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I. INTRODUCTION 

Many natural phenomena exhibit characteristics of coupled chaotic oscillators, 

and recent research in this area shows promise for a wide array of engineering 

applications.  One such system with this behavior is neuronal populations.  The 

chaotic characteristics of individual neurons is known as spike-burst behavior, and 

many activities in the brain are thought to occur from the coupling of these 

individual neurons, creating a collective spike-burst pattern across an entire 

population of neurons.  This phenomenon, collectively known as synchrony, appears 

in electrocorticographical (ECoG) recordings for several medical conditions including: 

Parkinson’s disease, schizophrenia, and some types of epileptic seizures [1].  Since 

serious medical conditions exhibit these synchronous characteristics, being able to 

sense and record this behavior is a very exciting and important engineering 

application of this phenomenon.   
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II. BACKGROUND 

The goal of this project is to show the signal characteristics of epileptiform 

activity through simulation, discuss modern medical advancements that sense this 

activity, and design a circuit that will wirelessly transmit this signal data and 

simultaneously supply power to the sensor.  Matlab will be used to simulate 

individual neurons using the Hindmarsh-Rose (HR) neuron model, and to identify the 

regions of chaotic spike-burst behavior similar to the analysis seen in [1].  This spike-

burst behavior will be applied to a coupled neuronal population in order to 

investigate the nature of epileptiform activity, which is an ensemble of coupled 

neural signals seen just prior to an epileptic seizure.  This will be followed by a brief 

discussion of modern medical devices that are used to sense and eliminate 

epileptiform activity.  Finally, a circuit will be designed and tested that will supply 

power to one of these modern sensors and also transmit the signal data back to the 

processor core for ECoG analysis of epileptiform activity. 
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III. REQUIREMENTS  

The end goal of this project is to design and test a circuit that will wirelessly 

harvest power for circuit operation and transmit sensor data back to the power 

source for signal readout of epileptiform activity.  In order to do this, three main 

objectives must be met: 

1. Identify signal patterns associated with epileptiform activity using Matlab 

2. Introduce medical devices currently being used in sensing epileptiform 

activity 

3. Replace the wired connection through patient’s skull that is currently used in 

these devices with a wireless power/data link  
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IV. MATLAB SIMULATIONS 

In order to successfully sense epileptiform activity, it is essential to examine the 

signal characteristics of neuronal populations.  This will be done through simulation 

using Matlab.  This is a dimensionless analysis of neuronal interactions.  However, 

the relative magnitudes of the variables in the following equations correctly 

approximate the signal characteristics of epileptiform activity, and dimensions will 

be applied later in the project.  Individual neuronal behavior is approximated by the 

HR neuron model, which is governed by the following recursive equations:  

�� � � � �� � ��	 � 
 � ���                                          (1) 

          �� � � � ��	 � �                                                     (2) 


� � ����� � ���� � ���� � 
�                                         (3) 

Matlab is used to solve this system with a fourth-order Runge-Kutta approximation 

method.  In these equations, x is the neuron’s membrane potential, y is associated 

with the fast current (Na+ or K+), z with the slow current (such as Ca2+) [1], and the 

dots above each of these variables imply the next successive iteration in the 

recursive formulas.  In the case of epilepsy, Iext is a variable proportional to an 

externally applied direct current (DC), and will be used as the varying bifurcation 

parameter to induce spike-burst behavior (Appendix D).  For signal analysis 

purposes, the main variable of interest is the membrane potential, x.   
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Fig. 1: Membrane Potential vs. Time with an External “Current” of 2 units 

 

 Figure 1 shows the same double spiked signal about every 200 increments of 

time, so it is periodic when the externally applied “current” is 2 units.  Varying Iext 

changes the periodicity of the membrane potential, and for particular values of Iext, 

the membrane potential becomes chaotic.  In Figure 2, a current of 3.2 units puts 

the membrane potential into a chaotic state. 
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Fig. 2: Membrane Potential vs. Time with an External “Current” of 3.2 units 

 

