td>
<td>Introduction to Engineering Drafting (1)</td>
<td>Basic instruction in drafting techniques and equipment. Geometric constructions for drafting. Basic principles and practices of isometric, oblique, and multiview drawing systems. 1 laboratory.</td>
</tr>
<tr>
<td>ET 141</td>
<td>Applied Descriptive Geometry (2)</td>
<td>Graphical solutions of problems involving points, lines and planes in three-dimensional space by method of multiview projection. Intersections and development of geometric solids. Application to engineering design. 2 laboratories. Prerequisite: One year of high school drafting or ET 131</td>
</tr>
<tr>
<td>ET 142</td>
<td>Engineering Drawing Systems (2)</td>
<td>Multiview and pictorial drawing. Detail and assembly drawings. Conventional industrial drafting practices including sectioning and dimensioning techniques. Role of the engineer in current industrial drafting organizations. 2 laboratories. Prerequisite: ET 141</td>
</tr>
<tr>
<td>ET 143</td>
<td>Engineering Graphics (2)</td>
<td>Vector diagrams. Gears and cams. Graphical mathematics. Functional scales. Introduction to alignment charts and monograms. Industrial drafting systems and practices. Interpretation of specialized types of technical drawings, including architectural, structural, welding, piping, diagrammatic and electrical. 2 laboratories. Prerequisite: ET 142</td>
</tr>
<tr>
<td>ET 151</td>
<td>Fundamentals of Technical Drawing (2)</td>
<td>Basic theory and application of multiview and pictorial projection. Current industrial practices and standards. Includes sectioning, techniques of dimensioning, detail drawings, and assembly drawings. Freehand sketching and interpretation of engineering drawings. 2 laboratories. Prerequisite: ET 142</td>
</tr>
<tr>
<td>ET 153</td>
<td>Interpretation of Technical Drawings (1)</td>
<td>Basic principles of technical drawing. Reading drawings made by multiview and pictorial projections systems. Interpretation of specialized types of technical drawings including electrical, diagrammatic, architectural, structural. Current industrial symbols and standards. Freehand sketching techniques. 1 laboratory.</td>
</tr>
<tr>
<td>ET 200</td>
<td>Special Problems for Undergraduates (1–2)</td>
<td>Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of the department head.</td>
</tr>
<tr>
<td>ET 201</td>
<td>Air Conditioning and Refrigeration Codes (2)</td>
<td>Introduction to current federal, state, and local codes for equipment and human safety as applied to building plumbing, heating, ventilating, refrigeration, and air conditioning systems. 2 lectures.</td>
</tr>
</tbody>
</table>
Engineering Technology

ET 231 Basic Circuit Analysis (4)
Application of experimental laws to basic linear passive networks. Introduction to mechanical analogues of electrical parameters. Transformer principles. Analysis of natural and forced response in networks; application of theorems, graphical solutions, handbook data, and approximations. Laboratory observation and measurement of circuit response. 3 lectures, 1 laboratory. Prerequisite: EL 112, 152

ET 232 Electronic Circuits I (4)
Frequency response in linear networks; two port networks, practical Fourier analysis. Networks combined with solid state and vacuum devices. Comparison of linear and non-linear systems. Principles of filtering. Circuit response; measurement techniques. 3 lectures, 1 laboratory. Prerequisite: ET 231

ET 233 Electronic Devices I (4)
Modern electronic devices and application to amplifier circuits. Use of characteristic curves. Methods of biasing transistor circuits. Square wave and pulse response. Distortion analysis. Principles of feedback. Amplifier operation; practical measurement techniques. 3 lectures, 1 laboratory. Prerequisite: ET 232

ET 235 Nondestructive Testing (5)
Application of nondestructive test systems for quality control of welded structures and castings. Includes radiography, ultrasonic, magnetic particle, penetrants, and eddy current methods. 3 lectures, 2 laboratories. Prerequisite: WM 359

ET 236 Welding Power Sources (3)
Design, selection, and application of welding power sources. Physics of the welding arc as related to power supply. 2 lectures, 1 laboratory. Prerequisite: ET 235

ET 240 Additional Engineering Technology Laboratory (1–2)
Elective project work. Total credit limited to 4 units with not more than 2 units in any quarter. 1 or 2 laboratories.

ET 246 Engineering Drawing (2)
Fundamental principles and practices in construction drawings, piping, welding and topographic drawing. Special projects in the area of major interest. Application to current industrial methods and systems. 2 laboratories. Prerequisite: ET 142

ET 320 Mechanisms (4)
Motion of machine parts. Graphical methods for determining displacements, velocities, and accelerations in linkages, cams, gears, and other mechanical assemblies. 2 lectures, 2 two-hour laboratories. Prerequisite: Phys 121, ET 142

ET 321 Air Distribution Systems (3)
Materials and techniques in fabrication and installation of air ducts for heating, ventilating, refrigerating, and air conditioning. Introduction to fabrication of air handling equipment and related accessories for high and low velocity systems. 1 lecture, 2 laboratories. Prerequisite: EnvE 233 or ME 231

ET 324, 325, 326 Advanced Welding Technology (5) (4) (4)
Problems in welding carbon and low alloy steels, loads, and stresses. Difficulties and corrective measures. Problems in welding of nonferrous metals and alloys. Selection of joining processes. Welding metallurgy. 3 or 2 lectures, 2 laboratories. Prerequisite: ET 236

ET 331, 332 Refrigeration Systems (3) (3)
Operation, installation, and supervision of medium and low temperature refrigeration systems for food and product processing and storage using various staging systems. Cold storage and building requirements for efficient operation. Low temperature testing and cryogenic refrigeration. Transport refrigeration systems. 2 lectures, 1 laboratory. Prerequisite: EnvE 233
Engineering Technology

ET 341 Electronic Devices II (4)
Application of electronic devices. Oscillation, modulation, and demodulation. Junction transistors at high frequencies, cascade tuned amplifiers, saw tooth oscillators, transistor multivibrators. The transistor as a switch. Wave shaping circuits. Responses in electronic circuits; practical measurement techniques. 3 lectures, 1 laboratory. Prerequisite: ET 233

ET 342 Communication Systems (4)
Communication systems; AM, FM, SSB, digital, teletype. Installation, operation, and maintenance. 3 lectures, 1 laboratory. Prerequisite: ET 341

ET 344 Advanced Engineering Drawing (2)
Layout and detail drawing for typical mechanical devices and systems currently used in industry. Theory of dimensioning systems. Production drawings. Emphasis on current industrial systems and organization. 2 laboratories. Prerequisite: ET 142

ET 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation of techniques, studies or laboratory applications of selected problems. Total credit limited to 4 units, with maximum of 2 units per quarter. Prerequisite: Permission of department head.

ET 421, 422 Applied Machine Design (4) (4)
Machine design emphasizing graphical techniques, feasibility models, and utilization of standard and special elements. Laboratory includes solution of realistic design projects by student teams. 2 lectures, 2 laboratories. Prerequisite: ET 344, 320; Aero 202

ET 423 Air Conditioning Systems (5)
Application of complete air conditioning consisting of heating, ventilation, humidification, dehumidification, refrigeration, air purification, water treatment, and control equipment for commercial and industrial applications. 3 lectures, 2 laboratories. Prerequisite: ET 332

ET 434, 435, 436 Welding Design (3) (3) (3)
Design of welded structures, containers, bases, tanks and pressure vessels according to governing codes, specifications and procedures, cost estimating of steel fabrication, process selection and evaluation. 1 lecture, 2 laboratories. Prerequisite: ET 326

ET 439 Instruments and Controls (3)
Application of instrumentation and automatic controls to heating, ventilation and air conditioning systems. 2 lectures, 1 laboratory. Concurrent: ET 423

ET 441 Digital Circuits (4)
Generation of pulses, their shaping, timing, and transmission. Mechanization of logic. Microminiature circuits. Digital circuit responses. 3 lectures, 1 laboratory. Prerequisite: ET 341

ET 442 Automation Technology (4)
Electronic and electromechanical systems used in industrial control and measurement; installation, operation, and maintenance. Amplification and control systems for automatic control of sequential and continuous processes. 3 lectures, 1 laboratory. Prerequisite: ET 341

ET 443 Microwave Technique (4)
Electromagnetic field theory; microwave devices. Klystron amplifiers, reflex oscillators, magnetrons, traveling wave tubes, solid state signal sources, masers and parametric amplifiers. 3 lectures, 1 laboratory. Prerequisite: ET 342
Engineering Technology/English

ET 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects are typical of problems graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time. Prerequisite: Senior standing.

ET 463 Undergraduate Seminar (2)
Special studies and technical developments in the field. Individual reports on important technology in the engineering technology field. 2 meetings.

ET 470 Selected Advanced Topics (1–3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

ENGLISH

Eng 100 Applied English Composition (3)
Concentrated work in English composition, letter writing, reports, and language usage. May not be substituted for Eng 104 or Eng 105. Not open for credit to students with credit in college English. 3 lectures.

Eng 104 Freshman Composition (3)
Composition based on principles, practice, and correction of theme writing. Organization, content, and editing of sentences, paragraphs, and whole essays. Forms of writing, accenting exposition. Supplementary language study. 3 lectures. Prerequisite: Satisfactory score on placement test.

Eng 105 Freshman Composition (3)
Continuation of written composition. Use of logic and argument; forms of persuasive writing. Use of reference materials in the preparation of an original, effective library research paper. Readings for critical analysis. 3 lectures. Prerequisite: Eng 104

Eng 106 Freshman Composition (3)
Continuation of written composition with emphasis on the development of style in writing (clarity, grace, individuality). Reading of good examples of style; writing of critical analysis papers. 3 lectures. Prerequisite: Eng 105

Eng 123 Intensive English (3) (Offered as Lang 123)
For the non-native speaker of standard English who needs additional work with English as a foreign language. Practice in pronunciation, sentence structure, reading and composition. Individual work in the language laboratory. 3 two-hour laboratories.

Eng 124, 125, 126 Intensive Composition (3) (3) (3) (Offered as Lang 124, 125, 126)
Review of English fundamentals. Reading, letter writing, and composition. Introduction to forms of exposition and logic. Use of reference materials and preparation of term paper. Written composition with emphasis on the development of effective style. Writing of critical analysis papers. Also for the speaker of non-standard English. May be substituted for Eng 104, 105, 106. 3 lectures. Prerequisite: Satisfactory score on English language test.

Eng 201 Introduction to Fiction (2)
Understanding of the forms of fiction through guided class discussion of short stories and novels. Frequent written assignments. 2 lectures.

Eng 202 Introduction to Drama (2)
Understanding of the forms of drama through guided class discussion of plays. Frequent written assignments. 2 lectures. Prerequisite: Eng 104

244
Eng 203 Introduction to Poetry (3)
Understanding of the forms of poetry through guided class discussion of poems. Frequent written assignments. 3 lectures. Prerequisite: Eng 105

Eng 204 Letter Writing (2)
Letter writing problems, letters of application, inquiries, questionnaires. The psychology of modern business letters. 2 lectures. Prerequisite: Eng 105

Eng 205 Children's Literature (3)
Survey of stories, plays, and poems which are suitable for introducing literary values in the elementary grades. 3 lectures. Prerequisite: Eng 106 or consent of instructor.

Eng 207 Introduction to Literature (3)
Introduction to major forms of literature. Study in depth of selected works with reading for appreciation. May not be elected by English majors. 3 lectures. Prerequisite: Eng 104

Eng 208 Introduction to American Literature (3)
Selected reading from representative American authors. May not be elected by majors in English. Not open for credit to students with credit in Eng 311, 312, or 313. 3 lectures. Prerequisite: Eng 104

Eng 210 Introduction to Shakespeare (3)
Selected readings in Shakespeare. Course is designed for General Education. 3 lectures. Prerequisite: Eng 105

Eng 211, 212, 213 European Literature (3) (3) (3)
Directed readings in European literature from the Greeks and Romans to the present, exclusive of the British. 3 lectures. Prerequisite: Eng 104

Eng 214 Afro-American Literature (3)
Selected readings in Afro-American literature. 3 lectures. Prerequisite: Eng 104

Eng 215 Mexican-American Literature (3)
Selected readings in Mexican-American literature in translation. 3 lectures. Prerequisite: Eng 104

Eng 218 Report Writing (3)
Study of the research paper in industry and engineering. Extensive writing experience. 3 lectures. Prerequisite: Eng 105

Eng 219 Technical Writing (3)
Preparation of training materials; popular presentation of technical data and conclusions; technical communication within industries. Extensive technical writing. 3 lectures. Prerequisite: Eng 104

Eng 300 Advanced Composition (3)
Application of grammatical and rhetorical principles to writing. Production of clear, well-planned, effective prose. 3 lectures. Prerequisite: One year of English composition.

Eng 301 Modern English Grammar (3) (Offered as Lang 301)
English language: phonology and morphology, dialects, language and literacy, coding practices and problems. 3 lectures. Prerequisite: Eng 105

Eng 302 Modern English Grammar (3) (Offered as Lang 302)
English language: syntax; comparison and contrast of the syntax of spoken and written English. Methods of syntactical study: traditional, descriptive-structural, transformational-generative. 3 lectures. Prerequisite: Eng 301
Eng 303 History of the English Language (3)
A study of the development of the English language from its origins to its present forms and practices. Required of all English majors. 3 lectures. Prerequisite: Eng 106, 307, 308, 309

Eng 304 Advanced Composition—Non-Fiction (3)
Instruction and practice in writing, revising, and evaluating various forms of non-fiction. 3 lectures. Prerequisite: Eng 106

Eng 305 Advanced Composition—Imaginative Writing (3)
Instruction and practice in writing, revising, and evaluating various kinds of imaginative composition. 3 lectures. Prerequisite: Eng 106, 201

Eng 306 Advanced Composition—Literary Criticism (3)
Instruction and practice in writing, revising, and evaluating various types of critical writing. 3 lectures. Prerequisite: Eng 106, 201, 202, 203

Eng 307, 308, 309 British Literature (3) (3) (3)
Selected readings in British literature from the beginning to the mid-20th century. 3 lectures. Prerequisite: Eng 105

Eng 311, 312, 313 American Literature (3) (3) (3)
Directed readings in American writers from Colonial times to the present. 3 lectures. Prerequisite: Eng 105

Eng 316 Readings for Young Adults (3)
A survey of readings in literature, suitable for use in secondary schools. 3 lectures. Prerequisite: Eng 106

Eng 317 Modern Drama (3)
A survey of British and American Drama of the 20th century. 3 lectures. Prerequisite: Eng 202

Eng 319 The Bible as Literature (3)
The Old and New Testaments with historical background. Literary forms and characteristics of Hebraic writing. Appreciation of the far-reaching use of Biblical narrative and reference in literature, speeches, art, drama, and modern film. 3 lectures.

Eng 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of the department head.

Eng 414 Significant World Writers (3)
Study in depth of selected world writers, as individual writers or in groups. Each course will have a subtitle descriptive of the content. May be repeated to 12 units. 3 lectures. Prerequisite: Eng 211

Eng 415 Modern Novel (3)
Readings in representative 20th century novels with special emphasis on origins, form, style, and ideas. 3 lectures. Prerequisite: Eng 201 or 9 units of literature.

Eng 416 Modern Poetry (3)
Study of poetry as an art expression of the 20th century. 3 lectures. Prerequisite: Eng 203 or 9 units of literature.

Eng 417 Significant British Writers (3)
Study in depth of selected British writers, as individual writers or in groups. Each course will have a subtitle descriptive of the content. May be repeated to 12 units. 3 lectures. Prerequisite: Eng 307, 308, 309
Eng 418 Significant American Writers (3)
Study in depth of selected American writers, as individual writers or in groups. Each course will have a subtitle descriptive of the content. May be repeated to 12 units. 3 lectures. Prerequisite: Eng 311, 312, 313 or consent of instructor.

Eng 419 Elizabethan Drama (3)
A survey of the English drama from its beginning to 1642, excluding Shakespeare. 3 lectures. Prerequisite: Eng 202, 307

Eng 461 Senior Project (2)
Selection and completion of a project under faculty supervision. Projects typify problems which a graduate may face in his field of employment. Project results are presented in a formal written report. Minimum 60 hours total time.

Eng 463 Undergraduate Seminar (2)
Study of professional articles and materials, research methodology and bibliography, professional orientation. 2 lectures. Prerequisite: Senior standing.

Eng 501 Introduction to Graduate Study (2)
Introduction to graduate scholarship and research in literature, language and composition. Research methodology and bibliographic techniques. May not be elected where credit for Eng 463 has been earned. 2 lectures. Prerequisite: Graduate status in English.

Eng 502 Introduction to Critical Analysis (3)
Basic approaches used by critics. Multiple points of view; application to literary works; reflection of critical analysis in student compositions. Designed to aid the teacher of secondary English to enrich the courses taught in secondary schools. 3 lectures. Prerequisite: graduate standing.

Eng 503 Contemporary Language Study (3) (Offered as Lang 503)
Correlation between current development of English language and courses in grammar and composition in public schools. Usage, vocabulary, spelling, idiom, punctuation, grammar, sentence structure. Understanding of effects of language change upon writing and speaking. Suitable for upper grade, junior and senior high school teachers. 3 lectures. Prerequisite: Eng 302, or consent of instructor.

Eng 504 Problems in Language (3) (Offered as Lang 504)
Study of development of English; consideration of problems of grammar and uses of language. May be repeated to 9 units. 3 lectures. Prerequisite: Eng 503

Eng 505 Problems in Composition (3)
Study of special problems in composition. Direct application of new language information to composition or detailed analysis of relationship between rhetorical principles and writing. May be repeated to 9 units. 3 lectures. Prerequisite: Graduate status in English.

Eng 511 Problems in American Literature (3)
Concentrated study of American authors or periods. Written and oral reports of individual investigation. 3 lectures. Prerequisite: Graduate status in English.

Eng 512 Problems in British Literature (3)
Concentrated study of British authors or periods. Written and oral reports of individual investigation. 3 lectures. Prerequisite: Graduate standing in English.

Eng 521 Curriculum and Methods in English (3)
Instruction in composition and literature as they may be applied to secondary school teaching. 3 lectures. Prerequisite: Admission to teacher education program or graduate status.
English/Entomology/Environmental Engineering

Eng 522 Introduction to Teaching English as a Second Language (3) (Offered as Lang 522)
Contrastive analysis of native and target language, methods and materials for testing and teaching English to non-native speakers: phonemic analysis, oral-aural drill, pattern practice, structure and grammar, composition, planning of curriculum materials from available resources. 3 lectures.

Eng 590 Graduate Seminar in English (1-3)
Independent or group study of special problems in selected areas of language, composition, or literature. Total credit limited to 3 units. 1-3 lectures. Prerequisite: Graduate status in English.

ENTOMOLOGY

Ent 126 General Entomology (4)
Introduction to the study of insects. Structure, major orders and families of insects, life histories, economic importance and control. Insect collection required. 3 lectures, 1 laboratory.

Ent 227 Insect Morphology (4)
Morphology of exoskeleton, appendages and internal organs; direct applications of principles are emphasized with economically important insects. 2 lectures, 2 laboratories. Prerequisite: Ent 126

Ent 332 Economic Entomology (3)
Identification, life histories and control of insects beneficial or injurious to various crops, fruits, stored products, domestic animals and man; important invertebrates such as mites, ticks and spiders. 1 lecture, 2 laboratories. Prerequisite: Zoo 132 or Bot 122; Ent 126; Chem 226 or consent of instructor.

Ent 590 Seminar in Entomology (1)
Problems and topics in advanced entomology selected according to the interest and needs of the students enrolled. Maximum of 3 units. 1 lecture. Prerequisite: Graduate status and evidence of satisfactory preparation in entomology.

ENVIRONMENTAL ENGINEERING

EnvE 200 Special Problems for Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

EnvE 201 Heating and Ventilating (3)
Heating and ventilating equipment and its application to industrial and public buildings. 3 lectures. Prerequisite or concurrent: Chem 121 or 124, Phys 122 or 132

EnvE 202 Heating and Ventilating (2)
Heating and ventilating equipment and its application to industrial and public buildings. 2 lectures. Prerequisite: EnvE 201

EnvE 203 Environmental Engineering Measurements (2)
Experimental studies of the instrumentation and basic measurements of concern to the environmental engineer. Procedures used in the analysis and reporting of experimental data. Corollary concepts of basic physical phenomena. 1 lecture, 1 laboratory. Prerequisite: EnvE 202

EnvE 231, 232, 233 Fluid Systems (2)(2)(2)
Materials, equipment, principles, and techniques used in designing and installing environmental fluid flow systems. 1 lecture, 1 laboratory. Prerequisite or concurrent: (231) Phys 122 or 132; (232) Chem 121 or 124

248
Environmental Engineering

EnvE 237 Boilers and Steam Equipment in Agriculture (2)
The operation and maintenance of steam equipment as applied to the agricultural industry. Course designed for students in Agriculture. 2 lectures.

EnvE 238, 239 Refrigeration in Agriculture (2)(2)
Basic principles of refrigeration, compression systems, refrigerant control valves, motors, service analysis, operation and maintenance of refrigeration equipment. Course designed for students in Agriculture. 2 lectures, winter; 1 lecture, 1 laboratory, spring.

Env 240 Additional Engineering Laboratory (1-2)
Elective project work. Total credit limited to 4 units with not more than 2 units in any quarter. 1 or 2 laboratories.

EnvE 302 Thermodynamics of Refrigeration (3)
Thermodynamic analysis of basic power and refrigeration cycles. Thermodynamic analysis of various vapor compression refrigeration systems and components. Combustion. 3 lectures. Prerequisite: ME 302, Chem 125

EnvE 303 Advanced Thermodynamics of Refrigeration (3)
Thermodynamic and heat transfer analysis of vapor compression system components and system balance. Refrigerants. Low temperature refrigeration. Absorption, air and ejector cycles. 3 lectures. Prerequisite: EnvE 302

EnvE 304 Thermodynamics of Processes (3)
Material balances, energy balances, liquids and mixtures, vapor-liquid equilibria, solubility and absorption, equilibrium in chemical reactions. 3 lectures. Prerequisite: ME 302; Chem 126 or permission of instructor.

EnvE 306 Survey of Heating and Air Conditioning (3)
Basic principles concerning comfort, thermal types of equipment and systems, space requirements and energy sources. Course designed for students not majoring in Environmental Engineering. 3 lectures. Prerequisite: Phys 131

EnvE 307, 308 Noise and Vibration Control (2)(2)
Behavior of sound waves, selection of instrumentation, practical measurements, criteria for noise and vibration control in environmental systems. 2 lectures. Prerequisite: Phys 133, Math 241

EnvE 313 Heat Transfer (3)
Basic principles of heat transfer, radiation, conduction, convection in gases and liquids, boiling and condensing of fluids during forced and gravity flow conditions. 3 lectures. Prerequisite: ME 302

EnvE 316 Automatic Process Control (2)
Introduction to automatic control instrumentation. Graphical method for analysis of control systems. Analytical determination of control response. 2 lectures. Prerequisite: Math 242, ME 302

EnvE 324 Introduction to Air Pollution (3)
Causes and effects of air pollution on the individual, the community and industry. Legal and public relations aspects. For non-majors. 3 lectures. Prerequisite: Junior standing.

EnvE 325 Environmental Air Quality (3)
Consideration of ambient air contamination inside and outside of a control space. Factors included in establishing, monitoring and maintaining air quality standards. 3 lectures. Prerequisite: Chem 125. Concurrent: ME 302

EnvE 326 Air Pollution Measurements (3)
Planning and conduct of atmospheric surveys. Collection, evaluation, and interpretation of data as they pertain to the concentration of pollutants sampled. 2 lectures, 1 laboratory. Prerequisite: Chem 126, EnvE 325

249
Environmental Engineering

EnvE 328 Meteorology (3)
Weather instruments; insolation, convection and advection; land and sea breezes; fog, smogs, clouds, and showers; thunderstorms; lapse rate and temperature inversions; cyclones; anti-cyclones; tornadoes and waterspouts; stacks and plumes; meteorological conditions under which air pollution accumulates. 2 lectures, 1 laboratory. Prerequisite: Phys 122 or 132

EnvE 331, 332, 333 Thermal and Fluids Laboratory (2)(2)(2)
Laboratory tests in controls, thermodynamics, fluid flow, heat transfer, and vibration. Performance testing of refrigeration systems, evaporators, condensers, fans, air washers, boilers, grilles, etc. 1 lecture, 1 laboratory, fall and winter; 2 laboratories, spring. Prerequisite: EnvE 203, 233

EnvE 341, 342, 343 System Design (2)(2)(2)
Individual and team project work in designing systems for heating and refrigerating applications. 2 laboratories. Prerequisite: EnvE 203. Concurrent: EnvE 307; ME 302

EnvE 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter.

EnvE 401 Advanced Mass and Energy Transfer (3)
Thermodynamic properties of moist air. Humidity measurements, direct contact transfer processes, heating and cooling by extended surfaces, solar radiation. 3 lectures. Prerequisite: EnvE 313

EnvE 402 Advanced Fluid Mechanics (3)
Fluid dynamics and fluid machinery. Centrifugal and axial fans, pumps and compressors. Turbines. Fluid flow in ducts. 3 lectures. Prerequisite: ME 341, EnvE 401

EnvE 411 Air Pollution Control (3)
Theory, principles and practices related to the control of particulate emissions. Mechanical separations. Cost and design of control systems. 3 lectures. Prerequisite: EnvE 326

EnvE 421 Advanced Air Pollution Control (3)
Theory, principles and practices related to the control of gaseous emissions. Process characteristics. Odor control. Mass transfer operations as applied to environmental control. 2 lectures, 1 laboratory. Prerequisite: EnvE 411

EnvE 422 Environmental Radiation Surveillance (2)
Sources of radioactive contaminants, biological effects, radiation protection. Environmental sampling and analysis of airborne radiation. Controls and disposal of wastes. 2 lectures. Prerequisite: EnvE 421

EnvE 423 Industrial Environments (2)
Effects of the environment in relation to health and the performance of work. Adverse and favorable temperatures and pressures, atmospheric impurities, toxicants. Control of occupational hazards and disease. 2 lectures. Prerequisite: EnvE 421

EnvE 441, 442, 443 Advanced System Design (3)(3)(3)
Individual and team project work in designing systems for air conditioning. 1 lecture, 2 laboratories. Prerequisite: EnvE 313, 341, ME 341

EnvE 461, 462 Senior Project (2)(2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum of 120 hours total time.
Environmental Engr/Farm Management

EnvE 463 Undergraduate Seminar (2)
Special studies and technical developments in the field. Individual reports on important research in the environmental engineering field. 2 lectures.

EnvE 470 Selected Advanced Topics (1–3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

FARM MANAGEMENT

FM 101 Introduction to Agricultural Economics (5)
Modern economic system, history of U.S. Agriculture, agriculture’s role in the economy, prices of agricultural products, marketing agricultural products, agricultural credit and finance, agricultural resources and land use, the role of farm management, introduction to farm management analysis processes, agriculture and the government. May not be substituted for Ec 211, 212 or FM 305. 4 lectures, 1 2-hour laboratory. To be taken by technical students.

FM 102 Farm Records and Management (4)
Farm recordkeeping for income tax purposes and study of farm business, measures of farm profits, factors affecting farm profits, reorganization of an actual farm. May not be substituted for FM 321 or 322. 3 lectures, 1 2-hour laboratory. To be taken by technical students.

FM 103 Farm Management Problems (5)
Crop and livestock enterprise costing, equipment costing and efficiency, determination of most profitable crop combinations, most profitable application of inputs, labor management, government price programs. May not be substituted for FM 421, 424, 425, or 426. 3 lectures, 2 2-hour laboratories. Prerequisite: FM 102. To be taken by technical students.

FM 104, 105, 106 Introduction to Farm Management (1) (1) (1)
Development of American agriculture, needs for farm management in agriculture, training necessary for the farm manager, American agriculture on the world scene, use of adding machine and calculators, agriculture enterprise costing. 1 lecture.

FM 124 Agriculture (3)
Identification and use of major crops and livestock, types of farming in the United States, the place and function of the farm marketing system, broad classes of soil and their general management problems, the farm problem as it affects farmers and citizens, identification of plants for the home and their general care. 2 lectures, 1 2-hour laboratory. For nonagriculture majors only.

FM 203 Agricultural Economic Analysis (3)
Role of price in the economy, the firm as a decision-making unit, the production function, single input-output analysis, substitution relationships, products combinations, risk analysis, consumption and market demand influence, population and technological changes. 3 lectures. Prerequisite: Ec 212

FM 300 Successful California Farms (1)
Visits to successful California farms involving many types of farming. Study of farm resources and organization, techniques of operation, yields, problems. Different regions visited on different trips. Maximum credit is 3 units for three different trips.

FM 304 Agricultural Marketing (3)
Marketing principles including processes, functions, institutions, costs, transition, problems and policies in the marketing of farm products. 3 lectures. Prerequisite: Ec 201 or 211
Farm Management

FM 305 Agricultural Resources (3)
Survey of agricultural production areas of United States from standpoint of physical resource, markets, economic advantages, and problems. Appraisal of area problem from standpoint of land economic principles. 3 lectures. Prerequisite: Ec 201 or 211

FM 307 World Agricultural Resources (3)
World agricultural production areas with emphasis on natural and human resources, existing production, economic implications, population growth and potential food supply. 3 lectures. Prerequisite: Ec 201 or 211

FM 310 Farm Credit (3)
Principles of farm financial management, credit requirements, choosing among sources of credit, farm financial planning and cash flow budgeting. 3 lectures. Prerequisite: Actg 131 or FM 321

FM 315 Land Economics (3)
Supply of land, population pressure on land, input-output relations affecting land use, economic returns, land values, development and investment costs, locational factors, conservation, institutional factors, leasing, land use planning, taxation, public regulations. 3 lectures. Prerequisite: Ec 201 or 211

FM 321 Farm Records (3)
Fundamentals of record keeping, kinds of records, inventory, depreciation, cash and accrued basis of income tax reporting, balance sheet, operating statement, analysis of statements. 2 lectures, 1 2-hour laboratory. Prerequisite: Ec 201 or 211

FM 322 Principles of Farm Management (4)
The role of farm management, types of farming, problems of leasing and buying a farm, labor problems, measures of profits, factors affecting profits, budgeting of laboratory farms, independent analysis of farm for term report. 3 lectures, 1 2-hour laboratory. Prerequisite: FM 321 or Actg 131 and 132

FM 325 California Agriculture (3)
Agricultural regions of California considered from standpoint of physical resources, crops and livestock, size, tenure, water problems, relation to urban areas, land development. 2 lectures, 1 2-hour laboratory. Prerequisite: Ec 201 or 211

FM 326 Farm Appraisal (3)
Methods of farm appraisal, use of county records, appraisal practice on different types of farms, discussions with professional appraisers. 2 lectures, 1 2-hour laboratory. Prerequisite: Ec 211 and junior standing

FM 333 Agricultural Price Analysis (3)
Application of statistical tools for price analysis. Emphasis on price making process for specific agricultural commodities. Utilization of market reports and production estimate data in price forecasting and analysis. 2 lectures, 1 2-hour laboratory. Prerequisite: Stat 212

FM 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

FM 403 Agricultural Prices and Policy (3)
Price making process, price variation and trends, governmental price control programs, price characteristics and problems of specific agricultural commodities. 3 lectures. Prerequisite: Ec 201 or 211
Farm Management

FM 405 Linear Programming in Agriculture (3)
Application of linear programming to modern commercial agriculture; assumptions and data requirements; graphic and simplex solutions; modification of basic assumptions to avoid program restrictions; price and resource mapping; preparation, coding and solutions of models simulating current problems. 2 lectures, 1 2-hour laboratory. Prerequisite: Ec 201 or 211

FM 406 Advanced Agricultural Economic Analysis (3)
Basic mathematical concepts; marginal analysis; maximization, minimization and basic differential calculus, decision and game theory as it pertains to the agricultural firm. 3 lectures. Prerequisite: FM 203, Math 212

FM 421 Crop Management Problems (3)
Crop enterprise costing procedure, analysis of rotation systems, labor problems, irrigation plans, determination of most profitable rates of fertilization and irrigation, marketing crops, land development costs, effect of shifting cropping plan. 3 lectures. Prerequisite: FM 322

FM 424 Poultry Husbandry Management Problems (3)
Poultry enterprise costing procedure, economics of plant layout, analysis of labor saving equipment and procedure, determination of most profitable feed combination, credit for poultrymen, use of outlook reports, marketing methods. 3 lectures. Prerequisite: FM 322

FM 425 Livestock Management Problems (3)
Costing procedure for animal enterprises, types of beef operations compared, feed lot management problems, determination of most profitable feed rations, livestock marketing procedure, effect of feed resource changes on organization and profits. 3 lectures. Prerequisite: FM 322

FM 426 Dairy Management Problems (3)
Dairy enterprise costing procedure, relation of cropping plan to dairy organization, analysis of feed resource costs, determination of most profitable feed rations, costs and problems of shifting from grade B to grade A dairy, most profitable culling. 3 lectures. Prerequisite: FM 322

FM 430 Orientation to California Agriculture (6)
Study of California agriculture through visitation to major production areas of the State. Problems in connection with organization, management, production practices, marketing procedures, use of equipment, soils, climate, and irrigation are considered. Offered in summer only. Open only to agricultural majors. Prerequisite: Senior standing or permission of Dean of Agriculture.

FM 431 Large Farm Accounting (3)
Application of commercial accounting process to large farm accounting problems. Special emphasis will be given to the problem of devising and executing an accounting system that will give necessary details on specific enterprises for analysis and control. 2 lectures, 1 2-hour laboratory. Prerequisite: Actg 131, 132

FM 461, 462 Senior Project (2) (2)
Analysis of a farm management problem selected by student with approval of adviser. Project results are presented in a formal report. Minimum 120 hours total time.

FM 463 Undergraduate Seminar (2)
Student presentation and description of developments and problems in farm management. 2 lectures.

FM 520 World Agricultural Development (3)
Special problems of agricultural development in selected emerging nations; considering the role of government policies in directing development. 3 lectures. Prerequisite: FM 307
Farm Mgt/Finance/Food Industries

FM 581 Graduate Seminar in Farm Management (3)
Group study of current problems; development and analysis methods in the field. Consideration given to the place of Farm Management in the teaching of vocational agriculture. 3 lectures.

FINANCE AND PROPERTY MANAGEMENT

FPM 310 Insurance Principles (3)
Basic principles of insurance from the viewpoint of the consumer. Risk and risk bearing; principles of insurance buying; major types of private insurance—life, property, liability—and the underlying economic problems each type is designed to meet. The insurance contract and its legal basis. 3 lectures.

FPM 311 Property and Casualty Insurance (3)
Analysis of insurance investments, policies, forms, endorsements, and rate making. Fidelity and surety bonding; analysis of policies and rate making. Prerequisite: FPM 310

FPM 312 Life and Health Insurance (3)
Analysis of contracts from the viewpoint of the insurance consumer, interpretation of major policy provisions, integration of private policies with social insurance coverages. 3 lectures. Prerequisite: FPM 310

FPM 331 Real Estate Principles and Practices (3)
Nature and scope of the real estate business including transfers of property, financing methods, and property management. 3 lectures. Prerequisite: Ec 201 or 211 or consent of instructor.

FPM 332 Real Estate Finance (3)
Trends, techniques and instruments in financing real property, including private and institutional sources of funds. Role of governmental agencies in real estate finance. 3 lectures. Prerequisite: FPM 331 or consent of instructor.

FPM 342, 343 Financial Management (3) (3)
Problems of financing current and fixed assets from internal and external sources. Emphasis on analysis, planning and control. 3 lectures. Prerequisite: Actg 223

FPM 411 Investments (4)
Survey of risk, media and objectives related to investment policies of individuals and institutions. Techniques of analysis, valuation and selection of securities. 3 lectures, 1 two-hour laboratory. Prerequisite: FPM 343 or consent of instructor.

FPM 412 Law of Real Property (3)
Legal theory and practice of estates in land. Landlord and tenant relationships, land transactions, mortgages and trust deeds, easements, land use, ownership rights in land and public land law. 3 lectures. Prerequisite: Bus 301 or 307

FOOD INDUSTRIES

FI 101 Survey of Food Industry (2)
Introductory course including size, distribution, major production areas of the food processing industry. 2 lectures.

FI 104, 105 Applied Food Processing (3–6) (3–6)
Application of principles and practices of food processing in industrial situations. One unit of credit for each month of employment in an approved industrial work assignment. Written reports required as determined by the instructor. Prerequisite: Completion of two quarters' curriculum requirements with minimum of C grade average. Limited to technical program students.
FI 122 Food Processing Machinery (3)
Physical properties of water and steam and their usage. Introduction to unit operations such as washing, peeling and cutting. 2 lectures, 1 laboratory.

FI 123 Elements of Food Preservation (3)
Principles of food preservation including canning, freezing, dehydration and fermentation. 2 lectures, 1 laboratory.

FI 200 Special Problems for Undergraduates (1–2)
Individual investigation, research studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

FI 210 Meats (3)
Practice in slaughtering and processing of beef cattle, sheep and hogs. A study of carcass grades, yield, and cut out value. Meat curing methods, by-products and consumption trends. 2 lectures, 1 laboratory.

FI 212 Meat Classification and Grading (2)
A comprehensive and detailed study of those factors related to carcass quality, conformation, and finish, to include meat classification, grading and judging of carcass and wholesale cuts of beef, pork, and lamb. Field trip to meat packing plants is required. 1 lecture, 1 laboratory. Prerequisite: FI 210

FI 221, 222, 223, 224 Food Processing Operations (3) (3) (3) (3)
Lecture and laboratory study of complete processing procedures for seasonal fruits and vegetables, specialties and other processed food. 2 lectures, 1 laboratory. FI 224 offered in summer only. Prerequisite: FI 123 or 230

FI 230 Elements of Food Processing (4)
Principles of unit operations in food processing covering canning, freezing, dehydration, concentration and fermentation. Food quality and spoilage. For majors other than Food Processing majors. 3 lectures, 1 laboratory.

FI 232 Sanitation and Waste Disposal (3)
The organization, management and operation of a food plant sanitation and waste disposal program. 2 lectures, 1 laboratory.

FI 233 Processed Food Inspection (3)
Fundamentals, principles and procedures for inspecting processed foods based upon federal and state grades. Laboratory work in grading various products. 2 lectures, 1 laboratory.

FI 309 Meat Procurement and Use (3)
Selection, identification and cutting of meat. Physical and chemical composition of meat and its relationship to flavor, tenderness, and nutritional value. 2 lectures, 1 laboratory. Prerequisite: HE 210 or Chem 328

FI 321 Food Plant Quality Control (3)
Methods of organizing and operating food and plant quality control systems including chemical and physical techniques. 2 lectures, 1 laboratory. Prerequisite: FI 221 or 233

FI 332 Statistical Quality Control (3)
The application of statistical methods in quality control programs and evaluation of operations. 2 lectures, 1 laboratory. Prerequisite: FI 221, 222, or 223

FI 336 Packaging (4)
Study of packaging materials, packages and packaging methods applicable to a variety of processed foods. 3 lectures, 1 laboratory.
Food Industries

FI 338 Sausage, Smoked and Canned Meats (3)
The manufacturing of processed meats. Product formulation, curing, smoke house operation, meat canning, sanitation and quality control. 2 lectures, 1 laboratory. Prerequisite: FI 309, 210 or 212

FI 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

FI 421, 422 Advanced Food Processing (3) (3)
Detailed study of more involved processing operations and the physical and chemical actions of the processes. Basic properties of carbohydrates, proteins and lipids in relation to products and processes. 2 lectures, 1 laboratory.

FI 425 Food Evaluation (3)
Characteristics of food color, consistency, texture and flavor. Sensory evaluation and grading. Food acceptance testing. Statistical analysis of data. 2 lectures, 1 laboratory.

FI 431 Meat Technology (3)
Characteristics of meat and meat products as related to processing and marketing with special emphasis on problems and variations encountered during these operations. 2 lectures, 1 laboratory. Prerequisite: Junior standing and permission of instructor.

FI 433 Food Production Control (4)
Plant equipment construction, plant layout and flow lines, cost estimating, work simplification, automation and control systems. 3 lectures, 1 laboratory. Prerequisite: Junior standing and instructor's permission.

FI 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

FI 463 Undergraduate Seminar (2)
Major developments in the chosen field of the student. Discussion of new developments, policies, practices, and procedures. Each individual is responsible for the development and presentation of a topic in his chosen field. 2 lectures.

FI 470 Selected Advanced Topics (1–3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

FI 551 Food Constituents and Characteristics (4)
Graduate level study of chemical and physical properties of proteins, carbohydrates, lipids, pigments, enzymes and additives related to formulation and processing of food. 3 lectures, 1 laboratory. Prerequisite: Graduate standing and permission of instructor.

FI 581 Graduate Seminar in Food Processing (3)
Current findings and research problems in the field and their application to the industry. 3 lectures.
FOREIGN LANGUAGE

The primary purpose of offering foreign language instruction at California State Polytechnic College is to prepare students to meet better the educational requirements of working in foreign countries, communicating with foreign nationals in this country, or preparing to teach language in the elementary schools. The subject matter and teaching methods used provide a usable, practical knowledge of the language studied.

Fr 101, 102, 103 Elementary French (4) (4) (4)
For beginners. Class practice in pronunciation, sentence structure, reading, writing, and basic conversation. Laboratory drill with recorded materials. 3 lectures, 1 two-hour laboratory.

Fr 201, 202, 203 Intermediate French (3) (3) (3)
Further practice in speaking, reading, and writing French. Introduction to French culture. 3 lectures. Prerequisite: Fr 103 or equivalent.

Fr 301, 302, 303 Third Year French (3) (3) (3)
Readings in French literature; poetry, essays, novels, plays. 3 lectures. Prerequisite: Fr 203 or equivalent.

Ger 301, 302 Scientific German (4) (4)
Short, intensive grammar; emphasis on reading of scientific German periodicals and texts. Laboratory drill with recorded materials. 3 lectures, 1 two-hour laboratory.

Span 101, 102, 103 Elementary Spanish (4) (4) (4)
For beginners. Class practice in pronunciation, sentence structure, reading, writing, and basic conversation. Laboratory drill with recorded materials. 3 lectures, 1 two-hour laboratory.

Span 201, 202, 203 Intermediate Spanish (3) (3) (3)
Further practice in speaking, reading, and writing Spanish. Introduction to Spanish and Latin American cultures. 3 lectures. Prerequisite: Span 103 or equivalent.

Span 301, 302, 303 Third Year Spanish (3) (3) (3)
Readings in Spanish literature; poetry, essays, novels, plays. 3 lectures. Prerequisite: Span 203 or equivalent.

Lang 101, 102, 103 Foreign Language, Independent Study (3) (3) (3)
Independent supervised study arranged for students who wish individually to acquire basic skill in a foreign language. Instruction includes use of prerecorded and programmed materials. Not open for credit by examination.

FRENCH

(See Foreign Language)

FRUIT SCIENCE

FrSc 123 Bookkeeping (3)
Practical studies and exercises in the handling of honey bees with special reference to pollination of commercial crops. Honey processing and marketing. Bee inspection and disease detection. 2 lectures, 1 laboratory.

FrSc 131 Pomology (4)
History and outlook for California fruit growing. Apple, peach, pear and prune production practices. Field laboratories in orchard management practices, tree and fruit identification, harvesting, grading and packaging of college orchard products. 3 lectures, 1 laboratory. Credit will not be allowed for both FrSc 131 and 230.
Fruit Science

FrSc 132 Pomology (4)
 Planting and planning the deciduous orchard. Apricot, cherry, fig, olive and plum production practices with special emphasis on pruning trees and grapevines. 3 lectures, 1 laboratory. Prerequisite: FrSc 131

FrSc 133 Pomology (4)
 Production practices common to deciduous nut crops produced in California. Normal spring cultural problems including thinning and spraying. Small fruit culture. 3 lectures, 1 laboratory. Prerequisite: FrSc 132

FrSc 230 California Fruit Growing (4)
 Production practices, areas of production, suitable varieties, harvest and processing of important deciduous and subtropical fruit crops. Methods of propagation and training. 3 lectures, 1 laboratory. Credit will not be allowed for both FrSc 131 and FrSc 230

FrSc 231 Viticulture (4)
 A comprehensive study of grape growing utilizing the college plantings for field practice in planting, training and maintaining the vineyard. Varietal identification and use. 3 lectures, 1 laboratory.

FrSc 232 Fruit Plant Propagation (4)
 Propagation by seed, cuttings, layering, grafting, and budding. Rootstocks for deciduous fruits, commercial nursery practices. 3 lectures, 1 laboratory. Prerequisite: FrSc 133 or 230

FrSc 239 Home Fruit and Vegetable Production (3)
 Growing, handling and evaluating fruits and vegetables common to demonstration and Estate plantings. Varietal characteristics and climatic adaptation. 2 lectures, 1 laboratory.

FrSc 324 Tropical Fruit and Nut Production (4)
 Common practices in producing tree and fruit crops of economic importance in tropical areas—cocoa, tea, coffee, rubber, oil palm, bananas and dates. 3 lectures, 1 laboratory.

FrSc 331 Advanced Viticulture (4)
 Commercial production practices, mechanization and processing. Management of college planting. Field labor management efficiency studies. Techniques in handling and harvesting. 3 lectures, 1 laboratory. Prerequisite: FrSc 231

FrSc 332 Citrus and Avocado Fruit Production (4)
 Growing and marketing oranges, lemons, grapefruit, avocados and dates. Minor subtropical fruits also included. Orchard practice. 3 lectures, 1 laboratory.

FrSc 421 Advanced Pomology (3)
 Storage problems, post-harvest physiology, environmental factors affecting fruit development. Maturity standards. Two-day field trip required. 2 lectures, 1 laboratory. Prerequisite: FrSc 232, CrSc 311

FrSc 436 Orchard Management (4)
 Organization and management of labor and equipment in field and processing operations. Production problem analysis. Advanced work in production management. Job instruction training. 3 lectures, 1 laboratory. Prerequisite: FrSc 421

FrSc 521 Advanced Fruit and Nut Crop Production (4)
 Advanced commercial production and management techniques. Use of mechanical aids and harvesters as related to size of crops, harvesting, and post-harvest handling. 3 lectures, 1 laboratory. Prerequisite: Permission of instructor.

FrSc 581 Graduate Seminar in Fruit Production (3)
 Group study of current problems of fruit production; current experimental and research findings as applied to production and marketing. 3 lectures.
GEOGRAPHY

Geog 201 Regional World Geography (3)
Regional geographical characteristics and interrelationships emphasizing the international importance, problems, and potentialities of Europe and the Soviet Union. Primarily for the elementary or the secondary school teacher. 3 lectures.

Geog 202 Regional World Geography (3)
Regional geographical characteristics and interrelationships emphasizing the international importance, problems, and potentialities of the Middle East, Africa, and the Orient. Primarily for the elementary or secondary school teacher. 3 lectures.

Geog 203 Regional World Geography (3)
Regional geographical characteristics and interrelationships emphasizing the international importance, problems, and potentialities of the Pacific World, Latin America, the United States, and Canada. Primarily for the elementary or the secondary school teacher. 3 lectures.

Geog 308 Global Geography (3)
Survey of man's utilization and occupation of the earth. Interrelations of human life and elements of natural dependence of nations, and world trade. Supporting power of geographical environment. 3 lectures.

Geog 315 Political and Economic Geography (3)
Survey of world resources, mineral and agricultural, and of the geographical factors affecting their production and distribution. An analysis of economic geographic factors in current international affairs. 3 lectures.

Geog 401 Area Geography (3)
Depth study of geographic characteristics of a selected world area. Each time the course is offered it will bear a subtitle descriptive of the particular world area studied. 3 lectures. May be repeated to a total of 12 units. Prerequisite: Geog 315
Geology/History

GEOLOGY

Geol 201 Physical Geology (3)
Processes responsible for the earth's present characteristics. Mountain building, metamorphism, igneous activity, depositional agencies, sedimentation. Examples from local area. Topographical and geological maps. Rocks and minerals. 3 lectures.

Geol 202 Historical Geology (3)
Role of sedimentary rocks in correlating past changes in the earth. Value of fossils as a means of dating rocks and illustrating changes in environment. Local geological and topographical maps relative to processes which shaped earth history. 3 lectures.

GERMAN

(See Foreign Language)

HISTORY

Hist 101, 102, 103 History of Civilization (3) (3) (3)
Development of civilization from earliest times to the present. Political, economic, social, intellectual, and religious contributions of the various peoples to contemporary life. 3 lectures.

Hist 112 History of California (3)
Development of California; early explorations, colonization; institutions, government, and economy from beginning to the present; development of culture, industry, agriculture, government, and population. 3 lectures.

Hist 200 Special Problems for Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

Hist 201, 202, 203 United States History (3) (3) (3)
A comprehensive survey of the development of the United States from the 15th century to the present. Hist 201 satisfies the general education requirement of Hist 304 for Social Science and History majors. 3 lectures. Prerequisite: Sophomore standing.

Hist 301 European Historiography (3)
Critical studies in historical sources and methods, with examples from the publications of recognized historians in several fields of European history. 3 lectures. Prerequisite: Junior standing.

Hist 302 American Historiography (3)
Critical studies in historical sources and methods, with examples from the publications of recognized historians in American history. 3 lectures. Prerequisite: Junior standing.

Hist 304 Growth of American Democracy (3)
The historic backgrounds of present-day economic, political, and social problems. Development of American institutions and ideals. Not open to students with credit in or enrolled in Hist 203. 3 lectures. Prerequisite: Pol Sc 301

Hist 305 The United States in World Affairs (3)
The origin, nature, and implementation of U. S. foreign policy since the Second World War. Domestic and international factors relating to U. S. objectives; discussion and analysis of major issues and problems of contemporary U. S. foreign policy. 3 lectures. Prerequisite: Pol Sc 301, History 203 or 304
Hist 307, 308, 309 Latin American History (3) (3) (3)
Imposition of Spanish and Portuguese institutions upon native American cultures; resultant colonial political and economic administrations and problems. Ideological and commercial conflicts causing the wars for independence; clashes during the national period of constitutionalism and dictatorships, vested interests and economic change. Significance of the Mexican and Cuban social revolutions. 3 lectures. Prerequisite: Junior standing.

Hist 311, 312, 313 British History (3) (3) (3)
History of Britain from pre-Roman times to the present. Emphasizes social, economic, political, and cultural history. 3 lectures.

Hist 331 Afro-American History (3)
Political and social history of Afro-Americans from the early 17th century to the present; emphasizes contributions to American cultural and political life. 3 lectures. Prerequisite: Junior standing.

Hist 341 Mexican History (3)
Obtrusion of Spanish institutions into the Mexican civilizations and the subordination of Spanish influence to the dominant Mexican cultures. Diffusion and struggle for identity of the Mexican in North America, progress of his twentieth-century revolt for social equity. 3 lectures. Prerequisite: Junior standing.

Hist 351, 352, 353 Modern European History (3) (3) (3)
Growth of political institutions; development of national states; imperial rivalries; origins of World War I; peace settlements; totalitarianism; World War II; developments since 1945. 3 lectures. Prerequisite: Hist 101, 102, 103 or permission of the instructor.

Hist 381, 382 African History (3) (3)
Survey of African history from earliest times; ancient African civilizations, Moslem penetration, indigenous kingdoms, European colonialism, rise of African nationalism, development of independent Africa as illustrated by the history of selected countries. 3 lectures. Prerequisite: Junior standing.

Hist 400 Special Problems for Advanced Undergraduate (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of the department head.

Hist 401 Early American History to 1763 (3)
Age of exploration; European powers in eastern North America; English settlements; development of the English colonies, with emphasis on Virginia and Massachusetts; proprietary interests; growth of internal control, and colonial conflicts. 3 lectures. Prerequisite: Junior standing and Hist 201 or consent of instructor.

Hist 402 American Revolution and the New Nation (3)
Background of the Anglo-American imperial problem; the War for Independence and internal democratic upheaval of the era; establishment of the new nation, origins of the Constitution, the party system, American foreign policy, the national economy. 3 lectures. Prerequisite: Junior standing and Hist 201 or consent of instructor.

Hist 405 Rise of Industrial America (3)
Social, political, and economic history during the latter part of the 19th century. Interaction between rising industrialism and traditional agrarian democracy. Relationship between the industrial system and the values of democratic institutions. 3 lectures. Prerequisite: Hist 203 or 304

Hist 411, 412, 413 History of East Asia (3) (3) (3)
Social, political, economic, and intellectual developments in Japan, China, Korea, and Southeast Asia from earliest times to the present. 3 lectures. Prerequisite: Junior standing.
History/Home Economics

Hist 419 History of Education (3)
Rise of the Western educational tradition; major ideas, institutions, personalities. From the world of the Greeks to that of the Twentieth Century. 3 lectures. Prerequisite: Hist 203 or 304

Hist 425, 426, 427 Russian History (3) (3) (3)
Political, economic, and social and cultural history of Russia from the earliest times to the present. 3 lectures. Prerequisite: Junior standing.

Hist 460 Senior Project (2)
Selection and completion of a project under faculty supervision. Results presented in a formal report. Minimum of 60 hours time. Prerequisite: Hist 301 or 302

Hist 470 Selected Advanced Topics (1-3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

Hist 511 Sources in History (3)
Methods of finding and adapting authoritative source materials in history to the elementary and secondary classroom. 3 lectures. Prerequisite: Graduate standing.

Hist 521 Curriculum and Methods in History (3)
Content, organization and scope of social studies curriculum in secondary schools, methods of teaching. Evaluation of procedures. 3 meetings. Prerequisite: Major or minor in History or Social Sciences, admission to teacher education program and Graduate standing.

Hist 590 Seminar in History (3)
Historical analysis of selected problems and topics. Each seminar will carry a subtitle descriptive of its content. 3 meetings. Maximum of 6 units may be earned. Prerequisite: Graduate standing.

HOME ECONOMICS

HE 101 Orientation to Home Economics (1)
Explanation of educational requirements and programs in home economics. Adjustment to personal problems of freshmen. Required for all home economics freshmen fall quarter. 1 lecture.

HE 121 Introduction to Foods (5)
Formation and illustration of basic concepts of the scientific principles in food preparation. Supporting factors necessary for successful meal preparation. 3 lectures; 2 two-hour laboratories.

HE 122 Design Analysis for Home Economists (2)
Directed laboratory experience in use of design principles in everyday situations of costume coordination, food presentation, home furnishings, and home planning. 2 two-hour laboratories.

HE 131 Clothing Construction (5)
Present-day construction techniques emphasizing speed and efficiency as related to custom quality clothing procedures. 5 two-hour laboratories.

HE 200 Special Problems for Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.
HE 203 Personal and Home Management (3)
Home management as it is affected by personal and family situations. Emphasis on role of values in management and the relationship of goals to values. For both men and women. 3 lectures. Prerequisite: Sophomore standing.

