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Aerodynamic Performance Enhancement of a NACA 66-206 
Airfoil Using Supersonic Channel Airfoil Design 

David M. Giles1 and David D. Marshall2 

California Polytechnic State University, San Luis Obispo, CA, 93407-0352 

Supersonic channel airfoil design techniques have been shown to significantly reduce 
drag in high-speed flows over diamond shaped airfoils by Ruffin and colleagues. The effect 
of applying these techniques to a NACA 66-206 airfoil is presented. The design domain 
entails channel heights of 8-16.6% thickness-to-chord and speeds from Mach 1.5-3.0. 
Numerical simulations show an increase in the lift-to-drag ratio for airfoils at Mach 2.5 at a 
35,000-ft altitude with a 12% channel height geometry showing a benefit of 17.2% at 6-deg 
angle of attack and a sharp channel leading edge. Wave drag is significantly reduced while 
viscous forces are slightly increased because of greater wetted area. Lift forces compared to 
clean airfoil solutions were also decreased, due mainly to the reduction in the length of the 
lifting surfaces. A tensile yield failure structural analysis of a typical beam found an 11.4% 
channel height could be implemented over 50% of the span between two typical ribs. A three 
dimensional wing was designed with the determined slot geometry and two dimensional flow 
analyses. An overall increase in L/D of 9% was realized at Mach 2.5 at a 35,000-ft altitude 
and 6-deg angle of attack. 

Nomenclature 
Cp = pressure coefficient
 
c = chord (m)
 
L/D = Lift-to-Drag ratio
 
R = Rounded Leading Edge
 
Rn = Nose Lip Radius (mm)
 
tc = Channel Thickness (mm)
 
S = Sharp Leading Edge
 
θ = Channel Half Angle (degrees)
 
y+ = Non-Dimensional Turbulent Length Scale
 
α = angle of attack (degrees)
 

I. Introduction 

TAILORING the aerodynamic performance of a high speed aircraft such as a supersonic civil transport towards 
cruise conditions can optimize criteria such as range, fuel fraction, and payload. By maximizing L/D many of 

these performance parameters can be improved. However, to reach supersonic speeds, a self-propelled aircraft must 
traverse both the subsonic and transonic regimes. Many airfoils designed only for supersonic cruise performance, 
such as a diamond airfoil, have very low lifting characteristics at slow speeds. To counteract this, in some designs 
cambered airfoils are used in some sections of the wing to provide lift for subsonic operation. In supersonic flight, 
this cambered and often blunted nose airfoil section has a lower L/D because of the high wave drag associated with 
the stagnation point. 

In previous work1,2 blunted diamond airfoils were examined to improve drag characteristics. A sharp leading 
edge airfoil is hard to construct and suffers from high heat transfer rates at high supersonic speeds. However, 
blunting the leading edge causes a large increase in the wave drag of the aircraft because of the large stagnation 
pressure point. To decrease the wave drag during cruise, a channel opens up in the middle of the airfoil and split the 
large stagnation region into two smaller points. If the channel height is sufficiently small to choke the flow entering 

1 M.S. Candidate, Aerospace Engineering Department, Student Member. 
2 Assistant Professor, Aerospace Engineering Department, Senior Member. 
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the channel, a bow shock will form in front of the airfoil and the flow traveling through the channel will be subsonic, 
and thus have a lower dynamic pressure. The greater wetted area does increase the skin-friction drag, but the 
subsonic flow in the channel minimizes this increase. By implementing a channel through the wing, the overall drag 
was reduced by up to 20% for some geometries in turbulent flow. Further work included experimentation in 
reducing heat transfer rates due to hypersonic velocities by rounding off the two nose lips caused by the channel 
geometry3. By using an appropriate channel design the cruise efficiency of a wing can be increased or the wing 
sweep can reduced for the same aerodynamic benefit. 