 Figure 2 shows that, with an external “current” of 3.2 units, the distance 

between each consecutive spike is different.  This aperiodic structure arises, because 

the system is now in a chaotic operating region.  This chaotic operating region 

induces time-domain membrane potential characteristics known as spike-burst 

behavior, where an initial spike is followed by a burst packet as noted in Figure 2.  In 

nonlinear systems analysis, it is convenient to graphically identify different operating 

regions with a bifurcation map.   
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Fig. 3: Bifurcation Map of Time Between Membrane Potential Spikes vs. Varying Iext 

 

 Using Figure 3, it is easy to analyze which values of Iext will induce spike-burst 

behavior.  By drawing a vertical line through the bifurcation map, the time between 

consecutive spikes of the membrane potential can be determined.  As seen in  

Figure 3, drawing a vertical line at Iext=2 units results in two distinct crossings.  This 

means that there are two discrete times between membrane potential spikes for 

Iext=2 units.  This means that there is a periodic structure to the membrane potential 
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for all external current values that result in a discrete amount of crossings, and this 

is clearly shown in Figure 1 where Iext=2 units.  However, this structure breaks down 

in Figure 3 when Iext is in the range from about 3 units to 3.4 units.  This is known as 

the chaotic region.  Iext=3.2 units lies in the middle of this region, and results in the 

time-domain spike-burst behavior seen in Figure 2.  

 However, when taking an ECoG, the data is not collected from a single 

neuron.  The data is taken from a population of neurons.  Therefore a simulation 

must be done on a population of coupled chaotic oscillators, or, in this case, a 

population of coupled neurons exhibiting spike-burst behavior.  Each neuron is 

coupled together with the neurons just before and after itself.  This coupling is only 

done for the x term and changes Equation (1) to: 

 

                     ��� � �� � ��
� � ���

� � 
� � ��� � ������ � ��� � �����            (4) 

 

where epsilon represents the coupling strength between the neurons, and the 

subscripted variables represent the neuron’s relative position in the coupled chain of 

neurons.  For example, if the neuron currently being analyzed is neuron #2, then it is 

coupled to neuron #1 (xn-1) and neuron #3 (xn+1).  The code corresponding the 

differential equation solver and new system of equations can be found in 
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Appendices G and E, respectively.  Figures 4 and 5 depict the effects of changing the 

coupling strength between the neurons. 

 
 

Fig. 4: Membrane Potential of Individual Spike-Burst Neurons with No Coupling 

 

 Figure 4 shows the membrane potential of 3 neurons each individually 

exhibiting spike-burst behavior, but with no coupling.  While each individual neuron 

exhibits spike-burst behavior in this situation, an ECoG sees the entire population.  In 

this case, the entire population does not exhibit a synchronous spike-burst effect, 

and this is a normal brain recording. 
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Fig. 5: Membrane Potential of Individual Spike-Burst Neurons with Strong Coupling 

 

 Figure 5 shows the membrane potential of 3 neurons each individually 

exhibiting spike-burst behavior, and the population has a strong coupling factor of 

ε=0.9.  This strong coupling factor causes the individually chaotic neurons to 

synchronize into a spike-burst pattern across the entire population.  While it is not 

entirely known whether epileptiform activity occurs from synchronization, as in 

Figure 5, or desynchronization of spike-burst activity, as in Figure 4, being able to 

identify synchrony is an extremely important measurement in the detection of 
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epileptic seizures [2].  The signal characteristics of epileptiform activity can be seen 

through these dimensionless simulations.  Being able to discern between the chaotic 

synchronization and desynchronization of neuronal populations is the overall goal in 

the detection of epileptiform activity. 
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V. DESIGN 

5.1  Overview 

Several companies have recently made advancements in the detection and 

elimination of this epileptiform activity through external responsive 

neurostimulation devices.  Since a majority of brain activity is made up of low 

frequency content, “the sampling frequency was set to 500 Hz” [3] for ECoG data.  

