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ABSTRACT 

For instructors wishing to use physics as part of an international or general education course, the 

framework for a course based on the “longitude problem” from the 1700s is described. The longitude 

problem is teeming with basic principles of physics and astronomy, which makes it ideal for a non-

science-major-based college-level course. This paper summarizes the longitude problem in the context of 

conceptual physics and astronomy and outlines an appropriate curriculum. Specifics on teaching such a 

course in London, as part of an international studies program, are discussed. 



 

INTRODUCTION 

It is important for physics departments to participate in a university's international and general 

education programs for reasons of visibility, attracting students to the major, maximal 

participation in degree offerings, and the advancement of general scientific literacy. Physics-

based general education courses typically include astronomy, physical science,1 courses that 

examine technology,2 and “physics for poets”3 courses. International education courses offered 

by a physics department are more difficult to come by even at a time when study abroad 

programs are seeing an increase in demand as students feel a need for a more global education.4  

This paper describes a course taught by the author based on the problem of finding the longitude 

at sea. After a brief introduction to the problem, course planning advice, and a curriculum plan 

are presented, including several suggested activities and numerous references.  

THE LONGITUDE PROBLEM 

By the 1700s it was unfortunate that far-reaching expeditions were at great risk because there was 

no practical method of accurately determining one's navigational longitude. There are records of 

fateful expeditions both at land and sea5 due to this “longitude problem.” Conditions at sea made 

this problem particularly serious, and many lives,6 property, and political prowess were lost.7 The 

longitude problem is well covered in both erudite5,8,9,10 and popular treatments.11,12,13,14,15  

It was established that the simultaneous knowledge of one's remote (or “local”) time and that at a 

fixed reference point16 would allow for the determination of the relative longitude. Knowing (or 

keeping) the time at the distant reference point (from afar) was the most problematic issue despite 



three known methods for doing so. The first involved using the motion of the Moon, the second 

involved keeping time with a portable chronometer, and the third used observations of the motion 

of Jupiter's moons. These were all sound solutions17 that lacked a practical implementation. 

Harsh conditions at sea18 where accurate navigation was the most critical posed the greatest 

challenges to a longitude solution. Observing Jupiter's moons at sea was impractical due to the 

difficulty in tracking them from a rocking ship. John Harrison9,11,19 spent a lifetime pursuing the 

chronometer approach, while a succession of astronomers employed at the Royal Greenwich 

Observatory8,20,21 pursued the lunar approach. The interested parties were all competing for the 

substantial “longitude prize” offered by the British government in 1714.11 The chronometer 

approach eventually won, although the techniques using the Moon and Jupiter (on land) all 

became usable by the late 1700s. The accuracy and ease of use of the marine chronometer caused 

it to become the dominant longitude-determining tool until worldwide time broadcasts in the 

early 1900s. The solution to finding longitude took the most convenient leap in the early 1990s, 

with the availability of the Global Positioning System (GPS).  

The longitude problem was an outstanding worldwide problem in the 1700s and was eventually 

solved using principles from physics and astronomy. We find it an appropriate topic for a 

college-level course for nonscience majors for the following reasons. A course whose topics 

include the longitude problem, celestial navigation, and timekeeping is an original offering of 

general interest to students. The longitude problem provides a framework for discussing a variety 

of scientific topics in support of understanding this problem (and its solution) from a historical 

and contemporary perspective. The longitude saga also presents an opportunity to demonstrate 

how science has worked successfully because it contains many of the essential elements seen in 

current scientific struggles, including a lag between a theory and experiment, pleas for funding, 



competition from other groups, originality, politics, experimental verification, dedication, and 

eventual triumph.  

Initial course planning can be guided with the help of books by Sobel,11 Sobel and Andrewes,12 

and Dash,14 which provide concise and popular adaptations of the longitude problem. These 

books lack the scientific details needed for this course, which are amply supplied by Andrewes.5  

A study of just the longitude problem alone will generally not fill a course consisting of 

approximately 40 lectures. The longitude problem has two very natural branches, one into 

celestial navigation22,23,24 and the other into the science of timekeeping.25,26,27,28 Our version of 

this course is divided into three units, which are detailed in the next section. The texts by Sobel,11 

Sobel and Andrewes,12 Jespersen and Fitz-Randolph,25 Barnett,26 and Schlereth24 are required for 

the course and cover these three units.  