The present concept applies this previous work to a cambered airfoil, specifically a NACA 66-206 with a chord 
length of 1 m. The channel begins at the leading edge, extends through the airfoil, and exits at the trailing edge. The 
initial channel heights range from 8% to 16.6% of the total thickness with the center of each channel at the zero 
angle stagnation point of the airfoil. The resultant leading edges are rounded to a 3 mm radius to promote easier 
construction and to decrease heat transfer if placed in supersonic flow as seen in Figure 1. Sharp leading edge 
geometries were also constructed since at lower supersonic cruise speeds, the effects of heat transfer are not as 
severe. The channel extends through the airfoil, enlarging at a half angle of 0.05 degrees to account for boundary 
layer growth in the channel. The trailing edge location is determined by the location that has a thickness that 
corresponds to the height of the channel at that chord. This does not guarantee a straight channel because of the 
cusped section on the lower surface. Instead, the centerline of the channel extends straight back to 0.15c, turns up at 
a slight angle to 0.75c, and continues to extend straight out the trailing edge. These locations were chosen as they 
correspond to typical spar locations to be used in the structural analysis portion of this study. 

Figure 1. Geometry for 8% Channel NACA 66-206 Airfoil (Not to Scale) 

A disadvantage to using a non-symmetric airfoil compared to a blunted diamond airfoil is the straight trailing 
edge geometry in the non-symmetric section. When a channel is carved out, large amounts of geometry are 
removed. For the 16.6% rounded channel, the overall chord length was reduced to 0.89c. When the sharp channel is 
used, about 1% of the chord length was recovered to act as a lifting surface. A blunted diamond airfoil loses little of 
its internal volume as long as the channel height does not exceed the blunted nose radius. 

II. Numerical Results: 2D Computational Fluid Dynamics 
The basic geometry utilized was adapted from the inboard section of a reference high speed supersonic transport 

having a cranked arrow type design4. Initial grid sizes constructed using GAMBIT5 contained approximately 25,000 
cells in the 2D plane. A modified C-grid was used to set the farfield boundaries. Structured grids using quad 
elements were used in all locations except directly in front of the channel where a pave-type quad mesh was 
implemented. To ensure viscous effects could be captured, the first node was placed at .0014c from the surface, 
giving an initial y+ value from 100-250 which set the initial cell within the log layer. Within the channel, six cells 
were used per chord station to keep the cells as orthogonal as possible around the leading edge. 

Turbulent flow analysis was predicted using a k-ω viscous model in Fluent6. Gradient adaptation was 
implemented for pressure gradients to ensure an accurate capture of the bow shock and oblique shocks near the 
trailing edge. Also, grid adaptation was used to refine the boundary layer to have maximum y+ value of 100 to 
capture the viscous effects. The final adapted grids for the 10% channel and the no channel airfoil can be seen in 
Figure 2. Both grids captured the bow shock and the trailing edge shocks similarly. 
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Figure 2a. Adapted Grid for Channel Thickness Figure 2b. Adapted Grid for NACA 66-206 with 
of 10% at M∞ = 2.5 No Channel at M∞ = 2.5 

The five channel geometries examined were 8%, 10%, 11.4%, 12%, and 16.6% of the total t/c of the airfoil. 
Rounded channel lips were examined first. Initial results of the 8% airfoil at M∞ = 2.5 showed no decrease in the 
drag coefficient and so larger channel geometries were examined. With the 16.6% channel, a decrease in the drag 
coefficient was seen. Note that all coefficients are non-dimensionalized by the actual airfoil chord length for each 
geometry. 

After initial data had been obtained, a coarse sweep over a range of Mach numbers was obtained at an angle-of­
attack of 6° to ensure a positive lift force was obtained. Also, the effect of implementing a sharp leading edge to the 
channel entrance was also examined in this sweep. The Mach contours for the M∞= 2.5, 35,000 ft altitude case for 
three geometries can be seen in Figure 3. All three had similar external flow fields, even at the trailing edge, where a 
similar contour of oblique shocks and expansion waves were present. The flow for the rounded channel cases was 
choked and a bow shock formed in front of the leading edge of the airfoil, with a comparable location to the baseline 
airfoil. Internally, the flow was subsonic until the channel exit where it became sonic. This was desired in order to 
keep the viscous drag as low as possible. At the exit the flow reached Mach 1. The sharp leading edge channel also 
was choked, but not at the entrance. Instead a started inlet condition existed with oblique shocks and expansions. 
After the flow had slowed to subsonic, the airflow accelerated and at the exit of the channel reached Mach 1. 