HE 210 Nutrition (3)
Nutritional needs throughout the life cycle. Chemical compositions of foods and their utilization in the body. 3 lectures. Men and women of sophomore standing or over.

HE 226 Home Food Conservation (2)
Conservation techniques to obtain maximum control of food quality with most efficient use of time, energy, and economic resources. 1 lecture, 1 two-hour laboratory. Prerequisite: HE 121

HE 231 Household Equipment (3)
Efficient selection, use and maintenance of common types of household equipment. Simple repairs and adjustments. 2 lectures, 1 two-hour laboratory. Prerequisite: Sophomore standing.

HE 237 Children's Clothing (3)
Design, construction, and selection of children's clothing. Emphasis upon the psychological, physiological, and developmental needs of various age levels. Comparative analysis of self-made and ready-to-wear clothing. 2 lectures, 1 laboratory. Prerequisite: HE 233 or consent of instructor.

HE 241 Pattern Construction Analysis (3)
Pattern design analyzed through the basic techniques of fitting and use of flat pattern. 1 lecture, 2 laboratories.

HE 242 Interior Design (3)
Analysis of elements of interior design including consumer and socio-economic aspects. Individual creative laboratory experience in problems related to living space. 2 lectures, 1 two-hour laboratory.

HE 310 Maternal and Child Nutrition (3)
Nutritional requirements from conception to adolescence; role of nutrition in normal development. 3 lectures. Prerequisite: HE 210

HE 321 Meal Management (3)
Planning, preparing, and serving family meals. Emphasis on nutritional, aesthetic, and economic aspects. 1 lecture, 2 two-hour laboratories. Prerequisite: HE 121, 210

HE 322 Textiles (3)
Physical and chemical characteristics of natural and synthetic fibers. Yarns, fabrics, and textile finishes. Application of theory to textile fabrics. Selection, use, and care. 2 lectures, 1 three-hour laboratory. Prerequisite: Chem 226

HE 323 Housing for Contemporaries (3)
Basic principles and functions of house selection, planning, and decoration as they relate to: expressions of personality, architectural design and setting, and socio-economic levels. 3 lectures. Prerequisite: HE 242, junior standing.

HE 326 Demonstration Techniques (2)
Development of effective means of communication by use of the demonstration technique, through presentations with evaluations. 1 lecture, 1 two-hour laboratory. Prerequisite: Sp 201, junior standing.

HE 328 Advanced Nutrition (3)
Nutrient requirements of man; factors affecting requirements. Evaluation of nutritional status. Topics in nutrition research. 2 lectures, 1 two-hour laboratory. Prerequisite: HE 210, Chem 226, Zoo 131
Home Economics

HE 332 Advanced Interior Design (2)
Individual creative experiences in problems of interior design. 2 laboratories. Prerequisite: HE 242

HE 333 Costume Design and Construction (3)
Fundamentals of designing by flat pattern and French draping. Designing for the individual and the fabric. Advanced construction and fitting techniques. 1 lecture, 2 laboratories. Prerequisite: HE 131, 322

HE 341 Dynamics of Clothing (3)
A critical evaluation of the various social-psychological aspects of clothing as they relate to the individual as a consumer, and as they relate to age of the individual. 3 lectures. Prerequisite: Junior standing.

HE 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Senior standing or consent of instructor.

HE 410 Community Nutrition (3)
Problems inherent in improvement of local, state, national and international community nutrition; role of nutritionist in public health, social welfare, agricultural extension, and school lunch program. 3 lectures. Prerequisite: HE 210

HE 411 Methods and Materials for Homemaking Instruction (4)
Development of a timely philosophy in homemaking education. Classroom management, procedures, curriculum development, teaching aids and evaluating techniques for teaching homemaking in junior and senior high schools, including federally reimbursed programs. Field trips required. 4 lectures. Prerequisite: Ed 312, 401, 403

HE 412 Home Economics Student Teaching Seminar (3)
Practices and problems of student teaching in Home Economics, synthesizes professional study and experience to develop teaching competence. Taken concurrently with student teaching. 3 lectures.

HE 413 Adult Homemaking Education (2)
Curriculum materials, procedures, teaching aids and evaluative techniques for teaching adult homemaking. 2 lectures. Prerequisite: HE 411

HE 415 Methods of Teaching Nutrition (3)
Objectives, organization of subject matter, practical application of methods and techniques for teaching patients, medical and dietetic interns, student nurses, and employees. 3 lectures. Prerequisite: Senior standing, Ed 312

HE 421 Meals for Special Occasions (2)
Cultural and aesthetic aspects of food. Distinctive foods as related to the cultural and economic studies of worldwide cuisine. 2 three-hour laboratories. Prerequisite: HE 121, 210, 321

HE 422 Advanced Textiles (3)
Advanced study of fiber structure and fabric properties as related to fabric performance. Laboratory testing of fibers and fabrics. 2 lectures, 1 three-hour laboratory. Prerequisite: HE 322

HE 423 Home Management Residence (3)
Application of managerial principles to specific situations while living in a family-type home. Individual and group conferences with instructor. Required for senior students working toward Standard Teaching Credential in Secondary Schools with emphasis in Home Economics. Prerequisite: Senior standing in Home Economics, consent of instructor.
HE 424 Home Management (3)
Philosophy of home management and factors involved in management of human and natural resources in the home; emphasis on the family as a unique economic unit in the changing American economy. 3 lectures. Prerequisite: HE 203, senior standing.

HE 425 Quantity Cookery (3)
Economic principles and problems involved in planning and preparing food using institutional equipment to meet specific product standards for large groups. 1 lecture, 2 laboratories. Prerequisite: HE 328 or consent of instructor.

HE 426 Food Production Management (3)
Principles of successful organization and management with their application to the effective operation of food service. Administrative responsibilities of the food service manager. Advance reservation with instructor required. 3 lectures. Prerequisite: HE 425 or consent of instructor.

HE 427 Equipment and Layout (3)
Selection, maintenance and arrangement of equipment and furnishings for food service departments with emphasis on materials, construction and specifications. Designated field trips required. 2 lectures, 1 laboratory. Prerequisite: HE 426 or consent of instructor.

HE 429 Diet Therapy (3)
Modification of normal food intake and dietary patterns, with emphasis on dietary adjustments necessitated by certain disease processes and conditions. 3 lectures. Prerequisite: HE 328

HE 433 Historic Costume (3)
Costumes of the past as related to contemporary fashions. Individual historic design and contemporary illustration required. 3 lectures. Prerequisite: HE 241 or permission of the instructor.

HE 442 Tailoring (2)
Selection and construction of garments requiring tailoring techniques. 2 laboratories. Prerequisite: HE 333 or consent of instructor.

HE 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision, the project to be related to a probable field of employment. Results of the study are presented in a formal report. Minimum of 120 hours to be used in making the study. Prerequisite: All freshman, sophomore, and junior home economics courses must be completed.

HE 463 Undergraduate Seminar (2)
Study and discussion of current developments in the field of home economics. 2 lectures. Prerequisite: Senior standing.

HE 470 Selected Advanced Topics (1–3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

HE 501 Management of Family Resources (3)
Principles, major problems and trends in the economics of the family. 3 lectures. Prerequisite: Graduate standing.

HE 523 Time Studies in Home Management (3)
Developing and selecting labor-saving methods and devices for the able-bodied and handicapped. Individual and group investigation. Survey of literature. Current trends and methods of research. 2 lectures, 1 two-hour laboratory. Prerequisite: Graduate standing.
Home Economics/Industrial Engineering

HE 525 Experimental Studies in Textiles (4)
Review and reporting of pertinent studies in textile research. Testing of fabrics using equipment available. 3 lectures, 1 laboratory. Prerequisite: Graduate standing.

HE 528 Experimental Studies in Foods (4)
Experimental approach to the study of chemical and physical properties of interaction components of selected foods; correlated emphasis on selection, application, and evaluation of pertinent literature. 3 lectures, 1 laboratory. Prerequisite: Graduate standing.

HE 532 Problems and Trends in Home Decoration (3)
Individual problems in decoration, relating trends in textiles and architecture to economic and sociological needs of the family. 2 lectures, 1 two-hour laboratory. Prerequisite: Graduate standing or consent of instructor.

HE 580 Graduate Seminar (1–3)
Topics based on current issues of concern in various areas of Home Economics chosen according to the needs of the students enrolled. 1, 2 or 3 lectures. Prerequisite: Graduate standing.

HE 599 Thesis (3) (3) (3)
Individual research under the general supervision of the staff, leading to a graduate thesis of suitable quality. Prerequisite: Graduate standing.

HE 621 (A–Z) Workshop (Various titles as required) (1½)
Special workshops organized either on the initiative of the college or at the request of special groups. Normally offered during the summer. Credit granted at the rate of 1½ units per week.

INDUSTRIAL ENGINEERING

IE 101 Introduction to Industrial Engineering (3)
Historical development of the industrial economy and the profession of industrial engineering. Basic concepts and principles of industrial organization and management. The dynamics of the industrial enterprise and the functional activities associated with industrial engineering. 3 lectures.

IE 122 Engineering Methods (2)
Introduction and application of basic engineering tools and concepts useful in industrial engineering. Dimensional analysis, error analysis, elementary mathematical models, and empirical equations. Data collection, evaluation, and formulation of engineering reports. 1 lecture, 1 laboratory.

IE 123 Industrial Systems Analysis (3)
Basic techniques of systems analysis. Application to a selection of industrial systems including production control, inventory, forms control, and cost control. Modern data processing techniques in fact gathering for systems evaluation. 2 lectures, 1 laboratory. Prerequisite: IE 101

IE 141 Manufacturing Processes (1)
Principles, practices and theory of metal casting, sand and shell molding; precision investment casting; die casting; plastic forming and molding. Basic fundamentals and theory of pattern making and hot forming by forging methods. 1 laboratory.

IE 200 Special Problems for Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

266
IE 202 Motion and Time Study (3)
Principles, tools, and techniques for methods improvement and the setting of time standards. Motion and time study as used by management for planning and control. A study of methods for systems analysis. 3 lectures. For Non-IE Students. Prerequisite: Junior Standing.

IE 204 Industrial Safety (2)
History of industrial safety; fire prevention; personal protective equipment; health hazards; machinery safeguards; electrical hazards; plant inspection; accident insurance. 2 lectures.

IE 212 Principles of Data Analysis (3)
Definition of data bases and information systems. Types of data generated and needed in industry. Industrial engineer’s view of data and analysis needed for production systems. 3 lectures. Prerequisite: Engr 251

IE 223 Man-Machine Systems (3)
Basic use of flow charting in work analysis. Principles of motion economy, work simplification, micromotion analysis, work sampling, and synthetic data. Quantitative analysis of time studies, allowance and performance ratings. Integration of these tools in man-machine systems. 2 lectures, 1 laboratory. Prerequisite: IE 123

IE 232 Dimensional Metrology (2)
Fundamental theory of dimensional metrology including inspection tools, standards, techniques, and application for physical measurements in industry. Design and application of direct-measuring tools, optical, pneumatic and electronic comparators, gages, and optical flats. 1 lecture, 1 laboratory. Prerequisite: Sophomore standing, or consent of instructor.

IE 233 Elements of Numerical Control Machining (2)
Theory, principles, and concepts of numerical control of machine tools. Principles and application techniques of various control media. Orientation in concepts of continuous path and point-to-point systems. Part programming including control tape preparation for numerical control drilling. 1 lecture, 1 laboratory. Prerequisite: ET 153, MP 142

IE 239 Industrial Costs and Controls (3)
Development and use of manufacturing costs in management control systems for production planning, cost analysis, and cost control. Concepts and techniques employed in relation to cost determination and control functions of the industrial engineer. 2 lectures, 1 laboratory. Prerequisite: IE 123 or Actg 132

IE 240 Additional Engineering Laboratory (1-2)
Total credit limited to 4 units, with not more than 2 units in any one quarter. 1 or 2 laboratories.

IE 251, 252 Manufacturing Engineering Laboratory (3) (3)
Engineering studies encompassing theory, principles and application concepts of manufacturing engineering in industrial enterprises. Projects in manufacturing process areas include experimental and design studies in metal casting, metal forming and cutting, metrology, and finishing processes. 1 lecture, 2 laboratories. Prerequisite: IE 141, ET 151

IE 304 Operations Research (3)
Preliminary study of basic management science tools and techniques. Probability applications, sampling analysis, inventory models, and waiting lines. Application to common production control problems. 3 lectures. Prerequisite: Stat 321

IE 305 Operations Research (3)
Introductory study of game theory. Linear programming, dynamic programming, and schedule sequencing. Computer programming in solution of problems. 3 lectures. Prerequisite: IE 304

267
Industrial Engineering

IE 309 Industrial Linear Systems (3)
The production and production control system as a linear system with feedback. Transform theory applied for solution. Man as a noisy system element. 3 lectures. Prerequisite: Math 242, Stat 321

IE 314 Production Control (2)
Production control in the industrial complex. Basic functions of routing, scheduling, dispatching, and expediting. Studies in forecasting, estimating, and inventory control using linear programming and critical path method techniques. For non-IE students. 2 lectures. Prerequisite: Math 202 and Junior standing.

IE 319 Human Factors I (3)
Areas covered by human factors. Understanding of man's psychological and physiological characteristics. Human reactions and capabilities related to specific tasks and systems. 3 lectures. Prerequisite: Psy 202 and Junior standing.

IE 336 Statistical Quality Control (3)
Statistical theory applied to analysis of production. Control charts and sampling theory to assure incoming quality or rectifying process output. Operating characteristics of sampling plans. 2 lectures, 1 laboratory. Prerequisite: Stat 321

IE 343 Manufacturing Design (4)
Development of manufacturing data for process design and plant layout. Theory, principles, and techniques for research and product development involving detail design, prototype production, production drawings, process charts. Planning for the product, equipment, and facilities. 2 lectures, 2 laboratories. Prerequisite: IE 223

IE 351 Production and Process Planning (3)
Analysis and planning of the layout of industrial plants. Simplification and standardization in product design and cost analysis. Process and systems analysis including flow process layout, materials handling, and automation. Continuous (process) or intermittent (job lot) production laboratory projects. For non-IE students. 2 lectures, 1 laboratory. Prerequisite: Junior standing or consent of instructor.

IE 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter.

IE 401 Sales Engineering (2)
Concepts and principles of engineering in sales. Role of the professional engineer in the analysis, design, development, production, and final application of a product or system required by the buyer. 2 lectures. Prerequisite: Senior standing in Engineering.

IE 403 Elements of Engineering Economy (3)
Development of methods to assess time value of money through mathematical models for evaluating economic factors in the making of individual or industrial decisions. 3 lectures. Prerequisite: Third or fourth year standing, non-IE.

IE 404 Information Economics (3)
Cost of information, measures of information, man as a noisy information channel, inspection as an information process, sampling as a step in statistical inference, and the engineering decision process. 3 lectures. Prerequisite: Math 242, Stat 321

IE 406 Reliability Assurance (3)
Reliability mathematical models, mechanical device reliability, electrical device reliability, reliability data, assurance program elements. 3 lectures. Prerequisite: Math 242, Stat 321, CSc 219 or IE 304

268
IE 408, 409 Manufacturing System Optimization (3) (3)
Advanced linear programming, integer programming, dynamic programming, Monte Carlo simulation, resource allocation, queuing theory, applied to industrial problems. 3 lectures. Prerequisite: Math 242, Stat 321, CSC 219, IE 304

IE 411, 412 Organization for Manufacturing (2) (2)
Principles and techniques of administration and organization of the activities of an industrial enterprise. Planning, organization, staffing, direction and control functions in activities of: facilities, manufacturing processes, plant location, job evaluation and wage incentives, inventory control, production control, procurement, and sales. 2 lectures. Prerequisite: For non-IE students of Senior or advanced Junior standing or consent of instructor.

IE 413 Management for Engineers (2)
Principles of management involved in the administration of the organizational functions of an industrial enterprise. The principles will be concerned with the basic fundamentals of management, including development of management concepts and techniques involved in the various aspects of administrative action. For non-IE students. 2 lectures. Prerequisite: Senior standing in Engineering.

IE 414 Engineering Economy (3)
Categories of engineering decisions. Interest rates in the industrial complex. Basic principles and tools of analysis. Application to industrial engineering through the use of case studies. 3 lectures. Prerequisite: Senior standing in Industrial Engineering.

IE 416 Value Engineering (3)
Analysis of design, material, and process to obtain desirable functional performance at minimum cost. Application to manufacturing products, systems, and services. 2 lectures, 1 activity. Prerequisite: IE 343 or consent of instructor.

IE 417 Advanced Systems Analysis (3)
Sequential decision processes, computer simulation, Monte Carlo techniques applied to production and production control problems. Cost effectiveness analysis. 3 lectures. Prerequisite: IE 343 or consent of instructor.

IE 421 Manufacturing Organization (3)
Theory and principles of manufacturing organization systems and sub-systems. Analysis of the processes of production management. Use of systems approach to achieve unification of the production elements in terms of both analysis and synthesis, and interrelation between parts of the enterprise and the whole. 2 lectures, 1 laboratory. Prerequisite: IE 309, 343

IE 422 Manufacturing Management (3)
Integration of concepts of organization and management with sub-systems utilized in each segment of the manufacturing enterprise. 3 lectures. Prerequisite: Senior standing.

IE 425 Industrial Procurement (2)
Concepts and principles of engineering in procurement. Role of the professional engineer in screening, evaluation, and selection of products or systems in industry. 2 lectures. Prerequisite: Senior standing.

IE 429 Materials Handling (2)
Conceptual studies in effective movement of materials, including economic aspects of design of plant facilities. Transportation in-plant and to the consumer. 1 lecture, 1 laboratory. Prerequisite: Senior standing.

IE 434 Precise Mass and Flow Measurements (3)
Theory and techniques for precise measurement of mass, weight, density, acceleration, flow, and viscosity. 2 lectures, 1 laboratory. Prerequisite: ME 341
Industrial Engr/Industrial Relations

IE 437 Advanced Human Factors (3)
Principles, concepts, and theoretical models used in evaluating and maximizing human performance capacities. Design of equipment and systems for human use to achieve effective utilization of man in man-machine systems. 2 lectures, 1 laboratory. Prerequisite: IE 319 and Stat 321 or consent of instructor.

IE 438 Precise Heat and Pressure Measurements (3)
Theory and techniques for precise measurement of heat quantity, specific heat, heat conductivity and heat flow, calorimetry, sensors for temperature and pressure, recording devices, pyrometry, vapor pressure. 2 lectures, 1 laboratory. Prerequisite: ME 302, 341, EL 322, IE 235

IE 441, 442 Fundamentals of Supervision (2) (1)
Theory and principles of supervision. Application of fundamental concepts and techniques of supervision provided by assignment in manufacturing laboratories. 2 laboratories, 1 laboratory. Prerequisite: IE 233

IE 451 Advanced Industrial Engineering Laboratory (2)
Theory, concepts, and applications in manufacturing planning and research. Verification and/or validation of manufacturing processes theories. 2 laboratories. Prerequisite: IE 252

IE 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours of total time.

IE 463 Undergraduate Seminar (2)
Preparation, oral presentation, and discussion by students of technical papers on recent engineering developments and/or subject matter pertinent to industrial engineering. 2 lectures. Prerequisite: Senior standing in IE.

IE 470 Selected Advanced Topics (1–3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

INDUSTRIAL RELATIONS

IR 118 Human Relations (3)
Selected concepts in human relations, their integration and application to managerial environment and functional fields of business administration. 3 lectures.

IR 211 The Labor Movement in the United States (3)
Labor movement theories, American trade-union development, union management, labor and economic political power, variations in labor movements. 3 lectures.

IR 214 Industrial Relations (3)
The industrial relations function and its relationships within the business and industrial environment. Employment, training, wage and salary, and labor relations. 3 lectures.

IR 315 Personnel Administration (3)
Organization and manpower planning, recruitment, selection and placement of employees. Employee education and development. Interviewing, testing, reference checking, performance appraisal, and development techniques. 3 lectures. Prerequisite: IR 214

IR 316 Labor Contract Administration (3)
Simulation techniques designed to prepare representatives of labor, management, and government agencies to resolve problems involving contracts between unions and companies. 3 lectures. Prerequisite: IR 211 or consent of instructor.
Industrial Relations/Industrial Technology

IR 319 Wage and Salary Administration (3)
Functions of management that involve planning, developing, directing, and controlling all phases of employee compensation. Areas included are: job evaluation, employee evaluation, job standardization and work measurement, incentive wages and managerial compensation. 3 lectures.

IR 410 Supplemental Employee Benefits (3)
Supplemental benefit programs for employees. Effect on payroll and other costs, contract negotiations, employee relations. Pensions, hospitalization, insurance, supplemental unemployment benefits, job security, vesting rights, bonuses, severance pay, profit sharing plans. 3 lectures. Prerequisite: IR 214

IR 412 Collective Bargaining (3)
Collective bargaining in the relationship between management and labor in a simulated situation. The bargaining unit, recognition, development of the labor agreement, and case studies of strikes, picketing, boycotts, unfair labor practices, mediation and arbitration. 3 lectures. Prerequisite: IR 316

IR 413 Labor Law (3)
Federal and state labor laws and their effects upon labor and management. 3 lectures. Prerequisite: Bus 301 or 307

IR 415 Business and Human Relations (3)
Individual and group practice emphasizing the aims of management training in the behavioral sciences to achieve greater individual job effectiveness, improve interpersonal relationships in the organization, and enhance individual adjustment to the context of his total environment. 3 lectures. Prerequisite: IR 118 and senior standing or consent of instructor.

INDUSTRIAL TECHNOLOGY

IT 101 Technical Computation (2)
A study of the techniques used in the analysis and solution of typical technical problems. Emphasis on the need for orderly work, checking procedures, handling and presenting scientific data; purpose and presentation of technical reports. 2 lectures.

IT 111 Introduction to Industrial Technology (2)
Orientation to the objectives of the Industrial Technology Department. Investigation of employment opportunities. Development of techniques useful to the student in his study. 2 lectures.

IT 125 Industrial Wood Processes (2)
Analysis of basic woodworking equipment, processes and materials currently used in lumbering, mill-cabinet, general construction and related industries. Theory and practice in the use of woodworking equipment. 1 lecture, 1 laboratory.

IT 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

IT 222 Power Technology: Sources (2)
Analysis of power sources: natural, steam, internal combustion, continuous combustion, nuclear energy, fuels and lubricants. 1 lecture, 1 activity. Prerequisite: Phys 123

IT 223 Power Technology: Transmission (2)
Transmission of power: clutches, gear trains, wrapped connectors, hydraulics, universal joints, bearings, lubricants. 1 lecture, 1 activity. Prerequisite: Phys 123
Industrial Technology

IT 233 Metal Technology (3)
Theory and practice in care and use of hand and machine tools. Applications of welding, forging, foundry, sheet metal, ornamental metal, machine shop and bench metal processes to the fabrication of industrial products. 3 activities. Prerequisite: MP 141, 142; WM 141, 142; EnvE 141; IE 141

IT 236 Wood Technology (3)
Advanced theory and practice in the use of hand and machine tools. Production processes, wood sources, classification and finishes. 3 activities. Prerequisite: IT 125

IT 237 Electronics, D.C. (3)
Theory and application of basic A-C and D-C circuits. Magnetic circuits. Principles of motors and generators; lighting; instruments. 2 lectures, 1 laboratory.

IT 238 Electronics, A.C. (3)
Controls and control circuits, A-C circuits. Advanced instrument application. Transformers. Lighting and signal systems. 2 lectures, 1 laboratory. Prerequisite: IT 131

IT 239 Industrial Electronic Circuits (3)
Electronic components and circuitry. Vacuum tubes and transistors. Amplifiers. Radio and television. Oscilloscopes. 2 lectures, 1 laboratory. Prerequisite: IT 101, 132

IT 241 Introduction to Manufacturing Technology (2)
Current and new basic industrial materials, processes and applications. Manufacturing in electronics, metals and machine tools, mass production processes, graphic arts, power technology, plastics, wood technology, innovations in drafting. Primarily for non-Industrial Technology majors. 2 activities.

IT 245 Technical Sketching (2)
Freehand sketching of industrial products using perspective, isometric oblique and orthographic projection. Shading. Basic design. 2 activities. Prerequisite: ET 151

IT 304 Product Quality Control (3)
Applications at the supervisory level of the overall quality plan for manufacturing. Quality assurance, testing, shop and field inspection techniques, material review, source inspection, vendor surveillance, and quality audit. 3 lectures.

IT 324 Modern Industrial Finishes (2)
Characteristics and applications of finishes to modern industrial products. Brushing, dipping, spraying, baking, plating, etching. 2 laboratories.

IT 325 Home Mechanics (2)
Selection, care and application of common tools and processes to repair and maintain household appliances and furnishings. 1 lecture, 1 laboratory. Designed for home economics students, open to others as an elective.

IT 326 Product Evaluation (2)
Procedures in the gathering, preliminary analysis and practical application of quality and reliability field data by industrial sales and service personnel. Principles of value engineering and production quality control techniques in relation to customer needs. 2 activities. Prerequisite: Junior standing.

IT 327 Plastics Technology (2)
Technical processes, materials, tools and equipment used in plastics manufacturing. Foam, expandable bead and liquid casting, injection molding, thermo-forming, dip-coating, laminating and plastic welding processes. Basic operations in plastic pattern-making, cutting, fabricating, and finishing. 1 lecture, 1 laboratory. Prerequisite: IT 125, MP 141, 142, Chem 122
Industrial Technology

IT 330 Principles and Practices of Industrial Arts (5)
Techniques and procedures for teaching industrial arts; observations in neighboring schools; survey of methods applicable to teaching drafting, crafts, wood, metal, electricity-electronics, graphic arts, power mechanics and general shop; shop organization; evaluation; preparation for practice teaching. 5 activities. Prerequisite: Junior standing.

IT 331 Electronic Power Systems (3)
Advanced study of electrical applications. Power generation and distribution. Applications of motors, motive power, electrical installations. 2 lectures, 1 laboratory. Prerequisite: IT 132, Math 131

IT 332 Electronic Control Systems (3)
Automated control devices from an operational and service engineering viewpoint. 2 lectures, 1 laboratory. Prerequisite: Phys 123, IT 133, 331

IT 333 Electronic Computer Applications (3)
Fundamentals of analog computers, electronic data processing machines, and numerical control of machine tools. Applications in production supervision, sales, and industrial education. 2 lectures, 1 laboratory. Prerequisite: IT 133, or consent of instructor.

IT 336 Automotive Technology, Engines (3)
Engine overhaul and maintenance, theory and construction. Practical activities with various types of engines, including automotive, marine, and low horsepower power plants. 1 lecture, 2 laboratories. Prerequisite: IT 122

IT 339 Automotive Technology, Fuel Systems (2)
Fuel systems and fuels used in internal combustion engines. Carburetors, injectors, superchargers, manifolds, pumps, and storage tanks. Types of fuels and their compounding. 1 lecture, 1 laboratory. Prerequisite: IT 122

IT 343 General Metals (2)
Applications of the various metal fabrication processes to typical construction problems. Design and construction of instructional aids suitable for the secondary school industrial arts program. 2 laboratories. Prerequisite: IT 233

IT 344 Technical Drawing (2)
Application of current drafting procedures in preparing complete graphic descriptions of industrial components. Sketching, lettering, instrument drawing, reproduction processes. Preparation of work drawings and specifications. Analysis of drafting materials, equipment and processes. 2 activities. Prerequisite: IT 245

IT 346 Industrial Design (2)
Applications of design principles to the various materials and processes of industry; development of a creative, problem-solving approach to design as it applies to industry. 2 activities. Prerequisite: IT 245

IT 352 Additional Laboratory Problems (1-2)
Advanced instruction in the construction, repair, maintenance and use of laboratory equipment. Primarily for students intending to become industrial education teachers. Total credit limited to 4 units with not more than 2 units any one quarter. 1 or 2 laboratories. Prerequisite: Consent of instructor.

IT 354 Machine Wood Technology (3)
Advanced applications of the principles of safe and efficient use and maintenance of power wood working machinery. 3 laboratories. Prerequisite: IT 123, 236

IT 355 Furniture Design and Construction (3)
Application of design principles; selection of suitable wood and finish; application of modern production processes. 3 laboratories. Prerequisite: IT 236
Industrial Technology

IT 356 Building Construction Techniques (3)
Examination of modern materials and construction methods as applied to home building; mass-production, custom-building and prefabrication. Field study of representative projects; laboratory experience in framing and basic processes. 3 laboratories. Prerequisite: IT 236

IT 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter.

IT 404 Customer Relations (2)
Customer contacts; personal relationships, ethics, legal relationships, service contracts, communication channels. 2 lectures. Prerequisite: Mktg 204. Senior standing or consent of instructor.

IT 405 Industrial Marketing (2)
Investigation of the institutions and channels involved in industrial marketing. Analysis of industrial products, competitors, and consumers. Problems in marketing research, personnel, and management. Individual reports on industrial products, companies or training programs. 2 lectures. Prerequisite: Mktg 204. Senior standing or consent of instructor.

IT 406 Cost Reduction and Control (3)
Application of cost control procedures at the foreman level. Techniques of cost reduction. Goals in reducing waste of material and defects in workmanship. 3 lectures. Prerequisite: Senior standing, IE 351

IT 415 Industrial Equipment Selection (3)
Systems approach to electrical and mechanical equipment used in modern industrial plants, including costs and sources. 3 lectures. Prerequisite: IT 322, 332

IT 422, 423 Construction Equipment (2) (2)
Analysis of major types of construction equipment from a practical marketing viewpoint. Contract specifications, estimating, basic processes utilizing construction equipment, selection of appropriate equipment and equipment operation and maintenance. 1 lecture, 1 laboratory. Prerequisite: IT 131, 222, 223

IT 425 Automotive Technology, Chassis (3)
Fundamental, technical, and teaching aspects of automotive suspension systems, steering, braking, and other control systems. Tires and lubrication. 3 activities. Prerequisite: IT 223

IT 426 Automotive Technology, Electronics (3)
Applications of electronic and electrical systems in automotive type equipment including ignition, lighting, starting, charging, auxiliary systems, and control systems. 2 lectures, 1 laboratory. Prerequisite: IT 222, 223

IT 428 Automotive Technology, Power Trains (3)
Advanced applications of clutches, gears, hydraulics, pneumatics, and wrapped connectors. Universal joints, bearings, and lubricants in automotive type equipment. 1 lecture, 2 laboratories. Prerequisite: IT 223

IT 429 Modern Industrial Materials (2)
An investigation of the characteristics, applications and limitations of materials of industry including: plastics, glass, ceramics, rubber, leather, textiles, abrasives and adhesives. 1 lecture, 1 laboratory. Prerequisite: Senior standing.

IT 431, 432 Mechanical Systems (3) (3)
Applications of basic physics to mechanical systems using the English system of units; various component systems. Steam systems, air conditioning and refrigeration systems, pneumatic and hydraulic systems, piping systems. 2 lectures, 1 activity. Prerequisite: Math 131, Phys 122, IT 223
IT 433 Mechanical Systems (3)
Case study of industrial manufacturing processes from an operational and service engineering viewpoint. Materials handling techniques. Production equipment and systems. 2 lectures, 1 activity. Prerequisite: Junior standing.

IT 438 Advanced Plastics (3)
Properties and characteristics of thermosetting and thermoplastic materials. Analysis and construction of molds and dies for use with reinforced plastics, injection molding, thermoforming processes; extrusion, and compression and transfer molding. Selection of plastics. 1 lecture, 2 activities. Prerequisite: IT 327

IT 441 Metal Production Processes (2)
Study of mass-production techniques; design, production planning, tolerances, jigs and fixtures, interchangeable parts, assembly line. Design and construction of projects suitable for industrial arts metal courses. 2 laboratories. Prerequisite: IT 323, 343, Phys 123

IT 446 Wood Production Processes (2)
Study of mass-production techniques; design, production planning, jigs and fixtures, interchangeable parts, assembly line. Design and construction of projects suitable for industrial arts wood courses. 2 laboratories. Prerequisite: IT 236, 323

IT 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects results are presented in a formal report. Minimum 120 hours total time.

IT 463 Undergraduate Seminar (2)
Preparation, oral presentation and discussion by students of papers on related professional topics. 2 lectures.

IT 470 Selected Advanced Topics (1-3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

IT 521 Curriculum in Industrial Education (3)
Basic principles and practices in the preparation of course guides, courses of instruction and related materials for industrial instruction. 3 lectures. Prerequisite: Student teaching or teaching experience in public schools or industry.

IT 522 Facility Planning in Industrial Education (2)
Analysis of major factors in planning and designing industrial education laboratories and related areas. Includes State standards, equipment specifications, and presentation displays. 2 activities. Prerequisite: Student teaching or instructor approval.

IT 580 Graduate Seminar in Industrial Education (3)
Advanced study and analysis of selected topics and problems in industrial education. 3 meetings. Prerequisite: IT 463 or instructor's approval.

JOURNALISM

Jour 118 Introduction to Journalism (2)
Explores career opportunities in journalism, examines specialized communications problems, introduces organizations and methods of campus communication media offering opportunities for applied training, familiarizes student with campus community. 2 lectures.

Jour 201 Journalism History (3)
Survey of historical and current influences in the development of today's journalism media. 3 lectures.
Journalism

Jour 202 News Writing (3)
Study of principles used in the reporting of news events for the press. Study and practice in writing various types of news stories, including interviews and speeches. Ethical and legal problems in gathering and reporting news. Some attention to news features. 3 lectures. Prerequisite: Typing proficiency and Eng 106

Jour 203 Reporting I (3)
Daily coverage of actual news events related to the campus community with emphasis on in-depth and investigative reporting. Special techniques and problems of reporting further explored with some off-campus assignments. 1 lecture, 2 two-hour laboratories. Prerequisite: Typing proficiency and Jour 202

Jour 214 Introduction to Broadcasting (3)
History of American broadcast media. FCC licensing and control, advertising practices, and trends in programming. Production of special types of programs. 3 lectures.

Jour 221 Basic Photography (3)
For those who have had limited experience in photography. Picture-taking techniques and darkroom practices. 2 lectures, 1 laboratory.

Jour 222 Advanced Photography (3)
Print and negative control, lighting, color photography, slide making, photo sequence, and picture story. Fundamentals in movie camera technique. 2 lectures, 1 laboratory. Prerequisite: Jour 221 or consent of instructor.

Jour 223 Photojournalism (3)
Advanced techniques in developing photographic story and essay for newspapers and magazines; fundamentals in advertising, fashion, industrial photography; further study into color and movie photography. 2 lectures, 1 laboratory. Prerequisite: Jour 222

Jour 233 Editing and Copy Desk (3)
Copy desk work, head writing, page makeup, special rewrite and editing problems, handling of correspondents, etc. 1 lecture, 2 two-hour laboratories. Prerequisite: Jour 202

Jour 251 Journalism Practice—Reporting and Editing (2)
Credit arranged for students holding editorial or other positions on college publications or securing other similar supervised experience. 2 laboratories. Prerequisite: Journalism major or instructor's permission. Total credit limited to 8 units.

Jour 254 Journalism Practice—Photography (2)
Credit arranged for students holding editorial or other positions on college publications or securing other similar supervised experience. 2 laboratories. Prerequisite: Jour 222 or equivalent experience. Total credit limited to 6 units.

Jour 302 Feature Writing (3)
Feature writing techniques. Study of markets for nonfiction articles; practice in gathering material and preparation of articles for technical and trade journals, and other media. 3 lectures. Prerequisite: Consent of instructor.

Jour 303 Illustrated Features (3)
Emphasis on market research and preparation of illustrated articles for publication. Close attention to techniques of combining photographs and text in article preparation and marketing. 3 lectures. Prerequisite: Jour 302

Jour 304 Reporting II (3)
Additional experience on advanced level in campus community news coverage with special attention to public affairs reporting. Special assignment for off-campus news media. 1 lecture, 2 two-hour laboratories. Prerequisite: Jour 203

276
Jour 333 Broadcast Media News I (3)
Radio and television news programming, fundamentals of writing and editing for radio and television. Community interviews. Copy preparation. Commercial tie-ins. 1 lecture, 1 laboratory, and assigned field work. Prerequisite: Sp 201

Jour 334 Advanced Copy Editing (3)
Daily experience and responsibilities in editing and rewriting news and feature stories, and editorial writing for campus news media. Practical application of headline writing and page makeup principles. 1 lecture, 2 two-hour laboratories. Prerequisite: Jour 202, 233

Jour 341 Broadcast Media Practice (2)
Credit arranged for students holding positions on college radio or closed circuit television news operations or other similar supervised experience. 2 laboratories. Total credit limited to 8 units. Prerequisite: Journalism major or permission of instructor.

Jour 351 Journalism Practice—Advertising (2)
Credit arranged for students holding advertising or other positions on college publications or securing other similar supervised experience. 2 laboratories. Total credit limited to 6 units.

Jour 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

Jour 401 International Press (3)
Global communications facilities and operations; world transmission of information; survey of world wire services and international print and broadcast news media. Analysis of press operations under varying government ideologies. 3 lectures. Prerequisite: Pol Sc 301, Hist 304, Hist 305, Geog 308, or consent of instructor.

Jour 402 Press Laws (3)
State and federal laws affecting all communications media, hazards of libel and what defenses are recognized; contempt of court, right of privacy; study of postal regulations, regulations in advertising, broadcasting, photography, and business regulatory statutes; ethics and responsibility of the press and broadcast media. 3 lectures.
Journalism

Jour 403 Newspaper and Magazine Management (3)
Management problems and procedures of newspapers and magazines including case studies in advertising, business, circulation, editorial, and production operations. 3 lectures. Prerequisite: Jour 421, 425

Jour 405 Publicity Methods (3)
Study and application of publicity planning and methods used by business firms, associations and similar groups. 2 lectures, 1 two-hour laboratory. Prerequisite: Jour 302

Jour 412 Public Relations (3)
Methods employed in dissemination of public information by business, agricultural, industrial, educational, and government organizations. Survey of media used, techniques commonly employed, formation and measurement of public opinion. 3 lectures.

Jour 413 Media and Public Opinion (3)
The role of public opinion and propaganda in mass media communication; evaluation of newspapers, periodicals and broadcast media as factors in formation of public opinion and propaganda; media responsibilities in contemporary society. 3 lectures. Prerequisite: Jour 412

Jour 421 Newspaper and Magazine Advertising (3)
Advertising psychology, advertising salesmanship, copy, layout, and production. Required for majors; recommended for students from other departments needing to know how to advertise and merchandise their own or others' products or services. 2 lectures, 1 laboratory. Prerequisite: Jour 233 or consent of instructor.

Jour 425 Advertising Layout and Copywriting (2)
Study of advertising typography and illustration, application of production processes in making of layouts and writing of copy. Emphasis on local newspaper and trade magazine advertising. 1 lecture, 1 two-hour laboratory. Prerequisite: Jour 421

Jour 427 Magazine Production (3)
Organization, editing and production of magazines, with special emphasis on trade, association and company publications. 2 lectures, 1 two-hour laboratory. Prerequisite: Jour 302

Jour 432 Broadcast Media News II (3)
Survey of radio and television research methods, listenership studies, national networks, local chains, independents, production and transcription services, contracts, writing of commercials, spot announcements. 2 lectures, 1 two-hour laboratory. Prerequisite: Jour 421

Jour 451, 452, 453 Applied Journalism Techniques (2) (2) (2)
Application of advanced journalism techniques in reporting, editing, public relations, photojournalism, advertising, combined with supervisory responsibilities for campus news media. 2 laboratories. Prerequisite: Senior status in Journalism.

Jour 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

Jour 463 Undergraduate Seminar (2)
Discussion of major political, economic, and social developments that have public interest and significance to the journalist. Ethics of the press, its importance and responsibilities. Correlation of the various phases of journalism and relation of these to other fields. 2 lectures.
Jour 502 Supervision of School Publications (3)

Study of types of school publications with emphasis on student publications including the newspaper and yearbook; methods for organizing and supervising staff; production; integrating publication into the public relations picture; financing. 1 lecture, 2 laboratories. Prerequisite: Consent of instructor.

MANAGEMENT

Mgt 201 Principles of Management (3)

The management process involving organization, decision-making, and managerial activities fundamental to all management levels and functional areas. Application to business firms, governmental agencies, hospitals, benevolent groups, and colleges. 3 lectures.

Mgt 311 Industrial Management (3)

Organization and functioning of management in industry. Planning, direction, and control of the business enterprise in terms of policy formation, organizational structure, finance, sales, procurement, plant location, facilities and production processes. 3 lectures. Prerequisite: Junior standing.

Mgt 413, 414 Business Policies and Organization (3) (3)

Simulation and analysis of policy making and administration from a general management point of view. Problem analysis, decision making process, administration and control. Case study and continuous appraisal of policies and objectives under varying conditions. Capsheaf of the core curriculum. 3 lectures. Prerequisite: FPM 343

Mgt 418 Quantitative Methods and Controls in Business (3)

Basic principles of quantitative controls as applied to the fundamental operations of business. For the senior student who needs descriptive and operational knowledge as a background for application in business analysis and decision. 3 lectures. Prerequisite: Senior standing or consent of instructor.

MANUFACTURING PROCESSES

MP 125 Advanced Turning (3)

Theory and operational problems of manual and automatic lathe type machine tools. Evaluation of cutting tool geometry, tool performance, and material machinability. American Standard Association Charts, data and material classification. Optical and lineal instrumentation for quality control. 1 lecture, 2 laboratories. Prerequisite: MP 141, 151

MP 127 Manufacturing Processes Fundamentals (2)

Survey of materials and manufacturing processes. Possibilities and limitations of these processes. Application to fabrication of industrial products. Limited experience in conventional machine tool operation and use of semiprecision measuring tools. For non-engineering majors. 1 lecture, 1 laboratory.

MP 137 Introduction to Skills (2)

Technical vocabulary, English measuring system, blueprint reading, American industrial practice, classification of industrial skills. Introduction to modern American industrial processes including machining, welding, casting, and sheet metal working. Designed for international students. 1 lecture, 1 laboratory.

MP 141 Manufacturing Processes: Turning I (1)

Uses, capabilities, and operational characteristics of lathe type machine tools. Properties and classifications of tool and work materials. Tool geometry and its relationship to the mechanics of chip formation. External and internal turning problems. Linear measurements in quality control. 1 laboratory.
Manufacturing

MP 142 Manufacturing Processes: Milling I (1)
Uses, capabilities, and operational characteristics of milling type machine tools. Plane surfacing problems, measurement of relative angular attitudes. Standard classification of tool types. Tool geometry of the rotational tool and its effect on the physics of metal cutting. Surface measurements in quality control. 1 laboratory.

MP 143 Manufacturing Processes (1)
Methods of identification, classification and listing of the physical properties of metals used in fabrication processes. Engineering problems in processes used to control the effects of environment on gage metal components. 1 laboratory.

MP 151 Drilling Technology (1)
Fundamentals of drilling machine operation, tool classification, selection and sharpening, use of hand tools, basic layout procedures. Physical properties of metals. For non-Engineering majors. 1 laboratory.

MP 153 Manufacturing Processes: Turning II (1)
Advanced problems of lathe type machine tools, both manually and automatically controlled. Evaluation of cutting tool performance and material machinability by use of the strain gage tool dynamometer. American Standard Association charts, data, and material classifications. Optical instrumentation for quality control. 1 laboratory. Prerequisite: MP 141

MP 154 Manufacturing Processes Milling II (1)
Advanced operations on milling machines. Application of milling machine accessories, fixtures and attachments. Increased emphasis on quality control. Drilling machine, metal cutting band saw, and hobbing mill. 1 laboratory. Prerequisite: MP 142

MP 155 Manufacturing Processes: Grinding (1)
Survey of abrasive machining and finishing. Selection and care of grinding wheels. Fundamental principles, use, capabilities, operational characteristics and safety standards employed in abrasive machining and finishing. 1 laboratory. Prerequisite: MP 153, 154

MP 221 Abrasive Machining and Finishing (2)
History and manufacture of grinding wheels, their selection and care. Fundamental principles, uses, capabilities, and operational characteristics employed in abrasive machining and finishing. Characteristics of grinder fluids. Safety standards, fixturing, and mounting of magnetic and nonmagnetic materials. 1 lecture, 1 laboratory. Prerequisite: MP 125, 154

MP 222 Advanced Machining Processes (3)
Theory and operation of machining exotic materials, using conventional electrical, chemical, and high energy methods. 1 lecture, 2 laboratories. Prerequisite: MP 221

MP 240 Additional Engineering Laboratory (1-2)
Advanced production and toolroom problems. Design and construction of laboratory tooling and instrumentation. Individual and group investigation of selected problems. Total credit limited to 4 units. 1 or 2 laboratories. Prerequisite: MP 153, 154. Concurrent MP 155

MP 321, 322, 323 Tool Design (3) (3) (3)
Design of manufacturing tools such as jigs, fixtures, and dies. Material selection, tolerance balancing, and quality control requirements as design factors. Field trips to manufacturing centers. 2 lectures, 1 laboratory. Prerequisite: MP 222, ET 344

MP 327 Tool Design (3)
Design of such special tools as jigs, fixtures, and punch press tools. Material selection. Field trip to manufacturing center. 2 lectures, 1 laboratory. Prerequisite: MP 155

280
MARKETING

MP 431, 432, 433 Tool Engineering (3) (3) (3)
Advanced tooling and production problems. Correlation of product design with production tooling. Supervision of special tool and fixture construction. Field trips to manufacturing centers. 1 lecture, 2 laboratories. Prerequisite: MP 155, 327

MP 434, 435, 436 Tool and Manufacturing Engineering (4) (4) (4)
Design, construction, and testing of jigs, fixtures, dies, and special tools for production. Field trips to manufacturing centers. 1 lecture, 3 laboratories. Prerequisite: MP 323

MARKETING

Mktg 204 Marketing Principles (4)
Survey of basic marketing institutions and functions they perform in the marketing process. Includes marketing in the business firm and in the political-economic society. Defines industrial and consumer markets, marketing research, physical distribution, promotion and advertising, buying and selling. 4 lectures. Prerequisite: Ec 201 or 211 and sophomore standing.

Mktg 301 Market-Sales Development (3)
Definition and determination of markets. Matching products and services with market demand. Analysis of products, markets, and pricing. 3 lectures. Prerequisite: Mktg 204

Mktg 304 Physical Distribution (3)
Physical movement of goods from producers to ultimate consumers. Channels of distribution to industrial and consumer markets, packaging and packing, warehousing and storage, material handling, transportation, wholesaling and retailing. 3 lectures. Prerequisite: Mktg 301 or consent of instructor.

Mktg 305 Promotion and Advertising (3)
The functional methods of reaching and communicating with industrial and consumer markets. Includes the oral, printed, and electronic media available to business; their characteristics, costs, and limitations. 3 lectures. Prerequisite: Mktg 301 or consent of instructor.

Mktg 405 Sales Management (3)
Headquarters, staff and field management of sales personnel. Includes recruiting, training, organization, control, planning, sales policies and operations to marketing objectives of the firm. 3 lectures. Prerequisite: Mktg 301 or consent of instructor.

Mktg 406 Marketing Management (3)
Planning, organizing, operating, and controlling individual brands and the total marketing activities of the business in coordination with all activities of the firm. 3 lectures. Prerequisite: Mktg 204 and consent of instructor.

Mktg 466 Marketing Problems Seminar (3)
Seminar in marketing problems emphasizing simulation of the marketing process with computerized games and case studies. 3 meetings. Prerequisite: Senior standing, Mktg 301 or consent of instructor.

MATHEMATICS

Math 100 Mathematics for General Education (3)
The number systems of mathematics through the real numbers; introduction to sets, relations, and functions; the properties of equality and inequality; absolute value; geometry of mathematics, including basic triangle relationships; coordinate systems, distance in a plane; trigonometric functions and identities. 3 lectures.

Not open to students having credit in Math 141 or equivalent.
Mathematics

Math 102 Agricultural Mathematics (3)
Percentage problems in soils, dairy, horticulture, poultry, feeds; discount and interest, Pearson's square, equations, formulas, linear measurements, areas, volumes, concrete, lumber and proportions. 3 lectures.

* Math 103 Agricultural Mathematics (3)
Use of exponents, logarithms and elementary slide rule, trigonometric functions; basic land descriptions; work, horsepower and efficiency, pressure; standard deviation. Not open to students with credit in Math 117. 3 lectures. Prerequisite: Math 102

Math 104 Slide Rule (1)
Operation of the slide rule and methods of computation used in engineering. 1 lecture. Prerequisite: Math 115 or 117 or consent of instructor.

* Math 113 Agricultural Mathematics (3)
Applications of algebra and trigonometry, including computation with logarithms and slide rule, to selected topics in agriculture; elementary statistics for agriculture; basic land descriptions and measurements; horsepower, efficiency and pressure. Not open to students with credit in Math 102 and/or Math 103. 3 lectures. Prerequisite: Appropriate score on entrance examination.

* Math 114 College Algebra for Agriculture (3)
Factoring and fractions; functions and graphs; linear and quadratic equations; logarithmic functions; proportion and variation; simple inequalities, progressions, determinants, and probability. Not open to students with credit in Math 117. 3 lectures. Prerequisite: Math 103, 113, or appropriate score on placement test.

* Math 115 Trigonometry for Agriculture (3)
Trigonometric functions of acute angles and related angles; graphs, radian measure, fundamental identities, functions of two angles, applications of right and oblique triangles, and logarithmic applications. Not open to students with credit in Math 117. 3 lectures. Prerequisite: Math 114

* Math 117 Mathematics for Engineers (5)
An integrated course in college algebra and trigonometry covering function concept and symbols, rectangular co-ordinates, trigonometric functions, linear and quadratic functions, inequalities, analysis of trigonometric functions, inverse trigonometric functions, exponential and logarithmic functions, systems of equations, binomial formula, and complex numbers. 5 lectures.

Math 119 Analytical Trigonometry for Engineers (3)
Rectangular and polar coordinates; trigonometric functions, fundamental identities; inverse trigonometric functions and relations; complex numbers. 3 lectures. Prerequisite: Appropriate score on placement test.

Math * 131, 132, 133 Technical Calculus (4) (4) (4)
Functions, their graphs and limits; techniques and applications of differential and integral calculus; introduction to applied differential equations. Designed principally for technology students and others interested in an applied three-quarter calculus sequence. 4 lectures. Prerequisite: Math 117, 115, or appropriate score on the entrance examination.

Math 141 Analytic Geometry and Calculus (4)
Introduction to analytic geometry and calculus. 4 lectures. Prerequisite: Math 117, Math 115, or appropriate score on the entrance examination.

Math 142 Analytic Geometry and Calculus (4)
Continuation of analytic geometry and calculus. 4 lectures. Prerequisite: Math 141

Math 143 Analytic Geometry and Calculus (4)
Continuation of analytic geometry and calculus. 4 lectures. Prerequisite: Math 142

* Not open to students having credit in Math 141 or equivalent.

282
Mathematics

Math 200 Finite Mathematics for General Education (3)
Symbolic logic; sets and subsets, including set operations; partitions of universal sets; permutations and combinations; elementary probability using Venn diagrams of truth sets. 3 lectures. Prerequisite: Math 100, satisfactory score on the placement examination, or permission of the instructor.

Math 204 Mathematics of Matrices (3)
Matrices, inverses, linear systems, characteristic values, applications. 3 lectures. Prerequisite: Math 141 or permission of the instructor.

Math 210 Finite Mathematics for Business (3)
Vectors and matrices, including application of matrix theory to Markov chains; probability theory; linear programming; theory of games; absorbing Markov chains and genetics. 3 lectures. Prerequisite: Math 200

Math 215 Mathematics of Business (4)
Simple and compound interest principles, methods and applications; annuities; amortization of debts and sinking funds; perpetuities and capitalized costs. 4 lectures. Prerequisite: Math 210 or consent of instructor.

Math 241 Analytic Geometry and Calculus (4)
Continuation of analytic geometry and calculus. 4 lectures. Prerequisite: Math 143

Math 242 Differential Equations (4)
Introduction to differential equations. Differential operators. 4 lectures. Prerequisite: Math 241

Math 304 Advanced Analysis for Science (4)
Algebra of vectors, vector functions, the del operator, vector field theory, curvilinear coordinates; Fourier series and transform; determinants and matrices. 4 lectures. Prerequisite: Math 242

Math 307 Theory of Equations (3)
Binomial equations, algebraic polynomial functions and equations. Theorems and techniques for rational and irrational solutions of polynomial equations. Solutions of systems of linear equations. 3 lectures. Prerequisite: Math 142

Math 312, 313 Linear Algebra (3) (3)
Vector spaces, linear independence, subspaces, determinants, linear transformations, eigenvalues and eigenvectors, applications. 3 lectures. Prerequisite: Math 241

Math 318 Advanced Engineering Mathematics (4)
Theory and application of Fourier Series, Laplace transforms, Bessel functions, and power series solutions of ordinary differential equations. 4 lectures. Prerequisite: Math 242

Math 319 Advanced Engineering Mathematics (3)
Applications to vibrating strings, heat flow, flow of electricity, Legendre functions, Poison equations and others. 3 lectures. Prerequisite: Math 318 or 304

Math 327, 328 Basic Structure and Concepts of Mathematics (3) (3)
Basic concepts, structure, and algorithms of elementary mathematics. An heuristic approach to topics in geometry, number theory, and measurement. Equations and inequalities in problem solving. Use of mathematical models to extend powers of induction and to introduce deductive processes. 2 lectures, 1 activity. Prerequisite: Junior standing.

Math 381, 382 Modern Algebra (3) (3)
Concepts of modern algebra including operations and relations defined on sets; systems, including groups, rings, integral domains and fields; investigations through isomorphisms of ordered pairs; congruences of numbers; integral domains of polynomials and the congruences of polynomials. 3 lectures. Prerequisite: 9 units of college mathematics.
Mathematics

Math 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of the department head.

Math 402 Secondary School Mathematics (3)
A study of the mathematical content of junior high school courses with particular emphasis on the new curricular materials that are being developed and introduced into the schools. Suitable for both upper grade and junior high school teachers. 3 lectures. Prerequisite: At least junior standing.

Math 403 Secondary School Mathematics (3)
A study of the mathematical content of the senior high school courses, with particular emphasis on the new curricular materials that are being developed and introduced into the senior high school courses. 3 lectures. Prerequisite: At least junior standing.