COURSE CURRICULUM 

A. Preliminaries 

The need for basic mathematics throughout the course does not exceed the evaluation of 

trigonometric functions (with a calculator). Some necessary geometrical concepts include circles, 

triangles, spheres, lines, and angles, and their use in two- and three-dimensional space. Also 

needed are an understanding of scientific notation, analysis of graphs, the metric system, unit 

conversion, universal and astronomical constants, and the ability to evaluate simple expressions 

given numerical quantities.  



The goal of this section is to provide a guide and approximate schedule for implementing this 

course based on our experience. The estimates of the number of lectures needed are based on 50 

min lectures.  

B. Unit 1: Understanding of the longitude problem 

We have identified five core ideas associated with understanding the longitude problem. 

Discussions of these ideas are used to begin the course and are meant to thoroughly cover Ref. 11 

with an emphasis on explaining the science therein.  

The first, which generally serves as an introduction to the course, is a basic discussion of 

longitude and what events led to the establishment of the “Act of Longitude” by the British 

Parliament in 1714.5,11 The fateful journeys of Shovell and Anson5,11 were a consequence of 

longitude ignorance, and scurvy6 made haphazard navigation even more deadly (two lectures).  

Second are the fundamental parameters that specify one's location on Earth, namely, latitude, 

longitude, and altitude. A thorough review of these parameters is typically needed, including 

some work with maps (three lectures).29,30,31  

Third, there are many clues in nature that indicate one's latitude, but there are none for longitude. 

We find it easiest to introduce longitude by embarking on a detailed comparison between 

longitude and latitude, which involves a discussion of the Earth's placement and motion around 

the Sun, highlighting the “natural” lines of latitude, including the Equator and the Tropics of 

Cancer and Capricorn. Because there is no natural reference for longitude, an artificial one had to 

be invented, and it exists today at the Prime Meridian (three lectures).  



Fourth, in practice a reliable determination of longitude is based on the ability to keep accurate 

time.32 Earth rotates at 15°/h, so for every 1 h one's local time differs from that at the Prime 

Meridian; their longitude is an additional 15° east or west, as shown in Fig. 1 (two lectures).  

Fifth, in the 1700s there were three methods for finding longitude; the problem was that no one 

had invented a practical method of implementing them with sufficient accuracy.33,34 As 

mentioned, using Jupiter's moons was quickly dismissed as a solution when at sea, leaving only 

two viable solutions. The first was the “Method of Lunars,”8,35 which uses the Moon to determine 

the time at the Prime Meridian. The second was keeping time at the Prime Meridian during a 

journey using a chronometer despite the harsh conditions onboard a typical ship.6,18 It is 

emphasized that both of these methods yielded the time at the Prime Meridian and nothing more. 

Local time was still needed, and both methods need multiplication of the difference between 

local and Prime Meridian time by 15°/h (two lectures).  

C. Unit 2: Celestial navigation 

Celestial navigation is a vast field, drawing heavily on astronomy, mathematics, and acquired 

skill. Often even the best references23,24,36 stress only the methodologies, not the underlying 

physical principles.22,37 A thorough discussion of both is well beyond the scope of this course, 

apart from a few general aspects of celestial navigation that are tied to the longitude problem.  

C1. The Sun 

The Sun is critically important in understanding the longitude problem, and a class discussion of 

its role can be started as follows. Suppose one is out at sea, with clear skies, and nothing visible 

but the featureless ocean, surrounded by the horizon in all directions. The instructor asks, “What 



single unique observation can be made to give some indication of one's location?” The answer 

(typically not obvious to students) is the observation of the Sun at its highest position in the sky, 

indicating “local noon.” This observation appears over and over again in the longitude problem 

because it allows for an easy determination of one's local time (noon) and longitude if the time at 

the Prime Meridian is simultaneously known.  