Figure 3. Mach Contours for a) 12% thick round channel b) 12% thick sharp channel and c) baseline airfoil 
at M∞= 2.5, 35,000 ft altitude, and α = 6°. 

A full bow shock formation for a rounded leading edge channel can be seen in Figure 4a. Because the flow is 
choked near the trailing edge, the subsonic region is present in the channel towards the leading edge. At the leading 
edge lips, two small stagnation regions form their own bow shocks. If the channel opening is sufficiently small, 
these tow shocks can interact along with the choked channel to form a continuous bow shock in front of the leading 
edge. For small channels, the bow shock is round in the front. In the 12% case shown, the shock has a flat section in 
front of the channel. This was due to the bow shock regions associated with each lip having smaller interactions, 
causing a weaker area directly in font of the channel. For each rounded case examined in this effort, the bow shock 
was present. The sharp leading edge airfoil geometry provided a much different flow field at the leading edge. 
Figure 4b shows how the two shock regions are unable to form a continuous bow shock over the front of the 
channel. Instead, oblique shocks and expansion waves are present in the channel. The stagnation pressure regions 
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are smaller than that of the rounded channel. The supersonic flow in the channel does increase the amount of viscous 
drag but the sharp leading edge decreases the wave drag seen by the airfoil. 

Figure 4. Leading Edge Mach Contours for a) 12% thick round channel and b) 11.4% thick sharp at M∞ = 
2.5, 35,000 ft altitude, and α = 6°. 

The large stagnation point on the baseline airfoil was split into two points for the channel airfoil. The 
magnitude of the pressure coefficient (Cp) was about 1.7 in all M∞ = 2.0 cases. However, the high pressure region 
was much smaller for the channel cases. The sharper decrease in a Cp for the channels when compared to the 
baseline airfoil can be seen in Figure 5. The channel design exhibits similar trends over the external surfaces of the 
airfoil as the baseline airfoil. No lift was produced from the channel because of the balance of the pressure forces, 
easily seen in the graph as the two faces are the same distribution. The irregularity for the 16.6% channel was caused 
by the flow starting to accelerate to sonic speeds inside of the channel. The pressure data from inside the channel 
will be used in the structural analysis. 

Lower 

Channel 
(Upper and Lower) 

Upper 

Figure 5. Pressure Coefficient Distributions on Exposed Surfaces for a) 16.6% thick channel and b) baseline 
airfoil at M ∞= 2.0, 35,000 ft altitude, and α = 6°. 

When compared to the baseline airfoil, all channel airfoils had an increase in viscous drag. For the M∞ = 2.5 
cases, the viscous drag of about 600 N/m for the channel airfoils was double that of baseline (321 N/m). This 
doubling trend was observed in all rounded leading edge case except when speed decreased to a freestream Mach of 
1.5 where the drag only increased by a factor of 1.6 (171 N/m to 282 N/m). 

Table 1 shows the benefit seen in both the sharp leading edge and rounded leading edge at the Mach 2.5 and six 
degree angle of attack condition. As expected, the pressure drag force was decreased because the large stagnation 
region caused by the bow shock was dissipated into two smaller stagnation points. The decrease was about 17% for 
the rounded 12% channel airfoil. The wave drag was reduced more than the viscous drag increased, causing the 
overall drag force on the airfoil to be less. The greatest benefit was seen by the sharp leading geometry. Because of 
the smaller stagnation region, the wave drag was reduced by 34% for the 12% airfoil when compared to the baseline. 
The viscous drag increased by 25% over the rounded channel airfoil because of the supersonic flow present at the 
inlet of the channel. At M∞ = 2.5, the wave drag magnitude was approximately four times greater than the viscous 
drag. The decrease in pressure drag overcame the increase in viscous drag to lower the overall drag on the airfoil by 
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21% compared to the baseline NACA 66-206. Overall it was seen that for a supersonic channel airfoil, even for the 
rounded channel, the small penalty for increased viscous drag can be reversed by the decrease in wave drag 
significantly, especially at higher Mach numbers. 