This is a relatively low sampling frequency when compared to modern consumer 

electronics, but it is sufficient for ECoG recordings.  These devices contain three 

major components: sensor network placed at the patient’s seizure focus, 

battery/DSP core, and the neural stimulator for seizure prevention.  Figure 6 shows a 

picture of a typical implantation of one such device. 

 

Fig. 6: Arrangement of Typical Responsive Neurostimulation Device [4] 
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Figure 6 shows that the battery/DSP core are implanted on the side of the 

head and are wired directly to the front of the brain at the location of the sensor 

network.  This leaves the patient with a permanent hole in the skull.  Using near-

field coupling, this wired connection could be replaced with the network shown in 

Figure 7. 

 

Fig. 7: Block Diagram of Wireless Power/Sensing Network 

 

 From Figure 7, the sensor will have a digital output.  Since the relevant signal 

information is made up low frequency content, fairly accurate readings of the signal 

can be achieved by increasing the number bits in the digital output without requiring 

a large increase in the frequency of the digital output.  The sensor network will be 

powered by the battery/DSP core through near-field inductive coupling.  From this 

point forward, transmissions from the battery side planar inductor to the sensor side 
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planar inductor will be known as the downlink, and transmissions from the sensor 

side planar inductor to the battery side planar inductor uplink. 

 

5.2  Planar Inductors 

 Since the device is to be implanted in the skull, size is a major issue.  A planar 

inductor structure for near-field coupling is more suitable than a coiled structure, 

since it can be implanted flat against the skull.  Radio frequency identification (RFID) 

tags are well suited for near-field coupling and are easy to manufacture.  RFID tags 

have three standard operating frequency ranges: low frequency (LF), high frequency 

(HF), and ultra high frequency (UHF).  It is ideal to use a higher frequency 

transmission for the downlink in order to minimize the size of the tags.  However, it 

is not feasible to design a UHF tag in the current facilities, so a HF tag structure will 

be used for a proof of concept.  RFSim99 © has a built-in planar inductor design tool.  

Using this, the square spiral inductance is calculated to be 3.1 uH. 
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Fig. 8: Screenshot of Inductor Design 

 

 It is important to measure the actual inductance at this point in the project in 

order to carry out circuit simulations for the rest of the project.  Using copper tape, a 

rectangular spiral inductor structure with an outer length of 590 mm is built.  Due to 

slight variations from the simulation, the inductor is measured to be 1.0 uH.  Placing 

the two similar inductor structures in close proximity to one another provides the 

near-field inductive coupling.  
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5.3  Theory of Operation 

 Using the near-field coupling of the inductors, a constant frequency can be 

transmitted via the battery side inductor to the sensor side inductor.  This signal can 

be both positively and negatively rectified by inserting two diodes with opposing 

polarity in parallel on the sensor side inductor.  Adding a capacitor in series with 

each of the diodes provides two DC voltage rails with opposing polarity.  These rails 

can be used to power the sensor network. 

 The digital output of the sensor must now be sent via the uplink to the 

battery side inductor, L1.  This can be done by varying the effective load presented to 

the battery- a new effective battery side inductance, which will be called L1eff.  In 

order to vary the load presented to the battery side inductor, the load presented to 

the sensor side inductor, L2, must vary.  Since the sensor outputs digital data, the 

varying load requires only two distinct states.  Therefore, the load presented to L2 

will be approximately open and short.  L1eff is given by the following relations: 

 !"#$% &'($$$$$$$$$$$$$$$$$$$)��** � )�                     (5) 

+, -.$% &'($$$$)��** � )��� � /	�                  (6) 

where k is the coupling strength between the two inductors.  This varying battery 

side inductor value changes the voltage presented to the battery side inductor, 

making the digital sensor data measurable on the battery side.  Figure 9 shows a 
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schematic representing this theory of operation with an assumed coupling factor of 

0.8, and Figure 10 shows the digital signal readout on the battery side with no 

capacitances included. 