The Sun is also used to motivate two exercises in celestial navigation. First, the altitude angle of 

the Sun, , can be measured38 at local noon, and its declination, d, at this time can be found 

using the Astronomical Almanac.39 From these two parameters, we can determine the latitude (in 

degrees) from 90°−( +d) as shown40 in Fig. 2. Second, because the Astronomical Almanac 

provides the geographic position23 of the Sun at all times of the day, the altitude angle taken at 

other (non-noon) times can be used to run through the process of celestial navigation.23,24 In 

particular, repeated altitude readings spaced, for example, at 1-h intervals41 can be used to narrow 

down one's position using Sumner's intercept method.23,24,37 This method allows for convergence 

between one's measured and actual position beginning with an educated guess.42 In class, this 

method provides a unique opportunity for working with maps and geometry in the context of 

navigation. Altitude angles of the Sun can be found (if not observed) from many Web-based 

resources (three lectures).43  

C2. Polaris 

For those in the Northern Hemisphere, Polaris provides a quick and easy exercise in celestial 

navigation. After finding a suitable horizon and ignoring a small wobble correction,24 the angular 

height of Polaris above the horizon approximates one's latitude. Using Polaris in this manner is 

easily illustrated in class using computer software44 by varying the latitude parameter from the 



North Pole to the Equator, while monitoring the plotted altitude of Polaris. We also do a night 

time exercise in observational astronomy, introducing the pointer stars of the Big Dipper to aid in 

finding Polaris. Finding angular distances between celestial objects is introduced using the 

technique eyeing one's fingers at arm's length45 because such distances are important in the 

method of lunars (see the following). Navigation with Polaris is concluded with a discussion of 

the technique of running the parallel (that is, maintaining constant latitude) used by early 

navigators (such as Columbus) with no means of finding longitude (one lecture).  

C3. The Moon 

The Moon played a particularly important role in the longitude problem because the method of 

lunars was the leading competitor to the chronometer solution for finding the longitude at sea. 

The method of lunars is complicated, and we discuss it in detail only as seems reasonable. The 

method is based on three facts. The first is that the Moon's motion across the sky is relatively 

quick. The Moon approximately moves one Moon diameter every 1 h (0.5°/h) with respect to the 

night time backdrop of the stars. Thus short-term repeated use of the Moon's motion for 

navigation is possible. The second is that the Moon's motion is irregular; its speed relative to a 

given star is not constant as time passes. This irregularity is shown in Fig. 3, where the rates of 

change in both right ascension and declination are seen to vary on a particular day by as much as 

1° in 24 h. Available software44 will readily illustrate this effect. Third, the angular distance 

between the Moon and a given star (or planet) is unique for a given observation period.  

The uniqueness of the nightly angular distance allows for the determination of the time at the 

Prime Meridian from a remote location, and creating tables linking angular distances with Prime 

Meridian times was the primary challenge of the astronomers at the Greenwich Observatory in 



the 1700s.21 The topic of the Moon and its irregular motion is used in this course to discuss 

gravitation, including some numerical examples of Newton's universal of gravitation with a 

gentle discussion of the Sun-Earth-Moon system as a three-body problem.46 The relatively close 

proximity of the Moon to the Earth is used to discuss parallax and the need to correct for it, 

which is an important theme in celestial navigation. This concept is discussed again with Jupiter.  

Isaac Newton is rightfully represented as a preeminent scientist with countless successes. His 

association with the longitude problem and the method of lunars is more unsettled. He expressed 

disappointment in the Moon as a navigational aid35 despite its brightness and universal 

familiarity. In addition, Newton had great difficulty in producing a theory to predict the Moon's 

motion, which was needed by astronomers to compile tables of its motion, so that navigators 

could execute the lunar method35 at sea. This difficulty is due to the intractability of the three-

body problem, which is solved today using computers.47 Finally, Newton wrongly and 

emphatically declared that “nothing but astronomy is sufficient for this purpose [of finding 

longitude]” (see Ref. 5, p. 191) despite the fact that the marine chronometer eventually proved to 

be the most practical solution (three lectures).  

C4. Jupiter 

When visible at night, Jupiter is typically easy to find, and even a small telescope will reveal its 

four Galilean moons.48 The motion of Jupiter's moons was well known in the 1700s, and it was 

thought that Jupiter could be used as the ultimate “navigational timekeeper” because the motion 

of the moons were well linked then, as now,39,49 to the time at the Prime Meridian. Such motions 

are easily illustrated using software.44 With these desirable properties, it is unfortunate that 

Jupiter was not a solution to the longitude problem at sea because a stable observation platform is 



needed to observe the moons. Jupiter is mentioned in this context due to its contribution in 

accurately finding longitude on land, which led to more accurate mapmaking12 and in testing 

Harrison's marine chronometers.5,12  

Students will typically ask if precise Jupiter-moon timing events are universally observable from 

all points on Earth. This question can lead to an interesting exercise diagramming the parallax of 

Jupiter's moons, leading to a disagreement of such timings to a mere 0.5 s (for Io) from opposite 

points on the Earth (one lecture).  