Table 1. Two Dimensional Performance Results for Mach 2.5, 35,000ft, α = 6° 
Drag Force (N/m) Lift Force (N/m) 

CaseName Pressure Viscous Total Pressure Viscous Total 
12% Sharp 2616 778 3394 16481 -75 16407 
12% Round 3313 620 3933 15637 -60 15578 

Baseline 3990 321 4311 17805 -30 17775 

In order to normalize all geometries, L/D was examined and the results can be seen in Figure 6. Even though the 
drag forces were much lower on the channel airfoils, the lift forces were also decreased. By eliminating part of the 
trailing edge geometry to implement the channel, up to 11% of the no channel airfoil lifting surface was also 
eliminated. At lower Mach numbers this did not have as great 

6 

The maximum increase in L/D for a rounded leading edge 
airfoil was 3.5% for the 16.6% channel airfoil. When the sharp 

4 
leading edge was implemented, the increase in L/D was much 
more apparent. At Mach 2.5, the L/D increase was 17.2% for 

3.5 
the 12% airfoil. A larger decrease in the wave drag overcame a 
slight increase in the viscous drag. Also, the sharp geometry 
recovered some of the chord length at the leading edge, 

1.5 2 2.5 3 

Mach Number 

8 R 

10 R 

12 R 

16.6 R 

baseline 

11.4 S 

12 S 

Figure 6. Computed L/D for Various Mach 
allowing for a larger lifting surface. This gave higher lift values Numbers; α = 6° and altitude = 35,000 ft 
for the sharp leading edge geometry compared to the rounded 
leading edge. For the 12% case, 5.3% more lift was realized as 
seen previously in Table 1. The lift produced was still lower than the baseline airfoil which had a full chord length. 
At higher speeds, the losses in lift were greater than at the slower supersonic speeds. The longer chord length of the 
sharp channel and the lower drag from the lip geometry allowed for more efficient cruise over both the baseline and 
rounded leading edge channeled airfoils as long as the sharp leading edge could overcome structural and thermal 
impediments. 

The channel geometry was also examined to try and improve the performance by obtaining a propulsive force 
out of the high pressure air in the channel. Two channels were created that started with an 8% channel at the inlet 
and the exit as a 16.6% channel. One channel had the 
normal two kink configuration at the spar locations and 
the other had a straight channel edges from the 8% inlet 
to the 16.6% outlet. The number of kinks in the channel 
only caused a difference in L/D of 0.2%, which could be 
attributed to the coarseness of the grid. Overall, the 
growth of the channel gave the effect of a diverging 
nozzle because the expansion was much greater than the 
0.1° used for a normal channel. However, since the flow 
exit was much larger than the inlet, the flow did not 
choke at the end of the channel but at the narrowest 
point of the channel, the inlet point of the channel as 
seen in Figure 7. This caused supersonic flow 
throughout the entire length of the duct. The bow shock 
structure correlated with a constant channel height of 
8%. The viscous drag was similar in magnitude to an 8% 
channel, but the pressure drag did decrease when 
compared to an 8% channel. The pressure in the channel 

of an effect, but at high Mach numbers, the disparity between 
the baseline airfoil and the rounded channel airfoil lift forces 
was on the order of a few kilonewtons. An increase in L/D was 

5.5 

seen for 16.6% channel at Mach 2.0, which is a reasonable 
5

L
/D
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cruise speed. If the cruise speed was decreased to Mach 1.5, all 
channel airfoils examined outperformed the baseline airfoil. 

4.5 

Figure 7. Leading Edge Mach Contours for 
Diverging Channel (8% to 16.6%) at M∞ = 2.5, 
35,000 ft altitude, and α = 6°. 
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acted on the interior walls of the channel, overcoming a portion of the stagnation pressure. The overall drag was 
similar to that of an 11% channel. The decrease in lifting surface because of the large exit of the channel hindered 
the performance of the airfoil. The overall L/D was 3.84 which was less than the 3.86 for a typical 8% channel. 