Math 404 Vector Analysis (3)
Algebra of free vectors with applications. Differential and integral calculus of vectors. Development of theory and application of vector operators. 3 lectures. Prerequisite: Math 242

Math 405 Vector Analysis (3)
Additional topics including surface integrals, volume integrals, the divergence theorem, Stokes' theorem, applications to electrostatic fields, general coordinates, and introduction to tensor analysis. 3 lectures. Prerequisite: Math 404

Math 408 Functions of a Complex Variable (3)
Fundamental properties of a complex variable; elementary analytic functions; mapping by elementary functions; conformal mapping and applications. 3 lectures. Prerequisite: Math 242

Math 409 Functions of a Complex Variable (3)
Complex integration and applications; Taylor and Laurent series expansions of analytic functions; theory and applications of residues and poles; analytic continuation. 3 lectures. Prerequisite: Math 408

Math 410 Special Functions (3)
Analytical investigation, in the complex plane, of various transcendental functions: Gamma, Zeta, Bessel, Legendre, hypergeometric, elliptic and Theta functions. 3 lectures. Prerequisite: Math 409

Math 411 Foundation of Geometry (3)
Logical foundations of geometry, coordinate systems, synthetic and analytic projective geometry, fundamental concepts of Euclidean geometry, Non-Euclidean geometries. This course is designed to broaden the student's perspective in the field of geometry. 3 lectures. Prerequisite: 9 units of college mathematics.

Math 412 Advanced Calculus (3)
Real numbers system, Dedekind cuts, sequences, limits, continuity, derivatives and differentials, Riemann integration. 3 lectures. Prerequisite: Math 241

Math 413 Advanced Calculus (3)
Functions of several variables and partial differentiation, uniform continuity, theory of integration. Stieltjes integrals, infinite series, sequences of functions and uniform convergence. 3 lectures. Prerequisite: Math 412

Math 435 Teaching Mathematics in the Elementary School (3)
Development of mathematical concepts; the discovery or laboratory approach to learning and the role of manipulative or visual materials; teaching the mathematical rationale of the fundamental operations with the rational numbers; necessity for a sequential and organized program; the newer curricular materials and their place in the total program; problem solving; evaluation. 3 lectures. Prerequisite: Ed 304 and Math 327 or permission of the instructor.

284
Mathematics

Math 441 Theory of Numbers (3)
Properties of numbers. Euclid's Algorithm, greatest common divisor, least common multiple, indeterminate equations, prime numbers, congruences; emphasis toward the teaching of secondary mathematics. 3 lectures. Prerequisite: At least junior standing and Math 141.

Math 442 College Geometry (3)
Modern development of the basic concepts of plane and solid Euclidean geometry including a coordinate treatment; selected topics in advanced Euclidean geometry. 3 lectures. Prerequisite: Junior standing.

Math 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

Math 463 Undergraduate Seminar (2)
Reports and discussions by students through seminar methods, based on their senior projects and on other topics in mathematics which are of interest to them. Two activity periods.

Math 470 Selected Advanced Topics (1-3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

Math 505 Sets, Functions and Relations (3)
Introduction to the basic concepts of sets with applications to functions, relations and graphs. Appropriate for the prospective or in-service teacher. 3 lectures. Prerequisite: Graduate status or the consent of instructor.

Math 506 Structure of Algebra (3)
Development of properties and operations of number systems by the axiomatic method culminating in a formal appreciation of algebraic structure. Appropriate for the prospective or in-service teacher. 3 lectures. Prerequisite: Graduate status or the consent of instructor.

Math 507 Structure of Geometry (3)
Axiomatic systems; model of a finite geometry; incidence, measure, and order relations; congruence, similarity; four-dimensional geometry; hyperbolic geometry; lines and planes in space; analytic treatment of a Euclidean model. Appropriate for the prospective or the in-service teacher. Prerequisite: Math 442 and graduate status.

Math 508 Introduction to Topology (3)
Introduction to the basic concepts of graphs, algebraic topology, and set theoretic topology. An intuitive approach will be observed in the study of these topics. 3 lectures. Prerequisite: Graduate status.

Math 509 Development of Mathematics (3)
Correlation between the development of our society and the development of mathematics. Designed to aid the teacher of secondary mathematics to enrich the courses taught in secondary schools. 3 lectures. Prerequisite: Graduate status.

Math 510 Survey of Modern Mathematics (3)
Selected topics from the field of modern mathematics: projective, and synthetic geometry, topology, logic, matrices, vectors, theory of games, probability, linear and modern algebra and convex sets. 3 lectures. Prerequisite: Graduate status or instructor's approval.

Math 512, 513 Partial Differential Equations of Physical Systems (3) (3)
Partial differential equations of first and second order. Laplace's equation, wave equation, diffusion equation, and others; methods for their analytical solution. 3 lectures. Prerequisite: Math 318.
Mathematics/Mechanical Engineering

Math 516 **Linear Operators (3)**
Linear spaces, operator theory, and operational calculus. Applications to differential equations, integral equations, transforms, and Fourier analysis. 3 lectures. Prerequisite: Math 313, 319, 412

Math 521 **Curriculum and Methods in Mathematics (3)**
General aims, objectives and methods of effective teaching of mathematics in the secondary schools. The traditional secondary curriculum will be compared with new trends and developments. 3 lectures. Prerequisite: Graduate status.

Math 540 **Foundations for Quantitative Methods (4)**
Intensive foundation course for the MBA program. Elements of finite and linear mathematics, probability theory, and introduction to calculus. Emphasis upon model building and decision making in business and economics. 4 lectures. Prerequisite: Graduate status.

Math 580 **Seminar (1-2-3)**
Built around topics in advanced mathematics chosen according to the common interests and needs of the students enrolled. Each seminar will have a subtitle according to the nature of the content. 1, 2, or 3 lectures. Total credit limited to 6 units. Prerequisite: Consent of instructor.

Math 593 **Seminar in Applied Mathematics (3)**
Topics based on the interests and backgrounds of the students. Applications of mathematics to problems in engineering and science. 3 meetings. Prerequisite: Graduate status and consent of instructor.

Math 596 **Thesis (3) (3)**
Serious research endeavor devoted to the development, pedagogy or learning of mathematics. Prerequisite: Graduate status and consent of instructor.

MECHANICAL ENGINEERING

ME 131, 132 **Mechanical Systems (3) (3)**
Analysis and synthesis of mechanical systems and their components. Power, thermal, kinematic and process systems. 2 lectures, 1 two-hour laboratory.

ME 144, 145, 146 **Mechanical Engineering Laboratory (1) (1) (1)**
Basic experimentation and testing of mechanical equipment for the purpose of illustrating equipment function and instrumentation problems and limitations. This lab also provides the student descriptive information as background for his advanced mechanical engineering courses. 1 laboratory.

ME 200 **Special Problems for Undergraduates (1-2)**
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

ME 205 **Engineering Statics (3)**
Statics by scalar methods. Includes forces, couples, resultants, equilibrium, trusses, cables, friction, centroids, and moments of inertia. 3 lectures. Prerequisite: Phys 121, Math 132, or Phys 131, Math 142

ME 206 **Engineering Dynamics (4)**
Dynamics by scalar methods. Includes kinematics (both absolute and relative motion of particle and bodies) and kinetics, force, mass, acceleration, work and energy, and impulse and momentum. 4 lectures. Prerequisite: ME 205 or ME 211
Mechanical Engineering

ME 211, 212 Engineering Mechanics (3) (4)
General and specific consideration of moments, couples, centroid, multidimensional systems. Field concepts as applied to rigid bodies. Motion, momentum, and energy. Application of vector methods. 3 lectures, 4 lectures. Prerequisite: Phys 131, Math 142

ME 231 Mechanical Equipment of Buildings (3)
Application of engineering analysis and building code requirements in the design of building systems for handling water supplies, liquid wastes, fuel, gas and ventilation. Related systems connecting groups of buildings and health and accident hazards involved. 2 lectures, 1 laboratory. Prerequisite: Phys 132

ME 240 Additional Engineering Laboratory (1-2)
Total credit limited to 4 units, with not more than 2 units in any one quarter. 1 or 2 laboratories.

ME 301 Thermodynamics (4)
Fundamental concepts of work, heat, and energy. First and second laws of thermodynamics. Ideal gas law as introduction to incompressible flow. Power and refrigeration cycles. Combustion and gas mixtures. 4 lectures. Prerequisite: Math 133, Phys 123, ME 206 or 212

ME 302, 303 Thermodynamics (3) (3)
First and second laws of thermodynamics, processes, properties, and general relationships. Gases, vapors, mixtures. 3 lectures. Prerequisite: ME 212, Chem 124, Phys 132

ME 311 Fluid Flow (3)
Study of the principles that underlie the flow of various fluids. Fluid statics, viscosity, dynamic similarity, and fluid friction. Dimensional analysis, Reynolds number, steady flow energy transformation of compressible and incompressible fluids. Fluid resistance, dynamic lift and propeller action, propulsion theory. Pumps, turbine, fluid power transmission systems, and fluid film lubrication. 3 lectures. Prerequisite: ME 206 or 212

ME 316 Mechanical Vibrations (3)
Free vibration, damping, transient and steady state response to forced vibrations. Engineering methods, single and multiple degrees of freedom, natural frequencies of distributed mass systems. 3 lectures. Prerequisite: Math 242, ME 212

ME 317 Vibrations Laboratory (1)
Experimental studies of the dynamic behavior of structures and machines. Instrumentation methods utilized in field and laboratory. Analog techniques. 1 laboratory. Concurrent: ME 316

ME 324 Kinematics (4)
The study of motion in machine parts. Displacements, velocities, and accelerations in linkage, cams, gears, and other mechanisms. 2 lectures, 2 two-hour laboratories. Prerequisite: Math 131, ET 142

ME 333 Plumbing and Building Sanitation (3)
For architectural engineering students. Calculation of water supply and consumption. Fire protection and sprinkler systems. Plumbing and drainage. Gas services. Application of principles to specific elements of engineering structures. 3 lectures.

ME 341, 342 Fluid Mechanics (3) (4)
Fluid statics and dynamics. Flow measurement, networks, open channels, compressible flow, fluid machinery and control systems. 3 lectures; 3 lectures, 1 laboratory. Prerequisite: ME 206 or 212

287
Mechanical Engineering

ME 343 Thermodynamics Laboratory (1)
Testing thermodynamic equipment and machinery. An advanced laboratory course requiring the student to determine the test procedure and instrumentation and to evaluate the degree of exactness or uncertainty of the test setup. 1 laboratory. Prerequisite: ME 303, EnvE 313

ME 349 Advanced Materials Testing Laboratory (1)
Advanced laboratory work in testing of materials and structures. Column and beam tests, fatigue tests, static and dynamic experimental stress analysis techniques with electric resistance strain gages and brittle lacquer coatings. 1 laboratory. Prerequisite: ME 249

ME 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter.

ME 401, 402 Stress Analysis (4) (4)
Shrink and force fits, torsion of noncircular members, plates and shells and other current stress analysis problems. Triaxial stress, strain and material behavior. Energy methods in stable and unstable structures. Experimental stress analysis. 3 lectures, 1 laboratory. Prerequisite: Math 318, ME 212, Aero 207

ME 412 Nuclear Power Plants (3)
Engineering applications of nuclear energy, nuclear reactor design and operation, instrumentation and control. Nuclear power plants; materials, equipment and economics. 3 lectures. Prerequisite: Chem. 124

ME 417 Advanced Vibrations (4)
Vibration of continuous systems and wave motion, orthogonality of normal modes, Lagrangian mechanics, matrix methods of lumped mass systems, mode coupling and iteration methods. 3 lectures, 1 laboratory. Prerequisite: ME 316

ME 422 Mechanical Control Systems (4)
Analytical modeling and compensation of mechanical control systems. Design of mechanical, hydraulic and fluid systems using analog and digital simulation techniques. 3 lectures, 1 laboratory. Prerequisite: EE 208, Math 242, ME 316

ME 423 Elements of Machine Design (4)
Fundamentals of machine design for engineering students other than mechanical. Stresses and deflections in machine parts. Engineering materials. Design of springs, bearings, gears, chains, belts, clutches and brakes. Course is oriented to stress philosophy of design, application and comparative advantage rather than basic design. 3 lectures, 1 laboratory. Prerequisite: Aero 207, or equivalent, Math 241, ME 212

ME 424, 425 Design of Piping Systems (4) (4)
Functions, requirements, and design of piping systems, including safety and economic considerations for power, chemical, and process plants. Welding and other forms of joint construction, materials specifications, sizing, layout, flexibility, support, insulation, and cost estimation of water, steam, air, gas, and corrosive and viscous fluid systems. Philosophy, background, and requirements of principal governing National Codes. 3 lectures, 1 laboratory. Prerequisite: Aero 207, ME 341

ME 426 Engineering Analysis of Dynamic Systems (4)
Review of Newtonian mechanics. Principles of momentum and energy from the viewpoint of constraints and generalized coordinates. Fundamental variational principles, Lagrangian multipliers. Holonomic and nonholonomic systems. Hamilton's principle and Lagrange's equations applicable to rigid body motion. 4 lectures. Prerequisites: Math 318, ME 316

288
ME 427 Introduction to Design (4)
Design of machine parts by stress and deflection. Effects of fluctuating stresses and stress concentration. Design of gears, clutches, brakes, bearings, shaft and other machine parts. Modern industrial design practice using standard components and design layout drawings. 3 lectures, 1 laboratory. Prerequisite: Aero 207, ME 324, WM 306

ME 428 Design (4)
Basic design techniques such as brainstorming, feasibility studies, models, case studies, design decisions and compromises. Industrial participation design program. 2 lectures, 2 laboratories. Prerequisite: ME 427

ME 431 Mechanical Design Technique (3)
Comprehensive study of design methods. Design factors, including market value, producibility, servicability, utility, style. Analysis of useful ideas and their integration into a practical design in the form of an engineering layout drawing. 1 lecture, 2 laboratories. Prerequisite: ME 428

ME 434 Fundamentals of Petroleum Production (2)
Survey of the production of crude petroleum covering exploration, drilling, pumping, transportation, and storage. Observation of actual field operations and installations of major oil companies and oil equipment companies. Nomenclature, methods, and mechanical equipment. 2 lectures. Prerequisite: ME 146, 302

ME 435 Petroleum Production Development (3)
Mechanical engineering aspects of rotary drilling. Problems attendant to the rotary rig and its auxiliary equipment. Practical problems dealing with drilling mud, casing, cementing, directional drilling, and well completion operations. 2 lectures, 1 laboratory. Prerequisite: Aero 207

ME 436 Petroleum Reservoir Engineering (3)
Methods of applied engineering in the operation of oil and gas reservoirs. Flow of fluids through porous media under primary and secondary recovery. Modern stimulation techniques of nuclear detonation, steam injection, and hydraulic fracturing. 3 lectures. Prerequisite: ME 341

ME 441 Advanced Thermodynamics (3)
Maxwell relations, clapeyron equation, activity, activity coefficient, and fugacity. Phase and chemical equilibrium. Selected modern applications of thermodynamics. 3 lectures. Prerequisite: ME 303

ME 442 Dynamics and Thermodynamics of Compressible Flow (3)
Control volume analysis of fluid-thermo equations for one dimensional, compressible flow involving area change, normal shocks, friction, and heat transfer. Two-dimensional supersonic flow including linearization, method of characteristics, and oblique shocks. One-dimensional constant area, unsteady flow. 3 lectures. Prerequisite: EnvE 313, Math 242, ME 303, 342

ME 443 Turbomachinery (3)

ME 444 Combustion Engine Design (3)
Application of design parameters to the various engine cycles. Aspects of the combustion processes. Energy conversion including losses and cooling. Static and dynamic loading. 3 lectures. Prerequisite: ME 303

ME 452 Nuclear Engineering Laboratory (1)
Radioisotope engineering experiments, analog computer simulation of reactor operation and control variables, and mechanical design problems. 1 laboratory. Prerequisite: Phys 421. Concurrent: ME 412
Mechanical Engr/Military Science/Music

ME 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time. Prerequisite: Senior standing.

ME 463 Undergraduate Seminar (2)
New developments, policies, practices, and procedures are discussed through regular seminar. Each individual is responsible for the development and presentation of a topic in his chosen field. 2 meetings. Prerequisite: Senior standing.

ME 470 Selected Advanced Topics (1-3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

MILITARY SCIENCE

*MSc 101-102-103 (MS I) Basic Course (1) (1) (1)
Organization of the Army and ROTC; individual weapons and marksmanship; United States Army and national security; leadership and command (drill). Academic subject in related fields. 1 lecture.

*MSc 201-202-203 (MS II) Basic Course (2) (2) (2)
American Military History; introduction to basic tactics and techniques; leadership and command (drill). Academic subjects in related fields. 2 lectures. Prerequisite: MS I or equivalent.

*MSc 301, 303 (MS III) Advanced Course (3) (3)
Leadership; military teaching principles; branches of the Army; small unit tactics; communication; internal defense management; leadership and command (drill). Academic subjects in related fields. 4 lectures. Prerequisite: MS II or equivalent.

*MSc 400 ROTC Summer Comp (5)
A concentrated laboratory course in military science and tactics. An application of the military theory learned in the classroom. Technical operation, maintenance, and tactical employment of the latest weapons and equipment. Required for a six-week period during the period normally following completion of MSc 303.

*MSc 401, 403 (MS IV) Advanced Course (3) (3)
Internal defense development; command and staff; organization for operations; military intelligence; the military team; logistics; army readiness; administrative management; role of the U.S. in world affairs; military law; map reading; obligations and responsibilities of an officer; leadership and command (drill). Academic subjects in related fields. 4 lectures. Prerequisite: MS III or equivalent.

MUSIC

Mu 101 Music Theory (3)
Elements of music theory covering: notation, construction of major and minor scales and keys, signatures, intervals, diatonic triads, triad forms, inversions, transposition, study of meter and rhythm, elementary ear training. 3 lectures.

* Students who are participants in the ROTC program are required to take for no additional academic credit one hour and 20 minutes field instruction in all Military Science courses except MSc 101, 102, and 202.
Music

Mu 111, 112, 113 Class Piano (1) (1) (1)
Fundamentals of piano techniques, tone production, rhythm, sight-reading, interpretation, style, and keyboard facility for those with little or no piano experience. Designed to meet the piano requirements for music minors. The classes proceed progressively. 1 activity.

Mu 141 Dance Orchestra (2)
Limited to those who have had considerable experience playing musical instruments. Students in the dance orchestra have an opportunity to play for various College entertainments, dances, community programs, radio broadcasts, and the annual spring tour and Home Concert. 2 laboratories. Total credit limited to 24 units.

Mu 144 Symphony Orchestra (1)
Open to any college student whose technique is adequate. In addition to standard repertory, the orchestra emphasizes unusual or rarely performed works. Select members of the orchestra are given additional opportunities to perform chamber music. 1 laboratory. Prerequisite: Consent of instructor. Total credit limited to 12 units.

Mu 147 Instrumental Ensembles (1)
Open to qualified musicians. Rehearsal and public performances in trios, quartets, and quintets. 1 activity. Prerequisite: permission of the instructor. Total credit limited to 12 units.

Mu 151 Band (1)
Limited to those students who have had experience with band instruments. The band plays for many college functions, assemblies, athletic games, and rallies, and makes at least one trip each year. Smaller groups are organized from the band for special functions. 1 laboratory. Total credit limited to 12 units.

Mu 154 Men's Glee Club (1-2)
Four- to eight-part vocal compositions; fundamentals of breathing, tone production, diction, and interpretation. Quartets, small groups, and soloists are developed, for which additional credit may be given. The club sponsors an annual spring tour and Home Concert. Tryouts in fall only. 1 or 2 laboratories. Total credit limited to 24 units.

Mu 155 Chamber Singers (1)
Study and public performance of chamber music for mixed voices from the sixteenth century to the present. Total credit limited to 12 units. 1 laboratory. Prerequisite: Permission of instructor.

Mu 157 Women's Glee Club (1-2)
Choral literature for women's voices; independence and skill in part singing; care and development of the voice; choral interpretation; performances in public concerts, campus functions, and the annual Home Concert. Small groups and soloists may earn additional credit. 1 or 2 laboratories. Prerequisite: Permission of the instructor. Total credit limited to 24 units.

Mu 201 Basic Music (3)
Development of basic music proficiency; singing, conducting, playing simple instruments, accompaniment, rhythmic activities. Assumes a knowledge of music fundamentals. 3 lectures. Prerequisite: Mu 101

Mu 203 Elementary Harmony (3)
Melodic form; recognition, construction, and use of primary chords and inversions; cadences, enharmonic change, harmonization of simple melodies, and arranging for four-part strings. 3 lectures. Prerequisite: Mu 101

Mu 204, 205, 206 Appreciation (3) (3) (3)
Introduction to the elements and concepts of music, leading to greater understanding of art music. Discussion of the styles, forms, and specific composers in Western music. May be taken in any order. 3 lectures.

291
Music

Mu 208 Ethnic Music of the World (3)
Contemporary concepts of ethnomusicology. Discussion of folk music of the world by geographic area. History and development of musical instruments. Each course will have a subtitle descriptive of the content. May be repeated to 12 units. 3 lectures.

Mu 211, 212, 213 Class Piano (1) (1) (1)
Intermediate level piano techniques with emphasis on style, interpretation, sight-reading, basic performance practices, and the solution to general musical problems. The classes proceed progressively. Total credit in each course limited to 2 units. 1 activity. Prerequisite: One year of piano or equivalent.

Mu 231, 232, 233 Instruments—Theory and Performance (1) (1) (1)
Study of the fundamentals of playing and teaching woodwind, brass, string, and percussion instruments. Separate sections arranged with instructor. 1 activity.

Mu 237, 238, 239 Voice—Theory and Performance (1) (1) (1)
Study of the fundamentals of singing; breathing, posture, diction, development of voice, resonating chambers, vocal interpretation, sight singing. Theory of music as applied to voice production; notation, intervals, triad forms, meter and rhythm, major and minor scales. 1 activity.

Mu 307, 308, 309 Conducting (2) (2) (2)
Principles and techniques in conducting with experience in score reading. 2 lectures.

Mu 311, 312, 313 Class Piano (1) (1) (1)
Designed for the advanced and semi-advanced student. Emphasis on general knowledge of piano literature, interpretation, style, and performance practices. Admittance to the class by audition. Fall quarter emphasis, Baroque keyboard literature; winter quarter, Classic; spring quarter, Romantic and Contemporary. Total credit in each course limited to 2 units. 1 activity.

Mu 331, 332, 333 Instruments (1) (1) (1)
Study of the fundamentals of playing and teaching woodwind, brass, string, and percussion instruments. Continuation of Mu 231, 232, 233. 1 activity.
Music/Natural Resources

Mu 337, 338, 339 Voice (1) (1) (1)
Study of the fundamentals of singing; breathing, posture, diction, development of voice, resonating chambers, vocal interpretation, sight singing. Theory of music as applied to voice production; notation, intervals, triad forms, meter and rhythm, major and minor scales. Continuation of Mu 237, 238, 239. 1 activity.

Mu 404, 405, 406 History of Music (2) (2) (2)
Intensive study of a selected topic in music history each quarter through the use of readings, recordings, and scores. Prior completion of at least one quarter of music appreciation is recommended. 2 lectures.

Mu 407 Form and Analysis (3)
Intensive survey of musical forms from the 17th century to the 20th century. Analysis of musical structure, melodic invention and elaboration. 3 lectures. Prerequisite: Mu 101

Mu 431, 432, 433 Advanced Instruments—Theory and Performance (1) (1) (1)
Emphasis placed on the physiological and acoustical principles of tone production. Selected readings on the history and literature of each family of instruments. 1 activity.

Mu 436 Music Concepts (3)
Creative approach to history, theory, appreciation, and criticism of music. Currently employed materials in the light of new musicological findings. Development of original musical themes utilizing scalar, chordic, and pentatonic approaches. 3 lectures. Prerequisite: Mu 201 or consent of instructor.

Mu 437, 438, 439 Advanced Voice—Theory and Performance (1) (1) (1)
Selected readings in the theory of voice production. Study of many types of vocal literature. 1 activity. Prerequisite: Mu 237

NATURAL RESOURCES MANAGEMENT

NRM 101 Recreation Systems and Management (3)
Introduction to national, state, county, city and private park systems. History, policy and principles of the formation, administration and functioning of recreational limits at the park, district and regional levels. 3 lectures.

NRM 102 Forest Resources (3)
Fundamentals of forestry including basic silviculture, forest protection, and multiple use of forest lands. Emphasis is placed on forest recreation. 3 lectures.

NRM 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

NRM 223 Resource Survey (3)
Survey, inventory and assessment techniques used for evaluation of physical, biological and cultural resource features of a land area. Interpretation and correlation of geology, soils, topographic, climatic, vegetative and cultural maps. 2 lectures, 1 laboratory. Prerequisite: SS 121, AE 145, OH 124, Bot 121, NRM 101, 102

NRM 224 Resource Planning (3)
Field and laboratory analyses and development of plans for land resource uses following survey and inventory application of multiple use principles; integrated and commensurate management of resource areas. 2 lectures, 1 laboratory. Prerequisite: NRM 223

293
NRM 323 Site Ecology (3)
Interrelationships of the environmental features of a resource area as influences on development of the recreational site and human use. The recreationist in the ecosystem. 2 lectures, 1 laboratory. Prerequisite: NRM 224, Bot 123; Bio 325 to be taken concurrently.

NRM 326 Environmental Interpretation (3)
Interpretation of the biological, physical and aesthetic values of the recreation area environment; organization and presentation of interpretive materials by oral, written, and display methods of communication. 2 lectures, 1 laboratory. Prerequisite: NRM 323 and Junior standing.

NRM 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, research, studies or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

NRM 429 Site Development and Maintenance (4)
Basic planning and design principles of selected outdoor recreation sites. Area layout, facility design, construction, and maintenance of structures, grounds, roads, and trails. 3 lectures, 1 laboratory. Prerequisite: NRM 326

NRM 438 Recreation Resource Management (4)
Administration of private and public outdoor recreation, including interrelationships among planning, budgeting, organizing, programming, interpreting and maintaining the recreational unit. 3 lectures, 1 laboratory. Prerequisite: NRM 429 and senior standing in the major.

NRM 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

NRM 463 Undergraduate Seminar (2)
Study and oral presentation of current developments and problems in the subject field. Discussion of recent findings and research and their application. 2 lectures.

NRM 470 Selected Advanced Topics (1–3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

NRM 502 Resource Conservation (3)
Conservation developments for broad treatment of land, water, mineral, forest, range, and wildlife resources. 3 lectures. Prerequisite: Graduate status, Cons 311, SS 202, SS 321, SS 433

ORNAMENTAL HORTICULTURE

OH 100 Orientation to Ornamental Horticulture (1)
Ornamental Horticulture as a career. Preview of the nursery, florist, and landscape industries. Discussion of student projects and project records. 1 lecture.

OH 121 Nursery Practices (4)
Commercial nursery operations. Propagation, nursery layout, seed sowing, transplanting, potting, canning, fertilizing, irrigation, and pest control. Bedding plants, greenhouse plants, trees, and shrubs. 3 lectures, 1 laboratory.
OH 122 Plant Materials I (4)
Shrubs and vines used in California. Identification, habits of growth, cultural requirements, and landscape use. 3 lectures, 1 laboratory.

OH 123 Floriculture (4)
The operating of greenhouses and other forcing structures. A study of the relationship of light, heat, temperature, and moisture to plant growth. 3 lectures, 1 laboratory. Prerequisite: OH 121

OH 124 Landscape Drafting (2)
Drafting techniques and standards progressing from tracings to light construction working drawings. 1 lecture, 1 laboratory.

OH 125 Floral Design (4)
A study of the principles of flower arrangement and corsage making. 2 lectures, 2 laboratories.

OH 126 Plant Materials II (4)
The identification, habits of growth, and landscaping uses of ornamental annuals and herbaceous perennials commonly grown for California landscaping. 3 lectures, 1 laboratory. Prerequisite: OH 121, 122

OH 145 Bonsai Culture (2)
Study of the philosophy, history, training, culture, production, and care of the Japanese Bonsai. 1 lecture, 1 activity.

OH 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

OH 220 Flower Arrangement (2)
Principles and uses of flower arrangements as used in home decorating. 1 lecture, 1 laboratory.

OH 221 Plant Materials III (4)
Broadleaf trees grown and used in California. Identification, habits of growth, cultural requirements, and landscape use. 3 lectures, 1 laboratory.

OH 223 Principles of Landscape Design (4)
Basic principles of design related to landscape problems. 2 lectures, 2 laboratories. Prerequisite: OH 124

OH 225 Flower Judging (3)
Procedure and practice in score card grading of cut flower and pot plant classes. Commercial grades will be used as well as specimens generally grown by the amateur gardener. 1 lecture, 2 laboratories. Prerequisite: OH 121

OH 227 Flower Shop Management (4)
Practices and problems in the management of the retail flower shop with emphasis upon shop layout, window display, telegraph delivery services, buying, selling, and personnel relations. 2 lectures, 2 laboratories. Prerequisite: OH 125

OH 228 Advanced Floral Design (4)
Advanced styling of floral designs including: wedding flowers, funeral designs, advanced corsages, hospital arrangements and baskets for all occasions. 2 lectures, 2 laboratories. Prerequisite: OH 227

OH 230 Ornamental Gardening (3)
For non-horticulture majors. Information and recommendations for the home gardener. Methods of propagation, pruning, planting, soils, fertilizers, lawn planting and maintenance, pest and weed control, home landscaping, and identification and care of house plants. 2 lectures, 1 laboratory.
Ornamental Horticulture

OH 233 Plant Propagation (4)
Principles of asexual propagation. Budding, cutting, layering, division, and separation. 3 lectures, 1 laboratory. Prerequisite: OH 123

OH 321 Residential Landscaping (4)
Principles of landscape design for residential properties. Designing of several small home properties. 2 lectures, 2 laboratories. Prerequisite: OH 122, 221, 223

OH 322 Advanced Landscape Design (4)
Principles of landscape design of public properties and the application of these principles in solving of landscape design problems. 2 lectures, 2 laboratories. Prerequisite: OH 121, 221, 223

OH 323 Greenhouse Management (4)
Scheduling greenhouse crops and planning crop rotations. Economics of the florist business. 3 lectures, 1 laboratory. Prerequisite: OH 123

OH 324 Tropical Plant Culture (4)
Identification, culture, propagation, and ornamental use of tropical plants. 3 lectures, 1 laboratory. Prerequisite: Junior standing and permission of instructor.

OH 325 Pot Plant Production (4)
The production of major commercial potted plants under glass and lath. Preparation for sale and merchandising of greenhouse crops. 3 lectures, 1 laboratory. Prerequisite: OH 334, SS 221

OH 327 Diseases and Pests of Ornamental Plants (4)
A detailed study of diseases and pests of ornamental plants, their effect on plants, their prevention and control. 3 lectures, 1 laboratory. Prerequisite: OH 122, Ent 126, Bot 323

OH 331, 332 Landscape Contracting (4) (4)
Practices in supervising men and applying approved techniques in landscape construction. Cost finding and estimating for landscape trades. Contract writing, accounting systems, and legal aspects of landscape contracting. 3 lectures, 1 laboratory. Prerequisite: OH 124

OH 333 Turf Management (4)
Practice in the maintenance and management of turf areas, including golf greens, athletic fields and park lawns. 3 lectures, 1 laboratory. Prerequisite: OH 121, and junior standing.

OH 334 Cut Flower Production (4)
The production of cut flowers in the field, under cloth, and under glass. Preparation of cut flowers for market. 3 lectures, 1 laboratory. Prerequisite: OH 123, SS 221

OH 337 Park Planning and Management (4)
Design, management and maintenance of private and public parks and recreational areas. 3 lectures, 1 laboratory. Prerequisite: AE 122, OH 122, 221, 333

OH 338 Advanced Plant Propagation (4)
Advanced nursery and plant propagation practices. Grafting, dormant budding, lining out, balling out, bare rooting, and making hardwood cuttings. Construction and operation of forcing structures. 3 lectures, 1 laboratory. Prerequisite: OH 233

OH 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.
OH 402 Garden Center Management (4)
 Legal aspects and economics of operating a commercial nursery and garden center. State and county regulations, quarantines, grades and standards of nursery stock. Purchasing, merchandising and record keeping. Trade associations and cooperative buying. 3 lectures, 1 laboratory. Prerequisite: Ec 201 or 211, Actg 131, junior or senior standing.

OH 421 Arboriculture (4)
 The care and management of large ornamental trees. The use of ropes and other safety equipment in tree climbing. Cavity work, bracing, cabling, and pruning. 3 lectures, 1 laboratory. Prerequisite: OH 221, 327

OH 430 Landscape Plants (2)
 The identification and landscape use of trees, shrubs and herbaceous plant materials. For non-OH majors. 1 lecture, 1 laboratory.

OH 461, 462 Senior Project (2) (2)
 Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

OH 463 Undergraduate Seminar (2)
 An open forum of senior students in which the latest developments, practices, and procedures are discussed. Each student is responsible for the development and presentation of a topic in his chosen field. 2 lectures.

OH 470 Selected Advanced Topics (1-3)
 Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

OH 581 Graduate Seminar in Ornamental Horticulture (3)
 Group study of current problems of the ornamental horticulture industry; current experimental and research findings as applied to production and to the teaching of horticulture.

PHILOSOPHY

Phil 201 Introduction to Philosophy (3)
 The relationships among the sciences and between science and philosophy. The principal types of philosophy in their relation to science. How philosophy has influenced the growth of ideas in the sciences and how present scientific developments are related to basic philosophical ideas. 3 lectures.

Phil 202 Logic (3)
 Brief survey of classic deductive and inductive logic. Methods of clear thinking in English prose sentences. Analysis of fallacies. Introduction to modern symbolic logic including Boolean algebra of classes and propositions, with applications. 3 lectures.

Phil 204 Ethics (3)
 Implications of ethics and ethical systems; scientific inquiry into the principles of the morality of human actions. 3 lectures. Prerequisite: Phil 201 or instructor's permission.

Phil 211 History of Philosophy (3)
 Western philosophy and science from its beginnings to the modern era. The Pre-Socratics through Democritus, Plato and Aristotle to Descartes, Spinoza, Leibnitz, Locke, Berkeley, Hume, and Kant. 3 lectures. Prerequisite: Phil 201

Phil 302 World Religions (3)
 Survey of the major living religions of mankind, their histories, teachings about man, his origin, way of life and destiny. 3 lectures.
Physical Education

PHYSICAL EDUCATION

PE 107 Health Education (2)
Topics designed to acquaint the student with the major health problems of everyday living. 2 lectures.

PE 121 Safety and First Aid (2)
A standard American Red Cross first aid course. Instruction and practice in the immediate and temporary care of injuries and sudden illness. 1 lecture, 1 two-hour laboratory.

PE 123 Swimming and Water Sports—Theory and Practice (2)
Supervision of pool activities. Swimming instruction and safety. Teaching and coaching swimming and water polo. 1 lecture, 1 two-hour laboratory. Prerequisite: Demonstrated swimming ability.

PE 126 Community Recreation (3)
The community recreation program. Activities and responsibilities of playground leaders and their supervisors. 1 lecture, 2 two-hour laboratories.

PE 141 Physical Education Activity (½)
Sections are organized in swimming; field and court sports; gymnastics; social, folk and square, and modern dance; body mechanics for women; weight training for men. 2 one-hour periods. Total credit limited to 1½ units.

PE 144, 145 Beginning Swimming (½) (½)
Beginning swimming for students who are unable to swim 100 yards using each of the following strokes: crawl, back, side, and breast. 2 one-hour periods.

PE 147 Adaptive Activities (½)
Group and individual exercise based upon individual needs in posture, body mechanics, nutrition, post injury and illness, and cardiac cases. Students take this course in lieu of PE 141 or 241 upon recommendation of the college physician. 2 one-hour periods. Total credit limited to 3 units.

PE 151 Competitive Athletics (½)
May be substituted for required physical education by those qualified to compete in intercollegiate sports program. 10 hours activity. Total credit limited to 1½ units.

PE 201 Principles of Physical Education (3)
History of physical education and the concept of physical education as a profession. Correlation between principles and methods. 3 lectures.

PE 203 School and Community Health Education (2)
The school health program in relation to community health agencies. Underlying principles, legal aspects, administrative divisions of health instruction, health services and healthful school living. 2 lectures.

PE 224 Administration of Recreation (3)
Supervision and administration of recreation with consideration of facilities, budget, equipment maintenance, public relations, and special activities. 2 lectures, 1 two-hour laboratory.

PE 232 Intramural Sports (3)
Principles and policies underlying programs of intramural sports in secondary schools and community centers. 2 lectures, 1 two-hour laboratory.

PE 241 Physical Education Activity (½)
Sections are organized in tennis, golf, badminton, handball, basketball, advanced basketball, volleyball, advanced volleyball, archery, fencing, modern dance, body mechanics, synchronized swimming, advanced swimming. 2 one-hour periods. Total credit limited to 1½ units.
Physical Education

PE 245 Advanced Swimming and Lifesaving (1)
Lifesaving techniques. The Senior Red Cross Life Saving and Water Safety Certificate will be issued to those students who satisfactorily complete this course. 2 one and one-half hour laboratories.

PE 251 Competitive Athletics (½)
May be substituted for required physical education by those qualified to compete in intercollegiate sports program. 10 hours activity. Total credit limited to 1 ½ units.

PE 255 Apparatus and Gymnastics (2)
A critical analysis of the methods and problems in teaching and coaching apparatus and gymnastics. Application is made to the secondary teaching situation with emphasis on lesson planning, development of teaching units, organization for class activity and administration of the program. 1 lecture, 1 two-hour laboratory.

PE 256 Apparatus and Gymnastics (2)
Theory of teaching and coaching apparatus and gymnastics. Women PE majors and minors. 2 two-hour laboratories. Prerequisite: PE 141 gymnastics.

PE 300 Safety Education (3)
Principles and practices of safety as applied to home, fire, industrial, school, community, and traffic situations. Accident prevention. 3 lectures.

PE 302 Kinesiology (2)
Energy, leverage, angle positions, sequence, and efficiency applied to body movements in sports and working conditions. 2 lectures. Prerequisite: Zoo 337

PE 303 Physiology of Exercise (2)
Effects of various forms of physical activity on the circulatory, respiratory, and other physiological processes; physiological problems in athletic competition. 2 lectures.

PE 321 Football Coaching Theory and Practice (2)
Fundamentals and systems of offensive and defensive football. Care and purchase of equipment, supplies and facilities. Rules of the game. 1 lecture, 1 two-hour laboratory.

PE 322 Baseball Coaching Theory and Practice (2)
Fundamentals of baseball with emphasis on strategy, selection of players, officiating, interpretation of rules, scoring, and administration of interschool games. 1 lecture, 1 two-hour laboratory.

PE 324, 325, 326 Team Sports for Girls (2) (2) (2)
Theory of teaching the following sports: volleyball, field hockey, basketball, field sports, softball, track and field. 2 two-hour laboratories. Prerequisite: PE 141, 241

PE 327 Wrestling Coaching Theory and Practice (2)
Coaching techniques of wrestling. Emphasis on skill instruction, dual meet and tournament organization, officiating, interpretation of rules. 1 lecture, 1 two-hour laboratory.

PE 328 Individual and Dual Sports (3)
Theory of teaching golf, badminton, tennis, and archery. 1 lecture, 2 two-hour laboratories. Prerequisite: PE 141, 241

PE 331 Techniques of Officiating (2)
Techniques of officiating men's sports. 1 lecture, 1 two-hour laboratory.

PE 332 Elementary School Physical Education (3)
Prepares the student to guide elementary school age children through a well-balanced program in physical education. Aims, objectives, procedures, methods, evaluation and program planning. 1 lecture, 2 two-hour laboratories.
Physical Education

PE 333 Track and Field Coaching Theory and Practice (2)
Coaching techniques for various track and field events. Problems of team balance; study of rules. 1 lecture, 1 two-hour laboratory.

PE 334 Introduction to Dance (3)
History of dance, qualities of movement, media of dance and basic elements of music as applied to movement. 1 lecture, 2 two-hour laboratories.

PE 337 Camping and Outdoor Education (3)
Introduction to current status, principles, organization and administration of outdoor education and camping. 2 lectures, 1 two-hour laboratory.

PE 341, 342, 343 Physical Education Activity (1) (1) (1)
Required of all physical education majors. Emphasis will be given to class organization of required physical education classes. 2 one-hour periods.

PE 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Senior standing or permission of the instructor.

PE 401 Organization and Administration of Health and Physical Education (3)
Underlying philosophy, principles, policies, and procedures of administration as applied to health and physical education. Legal aspects and the interrelationships with the general school curriculum at the local, state, and national levels. 3 lectures.

PE 405 Administration of School Health Education (2)
Current procedures and practices in the administration of the school health program. Problems analyzed and recommended procedures stressed. 2 lectures.

PE 406 Adoptive Physical Education (2)
Growth and development patterns; their relation to special and regular physical education programs. Analysis of postural divergence and procedures for prevention and correction. 2 lectures. Prerequisite: PE 303

PE 422 Basketball Coaching Theory and Practice (2)
Fundamental individual basketball skills. Theories of offensive and defensive team play. 1 lecture, 1 two-hour laboratory.
Physical Education

PE 425 Tests and Measurements in Physical Education (3)
Physical tests and measurements of skill, strength, speed, and endurance as a basis for grading and as a measure of progress in activities. 3 lectures.

PE 432 Athletic Training and Massage (1)
Modern principles and practices in conditioning and care of athletes. Theory and practice in the scientific manipulation of the muscles as related to therapeutic exercise. 1 combined lecture and laboratory.

PE 441, 442, 443 Minor Sports Theory and Practice (1) (1) (1)
Fundamentals and techniques of the following minor sports: wrestling, tennis, golf, gymnastics, badminton, and handball. 1 two-hour laboratory.

PE 446, 447, 448 Dance (2) (2) (2)
Theory of teaching social, modern, folk and square dance. 2 two-hour laboratories. Prerequisite: PE 141 or 241, PE 334

PE 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

PE 463 Undergraduate Seminar (2)
Discussion of new developments in recreation, health, and physical education. 2 lectures.

PE 500 Individual Study (1–3)
Advanced study planned and completed under the direction of a member of the department faculty. Open only to graduate students who have demonstrated ability to do independent work. Enrollment by petition. Prerequisite: Consent of department head, graduate adviser, and supervising faculty member.

PE 501 Advanced Adaptive Physical Education (3)
Advanced techniques in the detection of defective body mechanics and establishment of class procedures for prevention and elimination of these defects. 3 lectures.

PE 502 Advanced Seminar in Problems of Physical Education (3)
Practical problems in physical education and their solution in terms of desired objectives in this field. 3 lectures.

PE 506 Physical Education for the Mentally Retarded (2)
Development of concepts and activities for trainable and educable mentally retarded. Contributions of physical education to the growth and development of the mentally retarded as an integral tool in their education and training. 2 lectures. Prerequisite: Graduate standing.

PE 511 Supervision in Physical Education (3)
Principles and techniques in supervision of physical education on the elementary and secondary school levels. 3 lectures.

PE 512 Advanced Seminar in Health Education (3)
Rules of hygiene; problems of healthful living, and school hygiene. 3 lectures.

PE 513 Evaluation of Current Studies (3)
Analysis and evaluation of published studies in physical education, health education and recreation. 3 lectures.

PE 516 Physical Education Facilities, Equipment and Finance (3)
Design and construction of physical education facilities. Budgeting and financing physical education, intramural, and athletic facilities and programs. 3 lectures. Prerequisite: Graduate standing.
Physical Education/Physical Science/Physics

PE 517 Investigative Techniques in Physical Education (3)
Evaluative aspects of physical education; laboratory planning, descriptive methods, anthropometry, body mechanics, methods of instruction, analysis of findings. 3 lectures. Prerequisite: PE 425

PE 521 Curriculum and Methods in Health and Physical Education (3)
Methods, curricular materials, and evaluation procedures in elementary and secondary schools health and physical education. 3 lectures.

PE 522 Mechanical Analysis of Sports (3)
Application of principles of body mechanics to physical education and sports activities as a basis for analyzing and improving motor performance. 3 lectures. Prerequisite: PE 302, 303

PE 599 Thesis (2) (2) (2)
Independent research under the guidance and supervision of the staff.

PHYSICAL SCIENCE

PSc 101, 102, 103 Structure and Behavior of Matter (4) (4) (4)
Integrated course involving the basic principles of physics and chemistry. A quantitative study of matter and energy and the principles and laws that describe their behavior and applications. Not open for credit to students who have completed a college course with laboratory in physics or chemistry. 3 lectures, 1 recitation. Prerequisite: Math 100, 103, or 117

PSc 512 Philosophy of Science (3)
The relationship of philosophy and science. A presentation of problems in the logic of science and in the analysis of the concepts of science. 3 lectures. Prerequisite: Graduate standing.

PSc 521 Curriculum and Methods in the Physical Sciences (3)
Techniques, aims and objectives in the teaching of physics, chemistry, physical science, and general science at the secondary school level. Selection and organization of teaching material. Evaluation of results. 3 lectures. Prerequisite: Graduate standing.

PHYSICS

Phys 104 Introductory Physics (4)
Fundamental principles of mechanics, heat, light and electricity. Not to be taken by students who have taken a college course in Physics. 4 lectures. Prerequisite: Math 103 or 200 or 117

Phys 121, 122, 123 College Physics (4) (4) (4)
Fundamental principles of mechanics; hydraulics, heat, light and sound; magnetism, electrostatics, current electricity; atomic and nuclear physics. Not open to students who have previously taken corresponding college courses in physics. 3 lectures, 1 laboratory. Prerequisite: Math 103 or 113 or 117 or 200

Phys 131 General Physics (4)
Fundamental principles of mechanics: vectors, particle kinematics, particle dynamics, work and energy, linear momentum, rotational kinematics and dynamics, equilibrium. 3 lectures, 1 laboratory. Prerequisite: Math 141

Phys 132 General Physics (4)
Oscillations, fluid statics and dynamics, waves in elastic media, sound waves, temperature, heat and the first law of thermodynamics, kinetic theory of matter, second law of thermodynamics. 3 lectures, 1 laboratory. Prerequisite: Phys 131
Phys 133 General Physics (4)
Charge and matter, the electric field, Gauss's Law, electric potential, dielectrics, capacitance, current and resistance, electromotive force and circuits, magnetic fields, magnetic field of a moving charge, induced emf, inductance. 3 lectures, 1 laboratory. Prerequisite: Phys 131, Math 142

Phys 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

Phys 204 Introduction to Modern Physics (3)
Elementary treatment of relativity, atomic structure, atomic spectra; nuclear radiation and detection; nuclear reactions, radioactivity and nuclear energy. Not open to students with credit in Phys 211. Will not satisfy the Phys 211 requirement. 3 lectures. Prerequisite: Phys 123

Phys 206 Electrical Circuits (3)
Direct current, alternating current, and electronic circuits. 3 lectures. Prerequisite: Phys 133, Math 143

Phys 207 Electronic Methods in Physics (2)
Operational amplifiers. Digital techniques including multivibrators, counting, logic, and analog/digital converters. Instruments used in modern physics. 2 lectures. Prerequisite: Phys 206 or equivalent.

Phys 211 Introduction to Optics and Atomic Physics (4)
Fundamental principles of optics and atomic physics. Basic geometric optics, optical instruments, introductory physical optics. Introduction to the fundamental particles of matter, interpretation of spectra, relativity, atomic structure. 4 lectures. Prerequisite: Phys 133 or equivalent.

Phys 212 Waves and Vibrations (3)
Introductory treatment of waves. Fourier series. Damped oscillations. Electrical analogs, the wave equation and solutions. 3 lectures. Prerequisite: Phys 133, Math 242. Recommended: Math 319

Phys 213 Introduction to Nuclear Physics (3)
Nuclear radiations and interactions. Detection methods, instruments and radioactive hazards. Nuclear reactions and induced radioactivity. Nuclear energy. 3 lectures. Prerequisite: Phys 211

Phys 223 Physical Optics (4)
The physical nature of light. Reflection, refraction, diffraction, interference, polarization and absorption phenomena. 3 lectures, 1 laboratory. Prerequisite: Phys 211, Math 241

Phys 243 Introductory Nuclear Physics Laboratory (1)
Techniques of measurement including Geiger, proportional and scintillation counting. Properties of alpha, beta and gamma radiation. 1 laboratory. Prerequisite or concurrent: Phys 213, Phys 256 or equivalent.

Phys 256, 257 Electrical Measurements Laboratory (1) (1)
Electrical measurements using direct current, alternating current, and electronic methods. 1 laboratory. Prerequisite or concurrent: Phys 206

Phys 301 Heat (3)
The kinetic theory of gases. Distribution of molecular velocities. Transport phenomena. First and second law of thermodynamics. 3 lectures. Prerequisite: Phys 133, Math 241
Physics

Phys 302 Analytic Mechanics (3)
- Vector analysis, statics of particles and rigid bodies, uniform and parabolic catenary, laws of motion, kinematics and dynamics of a particle. Work and energy. Particle in uniform field. Oscillatory motion (damped and forced oscillation). Center of mass. Linear and angular momentum. 3 lectures. Prerequisite: Phys 131, Math 242

Phys 303 Analytic Mechanics (3)
- Dynamics of a rigid body, central force motion. Three-dimensional motion of a rigid body, wave motion, introduction to Lagrange's and Hamilton's equations. 3 lectures. Prerequisite: Phys 302

Phys 304, 307 Electricity and Magnetism (4) (3)
- Electric and magnetic field theory using vector treatment. Electric fields, dielectric materials, magnetic fields, induced emfs and induction, magnetic materials, general field and wave equations, plane electromagnetic waves. 4 lectures, 3 lectures. Prerequisite: Phys 133, Math 304 or 405

Phys 400 Special Problems for Advanced Undergraduates (1-2)
- Individual investigations, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of the department head.

Phys 401 Atomic Physics (3)
- Foundations of atomic theory, atomic structure, electron energy levels, X-rays, introduction to quantum theory and special relativity. Wave-particle duality. 3 lectures. Prerequisite: Phys 211, Math 241

Phys 403 Nuclear Physics (3)

Phys 405 Quantum Mechanics (3)
- The experimental basis of quantum mechanics. The wave equation and interpretation. Solutions for one dimensional problems and the one electron atom. 3 lectures. Prerequisite: Phys 401; Math 242. Recommended: Math 304

Phys 406 Solid State Physics (3)
- Crystalline structure of solids. Vibrational and electronic energies in the crystal lattice. Electrical, thermal, and magnetic properties of metals, insulators, and semiconductors. 3 lectures. Prerequisite: Phys 403

Phys 407 Quantum Mechanics (3)

Phys 412 Solid State Physics for Engineers (3)
- Crystalline structure of solids. Basic quantum mechanics. Electronic energy levels and binding of solids. Electrical, thermal, and magnetic properties of metals, insulators, and semiconductors. 3 lectures. Prerequisite: Phys 405, Math 242

Phys 421 Nuclear Reactor Physics (4)
- Nuclear fission. Nuclear chain reaction. Neutron diffusion. Thermal reactor critical equation. Time varying system. Reactor control and factors affecting multiplication. 3 lectures, 1 laboratory. Prerequisite: Phys 243, Math 242

Phys 441 Atomic Physics Laboratory (1)
- Experimental studies of the properties of electrons and quanta and their interactions with atoms. Experiments include the determination of electron charge and mass, Planck's constant, atomic energy levels and properties of X-rays. 1 laboratory. Prerequisite: Phys 211

304
Physics

- Phys 443 Nuclear Physics Laboratory (1)
 - Energy spectra of nuclear particles. Coincidence measurements. Absolute activity determinations and selected specialized techniques. 1 laboratory. Prerequisite or concurrent: Phys 403. Prerequisite: Phys 243

- Phys 452 Solid State Physics Laboratory for Engineers (1)
 - Selected experiments on the solid state of matter using electrical, optical, and x-ray methods. 1 laboratory. Prerequisite or concurrent: Phys 412

- Phys 456 Solid State Physics Laboratory (1)
 - Experimental study of the solid state of matter using X-ray, electrical and optical methods. 1 laboratory. Prerequisite or concurrent: Phys 406. Prerequisite: Phys 441 or consent of instructor.

- Phys 461, 462 Senior Project (2)
 - Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

- Phys 463 Undergraduate Seminar (2)
 - Study of current developments in physics and discussion of periodicals of an appropriate level. 2 meetings.

- Phys 470 Selected Advanced Topics (1-3)
 - Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

- Phys 501 Selected Topics in Advanced Physics (3)
 - Topics in mathematical physics or advanced experimental work. 3 lectures. Prerequisite: Graduate standing.

- Phys 502 Nuclear Physics (3)
 - Instrumentation, methods, and results of experiments. Systematics and theory of nuclear structure. 3 lectures. Prerequisite: Graduate standing.

Political Science

- Pol Sc 100 U. S. History and Government (3)
 - Basic structure and operation of the federal government. The constitution as a modern regulatory instrument; bases of American ideals. Function of state and local government. This course may not be substituted for Hist 304, 305, Pol Sc 301 or 401. 3 lectures. Not open to degree students for degree credit.

- Pol Sc 101, 102 National and California Government (3)
 - Concepts and techniques of political science; Governmental institutions of the United States. California state and local political institutions and problems. Completion of PolSc 101 and 102 will satisfy the California state requirements in the United States Constitution, state and local government. 3 lectures.

- Pol Sc 103 Introduction to International Relations (3)
 - Introduction to dynamics, character and substance of power relations among nations; conflict and accommodation, including the nature of the state and the international community. 3 lectures.

- Pol Sc 301 American Government (3)
 - The origin, nature, and distribution of political power. Declaration of Independence. The Constitution of the United States. Function and current problems of national, state and local government. Finding and evaluating authoritative source materials on political affairs. Not open to students with credit in or enrolled in Pol Sc 101. 3 lectures. Prerequisite: Sophomore standing.
Political Science

Pol Sc 302 American Political Process (3)
Political parties, pressure groups, public opinion and the role of each in contributing to the dynamics of the American political process. 3 lectures. Prerequisite: Junior standing and Pol Sc 101 or 301

Pol Sc 306 Modern Political Thought (3)
Theories of political control and the relationship between man and the state. 3 lectures. Prerequisite: Junior standing.

Pol Sc 311 Inter-American Relations (3)
Inter-American affairs. Political, economic, and social problems; forces motivating cultural behavior, industrial development, trade techniques, agriculture methods. Opportunities for employment in agriculture, engineering, and business. Finding and evaluating authoritative source materials on Latin American affairs. 3 lectures. Prerequisite: Pol Sc 301, Hist 304

Pol Sc 312 International Politics (3)
International political processes and problems; foreign policies and politics in relations among states; conflicts and adjustments. Analyses of selected problems. Prerequisite: History 305

Pol Sc 313 Comparative Government (3)
Study of the governmental organization, domestic policies, and political structure of a selected group of nations. 3 lectures. Prerequisite: Hist 305

Pol Sc 314, 315, 316 Public Administration (3) (3) (3)
Processes and techniques of public policy development and administration. Emphasis on the problems encountered by the career civil servant. Fall: application to national departments and agencies; Winter: application to state agencies and resources; Spring: application to cities, counties, and special districts. 3 lectures. Prerequisite: Pol Sc 103 or 301

Pol Sc 321 American Constitutional Law (3)
Basic principles of American constitutional law developed by the case method. Judicial review, separation of powers, federalism, individual rights and duties. 3 lectures. Prerequisite: Pol Sc 101 and 102 or 301

Pol Sc 401 State and Local Government (3)
Structure, function and problems of state, county, and city governments. 3 lectures. Prerequisite: Pol Sc 301, Hist 304 or equivalent.