D. Unit 3: The science of timekeeping 

The ability to keep accurate time was essential in solving the longitude problem and remains so 

in modern navigation, including the use of the global positioning system. A dedicated unit on 

timekeeping is essential. In this unit, many items found in a physics department's lecture 

demonstration inventory will be useful.  

We begin with a general class discussion on time including a potentially spirited (but limited) 

discussion on the issue of “What is time?” before steering into the measurement and keeping of 

time. Feynman's50 ideas work as a start, and we follow with a discussion of time intervals from 

the very small (attosecond) to the very large (billions of years), physical phenomena associated 

with each,51 and the technology needed to observe a given time interval (two lectures).  

Because this discussion alludes to extremely large and small time intervals, we begin a 

systematic analysis of natural timing phenomena that have allowed such time intervals to be 

measured. Celestial clocks (the Sun and Moon cycles), the mass/spring system, the simple 



pendulum, radioactive decay, and RC circuits are initially discussed. A discussion of these topics 

must be adapted to the instructional level desired1,2 (six lectures).  

A discussion of “What is a clock?” begins with reference to mechanical clocks.2 As different 

types of clocks are discussed, four points are constantly emphasized. The first is whether or not a 

particular type of clock would work on a rocking ship. The second is the identification of the 

minimum components required by any clock, including an energy source, indicator, and 

escapement.52 The third is the identification of what environmental parameters would (adversely) 

affect the clock. Lastly, if timekeeping errors of a given clock are quantified, the subsequent 

error in longitude (at the Equator, for example) can be found and compared with the demands of 

the Act of Longitude.53  

We begin with the mechanical periodicity achieved with verge-and-foliot-type clocks8,26,27,54 and 

an introduction to the concept of escapement. Pendulum clocks with a variety of escapement 

mechanisms are analyzed, which are tied to temperature compensation and the gridiron 

pendulum, which was perhaps Harrison's greatest achievement.5 If a pendulum is heated (or 

cooled), its length will increase (or decrease) leading to an increased (or decreased) period. The 

gridiron pendulum is a pendulum made of a combination of brass and steel rods cut in an inverse 

length ratio to the ratio of their expansion coefficients, as shown in Fig. 4. The system works 

because the thermal expansion is proportional to both the initial length and the expansion 

coefficient. Many short numerical examples are possible illustrating this effect in the context of 

thermal expansion (with an emphasis on brass and steel) (three lectures).  

The innards of Harrison's first marine chronometer, H1,5,9,10 are analyzed, highlighting the torque 

free balances, the mass/spring timing element (at 1 Hz), and Harrison's effort to minimize friction 



(in part) by exploiting rolling rather than sliding friction. The temperature compensation 

mechanism again uses a gridiron but indirectly compensates for the expanding or contracting 

balance lengths by adjusting the spring constant of the restoring spring. The idea of the mass-

spring system is extended to a coiled mainspring, as illustrated in Harrison's fourth marine 

chronometer, H4.5 A discussion of mechanical resonance ensues because Harrison's large clocks 

with small resonant frequencies often matched the rocking motion of the ship itself, causing 

undesirable coupling of the clock's internal motion to that of the ship. Harrison overcame this 

problem fortuitously with H4, which had a smaller more tightly wound mainspring that had a 

natural frequency much higher than any possible motion from the ship and thus was not affected 

by the ship's motion (three lectures).  

Electronic clocks, with RC circuits at their core are discussed next, followed by the stabilization 

ability offered by the resonance effects of quartz crystals (two lectures).  

Lastly, the atomic clock is discussed, highlighting the discovery of a time regulator (atomic 

energy levels) that is impervious to the common environmental parameters that so adversely 

impacted clocks of the past. The concepts of simple atom-photon absorption, transparency of an 

excitable gas, feedback, and light detectors are discussed. The need for a microwave generator, 

where the clock's time base ultimately comes from, is tied to the previous discussion of electronic 

clocks, though at a much higher frequency. Many of these components and concepts can be 

illustrated via a tour of a local research laboratory or advanced laboratory facility55 (three 

lectures).  