 

 

Fig. 9: Schematic of Ideal Operation in LTSPICE 
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Fig. 10: Ideal Digital Sensor Simulation on Battery Side with No Capacitance in LTSPICE  

 

 Figure 10 is the simulated result of ideal diodes and switching discussed 

above, and represented in the schematic in Figure 9 with C5=0F.  This has a 50 kHz 

data rate from the digital sensor output.  Changing the value of C5 allows for tuning 

of the near-field coupling.  Changing the value of C5 to 40 pF and the sensor data 

rate to 5 kHz changes the voltage across L1 and is shown in Figure 11. 
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 Fig. 11: Ideal Digital Sensor Simulation on Battery Side with C5=40pF in LTSPICE  

 

 Comparing Figures 10 and 11 presents an interesting tradeoff.  The maximum 

peak-to-peak voltage is 150% larger in Figure 11 than it is in Figure 10.  However, the 

increased capacitance causes a much slower roll-off of the signal shown in Figure 11.  

In order to maintain an accurate measurement, the sensor data rate had to be 

reduced from 50 kHz in Figure 10 to 5 kHz in Figure 11.  For the actual design, no 

tuning capacitor will be included in order to maximize the sensor data rate. 
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5.4  Circuit Design 

 In order for the circuit to operate correctly, L2 must have a load that can 

quickly act as a short or open.  A MOSFET presents itself as a perfect candidate by 

operating it in saturation and cut-off modes.  By connecting the MOSFET’s drain and 

source in parallel with L2, an effective short and open load situation is created by 

varying the gate voltage of the MOSFET to put it into saturation and cut-off modes.  

In order to ensure that the MOSFET goes fully into these operating modes, it is 

important that the gate voltage swings to sufficient voltages.  This can be done by 

connecting a CMOS inverter between the sensor output and the gate voltage of the 

MOSFET.  A schematic representing this description is shown in Figure 12. 

 

 

Fig. 12: Circuit Level Schematic Simulated in LTSPICE 
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The circuit shown in Figure 12 has a data rate of 1 kHz, and the voltage seen at the 

node connecting R1 and L1 appears in Figure 13. 

 

Fig. 13: Voltage Seen at R1/L1 Node Corresponding to Digital Sensor Output 

 After simulating, a physical circuit was constructed and tuned, and the 

corresponding final circuit schematic is given in Figure 14. 
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Fig. 14: Final Circuit Schematic 

 Figure 14 shows the final circuit schematic.  L1 and L2 are the planar 

inductors discussed earlier.  V1 is transmitted from the battery/DSP core area, and 

V2 is the digital sensor output.  M2 and M3 make up the CMOS inverter.  They get 

their power from the voltage rails created by D2/C3 and D1/C2.  Finally, M1 is the 

MOSFET that creates the varying load.  
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VI. TESTING 

Different portions of the circuit were tested individually prior to combining the 

different portions for the final test.  First, the inductive coupling between the two 

planar inductors was tested by separating them by 5 mm, connecting a function 

generator to one of the inductors, and measuring the voltage on the other inductor 

with an oscilloscope.  The coupling factor came out to approximately 0.77, and can 

be seen in Figure 15. 

 

Fig. 15: Inductive Coupling Test Shows Battery Side (Yellow) and Sensor Side (Green) Signals 
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 The next test checked that the rectifier portion of the circuit provided 

positive and negative DC voltage rails.  This was done by keeping the same inductor 

orientation as in the previous test, and connecting the diode capacitor circuitry to 

the sensor side inductor.  A 10 Vpp signal was fed through the downlink path, and an 

oscilloscope was used to read the two voltages.  This created a 1.88V differential 

between the two rails.  The voltage rails can be seen in Figure 16. 

 

 

Fig. 16: DC Voltage Rails on Sensor Side 
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 The final test dealt with feeding in the constant 13.56 MHz and a signal that 

acted as the digital sensor output by using function generators.  The output was 

measured at the R1/L1 node shown in Figure 14.  A 6 Vpp signal was fed in as the 

13.56 MHz sinusoidal signal from the battery side, and a 3.5 Vpp square wave at  

100 kHz was sent in as the digital sensor output.  The results are shown in Figure 17. 