Pol Sc 402 Politics and Governments of Developing Areas (3)
Institutions and processes of governments in a selected world area experiencing economic and political development. Each time the course is offered it will bear a subtitle descriptive of the particular area studied. 3 lectures. May be repeated to a total of 9 units. Prerequisite: Pol Sc 301 and Hist 305 or equivalent.

Pol Sc 418 Contemporary Problems and Institutions of the U.S.S.R. (3)
Study and analysis of political, economic, and social institutions and conditions of the U.S.S.R. 3 lectures. Prerequisite: Junior standing or consent of instructor.

Pol Sc 465 Contemporary Problems and Institutions of the Middle East and Africa (3)
Study and analysis of political, economic, and social institutions and conditions of the countries of the Middle East and North Africa. 3 lectures. Prerequisite: Junior standing or consent of instructor.

Pol Sc 468 Contemporary Problems and Institutions of Africa South of the Sahara (3)
Study and analysis of indigenous institutions, Western influences, and nationalism in Africa south of the Sahara. Selective area studies illustrative of colonialism and the politics of independence. 3 lectures. Prerequisite: Junior standing or consent of instructor.
POULTRY INDUSTRY

PI 121 Poultry Industry Development (4)
Scope and importance of the poultry industry as a part of California agriculture. Poultry organizations, publications, employment opportunities. Basic skills in industry organization. 3 lectures, 1 laboratory.

PI 122 Replacement Programs and Broiler Production (4)
Organization and planning of the replacement program on the commercial poultry enterprise. Modern techniques and practices including costs, facilities, and management of the replacement program. 3 lectures, 1 laboratory.

PI 123 Poultry Feeding and Nutrition (4)
Nutritional requirements, feeding principles and modern practices. Formulation of rations for specific purposes and commercial economy practices. Feed industry distributive procedures. 3 lectures, 1 laboratory. Prerequisite: ASci 101

PI 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

PI 221 Poultry Selection and Egg Production (2)
Biological environmental factors that affect quality, size, and number of eggs produced. Techniques and practices of working with the commercial producing flock. 1 lecture, 1 laboratory.

PI 222 Poultry Products, Processing and Marketing (3)
Assembling, processing, distributing and merchandising of poultry meat and eggs. Standardization and regulations applicable to the marketing of poultry products. Development and promotion of consumer products. 2 lectures, 1 laboratory.

PI 223 Poultry Incubation (2)
Embryology fundamentals and metabolism of the developing embryo. Artificial incubation practices as applied in the commercial hatchery. Nutritional, genetic and environmental factors that affect the hatch. 1 lecture, 1 laboratory.

PI 230 General Poultry Production (3)
Survey of the various phases of the modern poultry industry including nutrition, breeding, flock health, production and management. Business aspects of poultry production and marketing of products. Not open to poultry majors. 2 lectures, 1 laboratory.

PI 231 Poultry Anatomy and Physiology (3)
Structural aspects and normal functions of the principal systems of domestic poultry. 2 lectures, 1 laboratory. Prerequisite: Zoo 131 or Bio 100

PI 233 Poultry Plant Design and Equipment (2)
Design and planning a modern commercial poultry operation. The engineering of buildings and equipment to specific commercial functions. Coordination of buildings, equipment and operations designed for maximum plant efficiency. 1 lecture, 1 laboratory.

PI 248 Hatchery Operation (1)
Hatchery practice in care and operation of incubators. Servicing and adjusting the equipment and controlling sanitation. Skills in grading chicks, pedigree banding, and keeping hatchery records. 1 laboratory.

PI 303 Poultry Hygiene and Flock Health (3)
Management, sanitation and vaccinating programs for the maintenance of the flock health. Control and prevention of diseases and parasites. 3 lectures. Prerequisite: Bact 221, PI 231
Poultry

PI 305 Game Bird Propagation and Management (3)
Game bird anatomy, physiology and nutrition. Health, natural and artificial reproduction, and rearing techniques as practiced in public resource programs and private enterprises. Participation in an organized two-day field trip is required. 3 lectures. Prerequisite: One quarter college mathematics, one quarter animal biology and Chem 121

PI 320 Poultry Consumer Education (2)

PI 321 Applied Poultry Breeding (3)
Genetic applications in the development of commercial poultry stocks for specific productive designs. Application of commercial breeding techniques for flock improvement. Analysis of breeding records. 2 lectures, 1 laboratory.

PI 322 Hatchery Business Organization (4)
Organization and management of a commercial hatchery operation. Recruiting and supervising personnel, organizing flow of products and planning the distribution systems. Managing the finance, advertising, public relations, and sales phases of the hatchery organization. 3 lectures, 1 laboratory. Prerequisite: PI 321

PI 402 Advanced Poultry Enterprise Supervision (3)
Coordination and supervision of the modern commercial poultry enterprise. Analysis of operational procedures, efficiency practices, cost and quality control techniques. Interrelationship of business practices to the enterprise success. 3 lectures. Prerequisite: All required freshman and sophomore poultry courses and PI 321

PI 421 Turkey Industry (3)
Coordination and operation of a commercial turkey enterprise. Application of nutritional, breeding, disease control and marketing practices. Planning and supervising the specialized phases of the turkey enterprise. Development of new products and specialized marketing techniques. 2 lectures, 1 laboratory. Prerequisite: PI 123, 231, 321

PI 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

PI 463 Undergraduate Seminar (2)
Preparing and presenting in an organized manner reports on new trends, special problems, research developments related to the poultry industry. Group discussion of industry special problems. 2 meetings.

PI 470 Selected Advanced Topics (1-3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

PI 581 Graduate Seminar in Poultry (3)
Current trends and characteristics of the poultry industry enterprise. Group discussions of skills, techniques and practices to improve teaching of vocational agriculture as it applies to poultry. 3 meetings.
PRINTING TECHNOLOGY AND MANAGEMENT

PT 101 Introduction to Printing Technology (2)
Orientation to the program and objectives of the Printing Technology and Management Department. History and traditions of the printing industry. Analysis of technological change. Employment opportunities. 2 lectures.

PT 102 Proofreading (2)
Copy editor's and proofreader's marks, spelling, punctuation, division of words, compounding, and style. Methodical approach to proofreading. 2 lectures.

PT 104 Graphics (3)
Principles of design and display. Type classifications, copy preparation, copy fitting, schools of typography and the influence printing processes have on the selection of type. 3 lectures.

PT 111 Printing Papers (2)

PT 122 Typography (4)
Fundamentals of design with type. The point system, type identification, printing vocabulary, and copy markup systems. Introduction to cold type processes. 3 lectures, 1 laboratory. Prerequisite: PT 104 or consent of instructor.

PT 123 Binding and Finishing (3)
Planning of printing to be bound. Cutting, folding, assembling of folded material, binding of finished material in final form. Case and perfect bookbinding. 2 lectures, 1 laboratory.

PT 126 Relief Plates (2)
Characteristics and making of photoengravings, electrotypes, plastic wrap-around plates, stereotypes, and rubber plates. 1 lecture, 1 activity.

PT 127 Graphic Arts Processes (3)
Introduction to the graphic arts. Printing processes, design, layout, composition, presswork, cold type, binding, silk screen, offset, photography, and duplicating processes. For non-majors. 1 lecture, 2 laboratories.

PT 132 Letterpress (3)
Operation and maintenance of platen and cylinder presses. Introduction to imposition, lock-up, makeready, registration, ink control. Analysis of rollers, ink and paper. 1 lecture, 2 laboratories.

PT 133 Letterpress (3)
Characteristics and operation of automatic letterpresses. Techniques and procedures for ink mixing and color matching. Advanced study of makeready systems. Ink and paper relationships. 1 lecture, 2 laboratories.

PT 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

PT 201 Theory of Color (2)
Light and color theory. Understanding of the physical, chemical, and psychological concepts of color. Relationship of color to temperature. Color systems. Application of color theory to full-color printing. 2 lectures.

PT 204 Introduction to Printing Management (2)
Structure of the industry, levels and management, foremanship, materials handling, inventory control, plant safety, and management of printing processes. 2 lectures.
Printing

PT 223 Copy Preparation for Reproduction (3)
Preparation of line and tone copy for offset and gravure reproduction. Designing roughs and visuals and preparation of single and multi-color mechanicals for use in commercial and publication printing. 2 lectures, 1 laboratory.

PT 224 Composing Machines (3)
Keyboard operation of linecasting machines using the touch system. Care and adjustment of machines for efficient production of quality type. 1 lecture, 2 activities. Prerequisite: PT 122, or consent of instructor.

PT 225 Composing Machines (3)
Newspaper, bookwork, magazine and commercial composition. Instruction and practice in the maintenance and repair of linecasting machines and composing room equipment. 1 lecture, 2 activities. Prerequisite: PT 224

PT 227 Process Camera (3)
Characteristics of photographic materials for the graphic arts. Theory and practice in the use of gallery and vertical process cameras for the production of line and halftone negatives. Densitometry. Sensitometry. Applications for special purpose screens. 1 lecture, 2 laboratories. Prerequisite: Sophomore standing or consent of instructor.

PT 228 Stripping and Platemaking (3)
Planning for lithographic press plates. Ruling, scribing, opaquing, and retouching negatives. Preparation of supports for stripping. Layout and assembly of stripped flats. Selection, care, and making of pre-sensitized and deep etched lithographic plates. Proofing techniques. 1 lecture, 2 activities. Prerequisite: PT 227

PT 229 Lithography (3)
Theory and practice in the use of single-color sheet-fed offset presses. Sheet feeders, printing units, inking units, dampening units and deliveries. Characteristics of papers and inks for offset lithography. 1 lecture, 2 laboratories. Prerequisite: PT 228

PT 236 Automated Typesetting (3)
PT 238 **Advanced Graphic Arts (3)**
Advanced study and related applications of design, layout, composition, press work and bindery. For non-majors. 3 activities. Prerequisite: PT 127

PT 303 **Estimating (3)**
Estimating commercial printing produced by letterpress and offset processes. Use of catalogs and standard price lists. Analysis of material, labor, and machine cost factors. 3 lectures.

PT 307 **Purchasing for Printing (2)**
Procurement procedures for printing equipment, raw materials, trade services. Trade customs and practices concerning quantity buying, discounts, leasing and insurance. Securing the service of industry consultants and specialists. 2 lectures.

PT 312 **Theory of Lithography (3)**
The lithographic process in relation to pH and water controls. Surface plates to deep etch. Film emulsions, reducers and intensifiers. Paper tests and ink reactions. 3 lectures.

PT 323 **Pre-Separated Art for Camera (3)**
Manual preparation and separation of line and continuous tone images for multi-color reproduction. Preparation of complex full-color mechanical layouts. 1 lecture, 2 activities. Prerequisite: PT 223

PT 326 **Printing Equipment Maintenance (3)**
Maintenance practices and procedures for all types of printing plant equipment. Designing and administering maintenance systems for various types of plants. Inventory systems for repair parts. 1 lecture, 2 activities. Prerequisite: PT 225

PT 329 **Reproduction Engineering (3)**
Orientation to high-speed, short-run reproduction. Microfilming, blueprinting, xerography. Direct image masters. Programmed duplicators. Specialized finishing operations. Coordination of rapid printing in captive and specialty printing plants. 2 lectures, 1 activity. Prerequisite: PT 229

PT 332 **Publication Systems (3)**
Modern production systems used by newspaper and magazine publishers. Production procedures, with emphasis on organization of composition facilities. 2 lectures, 1 laboratory. Prerequisite: PT 122

PT 333 **Plant Organization and Layout (3)**
Printing plant design and layout based on production analysis, work flow patterns, and utilization of space. Organization of plant services. 2 lectures, 1 activity.

PT 334 **Commercial Typography (3)**
Design and composition for commercial printing. Corporate stationery, business forms, annual reports, folders, book, and direct mail pieces. Analysis of process limitations. 1 lecture, 2 activities. Prerequisite: PT 223

PT 336 **Advanced Letterpress (3)**
One and two revolution flat bed and rotary letterpresses. Two color presses. Specialty presses. Die-cutting, embossing, die-stamping, and foil printing. Three and four-color process printing. 1 lecture, 2 laboratories. Prerequisite: PT 133

PT 338 **Survey of Lithography I (3)**
Camera copy preparation for offset, gravure and letterpress. Basic line and halftone photography. For non-majors only. 2 lectures, 1 laboratory. Prerequisite: PT 104 or 127, or consent of instructor.

PT 339 **Survey of Lithography II (3)**
Introduction to stripping methods. Preparation of paper and presensitized plates for offset printing. Offset presswork procedures. For non-majors only. 2 lectures, 1 laboratory. Prerequisite: PT 104 or 127, or consent of instructor.
Printing

PT 341 Tape Perforation (2)
Standard and multiface tape perforators, transmitting equipment, reperforating and composing machine keyboard operating units. Operation of Teletypesetter tape perforating units. 2 activities. Prerequisite: Bus 141 or demonstrated typing proficiency.

PT 357 Screen Processes (3)
Screen process reproduction methods with applications to industry and communications. Includes paper, tusche and glue, knife-cut and photographic stencils. Printing mediums, surfaces, and industrial applications such as printed circuits and packaging. 3 activities. Prerequisite: PT 238 or consent of instructor.

PT 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter.

PT 401 Printing Sales (2)
Sales management, salesmanship, printing trade customs, and promotion of printed products. Servicing printing accounts. 2 lectures. Prerequisite: Senior or advanced junior standing.

PT 407 Photocomposition (3)
Non-metallic composition for display and text types. First, second and third generation phototypesetting machines. Computerized photocomposition systems. 2 lectures, 1 activity. Prerequisite: PT 236

PT 408 Newspaper Production Management (2)
Sequential analysis of newspaper production processes. Organization of the production function. Personnel and industrial problems peculiar to the industry. 2 lectures. Prerequisite: PT 332

PT 411 Estimating and Pricing (3)
Development of an estimating system. Establishment of unit costs and operational time requirements. Analysis of process limitations, time standards, production coordination, service, subcontracting, overhead and profit. 3 lectures. Prerequisite: PT 303

PT 416 Web Printing (3)
Theory and practice in the use of web presses for letterpress, offset, rotogravure, and flexographic printing. Applications for packaging, business forms, magazines, books, catalogs and advertising materials. 2 lectures, 1 laboratory. Prerequisite: PT 229

PT 421 Printing Management (3)
Principles and applications of printing production forecasting. Functions of printing production control including orders, planning, scheduling, and dispatching. Printing production records. 2 lectures, 1 activity. Prerequisite: PT 204

PT 422 Printing Management (3)
Establishment of inspection standards for the printing industry. The appropriateness of judgment and measurement inspection. Instruments for quality control in the printing industry. 2 lectures, 1 activity. Prerequisite: PT 421

PT 423 Printing Management (3)
Organization and coordination of sales production, pricing and administrative aspects of printing operations. Industrial relations relative to commercial printing and publishing. 3 lectures. Prerequisite: PT 422

PT 434 Color Separation (3)
Equipment, materials, and techniques for color separation photography. Three and four color separations from opaque and transparent copy. Introduction to retouching, dot etching and color etching. 1 lecture, 2 laboratories. Prerequisite: PT 201, 227
PT 435 Advanced Lithography (3)
Single and multi-color sheet-fed offset presses. Process color printing and precision control of inking and dampening. Practice in quality control. 1 lecture, 2 laboratories. Prerequisite: PT 229

PT 437 Package and Container Production (3)
Analysis of the packaging industry with emphasis on reproduction processes, inks, materials (paper, plastics, glass and metals) and finishing operations such as die cutting, waxing, gluing, laminating and sealing. Standards of quality and uniformity as well as troubleshooting. 2 lectures, 1 laboratory.

PT 441 Applied Printing Technology (3)
Practice in production of offset and letterpress printing. Planning, typesetting, copy preparation, camera, preparation of press forms and plates, presswork, binding and finishing. 3 laboratories. Prerequisite: Senior or advanced junior standing.

PT 459 Graphic Communication Developments (3)
Developments and trends in processes, methods, materials and equipment used in graphic communication. 3 activities. Prerequisite: Senior standing or consent of instructor.

PT 461, 462 Senior Project (2)(2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in formal report. Minimum 120 hours total time. Prerequisite: Senior standing.

PT 463 Undergraduate Seminar (2)
Preparation, oral presentation, and discussion by students of technical papers on recent developments in the industry and senior project material. Each student is required to conduct the seminar class, under supervision of instructor, at least twice during the quarter. 2 lectures. Prerequisite: Senior standing.

PT 470 Selected Advanced Topics (1-3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

PT 521 Curriculum and Methods in the Graphic Arts (3)
Objectives, content, organization, scope, and evaluation of the graphic arts curriculum in secondary schools. Teaching procedures and methods of student evaluation. 3 lectures. Prerequisite: Admission to teacher education program.

PSYCHOLOGY

Psy 104 Effective Study Techniques (2)
Designed to acquaint students with basic aims and objectives of going to college, and to provide adequate instruction and practice in specific study skills; effective study methods, note-taking, time-planning, memory, concentration. 1 lecture, 1 quiz section.

Psy 202 General Psychology (3)
Biological individuality; heredity and environment; motives; emotions; sensory activity and its use by the individual; learning and remembering; thinking and creating; intelligence; abilities; personality; culture and the individual; oneself and others. 3 lectures.

Psy 251 Laboratory in Group Activities (1)
Skills and techniques of solving problems in large and small groups; conducting and reporting meetings; analyses of leadership dynamics in campus organizations. 1 two-hour laboratory. Total credit limited to 6 units.
Psy 301 Personality and Mental Health (3)
Factors of mental health; achieving efficiency; personality development; emotional control; social adaptation; improvement of thinking; religion; program for mental health. 3 lectures. Prerequisite: Psy 202

Psy 302 Psychology of Business and Industry (3)
Psychological factors involved in employer-employee relationships, an analysis of the current practices of business and industry relative to personnel procurement, placement, training, conditions of work and productivity, human relations, human engineering, wages, and job evaluation. 3 lectures. Prerequisite: Psy 202

Psy 304 Physiological Psychology (3)
Relations between behavioral and physiological processes, with emphasis on endocrine and nervous systems, special senses, and physiological processes in motivation, emotion, and learning. 3 lectures. Prerequisite: Psy 202

Psy 307 Abnormal Psychology (3)
Abnormal behavior of individuals. Dynamics, etiology, symptoms, treatment and prevention of the more severe personality and behavior disorders. Includes the psychoneuroses, psychoses, alcohol and drug addiction, psychosomatic illnesses, and character disorders. 3 lectures. Prerequisite: Psy 202

Psy 401 Social Psychology (3)
Human behavior as a product of interaction and social process, nature of group life in relation to social groupings, social conflict, public opinion, group morale, social controls, leadership. 3 lectures. Prerequisite: Psy 202 or permission of instructor.

Psy 432 Psychological Testing (3)
Principles and procedures of the selection, the administration, scoring, and the interpretation of achievement tests, aptitude tests including scholastic aptitude, interest inventories, and personality inventories. 3 lectures. Prerequisite: 9 units of psychology.

Psy 433 Individual Intelligence Testing (4)
The concept of intelligence. Principles and procedures of individual intelligence testing. Supervised experience in the administration, scoring, and interpretation of standard individual intelligence tests. 2 lectures. 2 activity periods. Prerequisite: Psy 432

Psy 534 Dynamics of Individual Behavior (3)
Integration of the findings from perception, learning, motivation, and social psychology directed toward helping the individual to understand himself and others and utilize this knowledge in his vocation. 3 lectures. Prerequisite: Psy 301

Psy 535 Psychology of Learning (3)
Principles and practices in the field of educational psychology including learning and its variables, general and specific abilities, and measurements as they apply to this area. 3 lectures. Prerequisite: Ed 312

SOCIAL SCIENCES

Soc Sc 101 Introduction to the Social Sciences (3)
The social sciences in their relationship to modern living; an overview of the contributions of social sciences to cultural, social, and economic development. 3 lectures.
Soc Sc 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total
credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite:
Permission of department head.

Soc Sc 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total
credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite:
Permission of the department head.

Soc Sc 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects
typical of problems which graduates must solve in their fields of employment.
Project results are presented in a formal report. Minimum 120 hours total time.

Soc Sc 463 Undergraduate Seminar (2)
Intensive study of selected social problems with application of techniques for
analysis. 2 meetings.

Soc Sc 470 Selected Advanced Topics (1-3)
Directed group study of selected topics for advanced students. Open to under-
graduate and graduate students. Class schedule will list topic selected. Total credit
limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

Soc Sc 511 Sources in Social Sciences (3)
Methods of finding and adapting authoritative source materials in the social
sciences to the elementary, junior, and senior classroom situation. 3 lectures. Pre-
requisite: Graduate standing.

Soc Sc 521 Curriculum and Methods in Secondary Social Studies (3)
Content, organization and scope of social studies curriculum in secondary schools,
methods of teaching. Evaluation of procedures. 3 meetings. Prerequisite: Major or
minor in Social Sciences, admission to teacher education program and graduate
standing.

Soc Sc 590 Seminar in Social Sciences (3)
Special problems in selected areas of the Social Sciences. Each seminar will have
a subtitle describing its nature and content. 3 lectures. Maximum of 9 units may be
earned. Prerequisite: Graduate standing.

SOCIOLOGY

Soc 105 Introduction to Sociology (3)
Orientation to the nature of the study of society; survey of approaches to social
analysis. Emphasis upon primary concepts describing environment, social structure,
and social change for increased understanding of human relations. An overview of
the systems of social relationships. Not open to students with credit in or enrolled
in Soc 201. 3 lectures.

Soc 201, 202, 203 Principles of Sociology (3) (3) (3)
Sources of materials and methods of sociological study; concepts and principles;
structure and process of group life; social institutions. Applications of techniques
in field study. 3 lectures. Prerequisite: Social Sciences major or consent of instructor.

Soc 206 The Sociology of Family Life (3)
Description and analysis of the social relationships within the family group.
Examination of alternative solutions to problems which arise in family living.
3 lectures.
Sociology/Soil Science

Soc 301, 302 Sociology of Social Work (3) (3)
Theory, principles, and methods of social work. Analysis of professional service as offered by organized public and private programs. Stress upon relations of professional social worker to the broader institutional framework of the American society. 3 lectures. Prerequisite: 9 hours of sociology or consent of instructor.

Soc 303 Social Problems (3)
An appraisal of various factors from which social problems of the contemporary American society emerge and alternative procedures for dealing with such problems. 3 lectures.

Soc 313 Urban Sociology (3)
Structure of social relationships in the community; physical structure of communities; patterns of community cooperation and conflict; changing patterns of urban community life; social class and political influence on the community level. 3 lectures. Prerequisite: One quarter of sociology or consent of instructor.

Soc 315 Race Relations (3)
Structure of relationships among ethnic and racial groups. Sources of discrimination and prejudice in personality and social structure. Patterns of segregation. Evaluation of current techniques for restructuring intergroup relations. 3 lectures. Prerequisite: 6 hours of sociology or consent of instructor.

Soc 316 American Minorities (3)
Problems in assimilation of the Afro-American, Mexican-American, and American Indian. Analysis of internal group structures and external factors impeding assimilation of these minorities. Dynamics of intergroup relationships. Assessment of current programs aimed at assimilation. 3 lectures. Prerequisite: Six units of Sociology or consent of instructor.

Soc 323 Social Stratification (3)
Social class and the distribution of status and power in society, with emphasis on contemporary United States; social mobility; relationships of stratification to mental illness, race, family systems, crime and delinquency, etc. 3 lectures. Prerequisite: 6 hours of sociology or consent of instructor.

Soc 344 Sociology of Poverty (3)
Variable indications of poverty in modern society. Chief features of the subculture of the poor. Analysis of different explanations for the persistence of poverty. Survey of proposals for reducing poverty. 3 lectures. Prerequisite: College course in sociology or consent of instructor.

Soc 402 Crime and Delinquency (3)
Theories of delinquent and criminal behavior; analysis of institutional and other approaches to rehabilitation of criminals and delinquents. 3 lectures. Prerequisite: Two courses in sociology or consent of instructor.

SOIL SCIENCE

SS 121 Soils (4)
Physical, chemical, and biological properties of soils as related to agriculture. 3 lectures, 1 laboratory.

SS 122 Soil Management (4)
Effect of tillage, manuring, drainage, and irrigation practices on soil productivity. 3 lectures, 1 laboratory. Prerequisite: SS 121

SS 123 Soil Materials (3)
Origin, composition, and identification of rocks, minerals, and other materials important in the development of soils. Land forms as related to the nature and properties of soils. 2 lectures, 1 laboratory. Prerequisite: SS 122
SS 200 Special Problems for Undergraduates (1-2)

Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

SS 202 Soil Conservation (3)

Climate, topography, soils and land use in relation to soil and water losses. Evaluation of soil and water conservation programs and practices. 3 lectures. Prerequisite: SS 121

SS 221 Fertilizers (4)

Composition, value, and use of fertilizer materials and soil correctives. Methods employed in the manufacture, distribution, and application of fertilizers. 3 lectures, 1 laboratory. Prerequisite: SS 121

SS 230 General Soils (3)

Soil properties and common soil management, fertility, and conservation practices. A general course for other than soils majors. 2 lectures, 1 laboratory.

SS 321 Soil Classification (4)

Systems used in soil and land classification. Methods employed in soil surveying. Mapping of assigned areas and the preparation of survey reports. 3 lectures, 1 laboratory. Prerequisite: Completion of 18 units in Soils Science courses.

SS 322 Soil Fertility (3)

Plant nutrient requirements of crops. Effect of soil and climatic conditions on the availability of nutrients in the soil. Diagnostic techniques in soils and crops. 2 lectures, 1 laboratory. Prerequisite: Completion of 18 units in Soils Science courses.

SS 332 Conservation Techniques (3)

Development of subject matter, materials, and activities for class instruction on soils, water, range, woodland and recreational resources. 2 lectures, 1 laboratory.

SS 333 Tropical Soils (4)

Nature and properties of tropical soils, their origin, morphology, classification, fertility, utilization, and conservation. 3 lectures, 1 laboratory. Prerequisite: SS 121

SS 422 Soil Microbiology (3)

Biochemical activities of soil organisms. Effect of soil organisms on the formation, characteristics, and productivity of soils. Methods of studying soil organisms. 2 lectures, 1 laboratory. Prerequisite: Senior standing in Soil Science.

SS 423 Soil Chemistry (3)

Fundamental concepts and practices in soil chemistry. Methods of analysis and interpretation of significant investigations for the management of soils. 2 lectures, 1 laboratory. Prerequisite: Senior standing in Soil Science.

SS 432 Soil Physics (4)

Advanced study of the physical properties of soils. Application of physical-chemical soil relationships to farming and engineering practices. 2 lectures, 2 laboratories. Prerequisite: Senior standing in Soil Science.

SS 433 Land Use Planning (3)

Evaluation of land use capabilities. Development of plans and practices for the management of crop, range, and forest land. 2 lectures, 1 laboratory. Prerequisite: Senior standing in Soil Science.

SS 461, 462 Senior Project (2) (2)

Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.
Soil Science/Spanish/Speech

SS 463 Undergraduate Seminar (2)
Review of current research, experiments, and problems related to the students' major field of interest. Preparation and presentation of reports on problems or research activities. 2 lectures.

SS 470 Selected Advanced Topics (1-3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

SS 508 Conservation Legislation (3)
Legislation enabling and implementing conservation programs. Legal responsibilities of individuals and groups in the development of natural resources. Proposed or needed legislation for more effective conservation. 3 lectures. Prerequisite: Graduate standing, Cons 311, Pol Sc 314, 315; NRM 223

SS 521 Soil Morphology (3)
Advanced study of the morphological characteristics of soils. New techniques used in modern systems of soil classification and mapping. 2 lectures, 1 laboratory. Prerequisite: Graduate standing, SS 202, 321, 433

SS 581 Graduate Seminar in Soils (3)
A review of current research, experiments and problems related to soil science. Development of special demonstration and field plot trials for educational groups. 3 lectures.

SS 582 Graduate Seminar in Land Management (3)
Development of plans and practices for the management of crop, range, and woodland. 2 lectures, 1 laboratory. Prerequisite: Graduate standing, NRM 223, SS 433, Cr Sc 411

SS 599 Thesis or Internship (3) (3) (3)
Problems and topics in advanced soil conservation according to interests and needs of the students enrolled. Prerequisite: Graduate standing in soil conservation.

SPANISH
(See Foreign Language)

SPEECH

Sp 200 Principles of Speech (3)
Introduction to the fundamentals and principles which underlie effective speaking. Practical experience in presenting speeches before an audience. A student may not receive credit for both Sp 200 and Sp 201. 3 lectures.

Sp 201 Public Speaking (2)
Training in giving speeches before audiences. Experience in practical speaking situations. 1 lecture, 1 two-hour laboratory.

Sp 202 Advanced Public Speaking (2)
Practice in the composition and delivery of various types of speeches. Emphasis on speeches related to the student's vocational objective. 1 lecture, 1 two-hour laboratory. Prerequisite: Sp 200 or 201

Sp 215 Introduction to Debate (3)
Analysis of evidence and reasoning. Preparation and delivery of speeches based on logical proof. Practice in refutation. 3 lectures. Prerequisite: Sp 200 or Sp 201, or consent of instructor.
Sp 217 Essentials of Discussion (3)
Basic principles and techniques of discussion. Survey of the importance of discussion in contemporary society, including a study of and practice in informal group discussion, panel discussion, symposium, and forum. 3 lectures. Prerequisite: Sp 200 or Sp 201

Sp 300 Forensic Activity (1)
Participation in intercollegiate forensic activities. Any student who expects to participate in such activities during the quarter should enroll. Specific assignments will be determined by instructor. May be repeated to 6 units.

Sp 301 Argumentation and Debate (3)
Techniques of argumentation and their application to debate; logic and reasoning; fallacies of reasoning; experience in various forms of formal argument and debate; techniques of debate program administration. 3 lectures. Prerequisite: Sp 202 or Sp 215

Sp 302 Introduction to Speech Correction (3)
Survey of speech disorders emphasizing causes, symptoms, and treatment of functional defects; preparation of records and case studies; role of the speech therapist in the community and in public schools; role of the public school teacher in speech improvement. 3 lectures.

Sp 303 Industrial and Professional Speech (3)
Speech in industrial, professional, and informal business including interviews, sales talks, and conference speaking. 3 lectures. Prerequisite: Sp 200 or Sp 201

Sp 304 Persuasion (3)
Basic theory of persuasive speaking; methods of attention, suggestion, motivation and adaptation as applied to speechmaking for the influencing of group opinion and action; emphasis on logical, emotional and ethical processes; presentation of speeches using persuasive methods. 3 lectures. Prerequisite: Sp 202 or Sp 215

Sp 305 Techniques of Oral Reading (3)
Basic theory of interpretation; selection, preparation, and presentation of material for oral reading. 3 lectures. Prerequisite: Sp 200 or Sp 201

Sp 306 Voice and Phonetics (3)
Physiological and anatomical bases of normal voice production. Phonetics as a basis of correct sound formation and standards of pronunciation. Concentration on special skills of enunciation, articulation, and voice improvement. 3 lectures.

Sp 400 Special Problems for Advanced Undergraduates (1–2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Consent of instructor.

Sp 403 Discussion and Conference Leadership (2)
Relationship of discussion to the democratic processes, critical thinking and the role of leadership in the group process, participation in business and industrial conferences and discussion forums. 2 lectures. Prerequisite: Sp 202 or Sp 217

Sp 405 Advanced Oral Interpretation (2)
Techniques of oral interpretation for special literary forms, interpretation in relation to acting, story interpretation as related to teaching techniques, reading of speech manuscripts. 2 lectures. Prerequisite: Sp 305

Sp 407, 408, 409 History and Criticism of Public Address (3) (3) (3)
Selected speakers and speeches from the ancient Greeks to modern times. Historical survey and evaluation of great speakers and speeches as they pertain to the development of British and American institutions. 3 lectures. Prerequisite: Sp 304, or consent of instructor.
Speech/Statistics

Sp 410 Biblical Reference in Speechmaking (3)
Study of the Bible for understanding of Biblical references used in great speeches, oral presentation of literary passages for appreciation of quotable material. Methods used in speeches contained in the Bible. 3 lectures.

Sp 461 Senior Project (2)
Selection and completion of a project under faculty supervision. Projects typify problems which a graduate may face in his field of employment. Project results are presented in a formal written report. Minimum 60 hours total time.

Sp 463 Undergraduate Seminar (2)
Discussion of individual projects, oral reports on material in current professional writings. 2 lectures. Prerequisite: Senior standing.

Sp 470 Selected Advanced Topics (1-3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

Sp 511 Rhetorical Theory (3)
Analytical survey of the major contributions of rhetorical authorities; the application of these contributions to current public speaking. 3 lectures.

Sp 521 Curriculum and Methods in Speech (3)
Curricula, methods, and procedures that may be used effectively in teaching speech classes and directing speech activities in secondary schools. Selection and organization of teaching material. 3 lectures. Prerequisite: Admission to teacher education program and graduate status.

Sp 590 Seminar in Speech (1-3)
Readings and papers on special problems in selected areas of speech. Total credit limited to 6 units. 1-3 lectures. Prerequisite: Graduate status.

STATISTICS AND PROBABILITY

Stat 211 Elementary Probability and Statistics (3)
Classification of statistical data; calculation and use of various averages; measures of variability; permutations, combinations, and elementary probability; binomial and normal distributions; random sampling, confidence limits. 3 lectures. Prerequisite: 3 units of college mathematics.

Stat 212 Statistical Methods (3)
Tests of hypotheses, confidence intervals; nonparametric methods; linear regression and correlation; chi-square and F-; index numbers; time series; analysis of variance. 3 lectures. Prerequisite: Stat 211.

Stat 321 Mathematics of Statistics (3)
Probability, permutations and combinations, discrete and continuous random variables, hypergeometric and binomial frequency functions, frequency distributions, mean, variance, and standard deviation, moments, median and percentiles, the normal distribution, bivariate distributions. 3 lectures. Prerequisite: Math 142

Stat 322 Mathematics of Statistics (3)
Continuation of Stat 321. Concept of statistical inference, tests of hypotheses, confidence intervals, Student's t-distribution, chi-square distribution, F-distribution, Poisson distribution, bivariate normal distribution. 3 lectures. Prerequisite: Stat 321

Stat 323 Mathematics of Statistics (3)
Continuation of Stat 322. Linear regression and correlation; least squares; analysis of variance including the one-way classification, randomized blocks, latin squares, factorial designs, and multiple comparisons of population means; analysis of covariance. 3 lectures. Prerequisite: Stat 322
Statistics/Transportation Engineering

Stat 421 Sampling Theory (3)
Planning, execution, and analysis of sampling from finite populations. Simple, stratified, multi-stage and systematic sampling. Nonsampling errors. 3 lectures. Prerequisite: Stat 322

Stat 425 Probability Theory and Applications I (3)
Basic probability theory, conditional and marginal probability, stochastic independence, probability models for random phenomena, distribution functions, expectation of a function with respect to a probability function. 3 lectures. Prerequisite: Stat 422

Stat 426 Probability Theory and Applications II (3)
Binomial, Poisson, geometric, negative-binomial, normal, beta and gamma probability functions, transformations. Probability functions of sums of independent random variables. Characteristic functions. Stochastic processes. 3 lectures. Prerequisite: Stat 425

Stat 511 Elementary Probability and Statistics (3)
For graduate students. Lectures same as Stat 211. Applications of statistics in the student's major field. 3 lectures.

Stat 512 Statistical Methods (3)
For graduate students. Lectures same as Stat 212. Applications of statistics in the student's major field. 3 lectures. Prerequisite: Stat 511

Stat 527 Theory and Applications of Statistics (3)
Discrete and continuous random variables, expected values and moments, moment generating functions, multivariate distributions, sampling, sampling distributions, interval estimation, tests of hypotheses. 3 lectures. Prerequisite: Stat 322

Stat 528 Theory and Applications of Statistics (3)
Multivariate normal distribution, sampling distributions, interval estimation, tests of hypotheses, regression and linear hypotheses, experimental design models, and non-parametric methods. 3 lectures. Prerequisite: Stat 527

Stat 540 Foundations in Statistics (3)
Intensive foundation course for the MBA program. Selected elements of descriptive, analytical, and inferential statistics to provide tools for research and decision making in business and economics. 3 lectures. Prerequisite: Graduate standing.

TRANSPORTATION ENGINEERING

TE 321 Introduction to Traffic Problems and Transportation (4)
Elements of ground and water traffic circulation and planning. Driver and vehicle performance. Traffic analysis and control. Planning of air, water and ground transportation units and terminals as elements of complete transportation systems. 3 lecture-discussions, 1 laboratory. Prerequisite: IE 304, Stat 322

TE 329 Transportation Materials (2)
Experimental determination of mechanical properties of concrete, asphalt, and soils as required for engineering applications. Experimental verification of assumptions made in mechanics of materials procedures. Use of strain measuring devices. Preparation of technical reports. 2 laboratories. Prerequisite: Arch 421, Aero 207, 229

TE 421 Highway & Airfield Pavement Design (4)
Theories, principles, and procedures in the structural design of highway and airfield pavements. Design of rigid and flexible pavements. Construction and maintenance procedures for pavements and stabilized bases. 3 lecture-discussions, 1 laboratory. Prerequisite: TE 329
Transportation Engr/Vegetable Science

TE 422 Geometric Design of Highways (4)
Location and safe geometric design of highway and other transportation facilities. Earthwork and drainage related to highway, railway, dock, and airport design. Theory and practice in design of alignments, highway cross-sections, intersections, interchanges, and freeways in urban and rural areas. 3 lecture-discussions, 1 laboratory. Prerequisite: TE 321, 329

TE 423 Structural Steel Design (4)
Design and behavior of the elements of steel structures. Proportioning of members and connections. Introduction to plastic design. 2 lecture-discussions, 2 laboratories. Prerequisite: Arch 404, TE 329. Concurrent: ME 349

TE 433 Transportation Systems Planning (4)
Planning of urban and statewide transportation systems. Air, water, rail, highway, and pipeline systems separately and in combination. Selection of routes and types of systems based on economic, social, technological, and other characteristics. Planning of terminals for all types of transportation systems. 3 lecture-discussions, 1 laboratory. Prerequisite: CRP 211, IE 403, TE 321, Ec 212

TE 461, 462 Senior Project (2) (2)
Selection and completion of a project which is typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time. Prerequisite: TE 421, 422

TE 463 Undergraduate Seminar (2)
New developments, policies, practices, and procedures discussed in seminar sessions. Each individual is responsible for the development and effective presentation of topics in his area of emphasis. 2 meetings. Prerequisite: Senior standing.

VEGETABLE SCIENCE

Vg Sc 230 General Vegetable Crops (4)
Principles involved in production, harvesting, packaging, and marketing of major California vegetable crops. Survey of the vegetable industry. 3 lectures, 1 laboratory.

Vg Sc 232 Vegetable Crops Production (4)
Production, adaptation, utilization of vegetable crops such as cole crops, beans, celery, peppers, squash, melons, cucumbers, lettuce, carrots, spinach, sweet potatoes. 3 lectures, 1 laboratory. Prerequisite: Cr Sc 131

Vg Sc 324 Harvesting, Packaging and Marketing Vegetable Crops (4)
Harvesting methods and procedures; current handling and packaging techniques; containers; storage; and grades, grading and laboratory tests for fresh market vegetables. 3 lectures, 1 laboratory. Prerequisite: Vg Sc 232

Vg Sc 326 Vegetables for Processing (4)
Production principles and methods; cultural and harvesting practices as applied to vegetable crops grown primarily for processing. Emphasis will be on planting schedules, field sampling, maturity tests, and forecasting crop maturity. 3 lectures, 1 laboratory. Prerequisite: Cr Sc 131, 133 or Vg Sc 230

Vg Sc 424 Vegetable Crop Management (4)
Organization, management, and operation of commercial size vegetable production acreages; advanced work in production, harvesting, marketing operations, and the varied aspects of the entire commercial vegetable production industry. 3 lectures, 1 laboratory. Prerequisite: Cr Sc 131, 133 or Vg Sc 232
Veterinary Science/Welding-Metallurgy

Vg Sc 521 Advanced Vegetable Production (4)
Advanced techniques in commercial vegetable production and management. Skills, cultural practices, and equipment necessary for the mechanization of vegetable production. Present trends in the vegetable industry. 3 lectures, 1 laboratory. Prerequisite: Permission of instructor.

VETERINARY SCIENCE

VS 100 Principles of Veterinary Science (5)
Structural aspects and functions of the principal systems of farm animals, control and prevention of common diseases causing economic losses in livestock. 4 lectures, 1 laboratory. To be taken by technical students only, in substitution for VS 123, 202 and 203. Not open to degree students for degree credit. Prerequisite: Bio 100 or 101

VS 123 Anatomy and Physiology (3)
Structural aspects and the normal functions of the principal systems of the various farm animals. 2 lectures, 1 laboratory. Prerequisite: Zoo 131, 132

VS 202 Livestock Hygiene and Sanitation (3)
Basic disease concepts, transmission of infectious diseases, fundamentals of immunology. Infectious disease preventive principles. The livestock producer's role and responsibilities in governmental farm animal disease control programs. 3 lectures. Prerequisite: Bact 221

VS 203 Animal Parasitology (3)
Identification, life cycles, prevention and control of the common external and internal parasites causing economic loss in livestock. 3 lectures. Prerequisite: Zoo 131, 132

VS 310 Zoonosis (2)
A study of some of the common diseases of domestic animals and birds which can be transmitted to man. 2 lectures. Prerequisite: Zoo 131, Bact 221

VS 522 Seminar in Disease Problems (2)
Farm livestock disease problems related to the specific countries of Latin America, Africa, Middle East and Asia. Familiarization with governmental control, prevention and eradication programs for the common and principal diseases unique to individual countries; also familiarization with special testing procedures in various governmental programs. 2 lectures. Prerequisite: VS 202

WELDING AND METALLURGICAL ENGINEERING

WM 121, 122, 123 Introduction to Metallurgy (1) (1) (1)
Identification of metals and alloys, macro etching, hardness tests. Metallography and metallurgical theory and practice. Alloy systems, the iron-iron carbide equilibrium diagram. Calculations associated with metallurgical engineering. 1 laboratory.

WM 141 Manufacturing Processes (1)
Theory, practice, and application of metal joining processes including oxyacetylene, resistance, tungsten-inert-gas, metallic-inert-gas, aluminum brazing and silver alloy brazing. Mechanical tests of welded joints and related reports. 1 laboratory.

WM 142 Manufacturing Processes (1)
Theory and practice in metal cutting and arc welding processes. Electrode manufacture, classification, and application. Welded joint design. Introduction to codes, testing, joint strength. Mechanical tests of welded joints and related reports. Application of process to industrial uses. 1 laboratory.
Welding-Metallurgy

WM 151 Miniature Bonding (1)
Fundamentals of tungsten inert gas welding, plasma welding, brazing, low temperature soldering, adhesives, and thermal-free joining processes of miniature electronic component assemblies. Joint design. Application of principles for selection of flux for specific bonding processes. 1 laboratory. Prerequisite: WM 141

WM 155 Fundamentals of Metallic Arc Welding (1)
Shielded metallic arc welding including vertical position. Expansion, contraction, distortion, and residual stresses as applied to welded structures. Various joint types including lap, fillets, and butt joints. 1 laboratory. Prerequisite: WM 142

WM 156 Fundamentals of Metallic Arc Welding (1)
Shielded metallic arc welding of steel plates. Includes butt welding, backing materials, hard surfacing, and cast iron welding. Basic weld tests. Welding of light-gauge steel. 1 laboratory. Prerequisite: WM 155

WM 200 Special Problems for Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter. Prerequisite: Permission of department head.

WM 221, 222 Physical Metallurgy (4)(4)
Lattice structures, cooling curves, alloy systems. Mechanical test methods, strength, ductility, modules of elasticity. Heat treatment, isothermal transformation diagrams, complex alloy systems. Application of principles for selection of metals for corrosion resistance. Other engineering materials, including ceramics. 3 lectures. 1 laboratory.

WM 240 Additional Metallurgy Laboratory (1-2)
Total credit limited to 4 units, with not more than 2 units in any one quarter. 1 or 2 laboratories.

WM 251, 252 Materials Acceptance Methods (1) (1)
Nondestructive testing, theory and techniques, including industrial X-ray, ultrasonic, and dye penetrants. Metals processing techniques, joining, working and testing. 1 laboratory.

WM 254 Elements of Welded Structures (2)
Cost estimating of steel fabrications. Basic strength of materials as related to machinery structural sections. Strength of welded joints. Design of fabricated machinery. Principally for Agricultural majors. 1 lecture, 1 laboratory. Prerequisite: WM 156

WM 301, 302, 303 Theory of Materials (3) (4) (4)
Fundamentals of material science; concepts and problems relating structure of metals to their behavior in use. Uniaxial and complex static stresses; effects of temperature and rate of loading; elastic and plastic deformation; electrical, magnetic, and thermal behavior; fatigue and creep. 3 lectures, 1 laboratory. Prerequisite: Math 241, Phys 133, ME 211, Chem 125; or consent of instructor.

WM 306 Metallurgy for Engineers (4)
Structure of matter. Physical and mechanical properties of metals and alloys. Selection, treatment, and use of metals and alloys. Steel, cast iron, stainless steels, nonferrous metals, and alloys for high temperature service. Identification of microstructures. Application to metallurgical engineering problems. 3 lectures, 1 laboratory. Prerequisite: Sophomore standing in Engineering.

WM 309 Survey of Corrosion (2)
Principles of corrosion control, the eight forms of corrosion, materials testing, compatibility, role of metallic structure, environment and surface conditions, protective coatings, economics of corrosion, field trips to corrosion laboratories. 2 lectures. Prerequisite: Junior standing, Chem 122 or 125, Phys 133
WM 314 Materials Engineering (3)
Selection, fabrication and application of materials useful in electronic industry. Metallic, non-metallic, ceramic, insulating, and semi-conductor materials. Application of materials engineering in glass-to-metal seals, diffusion, thin films, printed and integrated circuits. Corrosion and protective coatings. 3 lectures. Prerequisite: Phys 211

WM 324, 325, 326 Metallurgical Engineering (4) (4) (4)

WM 335 Metallurgy for Engineering Technology (4)
Physical and mechanical properties of metallic parts. Selection, heat treatment, and use of metals and alloys. Steel, cast iron, stainless steel, and non-ferrous alloys. Fabrication problems and their solution. 3 lectures, 1 laboratory. Prerequisite: Junior standing in Engineering Technology.

WM 341 Special Problems in Welding by Arrangement (1-3)
Fundamentals of welding metallurgy, weldability of steels, steels and alloys for welded construction. Codes for construction of welded unfired pressure vessels. Design of pressure vessels according to the code used. 1, 2, or 3 laboratories. Prerequisite: WM 142

WM 359 Advanced Welding (1)
The application of the inert-gas shielded arc welding process to the hard-to-weld metals, including aluminum and stainless steel, and titanium. Argon and helium as gas shields. 1 laboratory. Prerequisite: WM 141, 142

WM 400 Special Problems for Advanced Undergraduates (1-2)
Individual investigation, research, studies, or surveys of selected problems. Total credit limited to 4 units, with a maximum of 2 units per quarter.

WM 421, 422, 423 Advanced Theory of Materials (4) (4) (4)
X-ray diffraction, theory of alloying, imperfections and dislocations, strengthening mechanisms, plastic deformation, strain-hardening, recovery and recrystallization, diffusion, solidification, fracture, creep, fatigue. Metallurgical reactions, thermodynamics of solids, physical chemistry of corrosion gas-metal interactions, corrosion control, polymers, ceramics, cermets. 4 lectures. Prerequisite: WM 303, 326, Chem 432

WM 424, 425, 426 Applied Metallurgical Engineering (4) (4) (4)
Tool and complex alloy steels, advanced metallography and photomicrography, investigation of actual service failures, creep, fatigue, corrosion, metallurgical computations, preparation of formal engineering reports. 3 lectures, 1 laboratory. Prerequisite: WM 303, 326

WM 434 Welding Engineering (3)
Weldability of steels and alloys and other metallurgical aspects of welded fabrication. 1 lecture, 2 laboratories. Prerequisite: WM 306

WM 435 Welding Engineering (3)
Pressure vessel design and other design problems in accordance with governing codes. Cost estimating of steel fabrication. Jig and fixture design for mass production with various welding processes. 1 lecture, 2 laboratories. Prerequisite: WM 434

WM 436 Welding Engineering (3)
Problems in quality control. Process selection and evaluation for high speed production. Process procedure qualification. 1 lecture, 2 laboratories. Prerequisite: WM 433
Welding-Metallurgy/Zoology

WM 461, 462 Senior Project (2) (2)
Selection and completion of a project under faculty supervision. Projects typical of problems which graduates must solve in their fields of employment. Project results are presented in a formal report. Minimum 120 hours total time.

WM 463 Undergraduate Seminar (2)
Preparation, oral presentation, and discussion by students of technical papers on recent engineering developments. 2 lectures. Prerequisite: Senior standing.

WM 470 Selected Advanced Topics (1-3)
Directed group study of selected topics for advanced students. Open to undergraduate and graduate students. Class schedule will list topic selected. Total credit limited to 6 units. 1 to 3 lectures. Prerequisite: Consent of instructor.

ZOOLOGY

Zoo 131 General Zoology (4)
Cells, tissues, and organ systems of vertebrates; emphasis on man and domestic animals. 2 lectures, 2 laboratories.

Zoo 132 General Zoology (4)
Embryology, genetics, taxonomy, economic zoology, ecology and evolution. 2 lectures, 2 laboratories. Prerequisite: Zoo 131

Zoo 133 General Zoology (4)
The variety, structure and distribution of animals. 2 lectures, 2 laboratories. Prerequisite: Zoo 132

Zoo 303 Vertebrate Embryology (3)
The developmental processes from the egg to the formation of the body and the establishment of the principal organs and systems. 3 lectures. Prerequisite: Zoo 132

Zoo 321 Mammalogy (4)
Identification, life histories, and economic importance of mammals, with special reference to California species. 2 lectures, 2 laboratories. Prerequisite: Zoo 132 or Bio 129

Zoo 322 Biology of Fishes (4)
Identification, physiology, anatomy, and behavior of marine and freshwater fishes with special reference to local and economically important species. 2 lectures, 2 laboratories. Prerequisite: Zoo 132

Zoo 326 Comparative Anatomy of the Vertebrates (5)
Comparative structure of vertebrate organ systems. 3 lectures, 2 laboratories. Prerequisite Zoo 132. Recommended: Zoo 303 and Zoo 353

Zoo 329 Vertebrate Field Zoology (4)
Identification and natural history of terrestrial vertebrates, with emphasis on field study of local forms. 2 lectures, 2 laboratories. Prerequisite: Zoo 132 or Bio 129

Zoo 336 Invertebrate Zoology (4)
Study of invertebrate groups of animals with emphasis on taxonomy, morphology, distribution and economic importance. 2 lectures, 2 laboratories, and field work. Prerequisite: Zoo 133 or Bio 129

Zoo 337, 338, 339 Human Anatomy and Physiology (3) (3) (3)
Morphology of man, with laboratory dissection of the cat. Functions of the various organ systems of man with appropriate laboratory experiments. Zoo 337 not open for credit to students who have completed Zoo 326, Comparative Anatomy. 2 lectures, 1 laboratory. Prerequisite: Zoo 132, elementary chemistry.

326
Zoo 341 Herpetology (4)
Living and extinct reptiles and amphibians; an adaptive approach to their diversity, biology, and classification. 2 lectures, 2 laboratories. Prerequisite: Zoo 132

Zoo 353 Vertebrate Embryology Laboratory (2)
Study of the developmental anatomy of selected stages of the frog, chick and pig. Demonstrations and exercises in the preparation of embryonic materials for study purposes. 2 laboratories. Prerequisite: Zoo 303 (may be taken concurrently).

Zoo 422 Histology (5)
Microscopic anatomy of principal tissues and organs of vertebrates with an introduction to histological techniques. 2 lectures, 3 laboratories. Prerequisite: Zoo 132. Recommended: Zoo 303 and Zoo 353

Zoo 425 Parasitology (4)
External and internal parasites of man and animals; life history; parasite-host relationships; control and recognition of species of clinical importance. 2 lectures, 2 laboratories. Prerequisite: Zoo 132. Recommended: Zoo 133

Zoo 426 Serology and Immunology (4)
Nature of innate and acquired immune reactions: theory and techniques of serological methods in diagnosing disease. Designed for preparing laboratory technologists. 2 lectures, 2 laboratories. Prerequisite: Consent of instructor.

Zoo 428 Hematology (4)
Microscopic and chemical examination of blood. Designed for preparing laboratory technologists. 2 lectures, 2 laboratories. Prerequisite: Consent of instructor. Recommended: Zoo 426

Zoo 590 Seminar in Zoology (1)
Problems and topics in advanced zoology selected according to the interest and needs of the students enrolled. Maximum of 3 units. 1 lecture. Prerequisite: Graduate status and evidence of satisfactory preparation in zoology.
DIRECTORIES
CALIFORNIA STATE POLYTECHNIC COLLEGE, SAN LUIS OBISPO

President
- Robert E. Kennedy

Assistant to the President
- Chester G. Young

Academic Vice President
- Dale W. Andrews

Associate Dean, Continuing Education
- Donald M. Morris

Associate Dean, Curriculum and Instruction
- David W. Cook

Associate Dean, Educational Services
- Donald M. Coats

Associate Dean, Graduate Studies and Research
- Howard Boroughs

Associate Dean, Resources and Planning
- Howard West

Associate Dean, Special Programs
- George C. Beatie

College Librarian
- L. Harry Strauss

Director, Audio-Visual Services and Production
- John A. Heinz

Director, Computer Center
- Raymond Boche

Director, Institutional Research
- Lowell H. Dunigan

Director, International Education
- Douglas R. Pierce

Director, Research and Development
- George G. Clucas

Administrative Vice President
- Harold O. Wilson

Director, Alumni Affairs
- Leslie J. Vanoncini

Director, Information Services
- Lachlan P. MacDonald

Director, Personnel Relations
- Larry R. Voss

Executive Dean
- E. Douglas Gerard

Dean, School of Agriculture and Natural Resources
- J. Cordner Gibson

Associate Dean
- John W. West

Dean, School of Architecture and Environmental Design
- George J. Hasslein

Dean, School of Business and Social Sciences
- George J. Hasslein

Dean, School of Communicative Arts and Humanities
- Charles R. Russell

Dean, School of Engineering and Technology
- Archie Higdon

Associate Dean
- Charles R. Russell

Dean, School of Human Development and Education
- Carl C. Cummins

Director of Athletics
- Richard R. "Joe" Harper

Dean, School of Science and Mathematics
- Clyde P. Fisher

Associate Dean
- Vance D. Lewis

Dean of Students
- Everett M. Chandler

Associate Dean, School Relations
- C. Paul Winner

Associate Dean, Women
- Lorraine H. Howard

Director, Activities
- John D. Lawson

Director, Admissions, Records, and Evaluations
- F. Jerald Holley

Director, Counseling and Testing
- George Mulder

Director, Educational Opportunity Program
- Richard A. Martinez

Director, Health Services
- Billy W. Mounts, M.D.