III. Numerical Results: Structural Analysis 
A basic structural analysis was performed to determine the allowable width of the channel due to the cut needed 

through the spars of an aircraft. PanAir9, a panel code, was used to approximate the loading the wing would incur 
during Mach 2.5 flight. Using the wing planform from the reference aircraft4, the resultant lift distribution was 
determined using the doublet strength at the trailing edge. Given a 665,000 lb base cruise weight for the aircraft8, the 
forces on the wing were determined. A chord length of 7.024m was determined by the halfway point of the outboard 
section of the cranked arrow design. This chord translated into a 0.298m high spar for the 0.15c spar. The forces 
present at the end of spar width, where a rib would attach, were a moment of 14,534 Nm and a vertical point load of 
2,075 N determined from the air load analysis. The material chosen was Aluminum 2024-T410, a typical aircraft 
aluminum with a tensile yield strength of 3.25 x 108 Pa. An I-Beam profile was optimized for the loading and tensile 
limits of the material given the constraints of 0.002 m for the web and 0.003 m for the flange. An untapered spar was 
constructed from the I-beam profile and the stress profile of the beam in the loaded condition can be seen in Figure 
8. In the finite element model constructed, the maximum stress computed was 3.18 x 108 Pa and this value was used 
as the failure criterion in further analyses. 
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Distance From Fixed Rib (m) 

Figure 8. Stress Profile for 0.15c I-Beam, no cutout Figure 9. Grid for Reinforced Square Cutout 

The grid used was seeded using evenly spaced grid points. Quadrilateral solid elements were used. The cutout 
location was based on the location given from the airfoil for both 0.15c and 0.75c spar locations. The grid was 
structured except around the cutouts for the channel. A paver mesh was used and the results for a square cutout can 
be seen in Figure 9. The material carved away to make room for the hole through the spar was added around the 
hole, reinforcing the web section of the spar and also providing a location for a duct structure to attach. 

Initial studies on circular channels found that the 0.15c spar was more limiting than the 0.75c for all channel 
sizes. The next study focused on the 12% channel by changing the span of the cutout and reinforcing the area around 
the cutout. Besides the square geometry seen above, slot geometries with semi-circle close outs to eliminate the 
sharp stress concentration of the square geometry were implemented. The results were computed for slots up to 50% 
of the span of the spar and a summary of the data is seen in Table 2. When material was eliminated the peak stress 
was up to 6% higher than the reinforced hole geometry. However, all slots still failed the tensile yield failure 
criterion. However, by altering the geometry and not adding any material, the stress was decreased. The next 
approach was to alter the taper of the flanges which were 

Table 2. Maximum Tensile Stress (Pa) with originally the same cross section throughout the length of the spar 
Slotted I-Beam model. After analyzing the results of both 10% and 12% spar 

geometries, the final taper geometry and channel sizing of 11.4% 
was determined and was shown in Figure 10. The stress profile is 
seen in Figure 11 and was similar to the other slot models by 
having two stress peaks near the ends of the slot. As predicted 
from the trends observed in the previous models, the 11.4% 
model optimally met the 3.18 x 108 Pa tensile yield failure 
criterion. 

Slot Size Normal Cutout Reinforced Hole 
Square 3.30E+08 3.22E+08 

25% 3.42E+08 3.27E+08 
50% 3.50E+08 3.29E+08 
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Figure 10. 50% Slotted Beam Geometry, 
11.4% Channel Height (m) 

3.50E+08 
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Figure 11. Stress Profile for 11.4% Channel 
Height 50% wide slot 

The pressure force due to the air through the duct was also taken into consideration. When added into the 
structural model, the tensile stress increased a maximum of 1%. The pressure load may be critical to other structural 
failure modes, but since the effect on the tensile yield was small, further analysis was done without the interior 
pressure loading. 

IV. Numerical Results: 3D Computational Fluid Dynamics 
A three dimensional model was created that coupled the results of the previous analyses by implementing a sharp 

leading edge slotted channel that was 11.4% high and covered 50% of the span between two ribs. The model used 
symmetry planes at the span rib location and also at the span location at the center of the channel. A baseline 3D 
model was also created with the symmetry planes were modeled at 
the two rib locations. The full solid model constructed can be seen 
in Figure 12. The gridding scheme used was similar to the two 
dimensional models. The rib symmetry plane was meshed the same 
as the normal baseline airfoil. The profile at the center of the slot 
matched 2D profile with a channel and was gridded similarly. The 
flow field was then meshed with mapped hexahedral elements. 
During the flow solution computation, gradient adaptation was 
implemented again for pressure gradients to ensure an accurate 
capture of the leading edge flow characteristics and the oblique 
shocks near the trailing edge. A maximum of two levels of 
refinement were used. 