 

 

Fig. 17: Digital Sensor Output (Yellow) and Wirelessly Transmitted Data at R1/L1 Node (Green) 
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Figure 17 shows that the circuit is able to be wirelessly supplied with power via 

the downlink path, and simultaneously transmit digital data back via the uplink path.  

After testing this circuit, it is clear that it has the potential to one day replace the 

wired connection in modern neurological sensors and eliminate the need for a 

permanent hole to be left in the patient’s skull. 
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VII. CONCLUSIONS AND RECOMMENDATIONS 

This project analyzed chaotic signaling behavior associated with epileptiform 

activity, discussed modern medical devices used to detect and eliminate this activity, 

and presented an improvement to these devices.  Many processes in nature have 

chaotic characteristics, and understanding the behavior behind these processes has 

many benefits.  Understanding the chaotic behavior of neurons led to the creation 

of detection systems that can actively prevent seizures in many people suffering 

from epilepsy.  There are still many advances to be made in this area.  Leaving a 

permanent hole in patient’s skull opens the patient up to increased risk of infection, 

less overall protection for the brain, and discomfort from the wiring.  This project 

presented a solution to this issue.  However, there are many areas to expand on this 

project that could benefit this technology.  Moving into a higher frequency range 

would reduce the size of the near-field coupling structure, making it easier to 

implant.  Also, integrating the entire sensor and DSP core together with more 

effective tuning for the system, or introducing a ferrite core into the inductors for 

better energy transfer would make the ECoG more accurate.  Additional biological 

testing is essential, and more applicable to a smaller design.  This includes finding an 

optimal frequency range for living bone, and measuring how much radiation the 
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brain absorbs when implementing a wireless system.  However, this project acts as a 

proof of concept that a wireless system can be implemented.  
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APPENDICES 

A.  Schematic 

 

Fig. 18: Circuit Schematic 

B.  Parts List and Cost 

Part Unit Price ($) Number Total Price ($) 

390 Ohm Resistor 0.10 1 0.10 

1 nF Capacitor 0.10 2 0.20 

5082-2835 Schottky Diode 0.08 2 0.16 

CD4007UBE IC 0.25 1 0.25 

Roll of Copper Tape 9.37 1 9.37 

Table 1: Parts List and Cost 
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C. Time Allocation 

Task Estimated Time (Hours) Actual Time (Hours) 

Research 30 50 

Coding 40 50 

Design 30 40 

Construction/Troubleshooting 10 20 

Testing 10 10 

Report 30 50 

Total 150 220 
Table 2: Time Allocation 

D.  Runge-Kutta Approximation 

 

function [xnow,t]=RK4_wade(I); 
  
% Original Author: Dr. Nilgun Sungar 
% Code Adapted By: Wade Barnes 
  
% this program solves a  3rd order system (3 coupled first order 
differential equations) 
% where the time series of the three variables are stored in the 
array xn 
% the differential equation xdot=f(x,y,z) isevaluated by the 
function 
% called xdot. 
  
%clear all 
%tic 
h=0.005;     %this is  time increment 
to=0;     %starting time 
tout=3000;    %ending time 
N=(tout)/h;   %number of time steps 
t=linspace(to,tout,N); 
  
% xo stored as column vector- why are these values chosen as initial 
% conditions? semi-random initial condition? 
xo=[-1.5*(1+0.1*randn); 0;3.2*(1+0.02*randn)]; %initialvalues 
  
    x=xo;  % x is the array that holds the current values of the 
three variables 
  
% the following values stored as '0' column vectors 
k1x=zeros(3,1); 
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k2x=zeros(3,1); 
k3x=zeros(3,1); 
k4x=zeros(3,1); 
xn1=zeros(3,1); 
xn2=zeros(3,1); 
xn3=zeros(3,1); 
  