Director, Housing
- Robert Bostrom

Director, Placement and Financial Aids
- Eugene A. Rittenhouse

Director, Associated Students, Inc. Business Affairs
- Roy Gersten

Director, Business Affairs
- Donald S. Nelson

Associate Director, Budgeting and Business Affairs
- James R. Landreth

Accounting Officer
- Robert J. Miller

Chief of Plant Operation
- Robert R. Adams, Jr.

Chief Security Officer
- George W. Cockriel

Purchasing Officer
- Ray Morton

Supervising Groundsman
- Fred J. Blanck

Supervisor of Transportation
- Robert M. Matheny

Foundation Manager
- Gene E. Brendlin

Assistant Foundation Manager
- James A. Neal

331
DEPARTMENT HEADS

SCHOOL OF AGRICULTURE AND NATURAL RESOURCES

<table>
<thead>
<tr>
<th>Department</th>
<th>Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Management</td>
<td>Chase C. Wilson</td>
</tr>
<tr>
<td>Agricultural Education</td>
<td>H. H. Burlingham</td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>Lloyd H. Lamouria</td>
</tr>
<tr>
<td>Animal Science</td>
<td>Richard F. Johnson</td>
</tr>
<tr>
<td>Crops Science</td>
<td>Corwin M. Johnson</td>
</tr>
<tr>
<td>Dairy Science</td>
<td>Harmon Toone</td>
</tr>
<tr>
<td>Food Industries</td>
<td>F. Raymond Steele, Jr.</td>
</tr>
<tr>
<td>Ornamental Horticulture</td>
<td>Howard C. Brown</td>
</tr>
<tr>
<td>Poultry Industry</td>
<td>Richard Leach</td>
</tr>
<tr>
<td>Soil Science</td>
<td>Logan Carter</td>
</tr>
<tr>
<td>Veterinary Science</td>
<td>Wallace F. Glidden</td>
</tr>
</tbody>
</table>

SCHOOL OF ARCHITECTURE AND ENVIRONMENTAL DESIGN

<table>
<thead>
<tr>
<th>Role</th>
<th>Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Assistant</td>
<td>William H. Brown</td>
</tr>
<tr>
<td>Directors</td>
<td>Paul R. Neel, William R. Phillips, Kenneth E. Schwartz</td>
</tr>
</tbody>
</table>

SCHOOL OF BUSINESS AND SOCIAL SCIENCES

<table>
<thead>
<tr>
<th>Department</th>
<th>Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Administration</td>
<td>Owen L. Servatius</td>
</tr>
<tr>
<td>Economics</td>
<td>Fuad H. Tellew, Acting</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>William M. Alexander, Acting</td>
</tr>
</tbody>
</table>

SCHOOL OF COMMUNICATIVE ARTS AND HUMANITIES

<table>
<thead>
<tr>
<th>Department</th>
<th>Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art</td>
<td>Bernice B. Loughran</td>
</tr>
<tr>
<td>English</td>
<td>Willard M. Pederson</td>
</tr>
<tr>
<td>Foreign Language and Linguistics</td>
<td>Gloria Jameson, Acting</td>
</tr>
<tr>
<td>Graphic Communications</td>
<td>Roderick N. Carruthers</td>
</tr>
<tr>
<td>History</td>
<td>M. Eugene Smith</td>
</tr>
<tr>
<td>Journalism</td>
<td>John R. Healey</td>
</tr>
<tr>
<td>Music</td>
<td>Harold P. Davidson</td>
</tr>
<tr>
<td>Philosophy</td>
<td>James T. Culbertson, Acting</td>
</tr>
<tr>
<td>Speech</td>
<td>James R. Emmel</td>
</tr>
</tbody>
</table>

SCHOOL OF ENGINEERING AND TECHNOLOGY

<table>
<thead>
<tr>
<th>Department</th>
<th>Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeronautical Engineering</td>
<td>Charles P. Davis</td>
</tr>
<tr>
<td>Electrical Engineering</td>
<td>Fred W. Bowden</td>
</tr>
<tr>
<td>Electronic Engineering</td>
<td>E. R. Owen</td>
</tr>
<tr>
<td>Engineering Technology</td>
<td>James M. McGrath</td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td>Walter E. Holtz</td>
</tr>
<tr>
<td>Industrial Engineering</td>
<td>Donald E. Morgan</td>
</tr>
<tr>
<td>Industrial Technology</td>
<td>J. M. McRobbie</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>Leon F. Osteyee</td>
</tr>
<tr>
<td>Transportation Engineering</td>
<td></td>
</tr>
<tr>
<td>Welding and Metallurgical Engineering</td>
<td>Richard C. Wiley</td>
</tr>
</tbody>
</table>
SCHOOL OF HUMAN DEVELOPMENT AND EDUCATION

Child Development ... Marie S. Pfeiffer
Education .. Walter P. Schroeder
Ethnic Studies ... David J. Sanchez
Home Economics ... Eva Scully, Acting
Physical Education—Men .. Robert A. Mott
Physical Education—Women .. Mary Lou White, Acting
Psychology ..

SCHOOL OF SCIENCE AND MATHEMATICS

Biological Sciences .. Glenn A. Noble
Chemistry ... Bruce Kennelly
Computer Science and Statistics .. Curtis Gerald
Mathematics ... Milo E. Whitson
Military Science ... Col. William L. Hastie
Physics ... Woodford E. Bowls

PROFESSIONAL LIBRARY STAFF

L. Harry Strauss .. College Librarian
Joy G. Berghell .. Reference Librarian
Charles R. Beymer .. Head, Technical Services
Mary L. Brady ... Cataloger-Curriculum
Mary Browder .. Reference Librarian
Luvenia Compton ... Curriculum Librarian
James W. Dopp .. Assistant Cataloger
Frederick L. Genthner .. Special Collections Librarian
Phyllis J. Hansen .. Assistant Cataloger
Mary Elizabeth Harris ... Serials Librarian
F. Helen MacKenzie ... Assistant Cataloger
Lois C. Makin .. Reference Librarian
Angelina Martinez ... Head, Public Services
Shien Hwei Niu ... Acquisitions Librarian
P. Lane Page .. Reference Librarian
Evelyn D. Reagan .. Head Cataloger
Ruth G. Spencer ... Assistant Periodicals Librarian
Nicholas Szigethy ... Acquisitions Librarian
Pearl Turner ... Curriculum Librarian
Glenn V. Whaley .. Head Reference Librarian
Edward A. Wilk ... Assistant Acquisitions
Evelyn L. Wood .. Periodicals Librarian
EMERITI

John K. Allen ... Veterinary Science
John H. Applegarth .. Biological Sciences
Carl G. Beck ... Farm Management
Lyman L. Bennion ... Animal Husbandry
Ralph O. Bille ... Agricultural Engineering
Arthur G. Butzbach ... Education
James H. Carrington .. Agricultural Engineering
Spelman B. Collins ... Animal Husbandry
George M. Drumm ... Dairy Husbandry
Frederick M. Essig .. Biological Sciences
A. M. Fellows .. Printing Engineering and Management
Stanton Gray .. Crops
Lewis E. Hammitt ... Physics
C. E. Knott .. Mechanical Engineering and Dean of Engineering
Reynold H. Lonborg .. Crops
Ena Marston ... English
M. C. Martinsen .. Aeronautical Engineering
C. O. McCorkle ... Agricultural Economics and Dean of the College
Douglass W. Miller .. Journalism
Robert H. Reece .. Mechanical Engineering
Torleif M. Rickansrud .. Physics
John P. Riebel .. English and Speech
Vard M. Shepard ... Animal Husbandry and Dean of Agriculture
Ralph E. Weston ... Mathematical Sciences
Francis F. Whiting ... Engineering Technology
Dorothy S. Wright .. Librarian
FACULTY AND STAFF
(Number in parentheses indicates year of appointment)
Listed as of January, 1970

ABITIA, FRED (1969) .. Industrial Technology
B.A., San Jose State College, 1964; M.A., 1966; additional graduate study, Washington State University.
Experience: Technician, Engineering Department, San Jose State College; Teacher, Abraham Lincoln High School, San Jose; Instructor, San Jose State College; Assistant Professor, Chico State College; Assistant Professor, Washington State University.

ADAMSON, ROBERT W. (1953) .. Mechanical Engineering
B.S., Ch.E., Tulane University, 1941; M.S., Ch.E., Oregon State College, 1948.
Experience: Petroleum refinery engineer, Standard Oil Company of New Jersey; instructor, mechanical engineering, Oregon State College; research assistant, industrial sales engineer, Union Oil Company of California. Registered professional engineer, California.

ALBERTI, ROBERT E. (1969) ... Counselor
B.S., California State Polytechnic College, San Luis Obispo, 1959; M.A., California State College, Los Angeles, 1962; Ph.D., Michigan State University, 1969.
Experience: Associate Dean of Students and assistant to the vice president, California State Polytechnic College, Pomona; senior graduate assistant, Michigan State University; program director, Memorial Union, Arizona State University; coordinator of student activities, California State College, Los Angeles; research technician, University of California, Los Angeles.

ALEXANDER, WILLIAM M. (1958)Acting Head, Social Sciences Department
B.S., Oregon State University, 1949; M.S., 1951; M.A., Pennsylvania State University, 1953; Ph.D., University of Oregon, 1962; additional graduate study, University of Stockholm, George Washington University, University of Georgia.
Experience: Management assistant, U.S. Geological Survey; teaching fellow, University of Oregon; instructor, Oregon State University; Fulbright professor of political science, India.

AL-HADAD, SABAH (1965) .. Mathematics
B.S., Texas Technological College, 1960; M.A., California State Polytechnic College, 1962; additional graduate study, California State Polytechnic College.
Experience: Director, Ministry of Agricultural Development, Baghdad, Iraq.

ALLEN, RAY (1955) .. Engineering Technology
B.A., Santa Barbara State College, 1942; M.A., California State Polytechnic College, 1963; additional graduate study, University of Southern California.

AMARAL, ALFRED W. (1967) ... Agricultural Management
B.S., California State Polytechnic College, 1964; graduate study, Golden Gate College.
Experience: Assistant manager, G. L. Soares Labor Contractor; assistant sales manager, Martin Produce, Inc.; agricultural representative, Wells Fargo Bank.

AMATO, ANTHONY J. (1955) ... Ornamental Horticulture
B.S., California State Polytechnic College, 1949; graduate study, California State Polytechnic College.
Experience: Instructor, Mt. San Antonio Junior College, Pomona; Oakland Junior College; landscape architect and contractor, Walnut Creek, California; officer, U.S. Air Force.

ANDERSEN, OLIVE M. (1958) .. Mathematics
Experience: Teacher, Stanes European High School, Coonoor, India; Baldwin Girls' High School, Bangalore, India.
ANDERSON, ELIZABETH B. (1958) English
B.S., Ohio University, 1938; M.A., California State Polytechnic College, 1959; additional graduate study, University of California, Santa Barbara.

ANDERSON, RICHARD A. (1947) Physical Education
B.S., University of Southern California, 1942; M.S., 1947; additional graduate study, University of California at Los Angeles.
Experience: Playground director, Los Angeles Playground and Recreation Department; officer, U.S. Navy; swimming pool director, South Pasadena; assistant instructor in physical education and assistant swimming coach, University of Southern California.

ANDERSON, ROY E. (1949) Business Administration
Experience: Assistant manager, Hancock Oil Company, Tacoma, Washington; teacher, Parkland and Tacoma, Washington, public schools systems; officer, U.S. Army; instructor, Monterey Penninsula College, Monterey, California; National Park ranger; dean, arts and sciences division, California State Polytechnic College.

ANDERSON, RUSSELL K. (1955) Animal Science
B.S., University of Minnesota, 1948; M.S., Iowa State College, 1950; Ph.D., 1956.
Experience: U.S. Air Force; instructor, Animal Husbandry Department, Iowa State University.

ANDERSON, WARREN R. (1946) Electrical Engineering
B.S., University of Minnesota, 1939; B.S., Louisiana State University, 1944; graduate study, Central Signal Corps School, Camp Crowder, Missouri.

ANDO, MICHIO (1968) Architecture
B. Arch., Waseda University; M.S. Arch., 1965; M. Arch., Massachusetts Institute of Technology, 1966; additional graduate study, Boston University, Penn. State University.

ANDOLI, FREDERICK P. (1968) Biological Sciences
B.A., Upsala College, 1963; M.S., Utah State University, 1968.
Experience: Teaching assistant, Upsala College, Utah State University; research supervisor, Army Chemical Corps.

ANDREINI, ROBERT L. (1954) Speech
B.A., Stanford University, 1941; M.A., 1949; additional graduate study, University of California, Berkeley, Teachers College, Columbia University.
Experience: U.S. Air Force; Royal University of Pisa, Italy; teacher, California high schools.

ANDREOLI, ALFRED E. (1963) Aeronautical Engineering
B.S., University of Colorado, 1954; M.S., California Institute of Technology, 1956; additional graduate study, University of Colorado.
Experience: Test engineer, aerodynamicist, Northrop Aircraft; assistant professor, Los Angeles State College; teaching associate, University of Colorado.

ANDRESEN, JAMES G. (1956) Mechanical Engineering
B.S., California State Polytechnic College, 1956.
Experience: U.S. Army.
ANDREWS, DALE W. (1950) ... Academic Vice President
B.S., University of California, Davis, 1941; M.A., California State Polytechnic
College, 1952; Ph.D., University of Minnesota, 1957.
Experience: Director of agriculture and supervising teacher, Merced Union High
School; director of agriculture and supervising teacher, Arroyo Grande Union High
School, Arroyo Grande; officer, U.S. Marine Corps; agricultural teacher trainer,
instructional materials coordinator, and special educational services coordinator,
Dean of the College, Vice President, California State Polytechnic College; senior
Danforth associate.

ARMENSTRONG, WILLIAM W. (1953) Coordinator, Secondary Education
B.J., University of Missouri, 1939; A.B., Colorado State College of Education,
1940; M.A., Columbia University, 1940; Ed.D., Stanford University, 1953.
Experience: Guidance counselor, Menlo School and College; personnel classifica-
tion officer and personnel consultant, U.S. Air Force; associate registrar, Stanford
University; test officer, assistant to Dean of Arts and Sciences, California State
Polytechnic College.

ASBURY, ROBERT F., JR. (1964) ... Architecture
B.S., University of Kansas, 1945; M. Arch., 1954.
Experience: Assistant professor, University of Kansas; designer-draftsman, various
architectural firms; U.S. Air Force. Registered architect, Kansas.

ATLEE, CHARLES B., JR. (1969) ... Crops Science
B.S., Pennsylvania State University, 1950; M.S., University of California, Davis,
1962.
Experience: Farm adviser, University of California Agricultural Extension Serv-
ice, Santa Cruz and Monterey Counties; horticulture adviser, U.S. Agency for
International Development, Guatemala, Central America.

AUSTBO, TOMAS (1969) ... Mathematics
B.A., Portland State University, 1966; M.A., University of California, Santa
Barbara, 1969.
Experience: Meteorologist assistant, Norwegian Air Force; mathematics tutor,
Portland State University; teaching assistant, National Science Foundation Institute
for High School Teachers, University of California, Santa Barbara.

BABB, JAMES H. (1959) ... Printing Technology and Management
Experience: Fifteen years experience in printing, 6½% of which was as owner of
Visalia Printing Service.

BACON, JAMES P., JR. (1967) .. Biological Sciences
A.B., Carleton College, 1961; M.S., Michigan State University, 1962; Ph.D., Univer-
sity of Chicago, 1969.
Experience: Research and field assistant, Field Museum of Natural History of
Chicago, Michigan State University; teaching assistant, University of Chicago.

BAGNALL, JAMES R. (1969) .. Architecture
Experience: Designer, Robertson Montgomery, San Francisco and James Robert-
son, Sausalito; exhibits designer, The Oakland Museum; private practice, Berkeley,
California.

BAILEY, GORDON A. (1966) ... English
Experience: Training specialist, U.S. Air Force, U.S. Civil Service, General Elec-
tric Company, Martin-Marietta Corporation; human factors specialist, consultant
Bruce Ers and Associates, General Electric Company.

BAILEY, PHILIP S. (1969) .. Chemistry
B.S., University of Texas, 1964; Ph.D., Purdue University, 1969.
Experience: Research assistant, University of Texas; instructor and research
assistant, Purdue University.
Faculty and Staff

BAILEY, ROGER S. (1962) ... Art
B.A., Allegheny College, 1949; M.A., State University of Iowa, 1951.
Experience: Supervising teacher, State University of Iowa; art instructor, Coronado High School and La Mesa Junior High School; art supervisor, Escondido Union School District; instructor in art education, University of California Extension; Palomar Junior College and Pacific Lutheran University, Washington.

BAKER, E. H. (1968) ... Mechanical Engineering
B.S., Northwestern University, 1958; M.S., University of California, 1963; Ph.D., Northwestern University, 1965.
Experience: Senior technical specialist, North American Rockwell Corporation.

BALL, R. WAYNE (1969) ... Medical Officer
M.D., University of Missouri School of Medicine, 1961.
Experience: Internship, Mercy Hospital, Des Moines, Iowa; residency, Santa Barbara General Hospital, Santa Barbara, California; private practice, Santa Maria, California.

BALTHASER, LAWRENCE H. (1969) .. Physics
Experience: Map draftsman, Sun Oil Company; field assistant, New Jersey Agricultural Experiment Station; teaching assistant, Indiana University; assistant professor, Southampton College.

BANKS, BERNARD W. (1969) .. Mathematics
Experience: Pilot officer, Royal Air Force; engineering aid, Aeroflex Corp.; tutor, National Science Foundation; mathematician, Naval Undersea Warfare Centre; teaching assistant and lecturer, San Diego State College.

BARR, STANLEY L. (1959) ... English
B.A., St. Bernardine of Siena College, 1953; M.A., University of Michigan, 1955; additional graduate study, University of Wisconsin, Harvard University, University of Oregon.
Experience: Teacher, Michigan Public Schools; assistant professor, Lakeland College; instructor, Wisconsin State College.

BARROWS, FRANK B. (1968) .. Industrial Technology
B.S., U.S. Merchant Marine Academy, 1949; additional graduate study, San Francisco State College, University of Houston, Utah State University.
Experience: Research and teaching assistant, Utah State University; assistant professor, University of Southern California; instructor, College of San Mateo; teacher, Westmoor High School; engineer, various merchant vessels; officer, U.S. Navy.

BARTLETT, PETER N. (1969) .. Biological Sciences
Experience: Teaching assistant, University of Colorado; teaching and research assistant, University of California, Riverside.

BAUMGARTEN, GEORGE M. (1969) ... Architecture
B. Arch., University of Michigan, 1947; graduate studies, New York Structural Institute and New School of Social Research.
Experience: Lecturer, Old Dominion University; private practice; project architect, John Graham & Co.; project coordinator, Victor Gruen Association; zoning analyst, Harrison, Ballard and Allen; designer, Skidmore, Owings and Merril; Registered architect, New York, Michigan, Virginia, Florida.

BAUR, LAWRENCE E., JR. (1965) ... Business Administration
Experience: Staff accountant, Wagar, Lunt and Oehring, Michigan; accountant, U.S. General Accounting Office, Los Angeles; staff accountant, Touche, Ross, Bailey and Smart, Los Angeles; staff accountant and partner, Charles Belcher and Company, San Luis Obispo; Certified Public Accountant; U.S. Army.
BEATIE, GEORGE C. (1959) Associate Dean, Special Programs
A.B., University of California at Santa Barbara, 1949; M.A., California State Polytechnic College, 1956; additional graduate study, University of California at Santa Barbara, Northwestern University.
Experience: Assistant instructor, University of California at Santa Barbara; music director, USNR, University of Rochester, New York; teacher, Nipomo Elementary School, Oceano Elementary School, Arroyo Grande Union High School; director, student activities, Arroyo Grande Union School; band director, class program scheduler, California State Polytechnic College, San Luis Obispo.

BEECHER, LLOYD N. (1969) History
B.A., California State College, Fullerton, 1965; M.A., 1966; additional graduate work, University of Georgia.
Experience: graduate assistant, California State College, Fullerton; teaching assistant, University of Georgia.

BERGHELL, JOY GARRISON (1956) Library
B. of Journalism, University of Missouri, 1935.
Experience: Copywriter, public relations and promotion, Los Angeles Times; account executive, R. W. Webster Advertising, Los Angeles; editorial writer, Southwestern Signal Corps Training Center; San Luis Obispo; free-lance advertising, publicity and newspaper writer.

BERGTHOLD, FREDERICK M., JR. (1969) Engineering Technology
B.S., California State Polytechnic College, 1958; M.S., University of Southern California, 1968.
Experience: U.S. Air Force; Central Office Equipment Installer, Western Electric Corporation; radio technician, California Air National Guard; instrument research engineer, Ames Research Center; electronic engineer, Interstate Electronics; engineering specialist, Philco-Ford Corporation.

BERMANN, JAMES (1964) Agricultural Engineering
B.S., California State Polytechnic College, 1959, 1961.
Experience: Chief engineer, Grether Agricultural Co.; Farming; U.S. Army.

Experience: Associate instructor, University of California, Santa Barbara.

BETZ, ELLARD W. (1947) Engineering Technology
B.A., Santa Barbara State College, 1942.
Experience: U.S. Navy; teacher, Victorville, California.

BEYMER, CHARLES R. (1966) Library
B.S., University of Wisconsin, 1950; M.L.S., 1955; graduate study, University of Wisconsin, University of California, Berkeley.
Experience: Cataloger, Marquette University, Cornell University, Finger Lakes Library System, Ithaca, New York; science reference librarian, University of Notre Dame.

BIRKETT, RICHARD J. (1955) Animal Science
B.S., California State Polytechnic College, 1953; M.S., Kansas State University, 1963.
Experience: Feed and milling supervision, Union Stock Farms, Blythe, California.

BISHOP, CHESTER O. (1957) Mechanical Engineering
B.S., McPherson College, 1929; M.S., Texas A&M College, 1955.
Experience: Professor, Arkansas Tech; Hind Junior College, Raymond, Mississippi; instructor, San Angelo College, Texas; Copiah-Lincoln Junior College, Wesson, Mississippi; Texas A&M Radar School; engineer and manager, B & M Machine Co., Grenada, Mississippi.

BLOOM, EMMETT A. (1946) Animal Science
B.S., University of California, Davis, 1934.
Experience: Agricultural instructor at Ripon, Laton, and Corning High Schools.
Faculty and Staff

BOCHE, RAYMOND E. (1969) Director, Computer Center
B.S., California State Polytechnic College, SLO, 1958; M.S., San Jose State College, 1966; additional graduate study, Texas Technological College.

BODLAK, DAVID B. (1969) Art

Experience: Assistant Dean, and instructor in painting and drawing, Chouinard Art School; director of admissions, California Institute of the Arts; faculty, Ohio University College of Fine Arts; gallery assistant, Scripps College; teaching assistant, Claremont Graduate School.

BOEBEL, CHARLES E., JR. (1969) English
B.A., Luther College, Decorah, Iowa, 1960; M.A., University of Iowa, 1962.

Experience: Instructor, University of Arizona and Luther College; teaching assistant, University of Iowa.

BONGIO, ENRICO P. Welding and Metallurgical Engineering

Experience: Welder, Chicago Bridge and Iron Co. and Eureka Boiler Works and Steel Products, Eureka, California; U.S. Army Signal Corps; instructor, Sonoma Valley Union High School, Sonoma, California; metals inspector and welding instructor, Hunters Point Naval Shipyard; nondestructive testing technician, Ferro-Spec Laboratory, Los Angeles; instructor, welding operator qualification tests, Bethlehem Steel Co., Pinole, California.

BOONE, JOSEPH C. (1968) Physics
B.A., Earlham College, 1962; M.A., University of Wisconsin, 1967; additional graduate study.

Experience: Instructor, University of Wisconsin.

BOOTHE, ROBERT O. (1954) Foreign Language and Linguistics
B.A., University of Wisconsin, 1950; M.A., Los Angeles State College, 1953; additional graduate study, University of California at Los Angeles, Los Angeles State College, University of Michigan, Stanford University and University of the Americas.

Experience: Toolmaker and tool designer, Electrical Engineering and Mfg. Corp.; project engineer, Virtue Bros. Mfg. Co.; tooling engineer, McCullock Motors Corp.; free-lance photographer and journalist; instructor, El Camino College, Compton College; Fulbright professor of English, University of Santiago de Compostela, Spain.

BOSTROM, ROBERT M. (1956) Director, Housing
B.S., California State Polytechnic College, 1956.

Experience: Graduate manager, California State Polytechnic College.

BOWDEN, FREDERICK W. (1949) Head, Electrical Engineering Department
B.S., California Institute of Technology, 1932; M.S., 1933; additional graduate study, California Institute of Technology.

Experience: Geophysics, Shell Oil Company; electrical engineer, Oilfields Service Co.; mechanical and electrical consultant, Walt Disney Enterprises; head electrical research department, Lockheed Aircraft Corp.; associate professor, University of Southern California College of Aeronautics. Registered professional engineer, California.

BOWLS, WOODFORD E. (1937) Head, Physics Department
A.B., University of California, 1932; M.A., 1933; Ph.D., 1937.

Experience: Teaching assistant and teaching fellow in physics, University of California.
BOYCE, WILLIAM M.- ----- -. . .--------------............. Business Administration
B.S., University of Connecticut, 1938; graduate work at George Washington University, California State Polytechnic College; graduate Command and General Staff College, 1945; Special Weapons Officer Course, 1955.
Experience: Infantry platoon leader, battalion commander and deputy battle group commander; instructor and committee chairman, U.S. Army Infantry School, Ft. Benning, Georgia; inspector general; member of Department of the Army general staff and the joint staff of the Joint Chiefs of Staff, Washington, D.C.; head, Military Science Department, Director of Developmental Affairs, California State Polytechnic College.

BRADY, MARY L. (1968) ...Library

BREAZEALE, CONNIE R. (1966) ..Home Economics
B.S., California State Polytechnic College, 1960; M.S., 1966.
Experience: Chairman, Home Economics Department, Santa Maria High School.

BRECKAN, ERLING A. (1958) ...Business Administration
B.S., University of Illinois, 1941; M.B.A., University of California at Los Angeles, 1952.
Experience: Officer, U.S. Army; lecturer, University of California at Los Angeles; assistant to plant manager, Neomatic, Inc.

BRENDLIN, GENE E. (1950) ...Foundation Manager
B.S., University of California, 1934.
Experience: Director, vocational agriculture, Fallbrook Union High School, Linden Union High School, Tracy Union High School, and Arroyo Grande Union High School; farmer, San Luis Obispo County.

BRENNAN, ANDREW (1968) ...Physical Education and Athletics
B.S., University of Southern California, 1958; M.S., 1960.
Experience: Graduate assistant, University of Southern California; teacher/coach, Mira Loma High School, Glendale High School, Downey High School, Rio Hondo Junior College.

BROMLEY, J. PHILIP (1947) ...Agricultural Management
B.S., University of Southern California, 1934; M.S., 1936; additional graduate study, Columbia, Texas A & M, and University of California.

BROWDER, MARY (1969) ...Library
B.S., Bowling Green State University, 1964; M.L.S., University of Texas, 1969.
Experience: Library assistant, Bowling Green State University; teacher, Lompoc Unified School District; Librarian, Meadowvale Elementary School, Maryland and Austin Public Library, Texas; senior library assistant, University of Texas Undergraduate Library.

BROWN, HOWARD C. (1946) ...Head, Ornamental Horticulture Department
B.S., California State Polytechnic College, 1943; M.S., Ohio State University, 1954; Ph.D., 1963.

BROWN, LARRY E. (1969) ...Biological Sciences
B.S., Ohio University, 1959; M.S., West Virginia University, 1965; Ph.D., Texas A. & M. University, 1969.
Experience: Herbarium technician, West Virginia University; curator assistant, Smithsonian Institution; plant taxonomist, Forest Service Herbarium; technician, Agricultural Research Service; assistant professor, Tarleton State College; instructor, Brazosport Junior College.
Faculty and Staff

BROWN, MARVIN D. (1956, 1966) .. English
B.D., Andover Newton Theological School, 1936; Th.D., Iliff School of Theology, Denver, 1952.
Experience: Pastor, Garden City, Kansas and Santa Barbara and San Luis Obispo, California; instructor, California State Polytechnic College; chaplain, U.S. Army.

BROWN, ROBERT J. (1969) .. Biological Sciences
B.S., California State College, Los Angeles, 1964; M.S., Arizona State University, 1967; additional graduate study, University of Toronto, Ontario, Canada.
Experience: Teaching assistant, California State College, Los Angeles; research assistant, Arizona State University; teaching assistant, University of Toronto.

BROWN, STANLEY B. (1969) ... Education
B.S., Louisiana State University, 1941; M.S., Stanford University, 1946; Ed.D., 1951.
Experience: Professor and chairman, Department of Education, University of Utah; dean of instruction, Southwestern Oregon Community College; head, science education, Indiana University and University of California, Berkeley; Fulbright professor, India; AID science specialist, Brazil; flight control officer, U.S. Navy.

BROWN, WILLIAM H. (1957) ... Administrative Assistant, School of Architecture and Environmental Design
B. Arch., University of Florida, 1954; M. Arch., 1968; additional graduate study, University of Sydney.

BRUCKART, WILLIAM L. (1969) ... Industrial Technology
B.S., University of Kentucky, 1942; M.S., Ohio State University, 1953; additional graduate study, Bowdoin College and Massachusetts Institute of Technology.
Experience: Officer, U.S. Navy; engineer, Southern Liquid Gas Co., Dothan, Alabama; assistant chief, non-ferrous physical metallurgy group, Battelle Memorial Institute, Columbus, Ohio; sales manager, Cyclops Corporation, Bridgeville, Pennsylvania; consultant, Pittsburgh, Pennsylvania; manager, metallics and refractories, Aerojet-General Corporation; consultant, Torrance, California; chief engineer, Fansteel, Inc., Advanced Structures Division.

BRUNK, ATHOL J. D. (1957) ... Physics
B.S., Northwestern State Teachers College, 1937; M.A., West Texas State Teachers College, 1941.
Experience: Instructor in mathematics and science, high school, Beaver, Oklahoma; elementary principal, Alamogordo, New Mexico; officer, U.S. Navy; mathematics instructor, Atascadero, California.

BUCCOLA, VICTOR A. (1962) .. Physical Education
B.S., California State Polytechnic College, 1956; M.A., 1957.
Experience: Officer, U.S. Army; physical education instructor and athletic coach, The College of Idaho; science and math instructor and athletic coach, Mark Keppel High School.

BUCICH, RICHARD A. (1963) ... Electronic Engineering
Experience: Sub-station operator, electrical engineer, U.S. Steel Corporation; graduate assistant, Illinois Institute of Technology; assistant professor, Purdue University Center.

BUCY, L. LAVERNE (1955) ... Animal Science
B.S., University of Kentucky, 1943; M.S., 1950; Ph.D., University of Illinois, 1954.
Experience: Graduate assistant in animal science, University of Illinois; teacher of vocational agriculture, Kentucky high schools; farming; U.S. Navy.
BURK, CARL J. (1968) .. Education
A.B., University of Southern California, 1930; M.A., 1939; Ed.D., 1958.
Experience: Teacher, Hermosa Beach City District, Compton Union High School District; curriculum assistant, director of curriculum and research, Compton Union High School and Junior College District; assistant superintendent-instruction, assistant superintendent-building planning, Compton Union High School District; instructor, University of Southern California.

BURWELL, HERBERT H. (1948) .. Head, Agricultural Education Department
B.S., Oregon State College, 1929; graduate study, University of California.
Experience: Executive student, Swift and Company; director of agriculture, Willits Junior-Senior High School; director of agriculture and critic teacher, Madera Union High School, Paso Robles Union High School; regional supervisor, State Bureau of Agricultural Education, California.

BURROUGHS, SARAH E. (1967) .. Home Economics
B.S. and Certificate in Medical Technology, University of Michigan, 1956; Ph.D., University of California, 1967.
Experience: Senior technician, University Hospital, Ann Arbor; biochemist, Akron General Hospital, Ohio; supervising chemist, Parma Community Hospital, Ohio; biochemist, Stanford Research Institute; research/teaching assistant, University of California, Berkeley.

BURT, WALLACE H. (1968) .. Business Administration
Experience: Teacher, Shasta Union High School; assistant county superintendent of schools, Shasta County; certified public accountant, staff, Muncy and Company, C.P.A.'s instructor, Coalinga College; consultant, State of California.

BURTON, ROBERT E. (1968) .. History
Experience: Teaching assistant, University of Oregon; instructor, Glendale College.

BUSCHMAN, WILLIAM O. (1956) .. Computer Science & Statistics
A.B., Reed College, 1941; M.Ed., University of Oregon, 1947; Ed.D., Oregon State University, 1953.
Experience: Marine engineering and naval architecture, Kaiser Co., and others; teaching, Portland Public Schools, Gresham Union High School; instructor, Multnomah College, Oregon State University; assistant professor, Oregon State System of Higher Education, General Extension Division; assistant professor, Portland State College; research, University of Oregon Medical School, Stanford Research Institute, and Institute for Motivational Research.

BUTLER, ROBERT O. (1964) .. Mathematics
A.B., Fresno State College, 1951; graduate study, University of California, Los Angeles State College, California State Polytechnic College.
Experience: Teacher, Reedley, Dinuba, Orosi, Paso Robles; vice principal and principal, Paso Robles Union.

CAHILL, THOMAS V. (1969) .. Computer Science & Statistics
A.B., Columbia College, 1930.

CAIRNS, EDWARD A. (1969) .. English
B.A., Stanford University, 1956; M.A., San Francisco State College, 1963; additional graduate work, University of Denver.
Experience: Instructor, University of Denver; assistant professor, Yankton College; teacher, San Francisco State College; instructor and supervisor of instructors, Cryptographic School, USAF.
CALL, TRACEY G. (1962) ___________________________. Biological Sciences
B.S., Idaho State College, 1940; M.S., University of Maryland, 1944; A.B., Brigham Young University, 1947; Ph.D., University of Minnesota, 1956.
Experience: Teaching Assistant, Idaho State College; Teaching Assistant, University of Washington; Teaching Assistant, University of Maryland; Drug Store Manager, Afton, Wyoming; Assistant Professor, Duquesne University; Assistant Professor, University of Wyoming; Associate Professor, Montana State University; Research Pharmacologist, Sunkist Growers, Inc.; Project Director-Consultant, W.L.R.I., Holland-Rantos Young Rubber Corporation.

CAPURSO, ALEXANDER (1969) ___________________________. Music
B.S., University of Kentucky, 1933; M.A., 1934; Ph.D., 1938.
Experience: Professor, head and executive director of Music Department, University of Kentucky; assistant director, Carnegie Community Study Project; director and professor, School of Music, Syracuse University; associate chairman and professor, Division of Creative Arts, San Francisco State College; research associate, Office of the Chancellor, California State Colleges; president, professor of Humanities and Fine Arts, Stanislaus State College.

CARLSTON, RICHARD C. (1968) ___________________________. Welding and Metallurgical Engineering
B.S., University of Missouri, 1951; M.S., 1954; Ph.D., University of Kansas, 1957.
Experience: Visiting professor, Naval Postgraduate School; adjunct professor, American University; physicist, Office of Naval Research, Aerojet-General Corporation; engineer, Grumman Aircraft Engineering Corporation; chemist, Sperry Gyroscope Company; physicist, Pacific Missile Range; editor, Naval Civil Engineering Laboratory.

CARNEGIE, E. J. (1963) (1965) ___________________________. Agricultural Engineering
Experience: Research assistant, University of California, Davis; junior agricultural engineer, University of California; officer, U.S. Naval Reserve.

CARR, LAURENCE H. (1963) ___________________________. Mechanical Engineering
B.S., University of Chicago, 1932; M.S., 1934.
Experience: Director of research and engineering, Edward Valves, Inc.; lecturer and assistant professor, Purdue University. Registered professional engineer, California.

CARRUTHERS, RODERICK W. (1965) ___________________________. Head, Graphic Communications Department
B.A., St. Martin's College, 1964; graduate study, University of Wisconsin.

CARSSEL, RICHARD A. (1968) ___________________________. Business Administration
Experience: Restaurant manager; multilith operator; group leader for Upward Bound project; research assistant, University of Oregon Law School.

CARTER, LOGAN Sampson (1947) ___________________________. Head, Soil Science Department
B.S., Oregon State College, 1930; Ph.D., Michigan State College, 1934.
Experience: Instructor, Michigan State College; U.S. Department of Soil Conservation; Bureau of Reclamation, U.S. Department of Interior, Washington, D.C.
CASS, MARJORIE (1957) .. Education
B.S., University of Nebraska, 1932; M.A., Columbia University, 1945; additional
graduate study, University of Missouri, 1947.
Experience: Teacher, Nebraska and Iowa; instructor, Stephens College; assistant
professor, Grinnell College.

CHANDLER, EVERETT M. (1951) ... Dean of Students
A.B., University of California, 1939; graduate study, University of California.
Experience: Administrative officer, U.S. Air Force; personnel technician, State
Personnel Board; management analyst, State Department of Finance; extension
teacher, Sacramento State College; U.S. Air Force.

CHASE, DANIEL C. (1954) .. Agricultural Management Department
University, 1954.
Experience: Teacher of vocational agriculture, veterans' instructor, Tolleson
Union High School, Tolleson, Arizona; supervising teacher, University of Arizona;
veterans' co-ordinating teacher, State Department of Vocational Education, Phoenix,
Arizona; farm editor and columnist, Arizona Republic; assistant professor and head,
division of farm management, Arizona State College, Tempe, Arizona.

CHESTNUT, F. STUART (1963) .. Physical Education
B.S., Indiana University, 1951; M.S., 1963.
Experience: Technical supervisor of industrial athletics, Commercial Solvents
Co.; coach-teacher, senior high school, Terre Haute, Indiana, senior high school,
Washington, Indiana, senior high school, Brazil, Indiana.

CHIZEK, GAYLORD J. (1958) ... Agricultural Management
B.S., Kansas State College, 1957; M.S., 1958.
Experience: Assistant instructor, Kansas State College, Manhattan, Kansas; farmer;
U.S. Army.

CHOU, THOMAS T. L. (1961) ... Electronic Engineering
B.S.E.E., Chinese National Chekiang University, 1947; M.S.E.E., University of
Washington, 1956; additional graduate study, University of California at Los
Angeles.
Experience: Research fellow, NASA Ames Research Center, Moffett Field; senior
research engineer, member technical staff, Autonetics, Division of North American
Rockwell Corporation, Anaheim, California; associate professor, National
Chiao-tung University, Taiwan; senior engineer, Sverdrup-Parcel, Inc., San Fran-
cisco; research assistant, University of Washington.

CIROVIC, MICHAEL M. (1968) .. Electrical and Electronic Engineering
B.E., New York University, 1965; M.S., 1968.
Experience: Assistant professor, Academy of Aeronautics; engineer, General
Cable Corporation.

CLEATH, ROBERT L. (1968) ... Speech
B.A., Northwestern College, 1950; M.A., University of Oregon, 1951; Ph.D.,
Experience: Assistant professor, Westmount College, Whitworth College, Un-
iversity of California; teaching assistant, University of Washington; instructor, Cali-
ifornia State Polytechnic College; assistant editor, Christianity Today, Washing-
ton, D.C.

CLEMENTS, WILLIAM E. (1966) Physics
Experience: Laboratory assistant, research assistant, assistant instructor, Texas
Arts and Industries University; teaching specialist in mathematics, Presbyterian
Pan American School.
Faculty and Staff

CLERKIN, EDWARD J. (1964) .. Electronic Engineering
B.S.E.E., Colorado State University, 1950; M.S.E.E., University of Idaho, 1962; additional graduate study, Utah State University, Colorado State University, Oklahoma University.
Experience: Instructor, University of Idaho and Chico State College; graduate assistant, Oklahoma University; technical associate, Argonne National Laboratory; engineer, Diversified Builders, General Electric Company, Rohr Aircraft Corp. Registered professional engineer, California.

CLOGSTON, FRED L. (1960) .. Biological Sciences
Experience: Instructor, public schools; teaching and research assistant, University of Washington; research associate, Office of Naval Research; instructor, Western Washington College; associate, University of California at Santa Barbara.

CLOONAN, CLIFFORD B. (1957) .. Electronic Engineering
Experience: Instructor, U.S. Army Signal Corps; physical science aide, National Bureau of Standards, Boulder, Colorado; systems design engineer, Collins Radio Company, Cedar Rapids, Iowa; research associate and research assistant, Electronic Research Laboratory, Montana State College; consultant, McDonnell Aircraft Company, St. Louis, Missouri; microwave engineer, Hewlett-Packard Company, Palo Alto.

CLUCAS, GEORGE G. (1956) (1968) ... Director, Research and Development
A.B., University of Michigan, 1947; M.P.A., 1949; Ph.D., University of Southern California, 1969.
Experience: Senior budget analyst, Office of Legislative Analyst, Sacramento; dean, Finance and Development, California State Polytechnic College; chief, Budget Planning and Operations, Chancellor's Office, The California State Colleges, Los Angeles; research associate, Municipal Information Systems, University of Southern California; faculty member (part-time) University of Southern California and California State College at Long Beach.

COATS, DONALD M. (1964) .. Associate Dean, Educational Services

COBB, ALAN W. (1964) .. Chemistry
B.S., Oregon State University, 1932; M.S., 1934; Ph.D., University of Wisconsin, 1936; additional graduate study, University of Houston.
Experience: Chemist, Pan American Refinery, American Liberty Oil Company; self-owned drug stores, Texas City; teacher, Alvin College, Monterey Peninsula College; New Mexico Institute of Mining and Technology.

COCKRIEL, GEORGE W. (1957) ... Chief Security Officer
Experience: Chief, Pacific Fire District, Sacramento; special agent, U.S. Army counterintelligence; investigator, office of the District Attorney, Reno, Nevada; instructor, fire safety and control, California Highway Patrol Academy, Sacramento.

COLLINS, RALPH C. (1955) .. Education
B.S., Drake University, 1932; M.A., 1941; Ed.D., University of Colorado, 1951.
Experience: Officer and navigation instructor, U.S. Navy; physics instructor, East High School, Des Moines, Iowa; graduate assistant, Iowa State College and University of Colorado; head, Science Department, Eugene High School, Eugene, Oregon; assistant professor, Central Washington College of Education, Drake University, University of Oregon.
COMPTON, LUVENTIA (1969) .. Library
A.B., University of Kentucky, 1962; M.S.L.S., 1965; additional graduate study, Allan Hancock College, Temple Buell College.
Experience: Teacher, Floyd County Board of Education; claims adjuster, Social Security Administration; interviewer and office manager, U.S. Employment Service; teacher, Summit Elementary School; librarian, Norwalk High School and Lompoc Unified School District; district librarian, Rim-of-the-World Unified School District.

CONNOR, E. WESLEY (1963) .. Ornamental Horticulture
B.S., California State Polytechnic College, 1956.
Experience: Manager, Landscape Department, Yosemite Park & Curry Company; landscape consultant, Spencer & Lee, Architects, San Diego and Napa County; assistant to landscape architect, Huettrig & Schromm, Palo Alto.

COOK, DAVID W. (1941) .. Associate Dean, Curriculum and Instruction
B.S., University of California, 1937.
Experience: Examiner, Board of Fire Underwriters of the Pacific; engineer, Insurance Company of North America; instructor, electrical engineering and mathematics; coordinator of navigation instruction, U.S. Naval Flight Preparatory School; registrar; chairman, Mathematics Department, California State Polytechnic College.

COOMBS, LEE CHARLES (1969) .. Chemistry
B.A., San Diego State College, 1963; M.S., 1965; additional graduate study, Purdue University.
Experience: Teaching assistant and spectroscopist, San Diego State College; instructor, Purdue University.

COSMA, EARL J. (1967) .. Food Industries
B.S., California State Polytechnic College, 1965; M.S., New Mexico State University, 1967.
Experience: U.S. Air Force; ranching; meat research and teaching assistant, New Mexico State University.

COTA, HAROLD M. (1965) .. Environmental Engineering
B.S., University of California, 1959; M.S., Northwestern University, 1960; Ph.D., Oklahoma University, 1966.
Experience: Graduate assistant, University of Oklahoma; research engineer, Lockheed Missiles; engineer, Westvaco (FMC).

COYES, FRANK G. (1965) .. Agricultural Engineering
B.S., California State Polytechnic College, 1950; M.A., 1957.
Experience: Instructor, Coalinga Union High School, Coalinga College.

CRANE, FRANKLIN S. (1958) .. Mechanical Engineering
Petroleum Engineer, Colorado School of Mines, 1943; graduate study, Massachusetts Institute of Technology.
Experience: Division engineer, Oil Well Supply Company; chief engineer, Martin-Decker Corporation; secretary-treasurer and director, Decker Engineering Corporation; officer, U.S. Navy; registered petroleum engineer, California.

CRUIKSHANKS, A. NORMAN (1947) .. Social Sciences
A.B., University of California, 1931; M.A., Stanford University, 1933; Ed.D., 1957; additional graduate study, University of London, University of Geneva, University of Paris.
Experience: Instructor, California secondary schools; educational advisor, U.S. Department of Interior, CCC; director of adult education and community forums, Fort Bragg, California; tour director, Europe and the Middle East; head, Social Sciences Department, California State Polytechnic College.
Faculty and Staff

CULBERTSON, JAMES T. (1953) Acting Head, Philosophy Department
A.B., Yale University, 1934; Ph.D., 1940; other graduate study, University of Pennsylvania.
Experience: Research fellow, Yale University; professor, mathematics and physics, Cumberland University; head of mathematics department, Southwestern University; research associate mathematical biology, University of Chicago; assistant professor of philosophy, University of Southern California; research associate Rand Corporation; research psychologist, UCLA.

CUMMINS, CARL C. (1958) Dean, School of Human Development and Education
A.B., University of California, Santa Barbara, 1948; M.S., University of Southern California, 1952; Ed.D., University of California, 1957.

CUNNINGHAM, WALTER M. (1969) Social Sciences
Experience: Special districts officer, Los Angeles County Administration; lecturer, California State College, Fullerton and Los Angeles State College; assistant professor, Fresno State College, California State College, Los Angeles.

CURTIS, CHARLES D. (1968) Mathematics
A.B., San Diego State, 1965; M.S., 1967; additional study, University of California, Santa Barbara.
Experience: Bandsman, U.S. Army; salesman and assistant manager, Coles Colonial Furniture; teaching assistant, San Diego State College; research assistant, University of California, Santa Barbara.

CURTIS, DONALD J. (1960) Senior Clinical Laboratory Technologist
R.N., Hospital Corps, Medical Department, U.S. Navy.
Experience: Chief warrant officer, USN; nursing and laboratory service, USNH; laboratory service, USNH, Pearl Harbor; personnel and medical records, USNH; Epidemiology Control Units, Pearl Harbor; administrative officer, Fourth Marine Division; assistant medical property and accounting officer, Camp Pendleton; clinical laboratory technologist, Patton State Hospital; senior clinical laboratory technologist, Atascadero State Hospital.

CURTIS, WILLIAM D. (1961) Psychology
B.A., University of Redlands, 1948; M.A., University of California, Los Angeles, 1951; Ph.D., University of Denver, 1960.
Experience: Probation officer, Riverside County, California; school psychometrist, San Bernardino City Schools; teacher, San Bernardino High School; instructor, San Bernardino Valley College; part-time instructor, University of Redlands, University of Denver, International Business Machines Corporation.

D'ALBRO, JAMES A. (1969) Ornamental Horticulture
B.S., Cornell University, N.Y., 1966; M.S., University of California, Davis, 1969.
Experience: Part-time county agricultural agent, commercial greenhouse worker; Research Assistant, University of California, Davis; General Production Manager, commercial cut flowers, Goro Kawai, Inc., Salinas, California.

DARNIELLE, MAX E. (1967) English
B.S., University of Oregon, 1950; M.S., Indiana University, 1967; additional graduate study, Indiana University.
Experience: Teacher, South San Francisco, Oakland, Cincinnati, Columbus; teaching assistant, university fellow, Indiana University.

DATTA, SAMIR KUMAR (1968) Electrical Engineering
DAVIDSON, HAROLD P. (1936) Head, Music Department
B.A., Pomona College, 1929; M.A., Claremont College, 1932; additional graduate study, University of Southern California.
Experience: Head of Music Department, Emerson Junior High School, Pomona; master training teacher, Claremont College.

DAVIDSON, OTTO C. (1968) Mechanical Engineering
B.S., Bucknell University, 1955; M.S., Massachusetts Institute of Technology, 1956; Ph.D., Stanford University, 1960.
Experience: Assistant professor, University of Utah, Robert College; officer, U.S. Army; engineer, various engineering firms in New York, Utah, California.

DAVIS, CHARLES P. (1958) Head, Aeronautical Engineering Department
B.S., Rensselaer Polytechnic Institute, 1948.
Experience: Instructor and assistant professor, Rensselaer Polytechnic Institute; development engineering and product engineer leader, General Electric Company.

DEAN, ARNOLD M. (1949) Soil Science
B.S., University of Alberta, Canada, 1943; M.S., 1946; Ph.D., University of Wisconsin, 1949.
Experience: Laboratory assistant, Dominion Department of Agriculture, Edmonton, Alberta; teaching assistant, University of Wisconsin; industrial fellowship, University of Wisconsin.

DEAN, WILLARD W. (1969) Biological Sciences
B.S., University of Oklahoma, 1953; M.S., 1954; Ph.D., Arizona State University, 1966.
Experience: Bacteriologist, assistant director, Arizona State Health Department; bacteriologist, St. Luke's Hospital; research associate, University of Arizona; assistant professor, University of Alabama.

DEMPSEY, AUDREY J. (1968) Foreign Student Adviser
B.A., University of Wisconsin; additional graduate study, Stanford University, California State Polytechnic College.
Experience: Program supervisor, Community Services, Radio Station KUOM, University of Minnesota.

DETTLOFF, ERLAND G. (1967) Education
Experience: Teacher, Great Falls, Montana; visiting professor, part-time instructor, assistant professor, University of Wyoming; assistant professor, Northern State College, South Dakota.

DE VOROS, EVELYN K. (1955) Speech
B.A., University of Texas, 1936; M.A., University of Michigan, 1941; Ph.D., University of Michigan, 1945.
Experience: Instructor in Texas Public Schools; instructor, Louisiana Polytechnic Institute; assistant professor, Bowling Green State University, Ohio, University of California, Santa Barbara College.

DICKEY, RICHARD K. (1956) Electrical Engineering
B.S., University of California, 1948; M.S., 1956; Ph.D., University of California, Santa Barbara, 1969.
Experience: Project engineer, Berkeley Scientific Co.; design engineer, Remler Co., Ltd.; engineer, Alameda Naval Air Station. Registered professional engineer, California.
Faculty and Staff

DICKSON, BRUCE A. (1952) Soil Science
B.S.A., University of British Columbia, Canada, 1940; M.S.A., 1942; Ph.D., University of California, Berkeley, 1952.
Experience: Teaching assistant, University of British Columbia; teaching assistant, University of California at Berkeley; assistant in plant nutrition, Dominion Experimental Station, Saanichton, B.C.; soil specialist; Dominion Experimental Farm, Agassiz, B.C.

DILLS, CHARLES E. (1963) Chemistry
B.S., North Dakota State University, 1949; M.S., George Washington University, 1951; Ph.D., Harvard University, 1956; additional graduate study, Columbia University.
Experience: Professor, Deep Springs College; assistant editor, American Chemical Society; chemist, National Research Corporation; assistant professor, Northwest Missouri State College.

DILTS, RALPH W. (1944) History
A.B., Montana State University, 1936; M.A., 1938; additional graduate study, University of California, 1940-41.
Experience: Stevensville High School, Stevensville, Montana; graduate assistant, Montana State University; graduate assistant, University of California; U.S. Bureau of Reclamation.

DOCTOR, JAN (1969) Environmental Engineering
B.S., University of Alberta, 1964; M.S., California Institute of Technology, 1965.
Experience: Consulting engineer and project engineer, L.B.M. Corporation, San Jose; facilities design engineer, Ampex Corporation; mechanical engineer, Fairchild Semiconductor. Registered professional engineer, Alberta and Saskatchewan.

DONALDSON, DOUGLAS D. (1968) Biological Sciences
A.B., University of California, Berkeley, 1962; M.A., California State College, Los Angeles, 1964; Ph.D., Oklahoma State University, 1969.
Experience: Herbarium assistant, University of California, Berkeley; unit fellow, Oklahoma Cooperative Wildlife Research Unit, Oklahoma State University; instructor and assistant professor, California State College, Los Angeles.

DONALDSON, ELLEN J. (1969) Graduate Nurse
R.N., Santa Clara County Hospital, San Jose, 1951; B.A., San Jose State College, 1952.
Experience: Paso Robles War Memorial Hospital; Sierra Vista Hospital; Public Health Department; French Hospital; General Hospital, San Luis Obispo.

DONOHOE, CHARLES A. (1969) Business Administration
B.S., University of California, Berkeley, 1941; M.S., University of Pittsburgh, 1952.
Experience: Budget and fiscal officer/resident auditor, USAF; staff accounting officer, Hq. USAF, Washington, D.C.; director of accounting and finance, Hq. Fifth Air Force, Tokyo; chief, systems division, Air Force Accounting and Finance Center, Denver; comptroller, Osan Air Base, Korea; and Air Force Western Test Range, Vandenberg AFB.

DOPP, JAMES W. (1969) Library
Experience: Cataloger, Detroit Public Library.