The two wing models were subject to Mach 2.5 flow at a 
standard altitude of 35,000 ft and six degrees angle of attack. The 
slotted wing showed an L/D improvement of 9.2% over the baseline 
model with an L/D of 4.48 as shown in Table 3. In the table, the 
forces on the slotted wing geometry were doubled since it was a 
half model. The drag force was reduced by 64 N and the lift force 
was decreased as well by 108 N. The reduction in lift was followed 
what had been seen in the airfoil section analysis. The reduction 
was 5.5% for the entire model. This was similar to the 11.4% 
section airfoil which had a reduction of 6.9%. The discrepancy was 
expected because some of the slotted wing was not altered and had 
a full airfoil section and from this some of the lift force was 
recovered when compared to a fully slotted wing. 

The two dimensional baseline results were also scaled based on 
the 3D baseline model which had a width of .109c. For a fully 
slotted wing, the expected L/D value was 4.78 and using the 
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Figure 12. Model Geometry for Slotted 
Wing 

Figure 13. Surface Mesh of Slotted 
Geometry (Half Model ) 
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baseline wing model, 4.102. The slotted wing had a performance that was 56% of this range even though the slot 
was only 50% of the wing. This increase is reasonable since the total slot did not only cover 50% of the wing 
leading edge. The circular close off of the slot went beyond the 50% slot allotment. This extra cutout was included 
in the structural model previously. This extra frontal area reduced the drag further since the channel was open to 
more of the span. The amount of benefit was reduced when compared to an 11.4% slot extended because the 
diminishing size of the close off. The benefit was not large but was apparent. 

Table 3. Comparison of Baseline and Channel Airfoils and Wings for Mach 2.5, 35,000 ft, α = 6°, Force Data 
Scaled to Baseline 3D model. 

Drag Force (N) Lift Force (N) 
CaseName Pressure Viscous Total Pressure Viscous Total L/D 

Baseline 3D 436 36 472 1941 -3 1938 4.102 
50% Slot 3D 350 58 408 1832 -6 1828 4.480 
Baseline 2D 434 35 469 1937 -3 1933 4.123 

11.4% Channel 2D 297 80 376 1806 -8 1799 4.780 

The external surfaces of the leading edge affected the performance of the airfoil downstream. A pressure plot of 
the leading edge can be seen in Figure 14. The large stagnation region caused by the full airfoil can be seen. In 
contrast, the slotted section has a much smaller stagnation region. Where the slot section ends, there was no longer a 
surface to support the bow shock flow feature and the flow collapsed into the channel. The interaction is seen on the 
lips of the channel. For most of the leading edge of the slot, the stagnation region was small and was parallel to the 
leading edge. At the point where the bow 
shock at the edge of the channel close out 
interacted with the lips of the slot, a high 
pressure region developed. Also interacting 
at this point was the shock that was 
developed by the sharp edged lips of the 
channel itself. From this region, the 
propagation of a shock wave caused by this 
discontinuity continued along the surface of 
the wing, interacting with the accelerating 
flow over the top of the wing. The 
propagation of the discontinuity can also bee 
seen on the interior surfaces of the channel. 

The flowfield varied for the slotted wing 
depending on the span location. Figure 15 
shows the flowfield along the slot symmetry 
line. Overall, the flow characteristics were 
similar to that of the airfoil section with an Figure 14. Pressure Contours (Pa) of Leading Edge 
11.4% channel. Leading edge shocks form at Surfaces for 11.4% Channel, 50% width at Mach 2.5, 
the lips of the channel and the bow shock 35,000 ft, α = 6° 
region was not formed as expected. The 
trailing edge also was similar, with the flow 
expanding out the exit of the channel and accelerating past sonic. However, because of the finite nature of the slot 
other elements came into play. Instead of a continuous acceleration over the upper surface, the flow was interrupted 
by the shock formed by the discontinuity interacting with the accelerating flow over the top of the wing. The 
formation of this shock and its interaction along the symmetric boundary could have contributed to some of the drag 
seen by the wing. 