% Is wp the frequency of oscillation for the external current? 
wp=0;   %this is a parameter that is passed on to the function call 
xdot 
xn=zeros(3,N);  
xn(:,1)=x; 
for i=1:N-1 
k1x=h*xdot_wade(i*h,x,wp,I); 
xn1=x+k1x/2; 
k2x=h*xdot_wade((i+1/2)*h,xn1,wp,I); 
xn2=x+k2x/2; 
k3x=h*xdot_wade((i+1/2)*h,xn2,wp,I); 
xn3=x+k3x; 
k4x=h*xdot_wade((i+1)*h,xn3,wp,I); 
xn(:,i+1)=x+k1x/6+k2x/3+k3x/3+k4x/6; 
x=xn(:,i+1); 
  
end 
  
xnow=xn(1,:); 
  
figure(1) 
subplot(3,1,1) 
plot(t, xn(1,:)); 
grid on 
xlabel('Time') 
ylabel('x') 
title(['External Current =  ' num2str(I)]) 
  
subplot(3,1,2) 
plot(t, xn(2,:)); 
grid on 
xlabel('Time') 
ylabel('y') 
  
subplot(3,1,3) 
plot(t, xn(3,:)); 
grid on 
xlabel('Time') 
ylabel('z') 
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figure(2) 
plot3(xn(1,:),xn(2,:),xn(3,:)) 
grid on 
xlabel('x') 
ylabel('y') 
zlabel('z') 
title(['External Current = ' num2str(I)]) 
  
figure(3) 
plot(xn(1,:),xn(3,:)) 
grid on 
  
toc 
 

E.  HR Neurons 

 
function dy=xdot(t,y,wp,I) 
  
% Original Author: Dr. Nilgun Sungar 
% Code Adapted By: Wade Barnes 
  
% y(1) is the membrane potential 
% y(2) is associated with the fast current (Na+ or K+) 
% y(3) is associated with the slow current (Ca2+) 
  
a=1.0; 
b=3.0; 
c=1.0; 
d=5.0; 
r=0.006; 
s=4.0; 
xo=-1.6; 
  
% stores dy as column vector 
dy=[y(2)-a*y(1)^3+b*y(1)^2-y(3)+I*(1+0.1*sin(wp*t));c-d*y(1)^2-
y(2);r*(s*(y(1)-xo)-y(3))]; 
return 
 

F.  Bifurcation Map Generator 

 
function spike_burst 
  
% Author: Wade Barnes 
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I=linspace(1.5,4,400); 
for m=1:length(I) 
    i=0; 
    [xnow,t]=RK4_wade(I(m)); 
    [spike,pos]=localmax(xnow,0.5); 
    for n=1:length(spike) 
        if spike(n)>0 && t(n)>(30*I(m)) 
            i=i+1; 
            time(i)=t(n); 
        end 
    end 
    for j=1:(i-1) 
        if time(j+1)-time(j)>4 
            per(j)=time(j+1)-time(j); 
        end 
    end 
    for i=1:length(per) 
        plot(I(m),per(i),'.','MarkerSize',1) 
        xlabel('External Current') 
        ylabel('Time Between Consecutive Spikes') 
        hold on 
    end 
    clear per 
end 

 

G.  Population Coupling 

 
clear all 
  
% Original Author: Dr. Nilgun Sungar 
% Code Adapted By: Wade Barnes 
  
h=0.05;  % delta-t  time step size 
to=0; 
tout=3000; % final time 
N=(tout)/h; %number of time steps 
t=linspace(to,tout,N); 
I=3.2; 
  
n=5;        %number of coupled systems 
wp=0  %ignore this 
coup=.9   %coupling strength 
%initialize all in the array randomly  
for i=1:n 
xo(:,i)=[-1.5*(1+0.2*randn); 0;3.2*(1+0.2*randn)] 
end 
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   x=xo; %set the value at t=0 to initialized arrays 
     
k1x=zeros(3,n); 
k2x=zeros(3,n); 
k3x=zeros(3,n); 
k4x=zeros(3,n); 
xn1=zeros(3,n); 
xn2=zeros(3,n); 
xn3=zeros(3,n); 
  