DOURSON, ROBERT H. (1967) Computer Science and Statistics
B.S., California Institute of Technology, 1935; M.S., 1941; Ch.E., 1942; additional graduate study, Case Institute of Technology, Southern Illinois University.
Experience: Laboratory chemist, research chemical engineer, Union Oil Company; research chemist, Cutter Laboratories; laboratory assistant, California Technology; various engineering and administrative positions, Shell Oil Company.
DRAVES, ALBERT W. (1969) .. Architecture
B.S., Purdue University, 1948; B.S., Rensselaer Polytechnic Institute, 1952; M.B.A., Roosevelt University, 1962.
Experience: Civil Engineer Corps, U.S. Navy; director, operational development, Rex Chainbelt, Inc.; manager, Industrial Building Design Division, De Leuw, Cather & Co., Chicago; instructor, Purdue University. Registered professional civil and mechanical engineer, New York, Louisiana, Indiana, Illinois, California.

DUARTE, ARTHUR C. (1967) .. Agricultural Management
B.S., California State Polytechnic College, 1964; M.S. Oregon State University, 1965.
Experience: Farming.

DUNIGAN, LOWELL H. (1961) Director, Institutional Research
B.S., Iowa State University, 1947; M.S., 1948; additional graduate study, University of Southern California.
Experience: Officer, U.S. Navy; instructor in sociology, Iowa State University; claims adjuster, Employers Mutuals Insurance Company; research technician, California Highway Planning Survey; research technician, California State Department of Education, Division of State Colleges and Teacher Education.

DUNN, JOHN E. (1961) .. Agricultural Engineering
B.S., Oregon State College, 1943; graduate study, Oregon State College, California State Polytechnic College, USNRMS Columbia University, Naval Diesel School, Cornell University.
Experience: Engineering officer, USNR; wholesale farm machinery 10 years, retail farm machinery 4 years; instructor, California State Polytechnic College 1948-1952.

DUNN, WESLEY T. (1959) ... Printing Technology and Management
Experience: Instructor, Compton High School; rotary press operator, Moore Business Forms; 11 years experience as composition-press operator for various printing firms.

DUSEK, BERNARD W. (1965) ... Art
A.B., University of California, 1951; M.A., University of Southern California, 1955.

EASTHAM, GEORGE M. (1966) Economics
B.A., Chico State College, 1961; M.A., University of California, Santa Barbara, 1963; additional graduate study, University of California.
Experience: Revenue officer, Internal Revenue Service; teaching assistant and research assistant, University of California, Santa Barbara.

EATOUGH, NORMAN L. (1968) Chemistry
B.S., Brigham Young University, 1947; B.E.S., 1958; M.S., 1959; M.S.Ch.E., 1960, Ph.D., 1968.
Experience: Senior development engineer, Hercules Powder Company; assistant professor, Dixie Junior College; instructor, Brigham Young University.

EDMISTEN, JOHN W. (1968) .. Architecture
Experience: Teaching assistant, University of California, Berkeley; project engineer-designer, Reid & Tarics, Architects and Engineers; draftsman, Kenneth Vinolia, Structural Engineer; designer-draftsman, Walter Constant, Structural Engineer.

EGENHOFF, FRANK C., JR. (1967) Physical Education
B.S., University of Nevada, 1965; M.A., California State Polytechnic College, 1966; additional graduate study, University of Iowa.
Experience: Student trainer, track coach, University of Nevada, California State Polytechnic College; part-time instructor, track and field coach, graduate assistant, University of Iowa.
Faculty and Staff

EILERS, PATRICIA (1956).. Graduate Nurse
R.N., San Diego County Hospital, 1936.
Experience: San Luis Obispo County General Hospital.

ELLIOTT, WALTER E. (1965).. Physics
B.S., McNeese State College of Louisiana, 1954; M.Ed., Northwestern State
College of Louisiana, 1957; M.S., 1963.
Experience: Instructor, Beauregard Parish Schools; teaching fellow, Northwestern
State College of Louisiana; assistant professor, Springfield College; U.S. Navy.

ELSTON, CHARLES A. (1947) .. Mathematics
A.B., Santa Barbara State College, 1932; M.S., University of Southern California,
1940; additional graduate study, University of Southern California.
Experience: Teacher, Santa Barbara County Schools; instructor, head, Mathematics,
Junior High School and Adult Evening School, San Luis Obispo; surveyor,
U.S.E.D. and Southern Pacific Railroad.

ELTZROTH, THOMAS E. .. Ornamental Horticulture
B.S., The Ohio State University, 1965; M.S., 1966.
Experience: Research fellow, The Ohio State University.

EMMEL, JAMES R. (1967) ... Head, Speech Department
B.A., Eastern Nazarene College, 1945; Speech Therapy Certification, North-
western University, 1946; M.A., University of Oklahoma, 1950; Ph.D., Pennsylvania
State University, 1959.
Experience: Chairman, Department of Speech, Bethany Nazarene College; part-
time instructor, Pennsylvania State University; speech consultant, U.S. Dependent
Schools, Germany; chairman, Division of Letters, full professor of speech, Pas-
dena College.

EMMONS, MICHAEL L. (1968) ... Counselor
B.S., Illinois State University, 1963; M.S., 1964; Ph.D., University of Wyoming,
1968.
Experience: Graduate assistant, Counseling Center, University of Wyoming;
counselor-teacher, Palatine High School, Illinois; residence hall counselor, Illinois
State University; U.S. Navy.

ENDRES, LELAND S. (1969) .. Chemistry
A.B., Middlebury College, 1958; M.A., University of Oregon, 1963; Ph.D., Uni-
versity of Arizona, 1966.
Experience: Research and teaching assistant, University of Oregon, University of
Arizona; research associate, instructor, University of Nebraska; senior research
chemist, 3M Company.

EPPLEY, RICHARD K. (1969) .. Biological Sciences
B.A., San Jose State College, 1957; M.S., Oregon State University, 1963; addi-
tional graduate study.
Experience: Assistant sales representative and territory manager, Niagara Che-
metal Division; survey entomologist and assistant extension state entomologist, Ore-
gon State Department of Agriculture and U.S. Department of Agriculture; teach-
ing and research assistant and instructor, Oregon State University; instructor,
Eastern New Mexico University.

EPSTEIN, GARY M. (1969) ... Mathematics
B.A., University of California at Riverside, 1964; Ph.D., 1969.
Experience: Research assistant, Riverside Cement Co., University of California,
Riverside.

ERNATT, EDWARD J. (1958) .. Education
A.B., Wayne State University, 1946; M.Ed., 1950; Ed.D., University of Michigan,
1956.
Experience: Elementary schoolteacher, Taylor Center Schools, Inkster, Michigan;
district superintendent, Nankin-Dearborn Schools, Inkster, Michigan; elementary
schoolteacher, Santa Barbara, California; supervising teacher, University of Califor-
nia, Santa Barbara College; district superintendent, West Park School District,
Fresno, California.

352
EVANS, HAROLD D. (1965) ... English
B.A., Duke University, 1949; M.A., Columbia University, 1956; additional graduate study, Columbia University.
Experience: Instructor, Fairfax Public Schools, South Carolina; public information specialist, U.S. Air Force; instructor, McBurney School, New York City; registrar for graduate faculties, Columbia University; free-lance writer; research and writing, U.S. Office of Education; instructor, Texas Western College; lecturer, American University, Washington, D.C.; assistant professor, St. Andrews College, Laurinburg, North Carolina.

EYLER, MARY F. (1960) .. Financial Aid Counselor
B.S., Western Michigan University, 1959; graduate study, California State Polytechnic College.
Experience: Secretary, Simplex Paper Corporation, Adrian, Michigan; Ford Motor Company, Dearborn, Michigan; intermediate stenographer; placement interviewer and Placement Supervisor, California State Polytechnic College; business teacher, San Luis Obispo Adult Evening School.

FALKENSTERN, OSWALD J. (1953) Mathematics
B.S., Montana State College, 1939; M.S., San Jose State College, 1952; additional graduate study, University of Colorado, Colorado A & M College.
Experience: High school teacher and coach, Baker and Opheim, Montana; air navigation officer, U.S. Navy; mathematics instructor, Colorado A & M College; instructor and chairman of junior high school mathematics, Salinas.

FARRELL, WARREN S. (1967) Agricultural Management
B.S., California State Polytechnic College, 1963; M.S. University of California, Davis, 1964; Ph.D., 1968.
Experience: Research assistant, Department of Agricultural Economics, University of California, Davis.

FEDERER, M. DALE (1963) ..Psychology
Experience: Officer, U.S. Army; instructor, Saratoga School District, Wyoming; assistant instructor, extension instructor and assistant professor, University of Wyoming.

FIERSTINE, HARRY L. (1966) Biological Sciences
Experience: Student assistant, Los Angeles County Museum; teaching and research assistant, cardio-vascular trainee, University of California, Los Angeles; instructor, Long Beach State College.

FINCH, HARRY C. (1962) ... Biological Sciences
B.S., Iowa State University, 1946; M.S., 1947; Ph.D., 1950.
Experience: Instructor, Iowa State University; research associate, Iowa State University; assistant professor, North Carolina State College, Agricultural Experiment Station; associate professor, Pennsylvania State University; project leader, fungicide and nematocide research, Monsanto Chemical Company, St. Louis, Missouri.

FISHER, CLYDE P. (1947) .. Dean, School of Science and Mathematics
A.B., University of Oklahoma, 1942; M.A., University of Southern California, 1947; Ph.D., 1955.
Experience: Teaching assistant in mathematics, lecturer in mathematics, University of Southern California; officer, U.S. Army; instructor, mathematics; assistant to the dean, Liberal Arts Division; assistant to the executive dean; building program co-ordinator, executive secretary to the President's Cabinet; supervisor of Special Studies Staff; Dean, Educational Services and Curriculum Development; Dean of the College, California State Polytechnic College.
FITTS, JAMES L. (1967) .. History
A.B., Seattle University, 1950; M.A., University of Washington, 1951; Ph.D.,
University of California, Los Angeles, 1970.
Experience: Teacher, All Hallow's High School; claims supervisor, Social
Security Administration; assistant professor, Immaculate Heart College, San Fern-
ando Valley State College.

FLANAGAN, JAMES ROBERT (1959) .. Animal Science
B.S., California State Polytechnic College, 1959.
Experience: Rancher.

FOLSOM, VOLMAR A. (1946) .. Mathematics
B.S., Iowa State College, 1934; M.E., Colorado University, 1937; additional grad-
uate study, Southern Methodist University.
Experience: High school and junior college teaching; officer, U. S. Navy; assist-
ant professor, mathematics, Southern Methodist University; coordinator, relations
with schools, California State Polytechnic College.

FOTTER, MILLARD J. (1954) .. Industrial Engineering
B.S., Armour Institute of Technology, 1935; M.S., University of Southern Cali-
fornia, 1956.
Experience: Officer, U. S. Air Force; sales engineer, Stanley E. Morris Co.,
Los Angeles; production engineer, Southland Paper Co., Los Angeles; industrial
engineer, Southwestern Engineering Co., Los Angeles; industrial engineer, Inter-
national Harvester Co., Chicago and Memphis. Registered professional engineer,
California.

FOUNTAIN, H. PAUL (1965) .. Crops Science
B.S., California State Polytechnic College, 1963.
Experience: Orchard manager, Ballico, California; agriculture inspector, Santa
Barbara County.

FOWLER, ANNE C. (1965) ... Social Sciences
B.A., Douglass College, 1939; M.A., Vanderbilt University, 1959; additional grad-
uate study, Tulane University;
Experience: Instructor, University of Nevada; research sociologist—head of de-
partment, Charity Hospital, New Orleans; assistant research sociologist, Council of
Social Agencies, New Orleans.

FOX, FRANK W. (1957) ... Animal Science
B.S., California State Polytechnic College, 1951; M.A., 1957.
Experience: Director of vocational agriculture, Lassen Union High School,
Susanville.

FREITAG, FREEMAN (1966) ... Electronic Engineering
B.S., Arizona State University, 1963; M.S., 1965.
Experience: Engineer, Motorola Semiconductors, Bell Aero Systems.

FRETWELL, DAVID H. (1969) ... Industrial Technology
B.Ed., University of Alberta, 1963; M.Ed., Oregon State University, 1969; addi-
tional graduate study, Oregon State University.
Experience: Plot worker, Dominion Experimental Station, Lacombe, Alberta,
Canada; shop instructor, Vulcan County Schools and Calgary School Division,
Alberta; service representative, Ford of Canada, Edmonton, Alberta; shop in-
structor, Edmonton Public Schools, Alberta; graduate assistant, Oregon State Uni-
versity.

FRIETZSCHE, ARTHUR H. (1965) .. English
B.A., University of California, 1944; M.A., 1945; Ph.D., 1949.
Experience: Teaching assistant, lecturer, University of California; supervisor,
technical publications, General Electric Company; associate professor, Utah State
University.
FROGGATT, CLARA B. (1964) Psychometrist
B.A., University of Wyoming, 1940; M.A., California State Polytechnic College, 1968.
Experience: Teacher, Secondary School, Wyoming; personnel department, United Air Lines.

FROST, JACK D. (1969) Industrial Technology
B.S., Arizona State University, 1959.
Experience: Development engineer, Airesearch Mfg. Co., Phoenix, Arizona; associate professor, Oregon Technical Institute; senior research engineer, Lockheed Missile and Space Co.; lecturer, South Australian Institute of Technology; project engineer, General Motors, Woodville, South Australia; senior research engineer, Lockheed Missile and Space Company.

FROST, ROBERT H. (1953) Physics
A.B., University of California, 1939; M.A., 1945; Ph.D., 1947.
Experience: Teaching assistant, University of California; assistant professor, University of Missouri.

A.B., Indiana University, 1925; A.M., University of Nebraska, 1927; Ph.D., Columbia University, 1948.
Experience: Instructor of mathematics, Northwestern University, Brown University, Long Island University, The College of the City of New York; officer and instructor, U.S. Military Academy; professor and chairman, mathematics department, Central Connecticut State College.

FURIMSKY, GEORGE S. (1955) Engineering Technology
B.S., Bradley University, 1949; M.S., 1950.
Experience: Instructor, Peoria Manual Training High School; graduate assistant, Bradley University; superintendent, buildings and grounds, Blackburn College; instructor and chairman, Department of Technology, Evelyn Hone College of Further Education, Lusaka, Zambia, for U.S. Agency for International Development.

GANG, DONNA D. (1967) Graduate Nurse
R.N., Regina General Hospital, Saskatchewan; additional studies, Jersey City Medical Center, Greystone Park, New Jersey.
Experience: Regina General Hospital, Morristown Memorial Hospital, New Jersey; Weyburn Union Hospital, Saskatchewan; Sierra Vista Hospital, San Luis Obispo.

GARNER, EDWARD R. (1967) Mechanical Engineering
B.S., Bradley University, 1962; M.S., University of Arizona, 1965.
Experience: Instructor, Rose Polytechnic Institute; graduate assistant, University of Arizona; mechanic, Groskorth Marine.

GARRIDO, AUGUST E. (1969) Physical Education
Experience: Assistant professor, San Francisco State College; teacher and coach, Sierra Union High School, Tollhouse; player, Cleveland Indians.

GATES, VINCENT J. (1958) Journalism
B.S., University of Oregon, 1939; graduate study, Sacramento State College.
Experience: Editorial positions on daily newspapers in San Francisco, San Jose, Santa Rosa, Salinas; industrial editorial positions, Henry J. Kaiser Industries; public relations and press positions, U.S. Navy, California State Employees Association, California State Polytechnic College.

GEDAYLOO, TEYMOOR (1965) Physics
B.A., Macalester College, 1957; M.S., University of Washington, 1959; additional graduate study, University of Washington.
Experience: Laboratory assistant, chief laboratory supervisor, University of Washington; instructor, Lawrence College; teacher and research associate, Argonne National Laboratory.
GENTHNER, FREDERICK L. (1952) .. Library
Experience: Periodicals librarian, Ball State Teachers College; officer, U. S. Army; assistant reference librarian, Ohio State University.

GERALD, CURTIS F. (1964) .. Head, Computer Science & Statistics
B.S., Iowa State University, 1936; M.S., University of Cincinnati, 1938; Sc.D., Massachusetts Institute of Technology, 1941; additional graduate study, University of Chicago Evening School.
Experience: Graduate assistant, University of Cincinnati, Massachusetts Institute of Technology; research fellow, Massachusetts Institute of Technology; research engineer, supervising research chemist, Universal Oil Products Co.; assistant professor, University of Washington; associate director of research, El Paso Natural Gas Products Co. Registered professional engineer, Illinois.

GERARD, E. DOUGLAS (1951) ... Executive Dean
B.S., University of British Columbia, 1950; M.S., University of Saskatchewan, 1951.
Experience: Instructor, University of British Columbia; instructor, University of Saskatchewan; shop superintendent, British Columbia Forest Products, Pitt Lake, British Columbia; service manager, Tractor and Allied Equipment, Limited, Melfort, Saskatchewan.

GERNERT, ALEX (1969) ... Electronic Engineering
B.S., Cooper Union School of Engineering & Science, 1967; M.S., Stanford University, 1968.
Experience: Technical staff, Bell Telephone Laboratories, New Jersey.

GERSTEN, CAROLYN J. (1967) .. Foreign Student Adviser
B.A., Sacramento State College, 1965; additional study, Sacramento State College.
Experience: Psychiatric social worker, intake case worker, adult services, Sacramento County; instructor, English Language Department, Hokusei Gakuen, Sapporo, Hokkaido, Japan; administrative assistant, U.S. Civil Service Commission and Personnel, U.S. Air Force.

GERSTEN, ROY (1967) ... Business Manager, Associated Students, Inc.
B.S., Sacramento State College, 1966; graduate study, Sacramento State College.

GIBFORD, WILLIAM R. (1955) .. Animal Science
B.S., California State Polytechnic College, 1947.
Experience: Horse trainer, Ed Wright Stables and 1001 Ranch, Riverside; horse trainer and horseshoer, San Luis Obispo; employee, Humphrey Meat Packing Company, San Miguel; Pacific Valley Cattle Company, King City; U.S. Marine Corps.

GIBSON, J. CORDNER (1949) .. Dean, School of Agriculture and Natural Resources
B.S., University of California, 1937; M.S., University of Southern California, 1955.
Experience: Director of vocational agriculture, Downey and Whittier Union High Schools; U.S. Army; regional supervisor, Bureau of Agricultural Education; Dean, Student Personnel and Business Management, California State Polytechnic College, Kellogg-Voorhis.

GILBERTSON, OSMUND S. (1968) ... Agricultural Education
B.S., University of Minnesota, 1958; M.A., 1966; additional graduate study.
Experience: Director of agriculture and supervising teacher, St. Charles Consolidated High School, Minnesota; instructor, agricultural education and international programs manager, University of Minnesota.

GLASSCO, D. EDWARD (1968) .. Mathematics
B.S., Harvey Judd College, 1963; M.A., University of California, Los Angeles, 1966; additional study, University of Southern California.
Experience: Teaching assistant, University of California, Los Angeles.
GLIDDEN, WALLACE F. (1961) Veterinary Science
Experience: U.S. Army Veterinary Corps; poultry research, U.C.D.; large and small animal practice, southern California.

GOEBEL, KAREN P. (1966) Home Economics
B.S., Purdue University, 1962; M.A., Ball State University, 1966.
Experience: Advertising representative, American Zinc Institute; camp counselor and dining hall supervisor, Michigan; home demonstration agent-in-training, State of Indiana; foreign exchangee, International Farm Youth Exchange; home economics teacher, Mishawaka, Indiana; graduate assistant, Ball State University.

B.A., University of California, 1942; B.L.S., 1947; additional graduate study, University of California.
Experience: U.S. Army; library, University of California; audio-visual librarian, California State Polytechnic College; research assistant, University of California.

GOLDEN, JAMES R. (1947) Industrial Engineering
B.S., University of California, 1942; B.L.S., 1947; additional graduate study, University of California.
Experience: Pilot-Navigator, Wing Director of Safety, Strategic Air Command; Reliability engineer, Chief of Reliability Quality and Maintainability, Space Systems Division; Chief of Technical Integration, Aero Systems Division, U.S. Air Force. Registered professional engineer, California.

GOMES, GEORGE J. (1967) Agricultural Management
B.S., California State Polytechnic, 1966; M.A., 1968.
Experience: Farming; restaurant manager.

GORDON, RAYMOND G. (1967) Mechanical Engineering
B.S., Western New England College, 1966; M.S., University of Michigan, 1967.

GORDON, ROBERT L. (1967) Ornamental Horticulture
Kent State University, Kent, Ohio; Graduate, American Floral Art School, Chicago, Illinois.
Experience: Science librarian, Kent State University; designer, Airport Florist, Akron, Ohio; owner, Gordon's Floral Art, Shop, Akron; designer-manager, Collin's West Towne Florist and Tauer's Flowers, Akron; assistant director, American Floral Art School, Chicago, Illinois.

GRAN, RUTH (1957) Supervising Nurse
R.N., Mary's Help Hospital, San Francisco, 1936.
Experience: San Mateo Clinic; Army Nurse Corps; San Luis Obispo General Hospital.

GRANT, DAVID M. (1950) English
B.A., Iowa State Teachers College, 1935; M.A., University of Iowa, 1940; Ph.D., Stanford University, 1953.
Experience: Instructor in public schools in Iowa; chairman, Department of Speech, Hastings College, Hastings, Nebraska; officer, U.S. Navy; instructor, Stanford University.

GRANT, DONALD P. (1967) Architecture
B. Arch., University of Oklahoma, 1961; M. Arch., University of Utah, 1964; additional graduate study, University of California, Berkeley.
Experience: Construction and architectural firms in Utah; Moore Simpson and Partners, London; Ulrich Franzen; Raymond and Rado; Victor Lundy. Registered architect, New York and California.
Faculty and Staff

GREEN, WILFRED M. (1966). English B.S., Drake University, 1951; M.A., California State Polytechnic College, 1965; additional graduate study, University of California and University of Illinois. Experience: Instructor, Bering Institute, Adak, Alaska, Fresno Adult School, Allan Hancock College, San Luis Obispo Adult School; teacher, Hartley High School, Stanwood Consolidated School, Iowa, Fresno High School, Orcutt School; contractor.

GRINNELL, ROBIN R. (1967) Agricultural Engineering B.S., Purdue University, 1955; M.S., University of Minnesota, 1961; additional graduate study, University of Illinois. Experience: Research assistant, Iowa State University, Purdue University, University of Illinois; research and teaching assistant, University of Minnesota; student engineer, John Deere Waterloo Tractor Works; assistant professor, University of Guelph, Ontario, Canada; U.S. Army QM and Signal Corps.

GUSTAFSON, Lester W. (1947) Aeronautical Engineering B.S., University of Minnesota, 1932; graduate study, University of Minnesota. Experience: Assistant in experimental engineering, University of Minnesota; experimental engineer, Minneapolis Moline Power Implement Company, Minneapolis; Tropic Air Corporation, Chicago; aerodynamics engineer, Lockheed Aircraft Corporation; Hughes Aircraft Company.
HADLEY, ROBERT E. (1967) ... Animal Science
B.S., California State Polytechnic College, 1955.
Experience: U.S. Army; show horse trainer, Southern California; stallion manager, Shamel Ranch, Murrieta; large animal veterinary assistant, Murrieta; artificial insemination technician-distributor, dairy and beef cattle, Oakdale.

HAFEMEISTER, DAVID W. (1969) ... Physics
B.S., Northwestern University, 1957; M.S., University of Illinois, 1960; Ph.D., 1964.
Experience: Mechanical engineer, Argonne National Laboratory; teaching and research assistant, University of Illinois; post doctoral fellow, Los Alamos Scientific Laboratory; assistant professor, Carnegie-Mellon University.

HAGGARD, KENNETH L. (1967) ... Architecture
Experience: Principal planner, Department of Planning and Renewal, Camden, New Jersey; instructor, University of Miami; designer, City Planning & Architectural Associates, North Carolina; research scientist, Radio Biological Laboratory, Balcones Research Center; U.S. Army; tool engineer, Boeing Aircraft.

HALE, THOMAS E. (1966) ... Mathematics
B.S., Indiana State University, 1960; M.S., 1963; additional graduate study, St. Louis University.
Experience: Teacher, Vigo County School Corporation, Terre Haute, Indiana.

HALL, KENNETH M. (1969) ... Architecture
B.S., University of Arkansas, 1962; M.S., 1963; Ph.D., Arizona State University, 1968.
Experience: Teaching assistant, University of Arkansas; civil engineer, Corps of Engineers; research engineer and faculty associate, Arizona State University. Registered professional engineer, Arkansas. Registered civil engineer, Arizona.

HALL, LLOYD A. (1966) ... Medical Officer
B.A., Stanford University, 1947; M.D., 1952.
Experience: Internship, San Francisco City and County Hospital; residency, Monterey County Hospital; postgraduate training, anesthesia, Cook County Hospital, Chicago; private practice, Fort Bragg, California; college physician, Fresno State College.

HALL, MICHAEL C. (1967) ... Animal Science
B.S., California State Polytechnic College—Kellogg, 1965; M.S., Kansas State University, 1967.
Experience: Graduate research assistant; general farming.

HALL, RICHARD E. (1947) ... Engineering Technology
B.S., California State Polytechnic College, 1952.
Experience: Aircraft mechanic, Lockheed Aircraft, and Hancock Field, Santa Maria; engine mechanic and supervisor, McClellan Air Field.

HALLETT, JAMES T. (1967) .. Crops Science
B.A., San Francisco State College, 1959; additional study, California State Polytechnic College.
Experience: Research biologist, Stauffer Chemical Company; field research agronomist, U.S. Borax Research Corporation and Germain’s Inc.

HANKS, CHARLES J. (1954) ... Mathematics
Experience: Assistant professor, Drexel Institute of Technology; assistant football coach, University of Arkansas; officer, U.S. Coast Guard.
HANNULA, REINO (1962) Computer Science & Statistics
B.A., University of California, Los Angeles, 1960; M.A., 1965; additional graduate study, Tulane University.
Experience: Manager, grocery, Santa Monica; self-employed, Los Angeles; teacher, Redondo Beach High School.

HANSEN, PHYLLIS JEAN (1963) Library
Experience: Student assistant, University of Illinois Library; librarian, Queens Borough Public Library; reference librarian, Community Library, San Leandro, California.

HARDEMAN, SARAH A. (1960) Home Economics
B.S., Tennessee College, 1930; M.S., Iowa State University, 1946; additional graduate study at University of Tennessee (Martin Branch), Iowa State University.
Experience: Vocational Home Economics teacher, high schools in Tennessee.

HARDEN, F. SHELDON (1948) Physical Education
Experience: Player-coach, Sacramento Nuggets professional football team; playground supervisor, City of Sacramento; Red Cross swimming instructor, San Luis Obispo High School; officer, U.S. Army.

HARPER, RICHARD R. (1968) Director of Athletics
B.S., University of California, Los Angeles, 1959; M.S., 1960.
Experience: Assistant freshman coach, UCLA; head football coach, Riverside City College; line coach, Colorado State University, University of California at Santa Barbara, University of Colorado.

HARRIGAN, JOHN E., JR. (1969) Psychology
Experience: Engineering psychologist, Naval Electronics Lab, San Diego; assistant professor, Washington State University; teaching assistant, Colorado State University; supervisor and human factors engineer, Chrysler Corporation; supervisor, human factors research, Martin Company; instructor, Loyola University; engineer, Lockheed Space and Missile Corporation.

HARRIS, MARY ELIZABETH (1969) Library
B.S., San Diego State College, 1950; B.A., University of Oklahoma, 1952; M.S. in Library Science, University of Southern California, 1957.
Experience: Assistant librarian, Southwestern Medical School, University of Southern California; cataloger, U.S. Army Dependents' Education Group, Germany and California Western University; serials librarian, Lafayette College, Wisconsin State University.

HARRIS, ROY M. (1954) Animal Science
B.S., Utah State Agricultural College, 1952; M.S., 1954.

HASKELL, CHARLES THOMSON (1963) Mathematics
Experience: Teacher, Fallon, Nevada, High School; trust clerk, Peoples National Bank of Washington; trust clerk, assistant trust officer, First National Bank of Nevada; graduate assistant, University of Arizona.

HASSLEIN, GEORGE J. (1949) Dean, School of Architecture and Environmental Design
B. of Arch., University of Southern California, 1945, F.A.I.A.
Experience: Road and bridge design in Mexico and Central America for Pan-American Highway; airport design for Army Engineers; development work at M.I.T. for Gilfillan Bros.; with architects and practice in Los Angeles area; designer for Summer Spaulding and Wardman and Becket; chief designer, Kistner, Curtis and Wright. Registered architect, California. NCARB Certificate.
HASTIE, WILLIAM, COL. (1969) Head, Military Science Department
Experience: Command and staff assignments in the Mediterranean and Pacific Theaters; commander, engineering and supply director, Sandia Base, New Mexico; assistant professor of military science, Kingston, Rhode Island; director, Department of Non Residential Instr., director A.C.D., U.S., Army Intelligence School, Fort Holabird, Maryland.

HATFIELD, R. C. (1949) Biological Sciences
B.Sc., University of Dayton, 1941; M.A., University of California at Los Angeles, 1947; Ph.D., 1950.

HAWES, MICHAEL (1968) Electronic Engineering
B.Engr., University College, Dublin, Ireland, 1958; M.S., Ohio State University, Dayton, Ohio, 1967.
Experience: Demonstrator, University College, Dublin, Ireland; Electricity Supply Board, Ireland; instructor, Villanova University, Pennsylvania; research engineer, Wright-Paterson Air Force Base, Dayton, Ohio.

HAWLEY, LEWIS B. (1969) Chemistry
B.S., University of North Carolina, 1962; Ph.D., University of Georgia, 1966.
Experience: Teaching and research assistant, University of North Carolina; N.A.S.A. fellow, University of Georgia; research associate, Indiana University, University of California at Berkeley; instructor, University of California.

Experience: Assistant professor, Westmont College, University of South Dakota; associate professor, Southern Oregon College.

HAZEBROOK, HARRY (1968) Electronic Engineering
B.S., Michigan College of Mining and Technology, 1949; M.S., University of Wisconsin, 1951.

HEAD, DWAYNE G. (1966) Physical Education
Experience: Instructor, West Fargo High School, South Dakota State University, University of North Dakota; teaching assistant, University of Oregon.

HEALEY, JOHN R. (1947) Head, Journalism Department
B.A., San Jose State College, 1941; M.S., University of California at Los Angeles, 1964.
Experience: Reporter, San Jose News; public relations, McClellan Field, Sacramento; reporter, Sacramento Union; Valley editor, Modesto Bee.

HEIFETZ, EMANUEL R. (1962) Music
B.A., University of Redlands, 1950; M.M., 1958; additional graduate study, Claremont Graduate School. Extensive private music study with Luboviski, Pollak, Zaslavsky, and Meremblum.
Experience: Instrumental music instructor, San Bernardino Valley College; string and orchestra director, Summer Music Workshops; instructor-director, Community Orchestra, San Bernardino Adult Education; master teacher, University of Redlands; instrumental music teacher, Redlands City Schools and Inglewood Unified School District; composer of published violin method and other works.
HEINZ, JOHN A. (1953) .. Director, Audio-Visual Services and Production
Experience: Technical and research assistant, University of Washington; production assistant, Korry Film Productions; free lance photographer, Seattle; production co-ordinator, Criterion Films, Inc., Seattle; film editor, KRON-TV, San Francisco.

HELMAN, ANATOL (1957) .. Architecture
B.S., Warsaw Polytechnic Institute, 1934.
Experience: Designer, Associated Architects and Planners, Dallas, Tex.; The Anglo-Iranian Oil Co., Abadan, Iran; master-planner, International Technical Associates (ITA); Architects-Planners, Milan, Italy; architect, T. B. Bourne Associates, Washington, D.C. and Tokyo, Japan; Tecnicos Expanoles Asociados, Madrid, Spain; Warsaw Municipality; instructor, University of Nebraska; University of Oklahoma; Navy Orientation School. Visiting Fulbright professor in Architecture, University of Guayaquil and Central University, Ecuador.

HENDEL, FRANK J. (1967) ... Aeronautical Engineering
B.S., Polytechnika Lwowska, Poland, 1935; M.S., 1937; Ph.D., 1941.

HENDRICKS, FRANCIS (1969) ... Architecture
A.B., University of California, Berkeley, 1950; M.City & Regional Planning, 1953.
Experience: Associate research professor, University of Pittsburgh; lecturer, Stanford University; partner, Planning Research Associates, San Francisco; senior consultant, Arthur D. Little, Inc., Cambridge, Massachusetts; principal, Francis Hendricks & Assoc.; principal planner, 12th Naval District, U.S. Navy; private planning consultant, California; planner, City of Sausalito.

HENDRIKS, HAROLD J. (1952) .. Electronic Engineering
B.S., Iowa State University, 1940; M.S., 1941; additional graduate study, University of Colorado, 1949.

HENNIG, LLOYD R. (1963) ... Medical Officer
B.S., University of California, 1927; M.D., 1932.
Experience: Internship, San Francisco General Hospital; residency, Franklin Hospital, San Francisco; U.S. Army; private practice, Willows.

HENSEL, DONALD W. (1960) .. History
B.S., University of North Dakota, 1949; M.A., University of Colorado, 1953; Ph.D., 1957.
Experience: Instructor, public schools in Colorado, New Mexico, Arizona; graduate assistant, University of Colorado, Boulder; instructor in history and coordinator of Arts and Sciences instruction, University of Colorado, Denver; head, Social Sciences Department, Associate Dean, Academic Planning, California State Polytechnic College.

HERALD, CHARLES A. (1958) ... Electronic Engineering
B.Sc., M.Sc., Dalhousie University, Halifax, Nova Scotia, 1935.
Experience: Assistant professor, University of Massachusetts; instructor, Pennsylvania State University; instructor, Communication School, Canadian Department of National Defense; lecturer, McGill University; lecturer, University of British Columbia; special gauge examiner, assistant and junior physicist, National Research Council, Ottawa.
HESCH, EARL R. (1956).. Engineering Technology
B.S., University of New Mexico, 1955; M.S., Oklahoma A. & M. College, 1956.
Experience: U.S. Army; draftsman, Los Alamos Scientific Laboratory; survey
party chief, C. H. Cole; surveyor-draftsman, City of Albuquerque.

HICKS, WILLIAM R. (1957).. Physical Education
B.S., University of California, Los Angeles, 1950; M.A., Long Beach State College,
1959.
Experience: United States Army; teacher, Long Beach City Schools.

HIGDON, ARCHIE (1967).. Dean, School of Engineering and Technology
B.S., South Dakota State University, 1928; M.S., Iowa State University, 1930;
Ph.D., 1936.
Experience: Chairman, Engineering Science Division; professor and head, Me-
chanics; Associate Dean, U.S. Air Force Academy; professor, U.S. Military Acad-
emy, Iowa State University; instructor, North Dakota State University; manage-
ment analyst, Headquarters 15th Air Force (SAC); officer, U.S. Army Air Force.
Registered professional engineer, Colorado.

HITCHCOCK, VAUGHAN D. (1962)................................. Physical Education
Experience: Physical education instructor, football and wrestling coach, Castro
Valley High School; physical education instructor, football and wrestling coach,
Hayward High School; teacher, Juvenile Hall, Alameda County Special Schools;
playground, swimming and recreation director, Hayward Area Recreation Depart-
ment, Hayward.

HOFFMAN, GEORGE E. (1956)................................... Industrial Engineering
B.S., Carnegie Institute of Technology, 1951; B.S., California State Polytechnic
College, 1962; M.B.A., University of Southern California, 1959; M.S., Stanford
University, 1960; additional graduate study, Oregon State University.
Experience: Time and methods engineer, Robertshaw Fulton Controls; Kenne-
cott Copper Corporation, Ray, Arizona. Registered professional engineer, Cali-
ifornia.

HOFFMAN, JON A. (1968).. Aeronautical Engineering
B.S., University of Wisconsin, 1964; M.S., 1966; additional graduate study, Wis-
sconsin State University.
Experience: Draftsman, Marathon Electric, Wausau, Wisconsin; engineer, Chem-
strand Corporation, Pensacola, Florida; research engineer, Caterpillar Tractor,
Peoria, Illinois; instructor, University of Wisconsin; research engineer, Trane
Company, LaCrosse, Wisconsin.

HOGAN, WILBUR C. (1959)...................................... Computer Science & Statistics
B.S., United States Coast Guard Academy, 1928; M.S., Purdue University, 1959.
Experience: Officer, U.S. Coast Guard; commanding officer, Port Townsend
Training Station; director, U.S. Coast Guard Institute.

HOLLEY, F. JERALD (1961)................................. Director, Admissions,
Records and Evaluations
B.S., Utah State University, 1961; M.A., California State Polytechnic College,
1968.

HOLMQUIST, ROBERT E. (1946)............................. Physics
B.A., University of Oregon, 1932; M.A., Oregon State College, 1936; additional
graduate study, Purdue University and University of Washington.
Experience: Teaching assistant, University of Oregon and Oregon State College;
instructor, University of Oregon; teaching fellow, Purdue University and University
of Washington; inspection supervisor, Boeing Aircraft Company.

HOLT, RAY J. (1955)... Physics
A.B., University of California, 1939; M.A., 1949.
Experience: Physicist, University of California Radiation Laboratory; aircraft in-
spector, Consolidated Vultee Aircraft Corporation; high school and junior college
teacher.
Faculty and Staff

Experience: Professor, California State Polytechnic College, Pomona; project engineer, engineer, U.S. Naval Air Missile Test Center; U.S. Air Force; consultant, USAID. Registered professional engineer, California.

HOMAN, DENNIS N. (1966) Biological Sciences
B.A., University of Iowa, 1955; M.S., 1958; Ph.D., 1960.
Experience: Instructor, University of Iowa; assistant professor, Illinois State University; associate professor, Wisconsin State University.

HOMFELD, GILBERT L. (1960) Mathematics
Experience: Tulare County Schools Office, teaching; school building draftsman and inspector; engineering draftsman, Southern California Gas Company, Visalia; ranching in Visalia; teaching, Selma Junior High School, Fresno County.

Experience: Welder, Oregon Shipyards; U.S. Army; laboratory supervisor, Metallurgical Engineers, Inc.; registered professional engineer, Oregon. Registered professional engineer, California.

HOOKS, ROBERT D. (1966) Animal Science
B.S., California State Polytechnic College, 1961; M.S., Iowa State University, 1964; Ph.D., 1966.
Experience: Swine herdsman, State College of Washington, Pullman, Washington; manager and part-owner, orchard and swine farming enterprise, Orland, California; U.S. Marine Corps.

HORTON, WILLIAM F. (1968) Electrical Engineering
B.S., California Institute of Technology, 1946; M.S., 1948; Ph.D., UCLA, 1966.
Experience: Department head, senior staff engineer, Hughes Aircraft Company; design specialist, section head, Lear Siegler, Inc.; engineer, Westinghouse Electric; resident engineer, associate in engineering, UCLA.

Experience: Dynamics engineer, General Dynamics; instructor, California State Polytechnic College, Pomona, University of Illinois.

HOSTETTER, H. CLYDE (1958) Audio-Visual
B.J., University of Missouri, 1949; graduate study, University of Kansas, University of Southern California, American University.
Experience: Officer, U.S. Navy; feature writer and chief photographer, Topeka (Kansas) Daily Capital; public relations director, United States Junior Chamber of Commerce; public relations consultant, Hughes Aircraft Company; editor official Kansas magazine, To the Stars; editor official Junior Chamber magazine, Future; associate editor, Pathfinder and Town Journal; free-lance writer and photographer.

HOUK, A. L. (1946) Chemistry
B.S., Michigan State College, 1926; M.S., 1928; Ph.D., Pennsylvania State College, 1933.
Experience: Graduate assistant in chemistry, Michigan State College and Pennsylvania State College; instructor in chemistry, Michigan State College; research chemist and group leader, Rohm and Haas Company, Philadelphia, Pennsylvania.

HOULIS, JEROME F. (1959) Chemistry
B.S., California State Polytechnic College, 1958; graduate study, California State Polytechnic College.
HOUSTON, ERNEST R. (1957) .. Ornamental Horticulture
B.S., Oklahoma State University, 1943; M.S., Ohio State University, 1947; additional graduate study, Oklahoma State University.
Experience: Assistant professor, Oklahoma State University; manager of plant shipments, Furrow and Co., Guthrie, Oklahoma; grower and consultant, Higdon Flower Shop and Nursery, Oklahoma City, Oklahoma; U.S. Army.

HOWARD, LORRAINE H. (1964) Associate Dean, Women
Experience: Assistant buyer, Meier & Frank Co., Portland; assistant chemist, Hawley Pulp and Paper, Oregon City; assistant to director, Fruit & Flower Day Nursery, Portland; teacher, Oregon State University.

HOWE, HENRY E. (1956) .. Printing Technology and Management
B.A., University of Wisconsin, 1930; B.S., Stout Institute, 1942; graduate study, University of Wisconsin, Stout Institute.
Experience: Assistant, newspaper plant; instructor-coordinator, Stout Institute, Racine Vocational School, U.S. Air Corps; editor and publisher, The Dial, Wisconsin.

HOYT, HOMER E. (1969) .. Education
Ed.B., Rhode Island College of Education, 1940; M.A., University of California, Berkeley, 1956.
Experience: Executive director, Northern San Joaquin Valley Counties Supplementary Education Center; district superintendent, Healdsburg High School and Elementary School Districts; assistant superintendent, instructional services, San Luis Obispo County Schools; elementary and junior high school principal, San Rafael City Schools.

HUEHN, KEMPTON L. (1968) ... Mathematics
B.S., Iowa State University, 1957; M.S., 1962; additional study, Iowa State University.
Experience: Member technical staff, T.R.W. Systems Group; instructor, Iowa State University.

HUGHES, LEROY BARRY (1950) .. Physical Education
B.S., University of Oregon, 1931; M.A., Stanford University, 1950.

HUOT, ROBERT J. (1963) .. English
B.A., University of Washington, 1946; M.A., 1951; additional graduate study, University of Utah.
Experience: Teaching fellow, University of Washington; instructor, Tulane University; associate, University of Washington; instructor, Montana State College; graduate assistant, University of Utah.

HUTTON, REX L. (1966) ... Mathematics
Experience: Teacher, Brooklyn Junior High School; research assistant, Education Research Council of Greater Cleveland; instructor, Cuyahoga Community College.

HYER, EDGAR A. (1951) .. Agricultural Management
B.S., Utah State College, 1939; M.S., 1942; Ph.D., Cornell University, 1948.
Experience: Land use economist, Utah; field supervisor of A.A.A., Utah; U.S. Army; graduate assistant, Cornell University; assistant professor of agricultural economics, Oregon State College.

HYNES, C. DENNIS (1957) ... Biological Sciences
B.A., Macalester College, 1951; M.S., University of Michigan, 1953; Ph.D., University of Florida, 1957.
Experience: Museum assistant, University of Michigan; teaching assistant and research assistant, University of Florida.
IKENOYAMA, GEORGE K. (1964) Architecture
B.S., California State Polytechnic College, 1955; additional graduate study, Pennsylvania State University, Montana State University, California State Polytechnic College.
Experience: Draftsman and associate, John Badgley; lecturer, California State Polytechnic College. Registered architect, California.

IRVIN, MELVA (1968) Physical Education
Experience: Teacher, Righetti High School, Santa Maria; graduate assistant, instructor, Pennsylvania State University.

JACKS, MADGE A. (1964) Medical Officer
M.D., Loyola University Medical School, Chicago.
Experience: Internship, Cook County Hospital, Chicago; residency, Municipal Contagious Disease Hospital, Chicago; residency, Illinois Research & Educational Hospital, Chicago; private practice, Chicago; St. Joseph’s Hospital Laboratory, San Francisco; residency, San Luis Obispo General Hospital.

JACOBS, JAMES W. (1967) Animal Science
B.S., Oklahoma State University, 1967.
Experience: Livestock showing, judging, and ranching operations.

JAMES, AERNAT S. (1965) Physics
Experience: Instructor, Orient Technical College, Frostburg State College; research assistant, Southern Illinois University; assistant, U.S. Embassy, Kabul, Afghanistan.

JAMES, ARTHUR F. (1956) Medical Officer

JAMESON, GLORIA (1967) Acting Head, Foreign Language and Linguistics Department
B.A., Texas Woman’s University, 1941; M.A., Teacher’s College, Columbia University, 1944; Ph.D., University of Texas, 1966.
Experience: Librarian, Galveston Public Schools; elementary teacher in Houston, San Antonio, Texas; Muskogee, Oklahoma; and Montgomery County, Maryland; consultant in education, Montana, and Christ Church, Alexandria, Virginia; professor of English, Ewha Woman’s University, Seoul, Korea; research associate, linguistics, University of Texas; director, intensive English program, Vietnamese Leadership/Scholarship Program, California State Polytechnic College.

JENNINGS, CHARLES W. (1968) Art
Experience: Factory worker, IBM; graduate assistant, Northern Illinois University.

JENSEN, JAMES J. (1948) Physical Education
A.B., Washington State College, 1935; M.S., Stanford University, 1940.
Experience: Football and track coach, Shelton High School, Washington; history teacher and football and track coach, Santa Rosa High School, Santa Rosa; track coach and guidance assistant, Menlo Junior College, Menlo Park; U.S. Navy; track coach and instructor in health and physical education, San Francisco Junior College.
JOHNSON, BOYD WALKER (1969) .. Mathematics
B.S., United States Naval Academy, 1951; M.S., North Carolina State College, 1956; Ph.D., North Carolina State University, 1963.

JOHNSON, CORWIN M. (1961) .. Crops Science Department
B.S., State College of Washington, 1950; M.S., 1951; Ph.D., Cornell University, 1953.
Experience: Field and laboratory technician, research assistant, Department of Agronomy, State College of Washington; research assistant, Department of Agronomy, Cornell University; research agronomist, Northwestern Washington Experiment Station; assistant professor and agronomist, Mississippi State University.

JOHNSON, ERIC V. (1969) .. Biological Sciences
B.A., Brown University, 1964; Ph.D., Cornell University, 1969.
Experience: Teaching and research assistant, assistant curator of birds, Cornell University.

JOHNSON, MEAD R. (1956) .. English
B.A., University of Denver, 1939; M.A., 1949; additional graduate study, University of Denver.
Experience: Advertising manager, Sterling (Colorado) Farm Journal; U. S. Army; instructor in Colorado and California public schools; instructor, Colorado School of Mines; associate professor, Central Missouri State College.

JOHNSON, MILES B. (1957) .. English
B.A., Gustavus Adolphus College, 1947; M.A., University of Minnesota, 1951; M.A., University of Denver, 1953; M.A., University of Iowa, 1966; additional graduate study, University of Washington, University of Southern California, University of Iowa.
Experience: Instructor and publications adviser, Florence State College; instructor and publications chairman, Memphis State University; instructor, University of Tennessee, Memphis; assistant professor, Luther College; instructor, University of Puget Sound; presidential assistant, Johnson Wholesale and Manufacturing Company; author.

JOHNSON, RICHARD F. (1950) .. Animal Science Department
B.S., Iowa State College, 1942; M.S., State College of Washington, 1947.
Experience: U.S. Army; instructor, College of Agriculture and assistant animal husbandman, Experiment Station, State College of Washington, Pullman, Washington.

JOHNSON, WILLIAM V. (1966) .. Music
Experience: Instrumental music instructor, Seeger Memorial High School, Indiana; musical director, Light Opera Company, Illinois; assistant to conductor and member of band staff, University of Michigan.

JOHNSTON, ROBERT M. (1946-54) (1956) Engineering Technology
B.A., Santa Barbara State College, 1937; graduate study, Boeing School of Aeronautics.
Experience: Meteorologist, Pan American Airways and Pennsylvania Central Airlines; meteorology instructor, Randolph Field and Pan American Airways; junior civil engineer, Division of Highways, California.

JOHNSTON, THOMAS V. (1967) .. Architecture
Experience: Newspaper Art critic, guest artist, head, Art Department, Palmerston North Teachers College and Waihi College, New Zealand; lecturer, Glasgow School of Art, Glasgow. Member “Queen Elizabeth II Arts Council,” New Zealand.
JONES, JOHN R. (1961) .. Business Administration
B.S., University of Minnesota, 1931; LL.B., George Washington University, 1938.
Experience: Head, Social Science Department, Sedro Woolley, Washington Union High School; Identification Division, FBI; special agent, Public Works Administration; special agent, FBI.

JORGENSEN, EDWARD J. (1947) Physical Education
B.A., Chico State College, 1936; M.S., University of Southern California, 1950.
Experience: Instructor, physical education and industrial arts, South Fork, Ferndale, and Watsonville high schools; athletic director, Marin Junior College; officer, U.S. Navy.

JORGENSEN, NANCY ANN (1968) Counselor
B.A., University of Hawaii, 1957; graduate study, Institute of Psychology, University of Paris, University of Hawaii, University of California, Santa Barbara.
Experience: Graduate assistant, University of Hawaii; psychometrist, California State Polytechnic College; senior psychometrist, University of California, Berkeley; junior assistant-research, U.C.L.A.; psychometrist and associate psychologist, San Luis Obispo County Community Mental Health Services.

JUDD, W. BOYD (1956) ... Mathematics
B.S., St. Mary's College, 1939; M.A., University of California, 1951; additional graduate study, University of California, Pennsylvania State University.
Experience: High school teacher, California; instructor, Army specialized training program, University of Santa Clara; research mathematician, University of California; in charge of statistical operations, Bureau of Research and Guidance, Office of Los Angeles County Superintendent of Schools; I.B.M. supervisor, State of California, Department of Public Health; participant in National Science Foundation Institute, New Mexico State University.

KABAT, HERBERT R. (1952) ... Physics
B.S., United States Naval Academy, 1938; M.A., Stanford University, 1951; additional graduate study, University of Southern California, Stanford University, University of Colorado.
Experience: Officer, U.S. Navy; research analyst, Rheem Mfg. Co.; instructor, Pasadena City College, College of the Sequoias.

KANE, JOHN J. (1969) ... Mechanical Engineering
B.S., U.S. Naval Academy, 1951; M.S., University of Pittsburgh, 1961; Ph.D., 1961.
Experience: Adjunct Professor, University of Pittsburgh; engineer, Westinghouse Electric Corporation, Pittsburgh; lecturer, University of Southern California; member technical staff, Aerospace Corporation; self-employed, Sales Management.

KANN, DAVID J. (1969) ... English
Experience: Teaching associate, Occidental College; instructor, Polytechnic School, Pasadena.

KATEKARU, JAMES (1969) ... Chemistry
B.S., University of Oregon, 1956; M.S., University of Arizona, 1961; Ph.D., University of Cincinnati, 1965.
Experience: Research assistant, University of Arizona; analytical chemist, Federal Food and Drug Administration; teaching assistant, University of Cincinnati; research chemist, North American Aviation; editor, Chemical Abstract Service; chemist, Naval Radiological Defense Laboratory.

KAY, THOMAS D. (1958) ... Welding and Metallurgical Engineering
B.S., Wayne State University, 1957; M.A., California State Polytechnic College, 1967.
Experience: Assistant training director, Ex-Cello-O Corporation; apprentice instructor, Chrysler Corporation; radio team chief and refrigeration mechanic, U.S. Army; machinist, Detroit-Timken Axle Company; apprentice, Goodyear Tire and Rubber Company.
KEECH, ROGER A. (1965) .. Mechanical Engineering
B.S., California State Polytechnic College, 1955; M.S., University of Southern California, 1964.
Experience: Engineer, Menasco Manufacturing Co., Rocky Mt. Arsenal, Lockheed Aircraft; president, Dynalytic Engineering Co.; instructor, California State Polytechnic College, Pomona.

KEEP, ROGER L. (1968) .. Industrial Technology
B.S., Church College, 1957; M.S., Stout State University, 1968.
Experience: Building construction supervisor, Polynesian Cultural Center, Hawaii; foreman, Perkins Machine Company.

KEETCH, BRENT H. (1967) .. Journalism
Experience: Research aide, Utah State University Forestry Department, U.S. Forest Service; senior assistant, Utah State University; U.S. Army; staff writer, The Salt Lake Tribune; correspondent, newsman, The Associated Press, Utah, Arizona.

KEIF, RODNEY G. (1960) .. Environmental Engineering
B.S., Kansas State University, 1949; graduate study, California State Polytechnic College.
Experience: Sales and application engineer, O'Connor-Oklahoma Company, Oklahoma City; registered professional engineer, Oklahoma.

KEILBACH, SHIRLEY E. (1968) Social Sciences
A.B., Washington University, 1949; M.S.W., 1952, additional graduate study, University of Southern California.
Experience: Social worker, acting director, Pasadena Welfare Bureau; teacher-counselor, Los Angeles City and Garden Grove School Districts; dean of girls, Laguna Beach Unified District; girls' vice principal, Anaheim Unified School District; psychiatric social worker, Family Service Center; supervisor, San Luis Obispo County Welfare Department.

KELLER, ELMO A., JR. (1963) Mathematics
B.A., Brigham Young University, 1959; M.A., 1961; additional graduate study, University of California at Los Angeles.
Experience: Assistant instructor, Brigham Young University; instructor, Church College of Hawaii.

KELLERMAN, MARTIN (1968) Chemistry
B.S., Polytechnic Institute of Brooklyn, 1953; Ph.D., University of Washington, 1966.
Experience: Research assistant, Polytechnic Institute of Brooklyn, University of Washington, University of California at San Diego; analytical chemist, Continental Baking Company.

KELLEY, HELEN P. (1966) Journalism
B.P.A., Brooks Institute of Photography, 1966; graduate study, The University of Kansas and San Jose State College.
Experience: Free-lance writing and newspaper work, Arcadia and Preston, Kansas; newspaper work, Arcadia and Preston, Kansas; free-lance photography and writing.

KENNEDY, ROBERT E. (1940) President
Experience: Editorial Staff, San Diego Sun, San Diego Daily Journal, San Luis Obispo Telegram-Tribune, Palo Alto Times; at California State Polytechnic College: Chairman, Journalism Department; Director of Public Relations; Assistant to the President; Dean, Arts and Sciences; Vice President.
Faculty and Staff

KENNELLY, BRUCE (1947) .. Head, Chemistry Department
B.S., University of Kentucky, 1944; M.S., Purdue University, 1946; Ph.D., Cornell University, 1952.
Experience: Chemist, department of agricultural chemistry, Purdue University; research chemist, department of biochemistry and nutrition, Cornell University.

KENYON, PAUL (1957) .. Business Administration
Experience: Insurance legal staff, investment counseling, methods analyst, and business systems and procedures analyst.

KERR, JOHN F. (1967) .. English
B.A., Arkansas State University, 1953; M.A., University of Michigan, 1956; Ph.D., University of Texas, 1964.
Experience: High school journalism and speech teacher, Missouri; assistant professor, Westminster College, Missouri; instructor, University of Missouri; teaching assistant, University of Texas; assistant professor, Louisiana State University.