The overall flow through the channel was comparable to the basic channel airfoil. Because of the boundary 
conditions present, the flow field was altered from the infinite channel. The centerline of the channel coincided 
closely to that of the slotted airfoil section model. Near the leading edge, a supersonic zone was found with both 
expansion waves and oblique shocks interacting. The zone eventually coalesced and became a subsonic flow at 
about 0.25c as seen in Figure 16. The flow stayed near sonic until the trailing edge, where the flow sped up back to 
supersonic speeds at the exit of the channel. Near the slot close out boundary, the flow did differ from the 
performance seen in the 11.4% slotted airfoil. At the leading edge, the discontinuity caused by the closeout of the 
slotted propagated a shock into the channel as well as the upper and lower surfaces of the airfoil. The initial region 
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of the channel is highly convoluted as shocks generated from the upper and lower lips as well as the close out 
regions all interact. At about 0.05c from the leading edge, the boundary layer, which had been attached, was tripped 
by a wave hitting the sides of the slot. A separated region was developed after this perturbation of the boundary 
layer. Further down the slot, the flow became more uniform and the separation region was damped out. Since the 
inviscid region of the channel was smaller than usual in the front, the flow was able to expand more in the aft region 
of the channel. This allowed the flow to be slower in this section, only Mach 0.7, whereas in the infinite channel, the 
flow was near sonic or parts of the flow were expanding past Mach 1. This lower velocity allowed for less viscous 
drag in this part of the channel compared to the two dimensional model. This offset the drag increase caused by the 
separation region near the front of the channel. At the exit of the channel, the choked flow expanded and 
accelerated, similarly to that of the two dimensional model. The interaction of the channel and the trailing edge 
portion of the airfoil had no large irregularities except oblique shocks and expansion waves to match the flow from 
both external and internal surfaces which was similar to that in the two dimensional analysis. 

Figure 15. Mach Contours for Mid-Plane Section of 3D 
Channel 

Wing Leading 
Edge 

Airflow 

0.4c 

C
hannel Sym

m
etry Plane 

Solid Interior of W
ing 

Figure 16. Contours of Mach Number for 
11.4% Channel Symmetry Plane for Mach 
2.5, 35,000 ft, α = 6° 

V. Conclusions 
The supersonic channel airfoil concept was applied to an airfoil that was not solely designed for supersonic 

cruise, specifically a NACA 66-206 airfoil. Initial two dimensional results showed an increase in L/D for the airfoil 
with the supersonic channel implemented. The structural implications were also examined. It was found that a 
baseline beam could be altered to accommodate a 50% slot through the spar. The failure mode of tensile yielding 
was not affected by the internal pressure of the air flowing through the channel. Finally, an aerodynamic analysis of 
the wing structure was performed. The experiment showed an increase in the L/D of 9% for a wing with an 11.4% 
t/c supersonic channel height implemented over 50% of the span between to ribs. The wing examined was an infinite 
rectangular wing subject to conditions at Mach 2.5 at six degrees angle of attack and placed in a standard altitude 
condition of 35,000 ft. 

The implementation of the channel still requires further refinement. The current design would have the channel 
be opened during cruise so subsonic maneuvering would use the full NACA 66-206 profile. This is especially 
needed for the sharp leading edge channel concept. Also, the elimination of area at the trailing edge lowered the lift 
force generated by the wing, negating some of the performance gained by the drag reduction. Other airfoils may be 
more suited to the channel concept. Additionally, the structural analysis was limited to a basic analysis in order get a 
first iteration of the feasibility of this concept. More work needs to be done to investigate how this could be applied 
to an actual structure. Further analysis into structural penalties for ducting structure, heat transfer, and actuation of 
the channel are needed. 

The improvement in L/D performance for a wing during cruise can be applied in many ways. The most basic is a 
straight implementation into a current design wing profile that would allow a higher L/D of the aircraft to occur. 
Another application is the reduction of the sweep to make the L/D performance with the supersonic channel to be 
the same as the baseline wing footprint. The reduction in sweep will allow for greater performance for subsonic 
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operations. Overall, the use of a blunt airfoil on a wing for subsonic performance enhancement does not have to add 
as large of a penalty during supersonic flight because the application of the supersonic channel airfoil design will 
provide a means to decrease fuel costs, increase range, and increase payload while not compromising the subsonic 
performance of the aircraft. 
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