  
xn=zeros(3,n,N); 
xn(:,:,1)=x; 
for i=1:N-1   %for each timestep 
    for j=1:n   %for each element in the chain 
        if j==1   %for the very first one 
            if i==1               
k1x=h*xdot(i*h,x(:,j),wp); 
xn1=x(:,j)+k1x/2; 
k2x=h*xdot((i+1/2)*h,xn1,wp); 
xn2=x(:,j)+k2x/2; 
k3x=h*xdot((i+1/2)*h,xn2,wp); 
xn3=x(:,j)+k3x; 
k4x=h*xdot((i+1)*h,xn3,wp); 
xn(:,j,i+1)=x(:,j)+k1x/6+k2x/3+k3x/3+k4x/6; 
x(:,j)=xn(:,j,i+1); 
            else 
              per=coup*(x(1,n)+x(1,j+1)-2*x(1,j));  % coupling term 
which couples to nearest neighboours 
              k1x=h*xdotch(i*h,x(:,j),per); 
              xn1=x(:,j)+k1x/2; 
              k2x=h*xdotch((i+1/2)*h,xn1,per); 
              xn2=x(:,j)+k2x/2; 
              k3x=h*xdotch((i+1/2)*h,xn2,per); 
              xn3=x(:,j)+k3x; 
              k4x=h*xdotch((i+1)*h,xn3,wp); 
              xn(:,j,i+1)=x(:,j)+k1x/6+k2x/3+k3x/3+k4x/6; 
              x(:,j)=xn(:,j,i+1);  
            end 
         
elseif j<n   % for all the others except the last 
    per=coup*(x(1,j-1)+x(1,j+1)-2*x(1,j));  % coupling term which 
couples to nearest neighboours 
    k1x=h*xdotch(i*h,x(:,j),per); 
xn1=x(:,j)+k1x/2; 
k2x=h*xdotch((i+1/2)*h,xn1,per); 
xn2=x(:,j)+k2x/2; 
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k3x=h*xdotch((i+1/2)*h,xn2,per); 
xn3=x(:,j)+k3x; 
k4x=h*xdotch((i+1)*h,xn3,wp); 
xn(:,j,i+1)=x(:,j)+k1x/6+k2x/3+k3x/3+k4x/6; 
x(:,j)=xn(:,j,i+1); 
        else    %this is for the last one which is coupled back to 
the first one as well 
  
         per=coup*(x(1,j-1)+x(1,1)-2*x(1,j)); 
     
    k1x=h*xdotch(i*h,x(:,j),per); 
xn1=x(:,j)+k1x/2; 
k2x=h*xdotch((i+1/2)*h,xn1,per); 
xn2=x(:,j)+k2x/2; 
k3x=h*xdotch((i+1/2)*h,xn2,per); 
xn3=x(:,j)+k3x; 
k4x=h*xdotch((i+1)*h,xn3,per); 
xn(:,j,i+1)=x(:,j)+k1x/6+k2x/3+k3x/3+k4x/6; 
x(:,j)=xn(:,j,i+1); 
end 
end 
end 
  
figure(1) 
for ii=1:n 
    a(1,:)=xn(1,ii,:); 
    if ii==1 
        plot(t,a,'b') 
        hold on 
        grid on 
        axis([0 tout -2 2]) 
    elseif ii==2 
        plot(t,a,'g') 
        hold on 
        grid on 
        axis([0 tout -2 2]) 
    elseif ii==3 
        plot(t,a,'r') 
        hold on 
        grid on 
        axis([0 tout -2 2]) 
    elseif ii==4 
        plot(t,a,'y') 
        hold on 
        grid on 
        axis([0 tout -2 2]) 
    elseif ii==5 
        plot(t,a,'k') 



43 

 

        hold on 
        grid on 
        axis([0 tout -2 2]) 
    end 
end 
xlabel('Time') 
ylabel('x_n') 
legend('x_1','x_2','x_3','x_4','x_5') 
title(['External Current =  ' num2str(I) ' & Coupling Strength = ' 
num2str(coup) ]) 
 
 

H.  Picture of Prototype 

 
Fig. 19: Picture of Prototype 

 

 