KIMBALL, KENNETH R. (1967) ... Industrial Technology
B.E., University of Southern California, 1956; M.S., 1959; B.S., 1965.
Experience: Resident engineer and executive officer, Engineer District; member, War Department General Staff; chief of management branch, Major Air Command; air installation officer and wing staff engineer; member of technical staff and supervisor of Electronics Manufacturing, Hughes Aircraft; industrial engineer, chief of overhaul and repair, engineering group leader, Autonetics; manufacturing manager, California Steel and Tube; general manager, Climax Manufacturing; head, plant maintenance, and chief, industrial engineering, Rocketdyne; staff consultant, H. B. Maynard and Company. Registered professional engineer.

KNAPP, ERNA BOWMAN (1962) .. Art
M.F.A., Otis Art Institute, Los Angeles, 1961.
Experience: Instructing designer, Foremost Studio, New York City; Headon Designers, London and Manchester, England; owner and operator of commercial design studio, Montreal, Canada; freelance designer, Los Angeles; fine arts instructor, private schools, art associations, Los Angeles.

KOBAYASHI, MARY J. (1967) ... Social Sciences
B.A., St. Mary's College, 1949; M.A., University of Notre Dame, 1959; additional graduate study, University of Washington, Seattle University, University of California, Berkeley, University of Colorado.
Experience: Social case worker, Catholic Social Services; teacher, Bishop Noll High School, St. Joseph's High School, Marlan Central High School; assistant professor chairman Sociology Department, St. Mary's College.

KOBERG, DONALD J. (1962) .. Architecture
B.Arch., Tulane University, 1958; M.Arch., University of Washington, 1970.
Experience: Architectural practice as designer and draftsman in New Orleans; instructor, North Dakota State College; lecturer, University of California at Berkeley; research associate, Architectural Prototypes, Berkeley; Corps of Engineers, U.S. Army. Registered architect, Louisiana.

KOGAN, IRVIN J. (1957) .. Engineering Technology
Experience: Instructor, Orange Coast College; U.S. Air Force.
KOMBRINK, RICHARD T. (1955) Engineering Technology
A.B., Loyola University, 1946; B.S.M.E., University of Southern California, 1964.
Experience: Pilot, U.S. Army Air Corps; draftsman, Hess Greiner, and Polland; sales engineer, T. H. Greears Corp.; civil designer, City of Culver City; assistant project engineer, RCA Radar and Missile Division.

KORSMEYER, RUSSELL (1958) Electrical Engineering
B.S.E.E., University of Missouri, 1950; M.S.E.E., University of Southern California, 1958.

KREJSA, RICHARD J. (1968) Biological Sciences
Experience: Instructor and assistant professor, Western Washington State College, University of Hawaii, Columbia University.

KRUPP, WILLIAM E. (1969) Engineering Technology
B.S., University of California, Berkeley, 1942; M.S., Stanford University, 1955; additional graduate work, University of California, Santa Cruz.
Experience: Engineering Aid, Standard Oil Company of California; Captain, U.S. Army Corps of Engineers; construction, self-employed; test engineer, North American Aviation; staff engineer, Sandia Corporation, Albuquerque, New Mexico; engineer, North American Aviation, Santa Susana; engineer, Coleman Engineering Company, Hurricane, Utah; staff engineer, Lockheed Missile and Space Company, Santa Cruz and Sunnyvale; instructor Monterey Peninsula College, Monterey and Cabrillo College, Santa Cruz.

KUGELMASS, HAROLD (1969) English
Experience: Instructor, State University of New York College at Buffalo; instructor, graduate teaching assistant and research assistant, University of Oregon.

LABHARD, LEZLIE A. (1967) Home Economics
B.S., University of California, 1965; M.S., 1967.
Experience: Resident assistant, laboratory assistant, research assistant, University of California, Davis.

LAMBERT, ROYCE L. (1969) Soil Science
B.S., Purdue University, 1964; M.S., 1966; Ph.D., 1969.
Experience: Farm operator; welder; warehouse manager, building products; graduate teaching and research assistant, Purdue University.

LAMOURIA, LLOYD H. (1965) Head, Agricultural Engineering Department
B.S., Michigan State University, 1949; M.S., Iowa State University, 1950.
Experience: U.S. Air Force; instructor, Iowa State University; associate professor and associate agricultural engineer, University of California; manager of product planning, J. I. Case Company, Racine, Wisconsin.

LANDRETH, JAMES R. (1956) Associate Director, Budgeting and Business Affairs
B.A., Mexico City College, 1954; M.B.A., Stanford University, 1956; additional graduate study, Claremont University College.
Experience: Instructor, U.S. Army; explosive ordnance disposal, U.S. Army; college personnel officer, assistant to dean of the college, California State Polytechnic College, Kellogg campus; personnel relations and business management analyst, San Luis Obispo.
LANDYSHTEV, ALEXANDER (1956) --------------- Electrical Engineering
E.E., University of Vladivostok, Russia, 1927; additional study, University of Leningrad, 1935; University of Moscow, 1940, University of California, 1954 and 1956.
Experience: Electrical engineer, Donez Basin Power System, Russia; Energiebauost G.m.b.H., Germany; Brown-Voveri and Co., Germany; U.S. Army Engineers, Germany; U.S. Steel Corp., San Francisco; production engineer, Precision Manufacturing Co.; associate professor, University of California, Berkeley.

LANG, MARTIN T. (1969) --------------------------- Mathematics
Experience: Teaching assistant, assistant instructor, University of Kansas; assistant professor, San Diego State College.

LANGFORD, JAMES A. (1955) ------------------------ Coordinator, Elementary Education
A.B., Western Kentucky Teachers College, 1937; M.A., 1947; Ph.D., University of Michigan, 1953.
Experience: Teacher in elementary and secondary schools in Kentucky; principal, Cronwell, Kentucky; principal, Jefferson Elementary School, Wayne, Michigan; assistant professor and supervisor of elementary education, University of Nevada; communications officer, U. S. N. R.

LANGFORD, W. REED (1969) -------------------------- Physics
B.S., Utah State University, 1954; M.S., Michigan State University, 1960; additional graduate work, Brigham Young University.
Experience: Teaching assistant, Utah State University; research assistant, Michigan State University and Brigham Young University; project engineer, Sperry Utah Company.

LANSMAN, PAUL S. (1964) -------------------------- Mathematics
A.B., M.A., Washington University, 1932; Ph.D., 1934; additional graduate study, California Institute of Technology.
Experience: Instructor, St. Louis Junior College; mathematician, Subterrex Geophysical Company, Airborne Instruments Laboratory and Stoddart Aircraft Radio Company; engineer, Lockheed Corporation; Lawson Crystal Company and Lawson Import Company.

LARSEN, STUART (1969) ----------------------------- Aeronautical Engineering
B.S., University of Cincinnati, Cincinnati, Ohio, 1963; M.S., 1965; M.S. Eng., Arizona State University, Tempe, Arizona, 1969.

LARSON, LOIS L. (1962) ----------------------------- Graduate Nurse
R.N., Swedish Hospital, School of Nursing, Minneapolis, Minnesota.
Experience: General duty, office nurse.

LARSON, MARIE A. (1967) -------------------------- English
Experience: Elementary teacher, Williston, North Dakota; personnel clerk, Lockheed Aircraft Corporation; stewardess, sales agent, United Air Lines; instructor, Boise College.

LAUMANN, GEORGE C. (1957) ------------------------ Mathematics
A.B., Chico State College, 1952; M.A., 1953; additional graduate study, University of Oregon, University of California at Los Angeles.
Experience: Instructor, Ordnance Department, United States Army; teacher, California high schools; instructor, Adult Evening College, Chico; participant, National Science Foundation Institute, Portland State College.
Faculty and Staff

Experience: Vocational instructor; officer, U.S. Navy; special supervisor, State Bureau of Agricultural Education.

LAZARUS, ALFRED S. (1966) Biological Sciences A.B., University of California, Berkeley, 1935; M.A., University of California Medical Center, San Francisco, 1937; Ph.D., 1938; additional graduate study, University of Toronto, Canada.
Experience: Instructor, University of Colorado Medical School; associate professor, University of California Medical Center, San Francisco; professor, University of Washington School of Medicine; scientist director, U.S. Public Health Service; officer, U.S. Navy.

LEACH, RICHARD (1930) Head, Poultry Industry Department B.S., Montana State College, 1931.
Experience: Supervisor, feed sales agency, Sweet & Company, Bozeman, Montana; manager and owner commercial poultry plant, Bozeman, Montana.

Experience: Player-coach, All-American Professional Basketball Team; instructor, private gymnasium, Oakland; playground director, Hayward Recreation District; U.S. Army.

LEIGHTY, RAYMOND V. (1957) Soil Science B.S., University of Maryland, 1938; M.S., 1940.
Experience: Supervisory soil scientist (Land Classification and Survey), USDA, Soil Conservation Service, Kentucky; party chief, SCS, Virginia, Georgia; U.S. Army, CE.

Experience: High school teacher, Central Point, Oregon; high school counselor, McKinleyville, California.

Experience: Office manager, Standard Brands Co.; business manager, Southern Pictorial News; personnel training supervisor, Lansburgh and Brook; officer, U.S. Navy; counselor, San Francisco Unified School District; associate dean (counseling and testing), California State Polytechnic College, San Luis Obispo.

Experience: Instructor, San Fernando Valley State College; teaching and research assistant and instructor, University of Southern California.

Experience: Instructor, University of California Extension and Kelsey Jenny College, San Diego; director, Office Services and specification engineer, Frank L. Hope & Associates; senior architect, University of California Scripps Institute of Oceanography; private architectural practice; project and office manager, Sam W. Hamill; job captain, Kistner, Curtis & Wright; line officer, U.S. Navy. Registered architect, licensed contractor.
LEWIS, VANCE D. (1946) Associate Dean, School of Science and Mathematics
A.B., University of California, 1933; M.A., 1940; Ph.D., University of Southern California, 1954; additional graduate study, University of New Mexico, University of Washington, Rensselaer Polytechnic Institute.
Experience: Laboratory technician, Shell Development Company; instructor and administrator, California secondary schools; summer staff member, physics institute, University of New Mexico; instructor, California State Polytechnic College; U.S. Naval Aviation officer.

LINDAMOOD, CHARLES H. (1958) Foreign Language and Linguistics
B.A., University of Minnesota, 1949; M.A., Columbia University, 1951; additional graduate study, University of Minnesota, Stanford University, 1957.

LINDSAY, WILLIAM B. (1968) Electronic Engineering
B.S., Morningside College, 1941; M.S.E.E., University of Wisconsin, 1953; E.E., Stanford University, 1961; graduate, U.S. Army Command and General Staff College, 1964.
Experience: Officer, U.S. Army radar maintenance; instructor, Armed Forces Special Weapons Project; nuclear effects engineer, Signal Operations Officer, Eighth U.S. Army (Korea); R&D program manager, Office of the Secretary of Defense; Signal Battalion Commander; Director of Operations, U.S. Army Strategic Communications Command, Europe; Chief, Office of Communications-Electronics, U.S. Army Materiel Command.

LINT, ROBERT G. (1967) Foreign Language and Linguistics
Experience: High school teacher, Michigan, Washington; instructor, Lower Columbia College; teaching fellow, instructor, assistant professor, Ohio University.

LOPER, WILLARD H. (1955) Agricultural Engineering
B.S., New York College of Agriculture, Cornell University, 1933.

LOUGHRAN, BERNICE B. (1958) Head, Art Department
B.S., Newark State Teachers College, 1940; M.A., Ohio State University, 1946; Ed.D., Stanford University, 1958.
Experience: Elementary school teacher, Southbury, Conn., Santa Barbara, California, and Redwood City, California; elementary art teacher, Irvington, New Jersey; art instructor, Johnson Teachers College, University of Connecticut and Danbury Teachers College.

LOWRY, JOHN J. (1962) Mathematics
B.S., United States Military Academy, West Point, 1947; M.A., California State Polytechnic College, 1963; M.S., University of Illinois, 1967.
Experience: Officer and navigation instructor, U.S. Air Force; engineer, Boeing Company.

LUCIN, JOHN J. (1966) Activities Adviser

LUKES, THOMAS M. (1962) Food Industries
B.S., San Jose State College, 1947; M.S., University of California at Berkeley, 1949.
Experience: Microbiologist for Real Gold Citrus Products, Anaheim; laboratory supervisor, Gentry Division of Consolidated Foods, Gilroy.
MACDONALD, LACHLAN P. (1968) Director of Information Services
M.A., University of Chicago, 1957.
Experience: Journalist: Daily Mining Gazette, Michigan; Anchorage Daily Times, Alaska; Associated Press Seattle Bureau; KBYR, Alaska; City News Service, Los Angeles; public information: U.S. Army, Alaska; Alaska National Guard; editor: Chicago Review, Coastlines, The Humanist; lecturer, University College, University of Chicago; teacher, Webb School of California; at California State Polytechnic College, Kellogg-Voorhis, news bureau director, associate professor and journalism coordinator, director of information services; free-lance writer and photographer.

MACH, GEORGE R. (1954) Mathematics
B.A., Iowa State Teachers College, 1950; M.S., State University of Iowa, 1951; Ph.D., Purdue University, 1953.
Experience: National Science Foundation faculty fellow, Purdue University; graduate teaching assistant, Purdue University; visiting professor, National Science Foundation Summer Institute, Washburn University, Kansas; officer, U.S. Navy.

MACKENZIE, F. HELEN (1966) Library
B.A., University of California, Berkeley, 1941; Certificate of Librarianship, 1943; M.A., University of Denver, 1961.
Experience: Librarian, Mary Holmes Junior College, West Point, Mississippi; cataloger, Los Angeles County Law Library, University of Dubuque Seminary Library, California State Library, Sutro Branch, San Francisco, California.

MACY, GREGG H. (1967) Animal Science
B.S., Oregon State University, 1966; M.S., 1967.
Experience: Feedlot and farm operations.

MAGER, HANS L. (1949) Architecture
M.S., Royal University of Technology, Sweden, 1947.
Experience: Structural engineer, Building Concern; H.S.B., Stockholm, Sweden; consulting engineer with architects and engineers in Southern and Central California. Registered professional engineer, California and Sweden.

MAGNESS, CAROLYN M. (1968) Mathematics
B.A., Merrimack College, 1966; M.S., Northern Arizona University, 1968.
Experience: Secretary, Massachusetts Institute of Technology; mathematician, U.S. Geological Survey, Flagstaff, Arizona; teaching assistant, Northern Arizona University.

MAGUR, LEON W. (1958) Physics
B.S., California State Polytechnic College, 1958; graduate study, California State Polytechnic College; additional graduate studies, University of California, Berkeley and Davis.
Experience: Electronic technician.

MAKIN, LOIS C. (1966) Library
B.A., University of California, Berkeley, 1930; Certificate of Librarianship, Library School of the Los Angeles Public Library, 1931; School Librarianship Certificate, UCLA, 1937.
Experience: Branch Library, Oakland, Bookmobile and branch librarian, Honolulu, Hawaii; Librarian, Elementary Schools, Long Beach, California; humanities reference librarian, San Jose State College.

MAKSOUDIAN, Y. LEON (1963) Computer Science & Statistics
B.S., California State Polytechnic College, 1957; M.S., University of Minnesota, 1961; additional graduate study, University of Minnesota.
Experience: Instructor, Westmont College, Northwestern College; teaching assistant and instructor, University of Minnesota; junior development engineer, Minneapolis Honeywell Company.
MALMBORG, FREDRICK B. (1969) Mechanical Engineering

MANNING, JOHN H. (1956) Mathematics
A.B., Oakland City College, 1937; M.A., University of Cincinnati, 1939; D.Ed., Pennsylvania State University, 1954.

Experience: Designer-draftsman, North Carolina; job captain, Little-Lee and Associates, Charlotte, North Carolina; project architect, Toombs, Amisano & Wells, Atlanta, Georgia; private practice, Asheville, North Carolina; assistant to the director, Urban Research Design Center, Washington University, St. Louis, Missouri. Registered architect, North Carolina.

MARKOS, HARRY G. (1968) Dairy Science
B.S., Utah State University, 1963; M.S., University of Illinois, 1966; Ph.D., University of Illinois, 1968.
Experience: Research and teaching assistant, University of Illinois.

MARTINEZ, ANGELINA (1966) Library
B.A., Inter-American University, San German, Puerto Rico, 1943; B.S., Louisiana State University, 1945; M.S., University of Illinois, 1952.
Experience: Assistant Librarian, Inter-American University; Cataloger Pan-American Union, Organization of American States; head librarian, Inter-American Institute of Agricultural Sciences of the Organization of the American States, Costa Rica; head reference librarian, University of California, Davis; director of reader services, Nevada State Library.

MARTINEZ, RICHARD A. (1969) Director, Educational Opportunity Program

MATHENY, ROBERT (1952) Supervisor of Transportation
B.S., California State Polytechnic College, 1962.
Experience: International Harvester Company, Des Moines, Iowa; diesel and heavy duty machinery mechanic, Army Air Corps; dealer and sales, Allis Chalmers, Point Arena.

MAUGHAN, SCOTT J. (1965) History
B.A., Brigham Young University, 1957; M.A., University of Utah, 1959; Ph.D., 1968.
Experience: Instructor, Eastern Montana College, University of Utah; U.S. Army.

MAYO, EDWARD L. (1968) History
B.A., Claremont Men's College, 1959; M.A., 1966; B.F.T. American Institute for Foreign Trade, 1962; additional graduate study, Claremont Graduate School.
Experience: Securities analyst, Title Insurance and Trust Company; sales representative, Western Airlines; instructor, Pitzer College, Mt. San Antonio College.
McCALEB, DONALD L. (1962) .. Public Information Specialist
B.S., Los Angeles State College, 1958; graduate study, Los Angeles State College.
Experience: Public information, U.S. Air Force; film representative and office
manager, Billy Graham Films, North Hollywood; teaching and public relations,
Marysville Union High School; director of public relations, associated students
of Los Angeles State College.

McCLUNG, PHILLIP T. (1968) .. Education
B.A., Oklahoma Baptist University, 1955; M.R.E., Golden Gate Baptist Theolo-
gical Seminary, 1959; M.A., Teachers College, Columbia University, 1960; Ed.D.,
1966.
Experience: Junior high school teacher, Sacramento; head, Division of Edu-
cation and Psychology, Grand Canyon College, Phoenix.

McCOMBS, JOHN W. (1960) .. Electronic Engineering
B.S., Clemson University, 1950; B.S.E.E., 1957; M.S.E.E., 1961; additional grad-
uate study, Worchester Polytechnic Institute, Arizona State College.
Experience: High school teacher, Greenwood, S.C.; instructor, Clemson Uni-
versity; engineer, Greenwood Mills, Lockheed Aircraft Corp., Autonetics, Inc.

McCORKLE, ROBERT E. (1962) ... Agricultural Management
B.S., California State Polytechnic College, 1960; M.S., University of California,
1962; additional graduate study, Oregon State University, University of Wisconsin.
Experience: Research statistician, Department of Agricultural Economics, Uni-
versity of California; research assistant, Farm Economics Division, Economic Re-
search Service, United States Department of Agriculture; Chief of Party, U.S.
Agency for International Development project, Zambia; chief farm management
officer, Ministry of Agriculture, Lusaka, Zambia.

McCORMAC, WESTON A. (1968) ... Business Administration
Experience: Account executive, Merrill Lynch, Pierce, Fenner & Smith; instruc-
tor in public speaking, teaching techniques, personnel management, planning meth-
ods and leadership, Ft. Sill Artillery School; manpower and administrative analyst,
Office of Assistant Secretary of Defense (Manpower); executive officer for Chief
of Public Information of the Army, Washington, D.C.; director of Army Person-
nel Management Program; Commanding Officer of the Army Personnel Center
at Oakland Army Base.

McDOUGAL, KAREN SUE (1969) .. Home Economics
B.S., University of Georgia, 1964; M.S., 1967.
Experience: Assistant professor and research technician, University of Georgia
and Georgia Experimental Station.

McGONAGILL, WILLARD L. (1967) ... Architecture
B.S., Colorado University, 1953; B. Arch., 1956.
Experience: Associate, Weaver & Drover, Architects; project manager, Kerr-
Beggs, Architectural Engineers; draftsman, Blakey Architects, Langhart Architect.

McGRATH, JAMES M. (1946) ... Head, Engineering Technology Department
B.A., Santa Barbara State College, 1941; M.A., California State Polytechnic Col-
lege, 1953.
Experience: Chief, U.S. Army Transport Service; superintendent of machinery,
U.S. Navy Yard, Manilla; officer, U.S. Navy; consultant, USAID, Africa.

McKINSTRY, JOHN A. (1968) ... Social Sciences
A.B., University of California, Los Angeles, 1961; A.M., University of Southern
California, 1963; Ph.D., University of Southern California, 1970.
Experience: Teacher, Venice High School; instructor and Assistant to Dean
of Men, University of Southern California.
McMEEN, GEORGE H. (1960) Mathematics
Experience: Elementary, junior high, junior college, and state college teaching; air navigation officer, U.S. Navy; professor and chairman, mathematics department, Newark State College, Newark, New Jersey; Special Consultant in Mathematics, California State Department of Education, 1961-62.

McMORRAN, WAYNE E. (1962) Electronic Engineering
B.S., California State Polytechnic College, 1960; M.S.E.E., New York University, 1962.
Experience: Technician, Western Electric Company, Shell Development Company; member of the technical staff, Bell Telephone Laboratories, Murray Hill, New Jersey; electronics engineer, Lawrence Radiation Laboratory, Livermore, California and Jet Propulsion Laboratory, Pasadena.

McNEAL, LYLE G. (1969) Animal Science
B.S., California State Polytechnic College—Kellogg, 1964; M.S., University of Nevada, 1966; Additional graduate study, Utah State University.
Experience: Agricultural Extension Agent, University of Nevada Cooperative Extension Service, Gardnerville, Nevada; Graduate Research Assistant in Animal Breeding, University of Nevada; Ranching operations in Nevada, Montana, and Utah; Assistant Manager, Riding Stable, Agoura, California.

McRAE, GLENN G. (1963) Counselor
Experience: Graduate assistant, fellow, teaching assistant, University of Florida; instructor, St. Petersburg Junior College; visiting summer lecturer, Mississippi State University, Louisiana State University, Northwest Louisiana State College, and State College of Iowa.

McROBBIE, J. M. (1962) Head, Industrial Technology Department
Experience: Patternmaker, The Boeing Company, Seattle; trade-technical instructor and civilian personnel recruiter, Puget Sound Naval Shipyard, Bremerton; industrial arts teacher, Santa Clara County; industrial arts teacher-consultant, San Diego County Schools; coordinator of industrial education, Tulare County Schools.

MEARES, CANDACE J. (1969) Graduate Nurse
R.N., University of San Francisco, 1969.
Experience: San Joaquin Community Hospital, Bakersfield.

MENDENHALL, CHARLES E. (1967) Agricultural Information

MENG, SHIEN YI (1968) Electrical Engineering
B.S., Taiwan Provincial Cheng Kung University, 1953; M.S., Oklahoma State University, 1958; Ph.D., Ohio State University, 1968.
Experience: Research associate, Ohio State University; research assistant, Cornell University; engineer, Taiwan Provincial Government.

MERRIAM, JOHN L. (1958) Agricultural Engineering
B.S., California Institute of Technology, 1938; graduate study, California Institute of Technology.
Experience: Instructor, California Institute of Technology; junior civil engineer, U.S. Army Engineers and private consulting engineers; civil area engineer, Soil Conservation Service, USDA; senior irrigation engineer, Ministry of Agriculture, Kingdom of Saudi Arabia; registered civil engineer, California.

MESLER, FLORENCE (1962) Graduate Nurse
R.N., Patterson General Hospital, New Jersey, 1939.
Experience: Industrial nurse, Wright Aero Corporation, Patterson, New Jersey; general duty nurse, Santa Monica Hospital, and French Hospital, San Luis Obispo; private duty, San Luis Obispo.
MEYER, THOMAS O. (1955) ...Food Industries
B.S., State College of Washington, 1949; M.S., 1953.
Experience: Instructor and meats specialist, State College of Washington; assistant animal husbandman, Experiment Station, State College of Washington, Pullman, Washington.

MICHELS, ELIZABETH (1961) ...Physical Therapist
Experience: Tucson Medical Center, Arizona; Kabat Kaiser Institute, Vallejo; Mills Memorial Hospital and San Mateo Clinic, San Mateo; University of Utah, Salt Lake City.

MILES, HERBERT L. (1963) ..Electrical Engineering
B.S.E.E., Wayne State University, 1950; M.S.E.E., 1963; additional graduate study, Colorado State University.
Experience: Draftsman, Detroit Edison Co., City Engineer's Office; personnel recruiter and trainer, City of Detroit Civil Service Commission; instructor, Ferris State College; assistant professor, Wayne State University; registered professional engineer, California and Michigan.

MILLER, ALLEN D. (1960) ...Mathematics
B.S., Iowa State University, 1945; M.S., 1948; Ph.D., 1953.
Experience: High school mathematics teacher, Iowa, Nebraska, Wisconsin, and California; college mathematics teacher, Wisconsin, Illinois, Iowa and California; research development in industry, Hughes Aircraft Company; participant in National Science Foundation institutes, Stanford University, Bowdoin College, University of Arizona, University of Southwest Louisiana.

MILLER, ERNEST C. (1968) ..Business Administration
B.A., University of Chicago, 1941; M.B.A., 1946; Ph.D., University of Denver, 1954.

MILLER, HAROLD R. (1968) ..Business Administration
B.S., University of Missouri, 1958; M.S., 1959.
Experience: First Lieutenant, U.S. Air Force; staff accountant, Williams, Keepers, Oliver, Payne & Rackers, CPA's, Columbia, Missouri; comptroller, Ozark Tractor and Implement, Springfield; instructor, Southwest Missouri State College.

MILLER, JEANNE (1961) ...Graduate Nurse
R.N., St. Alexius Hospital, Bismarck, North Dakota, 1944.
Experience: Mountain View Hospital and French Clinic, San Luis Obispo.

MILLER, LOUIS C. (1960) ..Aeronautical Engineering
B.S., Massachusetts Institute of Technology, 1928.
Experience: Administrative, design, and test engineering in aerodynamics and flight testing for Boeing, Douglas, Northrop, Consolidated-Vultee, Goodyear, Wright, Brewster, and Curtis aircraft companies.

MILLER, RICHARD M. (1967) ...Pharmacist
Graduate in Pharmacy, University of Southern California, 1920.
Experience: Forty-eight years registered pharmacist.

MINN, MOON JA (1969) ..Physical Education
Experience: Dance instructor, Kong-Ju Teacher's College, Middle and High School, Kong-Ju, Korea; dance instructor, Sook Myoung Girls' Middle High School, Seoul, Korea; ballet instructor, Creative Art Center, Greeley, Colorado.
MOLNAR, PETER H. (1965) History
B.A., Occidental College, 1961; graduate study, University of Delaware, University of Wurzburg.
Experience: Teaching assistant, Occidental College, University of Delaware.

MONTGOMERY, DAVID H. (1956) Biological Sciences
B.S., California State Polytechnic College, 1954; M.A., College of the Pacific, 1956; additional graduate study, Friday Harbor Laboratories, University of Washington and University of California.
Experience: Laboratory assistant and teaching assistant, California State Polytechnic College; teaching fellow, College of the Pacific; summer faculty, Pacific Marine Biological Station, University of the Pacific; National Science Foundation fellow, Friday Harbor Laboratories; National Science Foundation fellow, University of California.

MOORE, LARRY D. (1967) Electronic Engineering
A.B., Centre College, 1936; M.S., U.S. Naval Postgraduate School, 1951.
Experience: Officer, U.S. Navy, 1946-67; teacher, Ashland Senior High School.

MORGAN, DONALD E. (1968) Head, Industrial Engineering Department
B.S., Oregon State College, 1940; M.S., Stanford University, 1962; Ph.D., 1963.
Experience: Staff technical consultant, ARINC Research Corporation; staff member and partner, Decision Studies Group; professor, Stanford University; manager and partner, Intermountain Surgical Supply Company; engineer, Westinghouse Electric Corporation. Registered professional engineer, California.

MORRIS, DONALD M. (1957) Associate Dean, Continuing Education
Experience: Dormitory Manager, California State Polytechnic College; officer and pilot, U.S. Navy; residence supervisor-counselor, California State Polytechnic College; Assistant Personnel Analyst, California State Polytechnic College.

B.S., Utah State University, 1953; M.S., 1965.
Experience: Vocational agriculture teacher; county agriculture agent; A.S.C. office manager; commercial pilot and flight instructor; air traffic controller, FAA; research assistant, Utah State University Experiment Station; officer, U.S. Air Force.

MOTT, JOHN H., SR. (1967) English
B.A., Southern Oregon College, 1962; M.A., California State Polytechnic College, 1965; additional graduate study, University of California, Colorado State College.
Experience: Special agent, U.S. Military Forces; art instructor, Boise Junior College; high school English and art teacher, Oregon, California; graduate assistant, Colorado State College.

MOTT, ROBERT A. (1946) Head, Men's Physical Education Department
B.S., University of Akron, 1938; M.A., University of Southern California, 1946; Ed.D., Stanford University, 1953.
Experience: Physical education instructor and athletic coach, Akron Public School System; officer, U.S. Navy; teaching assistant, University of Southern California; visiting professor University of Colorado; chairman, P.E. Department and chief of party, U.S. AID program, Evelyn Hone College of Further Education, Lusaka, Zambia; physical education specialist, Uganda, Somalia, and Ethiopia, U.S. State Department.

MOUNTS, BILLY W. (1956) Director, Health Services
M.D., Georgetown University, Washington, D.C., 1950.
Experience: Internship, Fitzsimons General Hospital, Denver; residency, San Luis Obispo General Hospital; four years private practice, Pismo Beach.
MOY, CARL F. (1968) .. Dairy Science
B.S., University of Wisconsin, 1967.

MULDER, GEORGE (1968) Director, Counseling & Testing
B.A., Long Beach State College, 1956; M.A., 1957; additional graduate study, University of Southern California.
Experience: Associate Dean (Counseling) and counselor, California State Polytechnic College, Kellogg-Voorhis; teacher, Excelsior Union High School District; counselor-instructor, Cerritos College; electronic technician, U.S. Army Ordnance; drafting, tool design, and technical illustration, Goodyear Tire and Rubber and Shoffer Tool Company.

NEEL, PAUL R. (1962) Director, School of Architecture and Environmental Design
Experience: Designer-draftsman, W. D. Concolino, Monterey; designer, Jones & Emmons, Los Angeles; private practice California; visiting lecturer, University of Sheffield, England. Registered architect, California.

NEELANDS, JAMES G. (1957) Equipment Technician, Physical and Biological Sciences
B.S., California State Polytechnic College, 1956; additional graduate study, University of Washington.
Experience: Teaching assistant and research assistant, University of Washington; naval aviator and officer, U.S. Marine Corps.

NELSON, DONALD S. (1943) Director, Business Affairs
A.B., Stanford University, 1930.
Experience: California State Department of Finance, Budgets and Accounts; comptroller, Fresno State College.

NELSON, RICHARD F. (1960) Biological Sciences
B.S., Brigham Young University, 1955; M.S., 1957; Ph.D., State University of Iowa, 1960.
Experience: Teaching assistant, Brigham Young University, State University of Iowa; research associate in radiation biology, State University of Iowa.

NEWTON, CHARLES H. (1966) Counselor
Experience: Loftsmen, design draftsman, and tool designer, Ryan Aeronautical, Convair and Multiplex, Inc.; secondary school teacher, counselor and curriculum writer, San Diego City Schools; assistant school psychologist, Mesa, Arizona Public Schools; U.S. Air Force.

NICHOLSON, LOREN L. (1956) Journalism
A.B., San Jose State College, 1946; M.B.A., Stanford University, 1947; additional graduate study, Stanford University.
Experience: Advertising sales representative, Watsonville Register-Pajaronian; advertising sales correspondent, Sunset Magazine; advertising director, Redding Record-Searchlight.

NICKELL, DELL O. (1965) Architecture
Experience: Assistant engineer, San Jose Water Works; associate bridge engineer, California State Bridge Department; partner, Gillette-Harris & Associate, Auburn; assistant road commissioner-surveyor, San Luis Obispo County. Registered civil engineer, California.
Faculty and Staff

NIELSEN, KEITH E. (1959) .. Speech
B.A., Alma College, 1953; M.A., Stanford University, 1959; additional graduate study, Stanford University.
Experience: U.S. Marine Corps; welder; power plant engineer, farmer, neuropsychiatric nursing assistant, U.S. Veterans Administration Mental Hospital; ranger-naturalist, National Park Service; high school teacher, Laingsburg, Michigan.

NILES, PHILIP W. B. (1967) .. Environmental Engineering
B.S., University of California, 1957; M.S., 1958; additional graduate study, University of California, Los Angeles.
Experience: Consultant, Rand Corporation; teaching assistant and post-graduate research engineer, University of California, Los Angeles; senior research engineer, Rockerdyne.

NIU, SHIEN HWEI (1969) .. Library
B.A., National Taiwan University, 1951; M.A., Bucknell University, 1957; additional graduate studies, University of Wisconsin; M.A., Library Science, Indiana University, 1967.
Experience: Assistant catalog librarian, Drake University Library.

NOBLE, GLENN A. (1947) .. Head, Biological Sciences Department
A.B., University of California, 1931; M.A., 1933; Ph.D., Stanford University, 1940.
Experience: Assistant in zoology, College of the Pacific; instructor, San Francisco City College; consultant in biology, American Military Government in Korea; professor of parasitology, Seoul National University, Korea; Fulbright professor of parasitology, Philippines and Taiwan.

NOLLAN, THOMAS F. (1949) ... Social Sciences
B.S., University of Wisconsin, 1935; M.A., University of Southern California, 1940; additional graduate study at the University of Zurich, Switzerland.
Experience: Instructor senior high school, Stockbridge, Wisconsin; instructor senior high school, Kaukauna, Wisconsin; instructor, American School, Quito, Ecuador; Economic Analyst, Department of State, Washington, D.C., Montevideo, Uruguay; Officer, U.S. Naval Reserve; Vice-Consul, Department of State, Washington, D.C. at Valparaiso, Chile.

NORDQUIST, RAYMOND E. (1964) Architecture
B.S. Arch., Montana State College, 1950; additional graduate study, Montana State University, California State Polytechnic College.

NOSHY, AMEEN I. (1969) ... Architecture
B. Arch., Cairo University, 1963; M.S. Arch., Illinois Institute of Technology, Chicago, 1969.
Experience: Draftsman in architectural firms in Cairo and West Berlin; designer and field supervisor in Development and Popular Housing Corp., Cairo; instructor at Al-Azhar University, Cairo; designer, Cairo, P. L. Nervi, Rome and C. F. Murphy, Assoc., Chicago.

O'CONNOR, EUGENE L. (1964) Business Administration
B.S., St. Louis University, 1957; M.S., 1963.
Experience: Assistant manager, Knights of Columbus, Inc.; sales representative, Burroughs Corporation; executive director, Madison County Association for the Crippled, Inc.; instructor in business, Belleville Junior College.

O'DANIELS, HOWARD R. (1933) Business Administration
Bachelor of Commercial Science, University of Santa Clara, 1931; additional graduate study, University of Southern California.
Experience: Coach, California State Polytechnic College; officer, U.S. Navy.
OLDHAM, CHARLES S. (1968) Social Sciences
Experience: Visiting assistant professor, Eastern Washington State; research assistant, University of Oregon Bureau of Municipal Research and Services; management intern, Office of Governor, State of Idaho.

O'KANE, KENNETH C. (1969) Architecture
A.B., Sacramento State College, 1959; M. Urban Planning, University of Oregon, 1968; additional graduate study, California State Polytechnic College.
Experience: Planning consultant, Eugene, Oregon; senior planner, Alaska State Housing Authority; assistant director, Eugene Urban Renewal Agency; real estate analyst, Shell Oil Company.

O'LEARY, MICHAEL J. (1951) Social Sciences
A.B., San Francisco State College, 1950; M.A., Stanford University, 1951; additional graduate study, Stanford University, University of Oregon.

OLIVER, WILLIAM A. (1968) Welding & Metallurgical Engineering
B.S., California State Polytechnic College, 1966.
Experience: Printer and draftsman, H. M. Gousha Co., San Jose; welder, On Manufacturing Company, San Jose; welding technician, Mare Island Shipyard, Vallejo; lecturer, California State Polytechnic College; welding engineer, Westinghouse Electric, Sunnyvale.

OLSEN, BARTON C. (1968) History
Experience: Teacher, South High School, Salt Lake City; Washington Union and Sanger Union High School, California; principal, Cardston School District, Cardston, Alberta, Canada.

OLSTEN, C. JAMES (1968) Architecture
B.S., California State Polytechnic College, 1964; B. Arch., 1965.
Experience: U.S. Army, engineer assistant; associate, Jennings & Associates.

OSTEYEE, LEON F. (1957) Head, Mechanical Engineering Department

OSTLUND, KARL H. (1969) Agricultural Management
B.S., Kansas State University, 1950; M.S., 1951.

OVERMEYER, PHILIP H. (1958) Business Administration
B.S., University of Oregon, 1931; M.S., 1936; Ph.D., University of Minnesota, 1939.
Experience: High school instructor; teaching fellow, University of Minnesota; assistant professor, University of Alabama; federal administrator, WCLC of the National War Labor Board; lecturer, De Paul University; professor, Lewis and Clark College; private arbitrator, labor disputes; public member, Region XIII, Wage Stabilization Board; regional director, Office of the Salary Stabilization; co-ordinator of Instruction, Golden Gate College San Francisco; Professional Lecturer.

OWEN, EVAN R. (1969) Head, Electronic Engineering Department
B.S., Northwestern University, 1945; M.S., University of Pennsylvania, 1949; Ph.D., Northwestern University, 1953.
Experience: Manager of Advanced Engineering, General Electric Company; instructor, Northwestern University. Registered professional engineer, California, Florida.
Faculty and Staff

OZAWA, KENNETH (1963) ...Physics
B.S., John Carroll University, 1959; M.S., 1960; additional graduate study, Texas
A & M, University of California.
Experience: Graduate assistant and instructor, John Carroll University.

PAGE, PERRYMAN L. (1963) ...Library
B.A., University of Mississippi; M.S.L.S., Louisiana State University, 1963.

PATTERSON, ROY L. (1968) ...Medical Officer
B.S., University of Illinois; B.M., M.D., 1938.
Experience: Internship, Englewood Hospital, Chicago; private practice, Canton,
Illinois and Monrovia, California.

PAUL, GORDON J. (1969) ..Business Administration
B.S., Montana State College, 1957; M.B.A., University of New Mexico, 1966.
Experience: Controller and treasurer, The Dikewood Corporation, Albuquerque;

PAUTZ, ROLAND K. (1959) ..Poultry Industry
B.S., Oregon State College, 1957; M.S., Oregon State University, 1968.

PEDERSON, WILLARD M. (1961) ..Head, English Department
A.B., Colorado Western State College, 1957; M.A., Colorado State College, 1938;
additional graduate study, Colorado State College, Western Reserve University,
Colorado State University.
Experience: English teacher and football coach, Shaker Heights High School,
Cleveland, Ohio; English instructor, football coach and athletic director, Mount
Union College; associate professor and director of athletics, Marshall College;
associate professor and athletic coach, Colorado Western State; professional
athletics; officer, Navy Underwater Demolition.

PELLATON, EVELYN I. (1966) ..Physical Education
Experience: Director, Oakland Recreation Department; official and gym supervi-
sor, San Francisco Recreation Department; summer camp counselor; WAVE
athletic officer, Special Services, U.S. Navy; instructor, Marin Catholic High
School, Portola Junior High School; dean-counselor, Portola Junior High School,
Downey Junior High School.

PENDSE, PRATAP SINHA C. (1966) ..Biological Sciences
B.S., Bombay University, 1947; M.S., Poona University, 1951; M.S., Utah State
University, 1959; Ph.D., 1965; additional graduate study, Stanford University, Yale
University, McGill University.
Experience: Lecturer, Bombay and Poona Universities; teaching and research
assistant, Utah State University; assistant professor, Colgate University.

PERELLO, DOMINIC B. (1954) ...Economics
A.B., University of California, Santa Barbara College, 1951; M.S., University of
Wisconsin, 1952; additional graduate study, University of California at Los Angeles.
Experience: Officer, U.S. Air Force; partner, Perello and Sons; teaching assistant,
University of California at Los Angeles.

PETERS, JAMES M. (1958-60) (1963) ...Chemistry
A.B., University of California, 1953; Ph.D., 1957.
Experience: Biochemist, University of California; instructor, California State
Polytechnic College; biochemist, Baltimore City Hospitals; assistant professor,
University of Maryland.

PETERS, RALPH A. (1969) ..Physics
B.S., Georgetown University, 1949; M.S., Pennsylvania State University, 1951;
Ph.D., Fordham University, 1967.
Experience: Assistant professor, Lewis College; instructor and graduate assistant,
Michigan State University; assistant professor, Fordham University; associate pro-
fessor, University of the Pacific.

384
PETERSON, JAMES J. (1964) .. English
B.A., Bradley University, 1952; M.A., University of Pennsylvania, 1956; additional graduate study, Temple University, University of Pennsylvania.
Experience: Assistant instructor, University of Pennsylvania; substitute teacher, Philadelphia Public Schools; high school instructor, Bryn Mawr, Pennsylvania; instructor, Susquehanna University, New York State University.

PFEIFFER, MARIE S. (1965) .. Head, Child Development Department
B.S., Ohio State University, 1941; M.A., 1951; Ph.D., 1961.
Experience: Instructor, Waverly High School, Beaver High School, Stockdale High School, Ohio; instructor, St. Mary of the Springs, Columbus; director of home economics, Columbus Public Schools; professor, Department of Education, Nova Scotia; assistant professor, Ohio State University.

PHAKLIDES, WILLIAM J. (1963) .. Environmental Engineering and Engineering Technology
B.S., California State Polytechnic College, 1956; graduate study, Montana State University.

PHILLIPS, PETER K. (1968) .. Facilities Planner
B.S., California State Polytechnic College, 1959.

PHILLIPS, WILLIAM R. (1957) .. Director, School of Architecture and Environmental Design
B.Arch., University of Southern California, 1952.

PIERCE, DOUGLAS R. (1969) .. Director, International Education
Experience: Elementary and middle school teacher, Illinois; assistant professor, Cornell University and University of Minnesota; visiting professor, University of Rochester and The Johns Hopkins University.

PIMENTEL, RICHARD A. (1952) Biological Sciences
A.B., San Jose State College, 1947; M.S., Oregon State College, 1950; Ph.D., 1952.
Experience: Officer, U.S. Army; teaching assistant, Oregon State College; ranger-naturalist, Crater Lake National Park; associate professor, University of California Extension Nature Study Institute at Santa Barbara; lecturer, National Science Foundation Summer Science Program.

PINTO, JOHN D. (1968) ... Biological Sciences
A.B., Humboldt State College, 1963; Ph.D., University of Illinois, 1968.
Experience: Instructor, Humboldt State College; teaching assistant, University of Illinois.

PIPER, CURTIS DEAN (1964) .. Soil Science
B.A., W. T. Bryan University, 1953; M.S., Michigan State University, 1959; Ph.D., 1967.
Experience: Farm operator; food service director, Kings College; instructor in research and teaching, Michigan State University.

385
Facility and Staff

POLK, BENJAMIN K. (1966) - Architecture
Diploma, School of Planning and Research in Regional Development, England, 1952.

POWER, CHERYL (1969) - Home Economics
B.S., Kansas State University, 1965; M.S., Iowa State University, 1967.
Experience: Instructor, Texas Technological College; high school teacher, Arkansas City, Kansas.

POWERS, JOHN W. (1969) - Architecture
B. Arch., University of Illinois, 1966; M. Arch. (Urban Design), University of Illinois, 1967.

PRATER, EUGENE G. (1967) - English
B.A., Phillips University, 1952; B.D., Vanderbilt University, 1954; M.A., 1955; S.T.M., Harvard University, 1956; additional graduate study, Stockholm University.
Experience: Minister, First Congregational Church, Suddy, Tennessee; instructor, Curry College; assistant minister, Montclair, New Jersey; writer, Department of Interior; researcher, Library of Congress; assistant professor, Ball State University, Washington State College, California State College at Long Beach; instructor, University of San Francisco.

PRICE, CLIFFORD J. (1956) - Aeronautical Engineering
B.S., University College, South Wales, 1932.
Experience: Lecturer, Municipal College, England; South African Air Force School of Technical Training; Pretoria Technical College, South Africa. Chief technical officer, South African Air Force School; Major, South African Air Force; chief inspector of aircraft accidents and aircraft materials; head of Aircraft Accident Investigation Branch, Division of Civil Aviation, Union of South Africa. Instructor, Northrop Aeronautical Institute.

PRICE, D. JOHN (1957) - Mechanical Engineering
Experience: Engineer, British Electricity Authority; assistant planning engineer, British Columbia Telephone Co.; technical assistant, Vickers Armstrong Ltd.; officer, RCAF.

PURCELL, RICHARD J. (1965) - Physical Education
Experience: Instructor, Atascadero High School; lecturer, California State Polytechnic College, San Luis Obispo.

QUINLAN, CHARLES W. (1966) - Architecture
B.Arch., Cornell University, 1959.
Experience: Private practice, urban planning and architecture; instructor, University of New Mexico; Registered architect, New Mexico and California. NCARB certified.

QUINN, PETER L. (1967) - Mathematics
B.S., University of Wales, Cardiff, 1925; B.S., (hons) 1926; Education Diploma, University Reading, England, 1931; Ph.D., University London, England, 1958; Ph.D., University Cork, Ireland, 1967.
RABE, PETER (1967) Psychology
B.A., Ohio State University, 1943; M.A., Western Reserve University, 1948; Ph.D., 1949.
Experience: Self-employed psychological counseling, therapy, writer; research fellow, Jackson Laboratory, Bar Harbor, Maine; lecturer, Western Reserve University.

RAPP, JOHN B. (1959) Electronic Engineering
B.S., University of California, 1940; M.S., San Jose State College, 1967.
Experience: Engineer, General Electric Company, Collins Radio Company, United Fruit Company; instructor, Princeton University; registered professional engineer, California.

RATCLIFFE, RONALD V. (1963) Music
B.A., University of Washington, 1956; M.M., University of Southern California, 1958.
Experience: Piano teacher; assistant professor, The College of the Ozarks; music director, Music-Go-Round Theater; buyer, The Boeing Company.

REA, JOHN B. (1969) Art
Experience: Self-employed silversmith; instructor, Colorado State University; graduate instructor, Rochester Institute of Technology.

REAGAN, EVELYN D. (1946) Library
B.S., College of St. Catherine, 1943.
Experience: Librarian, College of the Holy Cross, Worcester, Massachusetts; librarian, Charity Hospital School of Nursing, New Orleans; cataloger, California State Polytechnic College.

REECE, OSCAR E. (1956) Crops Science
B.S., Kansas State College, 1931; M.S., University of Minnesota, 1945; Ph.D., 1949.
Experience: Teacher, Utah high schools; agricultural instructor and critic teacher, California high schools.

REIF, GARY D. (1967) Dairy Science
B.S., Kansas State University, 1962; M.S., University of Nebraska, 1964.
Experience: Research assistant, University of Nebraska; research and teaching assistantship, director of dairy and food products analysis laboratory, Iowa State College.

Experience: Technical sales and service, 3M Company; assistant professor and department chairman, West Virginia Institute of Technology; assistant foreman, Continental Can Company; compositor and pressman, Clark-Guilfoyle Company; graphic arts consultant, R. A. Pettengill Co.

REMUND, CLIVE O. (1946) Agricultural Engineering
B.S., Utah State Agricultural College, 1931.
Experience: Teacher, Utah high schools; agricultural instructor and critic teacher, California high schools.

REYNOLDS, ROBERT G. (1963) Audio-Visual
B.P.A., Art Center School, Los Angeles, 1962; graduate study, California State Polytechnic College.
Experience: Artist, Creative Arts Studio, San Luis Obipso; free-lance illustrator-painter, Los Angeles and San Luis Obipso.
Faculty and Staff

REYNOLDS, R. WALLACE (1953) - Engineering Technology
B.S., California (Pa.) State Teachers College, 1940; M.S., Purdue University, 1946; additional graduate study, University of Pittsburgh, University of Southern California.
Experience: Assistant educational adviser, Civilian Conservation Corps; weight engineer, Douglas Aircraft Company; ordnance engineer, Naval Ordnance Laboratory; instructor, Purdue University; head, engineering drawing, Washington and Jefferson College; assistant professor, University of Santa Clara; instructor, West Coast University, University of California at Los Angeles, part-time; engineering designer, Hughes Aircraft Company; consulting work in tool design and machine design.

REYNOLDS, WINIFRED (1968) - Child Development
B.A., Ohio State University, 1931; M.S., 1934.
Experience: Graduate assistant, Ohio State University; head teacher, Neighborhood Settlement House, Detroit; instructor in child development and head nursery school teacher, University of Tennessee; assistant professor and director of nursery school, San Jose State College, Texas Woman's University; associate professor of child development and director of nursery school, Colorado State University.

RHOADS, HOWARD (1956) - Crops Science
B.S., Montana State College, 1951; M.S., 1952.
Experience: Fieldman, Great Western Sugar Co., Billings, Montana; instructor and assistant, Montana State College.

RICE, JAMES E. (1963) - Printing Technology and Management

RICE, WALTER E. (1965) - Economics
Experience: Assistant floor manager, Roos/Atkins; student teacher, College of San Mateo; tutor, San Francisco.

RICH, GLENN W. (1953) - Foreign Student Adviser
Experience: Journeyman carpenter, U.S. Coast Guard; instructor, California State Polytechnic College.

RICHARDS, CARLOS C. (1946) - Engineering Technology
B.A., Santa Barbara State College, 1942.

RICHARDS, THOMAS L. (1969) - Biological Sciences
Experience: Technical and research assistant, California State College, Long Beach; research assistant, NDEA fellow, Ira C. Darling Marine Laboratory, Walpole, Maine.

RICHARDSON, JOY O. (1948) - Mechanical Engineering
B.S., University of Nebraska, 1940; M. of Engr., Yale University, 1942.
Experience: Instructor, Yale University, New Haven Junior College, New Haven, Connecticut; instructor, Orland High School, Orland, California; machine designer, Rockbestos Products Corporation; engineer, Marlin Firearms Company; Bristol Aeronautical Corporation, New Haven, Connecticut; engineer, Johns Manville Corporation, Tilton, New Hampshire; vice president and treasurer, Richardson Industries, Incorporated, East Haven, Connecticut. Registered professional engineer, California.

B.S., Ohio State University, 1950; M.S., 1954; Ph.D., 1958.
Experience: Assistant Herdsman, research assistant, in charge of federal dairy breeding program, Ohio State University. Dairy Department, California State Polytechnic College, San Luis Obispo; Extension Dairy Specialist, Ohio State University.

388
RIDER, ROL W., JR. (1960) .. Business Administration
B.A., University of California, 1941; M.A., 1967.

RIEDLSPERGER, MAX E. (1969) .. History
Experience: Teacher, Eastern High School, Bay de Noc Community College; teaching associate, University of Colorado; instructor, Temple Buell College; Fulbright Scholar, University of Salzburg.

RIHAL, SATWANT S. (1969) .. Architecture
B.S., University of Delhi, India, 1961; M.S., University of Minnesota, 1964; Ph.D., University of New Mexico, 1969.
Experience: Civil engineer, Central Water and Power Commission, New Delhi; structural engineer, T. T. Burnett Engineering Inc., Albuquerque, New Mexico; instructor, Univ. of New Mexico; consultant, Hydro-Conduit Corporation, Albuquerque, New Mexico.

RITSCHARD, RONALD L. (1965) ... Biological Sciences
B.S., California State Polytechnic College, 1961; M.S., Oregon State University, 1964; Ph.D., 1966.
Experience: Teaching and research assistant, Oregon State University; U.S. Marine Corps.

RITTENHOUSE, EUGENE A. (1949) Director, Placement and Financial Aids
B.S., University of California, Los Angeles, 1947; M.B.A., University of California, Berkeley, 1948; additional graduate study, University of California, Berkeley.
Experience: Bookkeeper, J. J. Elmore Company, Brawley; broker's clerk, Dean Witter & Co., Los Angeles; purchasing, War Department, USAAF, Trinidad, B.W.I.; U.S. Navy; instructor, social sciences; administrative assistant for personnel, office of the president, California State Polytechnic College.

RIZZO, FRED F. (1969) .. English
Experience: Assistant professor, University of Denver; graduate assistant and instructor, University of Oklahoma.

ROACH, DAVID M. (1966) .. Physics
B.S., South Dakota School of Mines and Technology, 1961; M.S., 1963.
Experience: Graduate assistant, instructor, South Dakota School of Mines and Technology; instructor, Wisconsin State University, Northrop Institute of Technology; engineer, Leach Corporation.

ROBERTS, ALICE E. (1963) .. Education
B.S., Milwaukee State Teachers College, 1940; M.S., University of Wisconsin, 1962.
Experience: Elementary school teacher, West Bend, Wisconsin; participant in Wisconsin Education Improvement Program; leader in team teaching and intern program.

ROBERTS, BRUCE H. (1968) ... Economics
Experience: U.S. Army; security trader, Blyth and Company, San Francisco; clerk, University of California, Berkeley; student teacher, Merritt College; research assistant, graduate assistant, lecturer, San Francisco State.
ROBINSON, ALEXANDER H. (1969) ..Mathematics
Experience: Research engineer, General Electric; teaching and research assistant, University of California, Berkeley; research assistant, Bell Labs; tutor, Bolzano, Italy; translator, United States Department of Commerce.

RODIN, ROBERT J. (1953) ..Biological Sciences
A.B., University of California, 1943; Ph.D., 1951.
Experience: Assistant botanist, University of California Herbarium; ranger naturalist, Yosemite National Park; administrative clerk, U.S. Marine Corps; expedition botanist, University of California African Expedition; teaching assistant, University of California; lecturer for extension division, University of California; professor of biology, Forman Christian College, Lahore, Pakistan; visiting assistant professor, University of California, Santa Barbara; lecturer, National Science Foundation Summer Science Program; visiting assistant professor and National Science Foundation fellow, Cornell University, New York.

ROEST, ARYAN I. (1955) ..Biological Sciences
B.S., University of Virginia, 1945; B.S., Oregon State College, 1948; M.S., 1949; Ph.D., 1954.
Experience: Officer, U.S. Navy; teaching and research assistant, Oregon State College; assistant professor, Central Oregon College; forester, Oregon State Board of Forestry; lecturer, Extension Division, University of California; visiting assistant professor, University of California, Santa Barbara; lecturer, National Science Foundation Summer Science Program.