E. Modern navigation: The global positioning system 

Although not as essential as those we have described, we feel obligated to discuss (near the end 

of the term) how the GPS system works because it presents a solution to the longitude problem 

for anyone (not just a few skilled navigators). We are amazed at the sheer quantity of physics 

involved in the operation of a GPS,56,57 which allows an instructor the freedom to handpick items 

for discussion. At minimum, the point is made that to solve the problem of navigation, the Earth 

had to be surrounded with approximately 30 satellites, all containing atomic clocks. The concept 

of measuring distance with time is discussed, as is simple two-dimensional triangulation, which 

is extended into three dimensions as needed. A bit of reflection is in order here as well as one of 

the first requirements of the GPS protocol is to return to the original challenge of the 1700s: To 

know what time is it at the Prime Meridian (two lectures).  

SUGGESTED ACTIVITIES 

We have developed several activities associated with the units both for courses taught on our 

campus during the regular term and in London, England during a study abroad summer term. 

They are briefly summarized here.  

A. On campus 

A1. Navigation 

For an exercise in navigation using deduced reckoning, students are given pedometers and 

compasses. They then walk around campus starting at a known latitude and longitude. They are 

to record their headings and steps to later convert them to piecewise excursion distances, the 



totality of which is compared with the coordinates of their final observed destination (a 

spreadsheet can help with this calculation). Inherent errors in deduced reckoning are emphasized.  

For a latitude/longitude tutorial, we have developed a Google map30 application, which allows 

students to find the latitude and longitude of any point in the world (such as their house or 

school) with a click of the mouse.31 Distances between points can be calculated as an exercise in 

evaluating trigonometric functions using the Haversine formula (or equivalent).37  

If several sextants38 are available, an outside class activity can be done to estimate the altitude of 

the Sun (or other celestial object) and compare it with the Astronomical Almanac at that time. 

Students will find taking a shot with a sextant extremely difficult; most will not be able to shoot 

the bright Sun on a clear day. The difficulty of doing so from a rocking ship is emphasized.13 

Simple protractor-plumb-bobs can be constructed and used with a nearby flag or light-pole.  

A2. Timing mechanisms 

Class sets of masses, springs, and pendulums can be used for in-class laboratory work on spring 

constants, pendulum lengths, masses, and their effects on oscillation periods.  

A relaxation oscillator, built using a neon bulb and ~100  V (dc) power source, can be used to 

illustrate of RC circuits and electronic timing. Breadboards with inexpensive integrated circuits 

such as the 555 timer58 can be used to build a minimal electronic LED-flasher at 1–2 Hz to 

illustrate RC circuits and basic electronic clock construction.  

A quartz crystal with a resonance frequency of 32.768 kHz can be wired in parallel to a 1000   

resistor, then driven with an external oscillator while monitoring the voltage drop across the 



resistor using an oscilloscope. A very sharp resonance response will be observed with a 

Q 100  000.  

An in-class radioactive decay activity can be run by issuing groups of students ~15 dice cubes. 

Rolling them all at once and extracting those that show a predetermined number (a “decay”) can 

simulate the statistics observed in radioactive decay.  

A3. Observational astronomy 

Two night time activities are possible. The first is to use a small telescope to observe Jupiter and 

its moons with some coordination to monthly activity tables.49 The second (for those in the 

northern hemisphere) is to find Polaris and estimate one's latitude using a sextant or protractor-

plum-bob.  

A4. Modern navigation 

Bare GPS receivers are available for under $100,59 which send a data-stream containing universal 

time, longitude, latitude, and altitude, readily captured using the serial-port of a computer.  

A project to highlight the process of invention is the digital compass, which can be constructed 

using LEDs to indicate the direction of travel.60  

B. In London 

Many universities have study abroad programs, the curriculum of which might be outsourced or 

led by the university's own faculty. If faculty led, there is an opportunity to create this class for a 

London, England-based course, where the longitude saga comes to life. There are artifacts of the 

longitude problem scattered throughout the city. The major attraction is the Greenwich 



Observatory, which represents the entire longitude struggle in one location, including all of 

Harrison's marine chronometers. Salisbury Cathedral contains a working 600+ year old verge-

and-foliot clock. St. John's Cathedral in Hampstead Heath is the burial place of Harrison, and the 

inscriptions on both sides of the large tomb are well worth studying. Westminster Abbey 

memorializes many important scientists of the time, including Newton. A memorial can be found 

for Harrison, as can one of the largest and ugliest8 for Shovell. The Worshipful Co. of 