ROGALLA, JOHN A. (1959) ..Agricultural Management
B.S., California State Polytechnic College, 1956; M.S., Cornell University, 1958; Ph.D., Cornell University, 1968.
Experience: Teaching and research assistant, Department of Agricultural Economics, Cornell University; farm management consultant; material control analyst, Ryan Aeronautical Company; U.S. Air Force.

ROGERS, LEO E. (1954) ..Engineering Technology
B.S., California State Polytechnic College, 1950.
Experience: Instructor, San Luis Obispo High School; engineering aid, Division of Highways, San Luis Obispo.

ROHNER, J. WELDON (1964) ...Business Administration
B.A., Arizona State College, 1934; graduate study, University of Utah, Arizona State College.
Experience: Teaching fellow, University of Utah; accountant, Rogers and Bailey; training supervisor, Standard Oil of New Jersey; special agent, Federal Bureau of Investigation.

ROLLINGS, DAVID R. (1968) ...English
A.B., University of Louisville, 1948; M.A., University of Michigan, 1949.
Experience: Assistant professor, Wisconsin State University, University of Puerto Rico, East Kentucky State College, Wisconsin State College.

ROMNEY, JOSEPH B. (1969) ..History
Experience: Musician, Utah Symphony Orchestra; research clerk, Utah Supreme Court; assistant, Utah State Attorney General; lawyer, Romney & Boyer; teaching assistant, University of Utah.

ROSEN, ARTHUR Z. (1953) ...Physics
A.B., University of California, 1941; Ph.D., 1952.
Experience: Physicist, University of California Radiation Laboratory; U.S. Navy; teaching and research assistant, University of California; lecturer, University of California, Santa Barbara College.
Faculty and Staff

ROSKE, MILDRED E. (1967) Home Economics
Experience: Interior designer, Sherman Oaks; teaching assistant, instructor, University of California; teacher, adult education, Los Angeles City Schools; instructor, Rochester Institute of Technology; teacher, Oxnard Evening School.

RUSSELL, CHARLES R. (1968) Associate Dean, School of Engineering and Technology
B.S., Washington State College, 1936; M.S., California Institute of Technology, 1946; Ph.D., University of Wisconsin, 1941.
Experience: Section head, General Motors Corp., U.S. Atomic Energy Commission; program administrator, Navy Bureau of Ordnance; engineer, Procter and Gamble, Dow Chemical. Registered professional engineer, California, Michigan, Virginia, and District of Columbia.

RUSSELL, JOHN G. (1968) Music
Experience: Instructor, Fresno State College; teacher, Laton Union High School, Chico Senior High School; assistant professor, Chico State College.

SAAM, PATRICIA (1966) Home Economics
B.S., College of St. Catherine, St. Paul, Minnesota, 1950; graduate study, University of Minnesota; California State Polytechnic College.
Experience: Research-pediatrics dietitian, University of Minnesota; head dietitian, Paso Robles War Memorial Hospital, Sierra Vista Hospital; dietitian, dining hall, and part-time lecturer, California State Polytechnic College.

SABTO, JACOB (1968) Electronic Engineering
Experience: Lecturer, City College of New York and Institute of Technology, Hoboken, New Jersey; Adjunct Professor, Newark College of Engineering; development engineer, I.T.T., Nutley, New Jersey; technical staff, Bell Telephone Laboratories, Holmdel, New Jersey.

SALO, GLENN W. (1955) Agricultural Engineering
B.S., Montana State College, 1950; M.S., University of Idaho, 1955.
Experience: Shops officer, U.S. Air Force; instructor and assistant agricultural engineer, University of Idaho; Research Fellow, University of Idaho.

SAMPSON, DEWITT F. (1961) Food Industries Department
Experience: Research chemist, American Can Company, Maywood, Illinois; district manager of research, Portland, Oregon, Seattle, Washington, San Francisco; general manager of technical service.

SANDERSON, JAMES D. (1967) Physical Education and Athletics
Experience: Teacher and coach, Tulare Western High School, Tulare, and Sierra High School, Tollhouse.

SANDLIN, DORAL R. (1969) Aeronautical Engineering
B.S., U.S. Naval Academy, 1954; M.S., Air Force Institute of Technology; additional graduate study, University of Arizona.
Experience: Flight test maintenance officer and pilot, U.S. Air Force; missile branch chief, Holloman Air Force Base, New Mexico; chief, aeromechanics branch, Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio.

SANKOFF, LEO (1946) Poultry Industry
B.S., California State Polytechnic College, 1942; M.A., 1956.
Experience: Agricultural instructor, Fillmore High School.
SAVEKER, DAVID R. (1968) ... Architecture
A.B., Stanford University, 1941; Certificate Naval Architecture, U.S. Naval Academy Post Graduate School, 1942; M.S., Naval Architecture & Marine Engineering, Massachusetts Institute of Technology, 1946; Certificate Naval Warfare, U.S. Naval War College, 1959; additional graduate study, California State Polytechnic College, 1968–69.
Experience: Engineering duty officer, officer in charge of Underwater Explosives Research Division, Norfolk Naval Shipyard, nuclear test program officer, new construction and ship repair, plant staff (maintenance), senior management and command duties, U.S. Navy.

SCALES, HARRY H. (1958) ... Education
Experience: Teacher and counselor, Santa Barbara Junior College; associate professor and consultant to industry and schools, Michigan State University; aerial navigation training, U.S. Navy; teacher and guidance director, Redlands High School; director of research, Arizona State Department of Education; teacher, Superior and Safford, Arizona, public schools.

SCHEFFER, PAUL E. (1964) .. Industrial Engineering
B.M.E., University of Minnesota, 1947; M.S., University of Southern California, 1959.
Experience: Chief industrial engineer, Crane Company; senior industrial engineer, U.S. Rubber Company; engineer, Appraisal Service Company. Registered professional engineer, California.

SCHROEDER, WALTER P. (1957) .. Head, Education Department
B.S., Michigan State University, 1940; M.A., 1947; Ph.D., 1953.
Experience: Three years technical and management work in agriculture, business and industry; teacher, supervising teacher, and administrator in junior and senior high schools and unified districts, assistant professor, vocational education and education, Michigan State University; assistant placement director, Michigan State University.

SCHWARTZ, KENNETH E. (1952) ... Director, School of Architecture and Environmental Design
B. Arch., University of Southern California, 1952; additional graduate study, Pennsylvania State, Rensselaer Polytechnic Institute.
Experience: Draftsman, Douglas Aircraft Company; draftsman-designer, various Los Angeles architectural firms; private practice, San Luis Obispo; San Luis Obispo Planning Commission; Mayor, San Luis Obispo. Registered architect, California.

SCOTT, CHESTER H. (1952) .. Mathematics
B.A., Municipal University of Wichita, 1938; electronics diploma, U.S. Navy, 1945; M.S., Montana State College, 1950; additional graduate study, Stanford University.
Experience: Instructor, Sheridan High School, Wyoming; instructor, mathematics and navigation, Civilian Pilot Training School; counselor, Y.M.C.A.; instructor, mathematics, electronics, U.S. Navy; assistant professor, mathematics; Montana School of Mines; statewide counselor, University of Montana.

SCOTT, JACK F. (1967) .. Agricultural Management
Experience: Director of Vocational Agriculture, Galt Joint Union High School, Galt.

SCRUGGS, B. L. (1967) ... Social Sciences
A.B., Washburn University, 1960; graduate study, University of Kansas.
Experience: United States Naval Reserve; captain, United States Army; research analyst, Legislative Economy and Efficiency Commission; research associate, League of Kansas Municipalities; training coordinator, Governmental Research Center, instructor, Washburn University.

SEABERG, DUANE O. (1965) .. Agricultural Management
Experience: Farming; instructor, Ferndale Union High School.
SEEBER, GLENN E. (1954)............................Welding and Metallurgical Engineering
Experience: Instructor in biology and welding, Lassen Union High School and
Junior College; welder and foreman, Interstate Steel Co., Chico; welder, Ande-
son's Welding Shop, Chico; welder and foreman, Pollock Shipbuilding Corp.,
Stockton; locomotive fireman, Western Pacific Railroad.

SERVATIUS, OWEN L. (1947).........................Head, Business Administration Department
supervising clerk, California State Polytechnic College.

SEVIER, BARBARA (1969)..............................Physical Education
B.A., San Jose State College, 1949; M.A., Columbia University, 1952; Ph.D.,
University of Utah, 1969.
Experience: Instructor and acting chairman, women's physical education, Cali-
fornia Western University; instructor, Monterey Peninsula College; instructor and
head, girl's physical education, Armijo Union High School, Fairfield; instructor,
girl's physical education, Porterville Union High School.

SHAFFER, PAULINE (1961).............................Home Economics
B.S., Juniata College, 1953.
Experience: Southern Counties Gas Company, Ventura; dietitian, California State Polytechnic College.

SHAH, RAMESH T. (1969)............................Mechanical Engineering
B.E., Maharaja Sayajirao University of Baroda, India; Dr. Ing., Hochschule Fur
Schwermaschinenbau, Magdeburg, Germany, 1959.
Experience: Professor, reader, lecturer, and demonstrator, Faculty of Technology and Engineering, University of Baroda, Baroda, India.

SHAW, MARY E. (1963)................................Placement Supervisor
B.S., Texas Women's University, 1941.
Experience: Service representative, Pacific Telephone, San Luis Obispo; social
worker, San Luis Obispo County Welfare Department; receptionist, intermediate
clerk, placement interviewer, California State Polytechnic College.

SHEIKHOLESLAMI, HABIB (1967)....................Foreign Language and Linguistics
B.S., Fresno State College, 1959; A.B., 1960; M.A., California State Polytechnic
College, 1961; M.A., University of California at Los Angeles, 1966.
Experience: English tutor, project "Upward Bound," University of California;
instructor, Vietnamese Leadership/Scholarship Program, California State Poly-
technic College.

SHERMAN, ROGER L. (1961)..........................Business Administration
A.B., Ohio University, 1949; M.S., 1950.
Experience: Personnel representative, United Airlines; personnel supervisor, Boe-
ing Airplane Company; employment and training manager, Hiller Aircraft Corpora-
tion; personnel manager, Dalmo Victor; personnel manager, Hazel Atlas Glass
Company; personnel representative, Lockheed Aircraft Corporation; assistant pro-
fessor of business, Texas A. & M.; extension instructor, University of California at
Los Angeles and University of Washington; instructor in business management,

SHIRK, CARL D. (1968)..............................Medical Officer
B.S., University of California, Berkeley; M.D., University of California Medical
Experience: Internship, San Diego County Hospital; residency, Stanislaus County
Hospital; general practice, Oakdale, California.

SHIRLEY, DELBERT W. (1963).........................Agricultural Education
B.S., Oregon State University, 1959; M.Ed., 1963; Ph.D., Michigan State University,
1968.
Experience: Vocational agriculture instructor, Siletz High School, Siletz, Oregon;
graduate assistant, Oregon State University.
Faculty and Staff

SHRODE, L. IRENE (1965) ... Graduate Nurse

R.N., Knapp College of Nursing, Santa Barbara.
Experience: Warren State Hospital, Warren, Pennsylvania; Sierra Vista Hospital, San Luis Obispo.

SILVER, GORDON A. (1964) .. Physics

B.S., University of California, Los Angeles, 1959; M.S., 1961; additional study, University of California, Berkeley.
Experience: Instructor, American Television Labs, Los Angeles Valley College; research engineer, Electrosonic Systems, Inc.; associate investigator, Children's Hospital, Los Angeles, California.

SIMMONS, JAMES E. (1966) .. Associate Dean, School of Applied Arts

B.A., University of California, Santa Barbara, 1959; M.A., University of Wisconsin, 1960; Ph.D., 1966.
Experience: Teaching assistant, University of Wisconsin; instructor, Wisconsin State University.

SIMMONS, ORIEN W. (1961) .. Welding and Metallurgical Engineering

B.S.E., University of Michigan, 1935; M.S.E., 1948.
Experience: Metallurgist, Carnegie-Illinois Steel Company; Packard Motor Car Company; instructor, Rose Polytechnic Institute; officer U.S. Navy; research engineer, Battelle Memorial Institute; senior research engineer, Frankford Arsenal; Rem Cru Titanium Company and Crucible Steel Company; Climax Molybdenum Company; registered professional engineer, Ohio and California.

SMITH, ELIZABETH M. (1968) Library

B.A., University of California, Los Angeles, 1929; Graduate, Library School of the Los Angeles Public Library, 1930.
Experience: Librarian, head librarian, Tropico Branch, Glendale Public Library.

SMITH, GLORIA (1968) .. Counselor

A.B., Howard University, Washington, D.C., 1948; M.A., 1950; additional graduate study, University of Redlands.
Experience: Teacher, Riverside; English department head, Santa Maria Joint Unified High School District.

SMITH, HOWARD F. (1968) ... Economics

A.B., Wayne State University, 1940; M.B.A., Harvard University, 1942; M.A., American University, 1952; Ph.D., 1963.
Experience: Economist, War Production Board; economic advisor, supreme commander for Allied Powers, Tokyo and Okinawa; international economist, Department of State; foreign service officer, Thailand and Ceylon; member of Presidential Study Mission to Korea; deputy director, U.S. Aid Mission, Congo; coordinator, U.S. Aid to Africa, A.I.D.; member, U.S. delegations to Economic Commission for Asia and Far East and Economic Commission for Africa conferences; director, Ghana Aid Program, officer, U.S. Army.

SMITH, J. MURRAY (1960) ... Speech

Experience: Instructor in English and speech, Denver University, Michigan State University and Wichita University; technical director, Denver Civic Theater; president, The Knitter Company (mfg.), Denver; staff director, Pasadena Playhouse; officer, U.S. Marine Corps.
SMITH, M. EUGENE (1946) ...Head, History Department
A.B., University of California, 1934; M.A., 1937; Ed.D., University of Oregon,
1958; additional graduate study, University of California.
Experience: Instructor and coach, Piedmont High School, Piedmont; graduate
assistant, Universities of California and Oregon; officer, U.S. Army.

SMITH, NELSON L., III (1962) ...Industrial Technology
B.S., Lowell Technological Institute, 1960; M.S., 1962.
Experience: Senior systems analyst, quality control engineer, Raytheon Company,
Lowell, Massachusetts.

SMITH, WARREN T. (1952) ...Chief of Party, Thailand Project
B.S., University of California, 1943; M.S., University of California, Davis, 1953.
Experience: Forester, United States Forest Service; U.S. National Park Service;
stores, U.S. Navy (civilian); director of vocational agriculture and critic teacher,
Madera Union High School; Dean, School of Agriculture.

SNODGRASS, OLIVER T. (1967) ..Mathematics
B.S., Dakota Wesleyan University, 1924; M.S., University of Iowa, 1927; Ph.D.,
University of Missouri, 1937.
Experience: Principal, Bison High School, Wetonka Public Schools; instructor,
Purdue University, Montana School of Mines, University of Missouri; professor,
Yankton College, Western New Mexico University.

SORENSEN, L. ROBERT (1966) ..Psychology
B.A., Pomona College, 1948; M.A., Claremont Graduate School, 1951; Ph.D., 1966.
Experience: Assistant to dean of students, Pomona College; lecturer, assistant
director Industrial Relations Center, administrative assistant Jet Propulsion Lab, and
associate director of development, California Institute of Technology; assistant in
development, assistant dean, Claremont Graduate School.

SPARLING, SHIRLEY R. (1963)Biological Sciences
B.S., Iowa State College, 1950; M.S., 1951; Ph.D., University of California, 1956;
additional graduate study, University of Michigan, Stanford University.
Experience: Instructor, Central College; lecturer and instructor, University of
British Columbia; instructor and assistant professor, University of California at
Santa Barbara; University of Oregon Institute of Marine Biology.

SPEED, CYNTHIA A. (1969) ..Mathematics
Experience: Teaching assistant, University of California, Berkeley; teacher, Sac-
ramento City Unified School District; lecturer, Sacramento State College.

SPENCER, RUTH G. (1967) ..Library
B.A., Milwaukee-Downer College, 1938; B.L.S., University Library of Chicago,
1945; additional graduate study, University of Wisconsin.
Experience: Cataloger and reference librarian, Milwaukee Public Library; librar-
ian, U.S. Public Health Service, Cincinnati; cataloger, Northrop Aircraft; reference
librarian, Los Angeles Public Library.

STAHL, VERLAN H. (1968) ..Foreign Language and Linguistics
B.A., College of the Pacific, 1950; M.A., Florida State University, 1955; Ph.D.,
University of Madrid, 1969.
Experience: American program officer, Fulbright Commission and in-service en-
gineer, Standard Electric Co., Madrid; instructor, Wake Forest College, Winston-
Salem; teaching assistant, Florida State University; secretary to Vice President,
W.B. Camp & Sons, Inc., Bakersfield.

STALLARD, MARY L. (1965) ..Physical Education
Experience: Instructor, Hamilton Junior High, Fresno; teaching assistant, Uni-
versity of Washington.

395
STANSFIELD, WILLIAM D. (1963) .. Biological Sciences
B.S., California State Polytechnic College, 1953; M.A., 1959; M.S., University of
California, Davis, 1962; Ph.D., 1963.
Experience: Cadet teacher, Chaffey Union High; line officer, U.S. Naval Reserve;
vocational agriculture teacher, Fortuna Union High School; teaching assistant and
research assistant, University of California.

STEARNS, JOSEPHINE S. (1969) ... Child Development
B.S., University of New Hampshire, 1958.
Experience: Nursery school teacher, Lansing, Michigan; associate 4-H Youth
Development Agent, Milford, N.H.; utility demonstrator, Malden, Massachusetts.

STECHMAN, JOHN V. (1960) .. Animal Science
B.S., University of California, Davis, 1957; M.S., 1960.
Experience: U.S. Forest Service; U.S.D.A., Agricultural Research Service; laboratory
assistant, University of California; biological assistant, U.S. Army.

STEELE, F. RAYMOND, JR. (1968) ... Head, Food Industries Department
B.A., California State Polytechnic College, 1956; M.S., Cornell University, 1967;
Ph.D., 1968.
Experience: Teaching assistant, University of Southern California; division man-
gager, Sears Roebuck and Co.; brewer, Pabst Brewing; instructor, California State
Polytechnic College; participant, Academic Year Institute, radiation biology, and
research assistant, Department of Food Science, Cornell University; naval aviator,
U.S.N.R.

STEFANAC, JOSEPH B. (1958) ... Computer Science & Statistics
B.S., U.S. Naval Academy, 1926; M.S., Purdue University, 1958.
Experience: Captain, U.S. Navy (retired); marine engineering design, Bureau of
Ships, Navy Department; engineering and command duties, U.S. Navy ships; mathe-
matics instructor, Purdue University; participant National Science Foundation
Institute, Stanford University, 1960.

STEUCK, FRED H. (1947) ... Electronic Engineering
B.S., Iowa State College, 1937.
Experience: Engineer, Nebraska Power Co.; manager, O'Brien Co.; Rural Electric
Co-op., Iowa; instructor, Iowa State College; officer, U.S. Navy; registered profes-
sional engineer, California.

STOFFEL, EDWARD O. (1957) .. Mechanical Engineering
B.M.E., University of Santa Clara, 1950; M.E., University of Santa Clara, 1955;
M.S.M.E., Oregon State University, 1968.
Experience: Engineer, Autonetics, Aerojet-General, Northrup Aircraft; Robert-
shaw-Fulton Controls, Norris-Thermador Corp.; chemist, U.S. Industrial Chemicals;
registered professional engineer, California.

STONER, HOWARD F. (1960) .. Mechanical Engineering
B.S., U.S. Naval Academy, 1932; M.S., Massachusetts Institute of Technology, 1941.
Experience: U.S. Navy, operations officer for U.S. submarines; supervisor of ship-
building, Electric Boat Co.; repair and construction superintendent, Mare Island
Shipyard; production officer, Long Beach Naval Shipyard.

STONER, NEALE (1969) ... Physical Education
B.A., California State College, Fullerton, 1962; graduate study, San Diego State
College.
Experience: Assistant supervisor of physical education, University of California,
San Diego; business service officer, California State College, Fullerton; U.S. Army.

STOOKEY, ELLEN T. (1961) ... Home Economics
B.S., University of Illinois, 1943; M.A., 1950; additional graduate study, Stanford
University.
Experience: Elementary teacher, Illinois; vocational home economics teacher, Illinois;
supervising teacher, University of Illinois; teacher trainer, University of Illinois;
special service, U.S. Army Air Force; regional supervisor, Bureau of Home-
making Education, California State Department of Education.
STRASSER, J. EDWARD (1960) ...Industrial Technology

STRAUSS, L. HARRY (1961) ..College Librarian
B.S., George Williams College, 1935; M.A., Graduate Library School, University of Chicago, 1942; additional graduate study, University of Michigan.
Experience: Librarian, George Williams College; Chicago College of Osteopathy; Northwestern Michigan Junior College; instructor in audio-visual education, University of Oklahoma; audio-visual consultant, National Council of the Y.M.C.A.; executive secretary, Commission on Motion Pictures in Adult Education; superintendent of schools, Rapid City and Cedarville, Michigan.

STREICHERT, GRETCHEN (1958)Home Economics
B.S., Oregon State College, 1936; M.S., 1951.
Experience: Teacher, high schools; home adviser, University of California Agricultural Extension; nursery school supervisor and instructor, Oregon State College; instructor, Modesto Junior College; personnel field counselor, Oregon Shipbuilding Corporation; teacher-counselor, Oregon State School for Girls.

STROHMAN, ROLLIN D. (1969) ...Agricultural Engineering
B.S., University of Illinois, 1962; M.S., 1965; Ph.D., Purdue University, 1969.
Experience: Research Engineer, John Deere Company; Agricultural Engineer, USDA, ARS, WORDD.

STUART, JOHN S. (1964) ..Architecture
B.Arch., Texas Technological College, 1950; additional graduate study, Pennsylvania State University, MIT.
Experience: Private practice, Schmidt & Stuart; designer and supervisor, Atcheson & Atkinson, Architects. Registered architect and registered engineer, Texas.

B.S., Purdue University, 1960; M.S., Rensselaer Polytechnic Institute, 1962; additional graduate study, Purdue University, University of California, Berkeley, Rensselaer Polytechnic Institute.
Experience: Teaching assistant, Purdue University; engineer, Knolls Atomic Power Laboratory; instructor, California State Polytechnic College, San Luis Obispo.

SULLIVAN, GERALD J. (1968) ...English
Experience: Instructor, University of Wisconsin, University of Arizona; teaching assistant, University of Oklahoma; assistant professor, University of North Texas State.

SUMMERS, MARY JO (1962) ..Graduate Nurse
R.N., University of Oregon, Eugene, 1939; B.S., 1939.
Experience: Los Angeles County Hospital.

SWANSON, CLIFTON E. (1967) ...Music
B.A., Pomona College, 1963; M.M., University of Texas, 1965; additional graduate study, University of California.
Experience: Teaching assistant, University of Texas, University of California; visiting assistant professor, Portland State College; member, Group for Contemporary Music, Portland.

SWEET, MARY DOLORES (1969)Computer Science & Statistics
Experience: Assistant instructor, University of Missouri; instructor, Northern Arizona University, Woodbury College.
SYKES, ROBERT N. (1969) .. Mechanical Engineering
B.S., University of North Dakota, 1962; M.S., 1965.
Experience: Engineer, Babcock and Wilcox Company, Research Center, Alliance, Ohio; engineer and draftsman, Saskatchewan Power Corporation, Saskatchewan, Canada; instructor, University of North Dakota; engineer, Bechtel Corporation, San Francisco.

SZIGETHY, NICHOLAS (1961) .. Library
Ph.D., Erzébet University, Pecs, Hungary, 1940; M.L.S., Columbia University Library School, 1958.
Experience: Columbia University School of Business Library; cataloger, Cornell University Library; cataloger, University of Nevada Library.

TALBOTT, LAURENCE F. (1966) .. Industrial Technology
A.B., San Diego State College, 1951; M.B.A., University of Southern California, 1965; additional graduate study, University of Southern California.
Experience: Manager Test Quality Control, Rocketdyne; plant engineer, Space and Information Systems, Division North American Aviation, Inc.; chief facilities engineer, chief industrial engineer, plant engineer, Autonetics; electrical engineer, engineer, Convair, San Diego; C. F. Braun and Company, Alhambra; sales engineer, California Electric Works, San Diego. Registered professional engineer, California.

TELEW, FUAD H. (1960) .. Acting Head, Economics Department
B.S., College of Commerce and Economics, Baghdad, Iraq, 1950; M.A., University of Southern California, 1954; Ph.D., 1959.
Experience: Accountant, Engineering Department, Iraqi State Railways; supervisor, Testing Bureau, University of Southern California; teaching assistant and lecturer, University of Southern California.

THOMAS, ARTHUR L. (1969) ... Chemistry
A.B., Columbia College, 1951; Ph.D., Princeton University, 1956.

THOMAS, GUY H., JR. (1968) .. Printing Technology and Management
B.S., California State Polytechnic College, 1953.
Experience: Equipment technician, California State Polytechnic College; chief machinist, Union-Tribune Publishing Company, San Diego; head machinist, Magoffin Typographers, Hollywood and Evening Outlook, Santa Monica; machinist, Chicago Sun-Times; field engineer, Mergenthaler Linotype Company, Chicago and San Francisco.

THOMAS, JOHN W. (1968) .. Biological Sciences
B.A., Los Angeles State College, 1957; Ph.D., University of Southern California, Los Angeles, 1968.
Experience: Chemist, Atkinson Labortory; public health microbiologist, Los Angeles City Health Department; teacher, Durate Unified School District; research associate, University of Southern California.

THOMSON, DAVID H. (1946) .. Biological Sciences
B.S., University of Arizona, 1944, M.A., Claremont Graduate School, 1948; additional graduate study, Oregon State College and University of Oregon.
Experience: Laboratory instructor, Pomona College; ranger-naturalist, Sequoia National Park.

THRASHER, FRANK P. (1963) .. Crops Science
B.S., Montana State College, 1951; M.S., 1963.
THURMOND, WILLIAM (1951) .. Biological Sciences
A.B., University of California, 1948; M.A., 1950; Ph.D., 1957.
Experience: Instructor, San Mateo Junior College; associate in zoology, University of California; instructor, summer session, University of California, 1957-59; Director, National Science Foundation, Summer Science Training Program for secondary students, California State Polytechnic College.

TICE, RUSSELL L. (1965) .. Chemistry
B.S., Marshall University, 1960; Ph.D., University of California, Los Angeles, 1965.
Experience: Teaching and research assistant, University of California, Los Angeles; U.S. Navy.

TIMONE, BARNEY R. (1969) .. Assistant to the Dean of Students
Experience: Teacher, Chico Unified School District; head resident and placement interviewer, Idaho State University.

TODD, WILLIAM A., Capt. (1969) .. Military Science
Experience: Command and staff assignments in U.S. Army Corps of Engineers in Europe, Vietnam and Korea.

TOONE, HARMON (1952) ... Head, Dairy Science Department
B.S., University of Idaho, 1940; M.A., California State Polytechnic College, 1956.
Experience: Director of vocational agriculture at Moreland, Ucon, and Firth high schools, Idaho; superintendent, Firth High School, Idaho; director of vocational agriculture, Riverdale High School; special supervisor, Bureau of Agricultural Education.

TOWNSEND, NEAL R. (1965) .. Mathematics
B.S., Wisconsin State College, 1953; M.A., San Diego State College, 1961; additional graduate study, Claremont Graduate School, University of Georgia, Purdue University.
Experience: Teacher, San Bernardino City Schools, Grossmont Union High School District; assistant professor, Wisconsin State University.

TREMBLY, DEAN (1961) ... Counselor
Experience: Industrial personnel consultant, Human Engineering Laboratory, Fort Worth, Texas; testing and counseling, University of Illinois.

TROUTNER, WILLIAM R. (1942) .. Crops Science
Vocational Certificate, California State Polytechnic College, 1934; B.S., University of California, Davis, 1938.
Experience: Agriculture instructor, Pomona High School and Junior College; agriculture instructor and critic teacher, San Luis Obispo Senior High School.

TRUEX, JOSEPH W. (1954) ... Printing Technology and Management
B.S., California State Polytechnic College, 1952; M.S., South Dakota State University, 1966.

LL.B, National Taiwan University, Republic of China, 1950; LL.M, Southern Methodist University, Dallas, Texas, 1957; B.S., Illinois Institute of Technology, Chicago, Illinois, 1964; M.S., 1966.
Experience: Judge, Taitung and Taichung District Courts; secretary and section chief, Justice Department, Republic of China; teaching assistant, Illinois Institute of Technology; test engineer, Northern Indiana Public Service Corporation, Hammond, Indiana; research and development engineer, Research and Development Division, Advance Ross Electronics Corporation, Addison, Illinois; assistant professor, Purdue University Calumet Campus, Hammond, Indiana.
Faculty and Staff

TURNER, PEARL (1951) -..-----------------------------..Library
A.B., San Jose State, 1937; M.S., University of Southern California, 1949; M.L.S.,
Texas Women's University, 1951; additional graduate study, University of Wash-
ington.
Experience: Teacher in elementary schools, Visalia, Los Angeles, Riverside; officer,
U. S. Navy.

UMBECK, JOHN R. (1968) ..Economics
Experience: Salesman manager, Westbend Company; salesman, Sparkleets Water;
cost analyst, Bank of America.

VANONCINI, LES (1965) ... Director, Alumni and Community Affairs
B.S., California State Polytechnic College, 1946; M.A., 1953; additional graduate
study, University of California, Davis, University of California, Berkeley, Univer-
sity of Southern California.
Experience: Director vocational agriculture, Santa Maria High School and Junior
College; director work education, Santa Barbara County Schools; director counseling
and guidance, Santa Maria High School; director adult education and dean,
evening division, Allan Hancock College.

VAN WYNGAARDEN, WILLEM L. (1965) ------- --------------- Physics
B.S., McMaster University, 1961; M.S., University of Manitoba, 1964; additional
graduate study, University of Manitoba.
Experience: Instructor, Methodist College.

VARNEY, ALVIN DAVID (1969) .. Engineering Technology
B.S., LeTourneau College, Longview, Texas.
Experience: Machinist, Krause Corporation, Hutchinson, Kansas, LeTourneau
College, Longview, Texas and U. S. Industries, Longview; trainee, Field Enter-
prises, Longview; product engineer, John Deere Company, Des Moines, Iowa, and
Vernon, California.

VOELTZ, HERMAN C. (1965) History
Experience: Instructor, 83 Div I and E School, Bad Ischl, Austria; instructor and
associate professor, Division of Continuing Education, University of Oregon; assist-
ant professor, Oregon State University; associate professor, Western New Mexico
University; U.S. Army.

VON WERLHOF, JAY C. (1967) .. History
B.A., University of California Berkeley, 1950; M.A., 1952; additional graduate
study, University of Southern California, Los Angeles.
Experience: Instructor, librarian, California School Fine Arts; instructor, College
Sequoias; archaeologist, University of California, Berkeley, Los Angeles; teacher,
librarian, Plumas Unified School District, Coast Joint Union; teacher, Siskiyou
School District; historical guide, San Simeon State Historical Monument; instructor,
Grossmont College; lecturer, Chico State College.

VORHIES, RALPH M. (1946) .. Crops Science
B.S., University of Missouri, 1938; M.A., 1941; Ed.D., 1964.
Experience: Agriculture instructor at Belton and Couch High Schools, Missouri;
instructor, Southeast State Teachers College, Cape Girardeau, Missouri; horticulture
adviser, USAID Guatemala; officer, U.S. Navy.

VOSS, LARRY R. (1968) ... Director of Personnel Relations
B.A., Sacramento State College, 1956; graduate study, Sacramento State College
and California State College at Los Angeles.
Experience: Placement supervisor, Sacramento State College; assistant personnel
officer, California State Department of Education, Sacramento; senior personnel
analyst, Chancellor's Office, Trustees of the California State Colleges, Los Angeles;
assistant director, U.S. Office of Education project: “Improvement of Personnel
Administration in State Education Agencies”, Los Angeles.
VRANA, RALPH S. (1966)
Physical Sciences
B.A., Columbia College, 1949; M.Ed., New York University, 1958; M.N.S., Arizona State University, 1963; additional graduate study, University of Wyoming, Marshall University; Yeshiva University; Arizona State University, University of Colorado.
Experience: Teacher, Boulder School, Rufust Consolidated School, Scarsdale Schools; graduate assistant, New York University; instructor, New Lincoln School, Gilliland Junior High School.

WAELTI, HENRY (1969)
Agricultural Sciences
B.S., Oregon State University, 1957; M.S., Purdue University, 1960; Ph.D. Iowa State University, 1967.
Experience: Product development engineer, John Deere Company, Moline, Illinois; maintenance supervisor, Western Farmers Association, Tacoma, Washington; associate professor, South Dakota State University, Brookings, S. Dakota; Registered Professional Engineer.

WAGNER, ORVIN E. (1969)
Physical Sciences
B.A., Walla Walla College, 1953; B.S., 1959; M.S., Arizona State University, 1963; Ph.D., University of Tennessee, 1968.
Experience: Teaching and research assistant, Arizona State University; manager of basic research, Electron Division, Controls Company of America; scientist, Lockheed Research Laboratories; instructor, Walla Walla College; NIH radiological health physics fellow, University of Tennessee and Oak Ridge National Laboratory; A.E.C. postdoctoral fellow at Oak Ridge National Laboratory.

WAHL, WILLIAM B. (1966)
English
B.A., San Francisco State College, 1953; M.A., 1954; additional graduate study, Stanford University.
Experience: Assistant instructor, San Francisco State College; student teacher, Balboa High School; teacher, Sequoia High School; instructor, College of San Mateo.

WAI, ANGLI (1967)
Child Development
Experience: Instructor, Berea College, Berea, Kentucky; teacher, State University of Iowa and Randolph Macon Woman's College.

WALKER, HOWARD D. (1957)
Chemistry
Experience: U.S. Public Health Service, postdoctorate fellow, American Meat Institute Foundation, University of Chicago; group leader, Veterans Hospital, Downey, Illinois; instructor, Northwestern University.

WALKER, ISAAC N. (1967)
English
B.S., Northwestern University, 1953; M.A., University of Texas, 1955; Ph.D., 1965.
Experience: Teaching assistant, special instructor, University of Texas; instructor, Southwest Texas State College; instructor, Del Mar College, Corpus Christi; assistant professor, North Texas State University.

WALKER, WALTER A. (1963)
Counselor
A.B., New School for Social Research, 1950; graduate study, New York University.
Experience: Supervising psychologist, Rockland County New York Center for Mental Health; psychotherapist, Rockland Consultation Center; certified psychologist, New York.

WALL, LEONARD W. (1969)
Physics
B.S., Louisiana Polytechnic Institute, 1963; Ph.D., Iowa State University, 1969.
Experience: Physical science aide, U.S. Waterways Experiment Station; laboratory assistant, Louisiana Polytechnic Institute; graduate teaching assistant and research assistant, Iowa State University; assistant professor, University of Kansas.
Faculty and Staff

WALTERS, DIRK R. (1969) ... Biological Sciences
B.S., Western Illinois University, 1965; M.A., Indiana University, 1966; Ph.D., 1969.
Experience: Teaching associate, Indiana University; instructor, Orange County (New York) Community College.

WARD, CLARENCE H. (1966) Physical Education
Experience: Recreation intern, correctional officer, California Men's Colony; summer swimming instructor, California State Polytechnic College.

WARD, WESLEY S. (1954) ... Architecture
B. of Arch., University of Southern California, 1953; additional graduate study, Spain.
Experience: Engineering assistant, Pacific Telephone and Telegraph Company; officer, U.S. Air Force; surveyor, City of Santa Ana; design draftsman, Benedict Beckler and Kochler, Architects and Engineers; construction supervisor, Everett E. Parks, Architect; registered architect, California.

WARTEN, RALPH M. (1968) ... Mathematics
B.S., Brooklyn College, 1957; M.S. Purdue University, 1959; Ph.D., 1961.
Experience: Research and teaching assistant, Purdue University; instructor, advisory mathematician, I.B.M. Corporation, Federal Systems Division; mathematician, I.B.M. Corporation, Scientific Center.

WATSON, HAROLD J. (1964) ... Chemistry
A.B., Princeton University, 1944; A.M., University of Illinois, 1948; Ph.D., 1950.
Experience: Assistant, University of Illinois; chemist, Texaco, Inc.; group leader, Dan River Mills, Inc., Chemical Consultant, Danville, Va.

WEATHERBY, JOSEPH N. JR. (1968) Social Sciences
Experience: International operations, Ford Motor Company; assistant professor, Bay de Noc College.

WEBB, JAMES L. (1969) ... Physical Education
B.S., University of North Dakota, 1962; M.S., 1963; Ph.D., University of Oregon, 1969.
Experience: Graduate assistant, University of Oregon; public school teacher, Staples, Minnesota, and Grand Forks, North Dakota; lifeguard, swimming and diving instructor, Hatton, North Dakota.

WEBER, BARBARA P. (1966) Home Economics
B.S., University of Nevada, 1951; M.A., California State Polytechnic College, 1968, additional graduate study, UCLA Extension, University of Nevada, California State Polytechnic College.
Experience: Instructor, Allan Hancock College, Evening Division.

Experience: Assistant mathematician, Brookhaven National Laboratory; computer systems analyst, Columbia University; computing systems consultant, Max Planck Institute; applied mathematician, ABT Associates, Inc.

WEBSTER, JAMES P., JR. (1965) Agricultural Engineering
B.S., California State Polytechnic College, 1953.
Experience: U.S. Army; engineering aid, junior civil engineer, and assistant highway engineer, California Division of Highways; field survey chief and project engineer, Garing, Taylor, and Associates, Arroyo Grande.
WEINSTEIN, STEPHEN T. (1969) .. Mathematics
Experience: Engineering planner and program analyst, North American Aviation, Space & Information Systems Division; teacher, Bell High School; instructor, East Los Angeles City College; teaching and research assistant, University of Southern California.

WEST, HERMAN (1964) .. Mechanical Engineering
B.S., Tufts University, 1934; M.S., Rensselaer Polytechnic Institute, 1962; additional graduate study, Rensselaer Polytechnic Institute.
Experience: Educational advisor, Civilian Conservation Corp; instructor, Biddeford High School, Hartford University; design analyst, Pratt Whitney Aircraft; research engineer, North American Aviation; president and treasurer, West Brothers Electrical Appliances.

WEST, HOWARD (1959) .. Associate Dean, Resources and Planning
B.A., Pepperdine College, 1956.
Experience: Apprentice reporter, Los Angeles Examiner; journalism instructor and acting director of public relations, Pepperdine College; editor, America's Builders; publications consultant, Southland Press; assistant to President, director, International Education.

WEST, JOHN W. (1968) .. Associate Dean, School of Agriculture and Natural Resources
B.S.A., University of Tennessee, 1947; M.S., 1948; Ph.D., Purdue University, 1951.
Experience: U.S. Army; assistant director of research, Security Mills, Knoxville, Tennessee; associate professor of Poultry Science, Mississippi State University; professor and head, Department of Poultry Science, Oklahoma State University.

WESTESEN, GERALD L. (1965) .. Agricultural Engineering
B.S., University of California, Davis, 1958; M.S., 1963.
Experience: Junior land and water use analyst, California State Department of Water Resources; engineer and superintendent, Clear Lake Water Company, Woodland; officer, U.S.A.R.

WHALEY, GLENN V. (1963) .. Library
Experience: Reference librarian, Drake University; librarian, Milwaukee Public Library.

WHALLS, MARVIN J. (1968) .. Soil Science
B.S., Michigan State University, 1941; M.S., 1947; additional graduate study, University of Michigan.
Experience: Fishery biologist, Hunt Creek Trout Research Station and research fellow, Institute for Fisheries Research, Michigan; associate fishery biologist, California.

WHARTON, WILLIAM M., JR. (1968) .. History
B.S., Loyola University, 1956; M.A., University of San Francisco, 1961; additional graduate study, University of California, Berkeley, University of South Africa.
Experience: Lecturer, Comboni College, Khartoum, Sudan; assistant professor, University of San Francisco.

WHEELER, ERNEST J., JR. (1969) .. Physical Education
B.A., University of Washington, 1961; M.S., University of Southern California, 1966.
Experience: Teacher and assistant basketball coach, Compton Junior College; high school coach and teacher, Anaheim.

WHEELER, ROBERT R. (1961) .. Animal Science
B.S., Colorado State University, 1952; M.S., 1955; Ph.D., Oregon State University, 1962.
Experience: Irrigated farming; ranching; graduate assistant and graduate fellow in animal nutrition, Oregon State University; Junior animal husbandman, Oregon Agricultural Experiment Station.
WHIPPLE, OMER K. (1956) .. Chemistry
A.B., Dartmouth College, 1936; M.A., Columbia University, 1938.
Experience: Biochemical research chemist, Long Island College of Medicine;
instructor in chemistry, Norwich University; research chemist, Vermont Bureau of
Industrial Research; professor of quantitative analysis, University of Tulsa; chemical
consultant, Tulsa, Oklahoma.

WHITAKER, LESLIE A. (1967) .. Chemistry
B.S., University of Denver, 1949; M.A., 1956; Ph.D., University of the Pacific,
1967.
Experience: Instructor, Littleton High School, Scottsbluff College, Cotley Col-
lege, College of the Desert; teaching assistant, University of the Pacific.

WHITE, MARY LOU (1961) .. Department Acting Head, Women's
Physical Education
B.S., Oregon State University, 1946; M.S., Washington State University, 1953.
Experience: St. Helens, Oregon, High School instructor; physical education in-
structor, Clark College, Vancouver; Washington.

WHITSON, MILO E. (1947) .. Head, Mathematics Department
Ph.B., Washburn College, 1937; M.A., George Peabody College for Teachers,
1940; Ed.D., University of Southern California, 1949.
Experience: Teacher and administrator, Kansas; officer, U.S. Navy; lecturer,
mathematics, University of Southern California.

WIGHT, HEWITT G. (1952) .. Chemistry
B.S., University of Utah, 1943; Ph.D., University of California, 1955.
Experience: Teaching assistant, University of Utah, St. Martin's College, and the
University of California; officer, U.S. Army.

WILD, FREDERICK G. (1964) .. Mathematics
B.S., U.S. Coast Guard Academy, 1932; M.A.T., Duke University, 1964.
Experience: Command of air stations at Salem, Massachusetts and Port Angeles,
Washington; chief of Coast Guard Intelligence.

WILEY, J. BARRON (1956) .. Education
B.S., University of Denver, 1940; M.B.A., 1948; Ed.D., Indiana University, 1955.
Experience: Accounting and business administration, various firms; officer, U.S.
Air Force; head, department of business education, Colorado Woman's College;
assistant professor of air science, Indiana University.

WILEY, RICHARD C. (1946) .. Head, Welding and Metallurgical Engineering Department
Special engineering courses, Stanford University; industrial arts training, San
Jose State College and University of California.
Experience: Master mechanic and welder, Utah Construction Company; welding
instructor, Sacramento Junior College; Palo Alto, San Francisco, and San Jose
school systems; senior welding engineer, Joshua Hendy Iron Works; field engineer,
Bechtel Corporation; welding metallurgy consultant, Westinghouse Corporation;
X-ray Engineering International; Linde Company, New York; registered profes-
sional engineer, California.

WILK, EDWARD A. (1966) .. Library
Experience: I.B.M. operator, Allstate Insurance Company; salesman, Arts Interna-
tional, Detroit, Michigan.

WILKS, MAURICE L. (1966) .. Architecture
B.Arch., Yale University, 1952.
Experience: Private practice, Utah, California, Oregon; consultant architect for
City of Hope Medical Center; project architect, Robert Kliegman and 20th Cen-
tury-Fox, Century City Studios; project architect and senior designer, Victor
Gruen Associates; design consultant, Chas. Matcham; designer, P. J. Ellerbrook and
Westcott & Mapes; assistant professor, University of Kansas; associate professor,
University of Utah. Registered architect, California, Ohio, Utah.
WILLIAMS, ROBERT E. (1957) .. Architecture
B.S., California State Polytechnic College, 1954.
Experience: Civil engineer-designer, California Division of Highways; civil engineer, Hornkohl Laboratories; President, Central Coast Laboratories. Registered engineer, California.

WILLIAMS, WAYNE T. (1968) .. Biological Sciences
B.S., San Diego State College, 1963; M.S., University of Minnesota, 1965; Ph.D., University of California, 1968.
Experience: Recreation aide, Public Information, U.S. Forest Service; teaching assistant, University of Minnesota; laboratory technician, University of California.

WILLIAMSON, DAVID G. (1968) .. Chemistry
B.A., University of Colorado, 1963; Ph.D., University of California at Los Angeles, 1966; postdoctoral fellow, National Research Council of Canada.
Experience: Research assistant, University of California; chemist, National Bureau of Standards, Boulder, Colorado.

WILLS, MAX THOMAS (1967) .. Chemistry
Experience: Chemist, Oil and Refining Co.; laboratory technician, General Mills Inc.; teacher and research assistant, University of Washington; research chemist, Shell Development Co.

WILLSON, IRWIN A. (1958) .. Education
B.A., University of North Dakota, 1930; M.A., University of Denver, 1940; additional graduate study, University of Denver, 1948-1958.
Experience: Teacher, high schools, North and South Dakota; principal and director of elementary education, Canon City, Colorado; counselor, University of Denver; director of curriculum, Stanislaus County Schools, Modesto; superintendent of schools, Fall River Mills; assistant professor, San Diego State College; associate professor, chairman of the division of education and psychology, director of teacher education, Westmont College.

WILSON, CHASE C. (1969) .. Head, Agricultural Management Department
B.S., Kansas State University, 1943; M.S., Wisconsin University, 1947; Ph.D., Missouri University, 1950.
Experience: Field representative, American Jersey Cattle Club; professor, North Dakota State University; director of research, Dannen Mills, Inc.; vice president, Feed Division, Farmland Industries, Inc.; dairy farmer and manager; U.S. Navy.

WILSON, HAROLD O. (1936, 1946) .. Administrative Vice President
B.S., University of California, 1932; graduate study, Fresno State College, University of California at Los Angeles.
Experience: Director of agriculture, Excelsior Union High School, Norwalk; instructor of agriculture and head, swine department, California Polytechnic; regional supervisor, agricultural education, State Department of Education, California; dean, Voorhis Unit, California State Polytechnic College; Executive Dean, San Luis Obispo.

WILSON, MALCOLM W. (1968) .. Education
Experience: Teacher, Nucla Grade School, Colorado; Shenandoah Junior High, Miami-Dade Junior College; Canyon del Oro Junior High, Tucson; graduate assistant, instructor, University of Arizona.

WILSON, WALTER D. (1969) .. Physics
B.S., University of California, Berkeley, 1957; Ph.D., 1966.
Experience: Researcher, University of California, Berkeley; member of technical staff, Aerospace Corporation, San Bernardino, and Aerojet General Nucleonics, San Ramon, California.

WINGER, DONLEY J. (1963) .. Electronic Engineering
Experience: Graduate assistant and instructor, University of North Dakota.
Faculty and Staff

WINKELVOSS, WULFF (1969) .. Architecture
Experience: Draftsman, architectural firms in Germany and France; designer for Werner Duttmann, West Berlin; teaching assistant, Graduate School of Fine Arts, University of Pennsylvania; designer for Geddes, Brecher, Qualls, and Cunningham, Philadelphia.

WINNER, C. PAUL (1940) .. Associate Dean, School Relations
B.S., Montana State College, 1931.
Experience: Director of vocational agriculture and critic teacher, Montana and California high schools; teacher trainer of agriculture education.

WINSLOW, CARLETON MONROE, JR. (1969) Architecture
B. Arch., University of Southern California, 1947; M.A., University of Southern California, 1959.
Experience: Private practice, California and Hawaii; associate professor of architecture, University of Southern California.

WIRSHUP, ARTHUR D. (1952) ... Mathematics
B.S., City College of New York, 1931; M.A., Columbia University, 1936; M.S., Oregon State College, 1951; Ph.D., 1963.
Experience: Teaching fellow in mathematics, Oregon State College; instructor, Multnomah College; radar officer, U.S. Army; National Science Foundation summer staff, Oregon State University.

WOLCOTT, VICTOR F. (1962) .. Business Administration

WOOD, EVELYN L. (1966) .. Library
Experience: Librarian, Barryton Consolidated Schools, Eastern Michigan University, Reedley Joint Union High School.

WOODWORTH, JOHN A. (1949) ... Mathematics
A.B., Hastings College, 1939; M.S., University of Southern California, 1948; additional graduate study, University of California, Berkeley.
Experience: Teacher-principal, Nebraska schools; instructor, Baldwin Park, Salinas, Santa Ana Army Air Base; physicist, University of California Radiation Laboratory; principal, Hopland Union High School.

WORK, LLOYD J. (1958) ... Physics
B.S., California State Polytechnic College, 1954; M.E., Harvard University, 1967.

WRIGHT, MARSHALL S., JR. (1960) Chemistry
B.A., Reed College, 1946, 1952; M.A., University of Oregon, 1949; additional graduate study, University of California, University of the Pacific, University of Oregon.
Experience: Teaching fellow, University of Portland, University of Oregon; research and teaching assistant, University of California, and Institute for Metabolic Research; instructor, Orange Coast College, visiting lecturer, Chapman College.

WU, SING-CHOU (1969) .. Computer Science & Statistics
B.A., National Taiwan University, 1959; M.S., Utah State University, 1966; additional graduate work, Colorado State University.
Experience: Teacher, Hwaliang Commercial School, Taiwan, China; teller, Bank of China; laboratory instructor and programmer, Utah State University; teaching assistant, Colorado State University.
YOUNG, CHESTER G. (1954) Assistant to the President
A.B., San Diego State College, 1936; M.S., Stanford University, 1954; additional
graduate study, University of California and San Jose State College.
Experience: Teacher and vice principal, Lemoore Elementary Schools; U.S.
Navy; assistant professor, acting chairman, Mathematics Department, University
of Santa Clara; instructor, mathematics, California State Polytechnic College.

ZARABOZO, PHILIP J. (1966) Foreign Language and Linguistics
Diplôme De La Sorbonne, 1936; Diploma in Literature, University of Madrid,
1959; additional graduate study, University of Marseille; B.A., University of Miami,
1961.
Experience: Teacher, Pan American Business University; language instructor,
U.S. Army, Augusta Military Academy, Sanz School of Languages, King School;
 purser and food inspector, Pan American Airways; translator of Portuguese, French,
Spanish and Italian for U.S. Army Engineers; administrative assistant and auditor
for the U.S. War Department.

ZETZSCHE, JAMES B., JR. (1968) Agricultural Engineering
Experience: Research assistant engineer, Texas A & M University; instructor,
aricultural engineering, Texas Technological College; instructor, agricultural me-
chanics, Sam Houston State Teachers College.

ZUCHELLI, ED JOHN (1969) Journalism
B.A., University of the Pacific, 1951.
Experience: President, KCOY-Radio, Santa Maria; vice president, Sales Manager
and Director of Sports, KCOY-TV; KWG Radio; KJOY Radio; John R. Mc-
Fadden Public Relations, KHJ-TV.
Index

Home economics, 150, 262
Honors, 38
Horseshoeing, 60
Horticulture, ornamental, 79, 294
Housing, residence hall, 42
Housing, family, 42
Housing, women students, 42
Human Development and Education, School of, 144

I
Incomplete, grade of, 36
Industrial arts, 133
Industrial engineering, 131, 266
Industrial relations, 270
Industrial technology, 133, 271
International programs, 17

J
Journalism, 109, 275

L
Library, 15
Life science, 159
Literature, 245
Living expenses, 50
Loan funds, 48

M
Management, 279
Manufacturing processes, 279
Marketing, 281
Master's degrees, 28, 33
Mathematics, 167, 281
Matriculation, 24
Maximum and minimum load, 37
Mechanical engineering, 136, 286
Mechanized agriculture, 44
Medical service, 41
Metallurgical engineering, 138, 323
Military science, 170, 290
Military service, credit for, 38
Music, 112, 292

N
Natural resources management, 85, 293

O
Organizations, student, 40
Ornamental horticulture, 79, 294
Overseas programs, 17

P
Personal conduct, 51
Philosophy, 112, 297
Physical education, 153, 298
Physical examination, 42
Physical science, 302
Physics, 172, 302
Placement services, 43
Placement, teachers, 43
Political science, 305

Poly Royal, 41
Poultry, 81, 307
President's list, 38
Printing, 106, 309
Probation, 35, 51
Project facilities, 60
Psychology, 313
Public speaking, 318
Publications, student, 40

R
Refrigeration, 129
Registration, 25
Requirements, general education, 32
graduation, 31
residence, 31
Room, costs, 50
R.O.T.C., 170

S
Scholarship, 34
Scholarships, 43
Science and Mathematics, School of, 158
Secondary school teaching, 147
Social sciences, 98, 314
Sociology, 315
Soil science, 83, 316
Spanish, 257
Speech, 113, 318
Statistics, 320
Student body, membership, 40
organizations, 40
Student discipline, 51
Student affairs, 40
Study list, change of, 26
Study load, maximum and minimum, 37
Summer conference, agricultural
teacher, 16

T
Teacher preparation, 33
Technical curricula, 34
agriculture, 59
Tests, guidance, 21
Transcripts, required for admission, 21, 24
Transfer, credit, 21
from other schools, 21, 23, 56, 116
to other schools, 37
Transportation engineering, 140, 323

V
Vegetable science, 322
Veterinary science, 86, 323

W
Welding and Metallurgy, 138, 323
Withdrawal from courses, 26
Women students, housing, 42

Z
Zoology, 326

printed in CALIFORNIA OFFICE OF STATE PRINTING

Δ79998—203 2-70 21,800 409
CORRESPONDENCE DIRECTORY

For additional information on the following topics please address inquiries as follows:

APPLICATION FOR ADMISSION Admissions Office
CAMPUSS TOURS Information Services
ENTRANCE EXAMINATION Test Officer
FOREIGN STUDENT REGULATIONS Foreign Student Adviser
GRADUATE STUDY Associate Dean, Graduate Studies
HEALTH SERVICES Director, Health Services
HOUSING—RESIDENCE HALLS Director, Housing
SCHOLARSHIPS AND LOANS Financial Aid Counselor
STUDENT ACTIVITIES Director, Activities
STUDENT EMPLOYMENT Placement Office
SUMMER SESSIONS Admissions Office
TEACHING CREDENTIAL PROGRAMS Education Department
VETERANS AFFAIRS Registrar

CALIFORNIA STATE POLYTECHNIC COLLEGE
San Luis Obispo, California 93401