Clockmakers Museum houses perhaps the densest collection of working mechanical clocks in the 

world, where students can watch the movement of dozens of different clocks. A small memorial 

to Harrison can also be found there. Red Lion Square holds a blue marker plaque dedicated to 

Harrison, highlighting where he worked and lived. The Wallace Collection houses dozens of 

large mechanical clocks, allowing students to observe many large gridiron pendulums and other 

temperature compensation mechanisms. Hogarth's famous engraving entitled “Rakes Progress” 

can be studied there; a detail suggests the prevailing thoughts about the longitude problem in the 

1720s. The Science Museum of London houses one of Harrison's early land-based clocks and the 

scientific instruments of King George III, who was an active amateur scientist and a staunch 

supporter of Harrison. The British Museum houses a world-class horology exhibit.  

Spain, Portugal, and France also played very prominent roles in the history of the longitude 

problem, and it would be possible to find connections for this class in international studies 

programs based in these countries as well.  

CONCLUSIONS 

We have described the essential elements of an international or general education class on the 

longitude problem from the 1700s to today. The problem is full of physics and astronomy-based 



topics that may be adapted to a non-science-major level of instruction in the context of a 

historical struggle to solve a worldwide problem.  

Two underlying themes of the course are also suggested. The first is how incremental advances 

in technology continually change our priorities.5 Longitude, for example, is now found by simply 

pressing a button5 on a GPS receiver. Second, Harrison was not a scientist but a clockmaker and 

carpenter, yet he found a solution that eluded the best scientists in history, highlighting a case 

where steadfast dedication, against the odds, led to a successful outcome.  

The author has taught such a class and has adapted it to a group of ~20 students for an 

international studies program in London and ~50 students in a regularly offered campus-based 

general education course. Both courses enroll students with mostly nonscience backgrounds and 

degree interests, and the author has not experienced difficulty in presenting the longitude problem 

to them using all of the ideas suggested in this paper. A final class project consists of students 

proposing a solution to a worldwide problem of their choosing; those committed to their proposal 

are encouraged to submit it for possible funding.61  
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Figure 1 

 

Fig. 1. A view of Earth from above the North Pole, which rotates counterclockwise as shown. The line 

from the North Pole through point B represents the Prime Meridian, at which it is currently noon because 

the Sun (star symbol) is directly overhead. Noon has already occurred for an observer at A; hence, they 

are east of the Prime Meridian. Noon has yet to occur for an observer at C; they are west of the Prime 

Meridian. The time difference between locations A and B (or B and C) times the Earth's rotation rate of 

15°/h yields the relative longitude. Finding the longitude requires simultaneous knowledge of one's local 

time and that at the Prime Meridian. Note that this method is independent of the observer's latitude. 



Figure 2 

 

 

 

Fig. 2. The Earth and Equator are shown. Point A represents the position of the Sun with a declination d, 

as determined from the Astronomical Almanac (Ref. 39) at this particular date and time. Point B 

represents the location of an observer with latitude . Because it is local noon at B, the Sun is over B's 

line of longitude, which corresponds to the outline of the Earth. The line tangent to the Earth at B is the 

local horizon, so is the observed altitude angle of the Sun. It follows that 90− =d+ , allowing 

(latitude) to be determined from the other known quantities. 

 

 



Figure 3 

 

 

 

Fig. 3. Evidence of the Moon's irregular motion using data obtained directly from Ref. 39 for January 7, 

2009. The curves are time derivatives of the Moon's right ascension (upper curve) and declination (lower 

curve) over 24 h, both of which contribute to the Moon's net velocity. Variations by as much as 1°/24 h in 

each occurred on this particular day. 

 



Figure 4 

 

 

 

Fig. 4. The simplest gridiron made of brass (gray) and steel (black) rods. Here the 9 ft steel rod is attached 

to a support from above and fixed to a 6 ft brass rod at its bottom. If the system is heated (cooled), the 

brass will expand (contract) more than the steel by a factor of 3/2. Because the rod lengths are cut by 

the inverse ratio of 6/9, the longer steel rod will expand downward by the same distance that the shorter 

brass rod expands upward. The distance between the support and top of the brass rod will thus remain 

approximately constant as a function of temperature. This configuration shows that it is possible to create 

a separation distance with a minimal dependence on temperature. A pendulum bob, for example, could be 

attached to the top of the brass rod. Illustrations of more practical designs for pendulums can be found in 

Ref. 5. 
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