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Abstract— Inverse kinematics is a nonlinear problem that 
may have multiple solutions. A Genetic Algorithm(GA) for 
solving the inverse kinematics of a serial robotic manipulator is 
presented. The algorithm is capable of finding multiple solutions 
of the inverse kinematics through niching methods. 

Despite the fact that the number and position of solutions in 
the search space depends on the the position and orientation 
of the end-effector as well as the configuration of the robot, 
the number of GA parameters that must be set by a user are 
limited to a minimum through the use of an adaptive niching 
method. The only requirement of the algorithm is the forward 
kinematics equations which can be easily obtained from the 
link parameters and joint variables of the robot. For identifying 
and processing the outputs of this GA, a modified filtering and 
clustering phase is also added to the algorithm. The algorithm 
was tested to solve the inverse kinematic problem of a 3 degree-
of-freedom(DOF) robotic manipulator. 

I. INTRODUCTION 

Path planning and control of robot manipulators require 
mapping from end effector cartesian space coordinates into 
corresponding joint positions. This mapping is referred to as 
the inverse-kinematics (IK) of the robot. Finding the position 
and orientation of the end-effector from the joint angles 
is called the forward-kinematics (FK) problem. Forward-
kinematics of a robot manipulator can easily be solved by 
knowing the link parameters and joint variables of a robot, 
while the inverse kinematics is a nonlinear and configuration 
dependent problem that may have multiple solutions[1]. 

For some robot configurations the closed-form solution 
of the IK exist (e.g. PUMA, FANUC, etc.) [2], [1]. These 
solutions only exist for a few robot configurations and 
can not be obtained for all robots. Another approach to 
the IK problem is to use numerical methods [3], [4]. In 
numerical methods, the algorithm converges on the solution 
that is closest to the initial starting point of the algorithm. 
Since most of these methods are divergence based, they are 
vulnerable to local optimums. To solve IK for a redundant 
robot, a genetic algorithm was used in [5]. In that work, 
the focus is on finding the best solution among all the 
possible solutions that minimize the joint displacements. 
Most related is research from [6] and [7], where a fitness 
sharing niching method was used to find multiple solutions 
for a 2DOF robot. A prominent feature of these works is 
the use of real-coded GA in conjunction with tournament 
selection. A drawback is they suffer from the need to set 
numerous unknown parameters. These parameters depend 
greatly on the nature of the search space and are different 
from one robot configuration to another. 

In this paper, an adaptive niching method to solve the 
IK problem is proposed. This algorithm is based on a 
minimizing GA to find the joint angles that produce the least 
positioning and orientation error of the end effector from 
those of the desired values. The contributions of this paper 
can be highlighted as: 

•	 By using a niching method, the algorithm is able to find 
all the possible solutions of the IK problem. 

•	 Unlike the other Niching Genetic Algorithms for solving 
IK, this algorithm requires few parameters to be set with 
the prior knowledge of the problem. This feature allows 
the algorithm to be used for solving IK of any robot 
configuration. 

•	 A Real coded Simulated Binary Crossover [12] is used. 
This feature enables the algorithm to search in a con­
tinuous joint space, not a binary one. 

•	 A formulation for incorporating the joint limits in the 
simulated binary crossover is presented. 

•	 A modified Adaptive Niching method [10] was used 
to increase the algorithm speed without sacrificing the 
performance. 

•	 A filtering and clustering method to find the solution 
regions is presented. 

•	 Performance of the algorithm was tested in solving for 
4 solutions of the IK problem of a 3DOF robot. 

This work consist of six sections. Section II explains 
the IK problem and the objective function. In section III, 
the conventional niching methods and the adaptive niching 
method are explained. In section IV the proposed algorithm 
to solve the IK problem is explained. Section V describes 
the filtering and clustering method. Finally, the results of 
running the algorithm for positioning of a 6DOF robotic 
manipulator is illustrated in Section VI. 

II. KINEMATICS AND OBJECTIVE FUNCTION 

A. Forward and Inverse Kinematics 

In Robotics, the problem of calculating the position and 
orientation of the end effector of a robot from the joint 
space coordinates is called the Forward Kinematics problem. 
The solution to this problem can be found by defining the 
position and orientation of each link frame with respect to 
the previous link frame as a function of the joint variable. 
This relative position and orientation of two consecutive 
links, (according to the Denavit-Hartenberg convention), is 
described by a Homogenous Transformation with the form: 
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in this equation Ri (θ) and Pi (θ) describe the relative i−1 i−1

orientation and position of the frame respectively. The pa­
rameters of these matrices can be extracted from the physical 
shape and configuration of any robot. To calculate the posi­
tion and orientation of the end-effector ( Toe(θ1, θ2, · · · θn)) 
with respect to the base of the robot for an arbitrary 
[θ1, θ2, · · · θn] the transformation will be: 

n 

Toe(θ1, θ2, · · · , θn) = Ti
i 
−1(θi)
 

i=1
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On the other hand, the inverse of the FK, the inverse 
kinematics, is the problem of finding [θ1 θ2 · · · θn] from 
Toe. This problem is a mapping from the 3D task space 
to the joint angle space and usually has more than one 
solution. For instance, a PUMA560 robot may have 4 or 8 
Inverse Kinematics solutions [1]. 

B. Objective Function 

In this paper, the approach to solving the IK problem is to 
convert it to a minimization problem and then utilize a GA 
to find all the global minimums of the problem. 

In GAs, a measure of the fitness of each individual is 
required to select the most potent individuals for crossover 
operation. This measure can be defined as the difference 
between the end-effector position and orientation of the 
individual and that of the desired location. 

To measure the position error we use the Euclidean norm 
of the difference between the end-effector position of each 
individual and that of the desired point in the cartesian space. 

EP = �Pdesired − Pind� (3) 

in this equation, Pdesired and Pind are the position vectors 
of the end effector in the desired point and the individual 
respectively. To find the orientation error the Euler angles 
of the hand, α , β and γ, are used which give the same 
orientation as α + π , −β and γ −π. The Euler angles of the 
desired points can be obtained directly from the homogenous 
transformation of the desired position/orientation of the end-
effector. For the individuals, these values can be calculated 
from Roe in (2). The orientation error formulation will be: 

⎡ ⎤ 

αd 

Od = βd
⎣ ⎦ 

γd 

⎡ ⎤ ⎡ ⎤ 

αi αi + π 
EO = min(�Od − ⎣ βi 

⎦ �, �Od − ⎣ −βi 
⎦ �) (4) 

γi γi − π 

where Od is the desired orientation defined in Euler angles, 
and [αi βi γi] are the Euler angles of the individual. With 
(3) and (4), the objective function for the minimization can 
be written as: 

O.F. = wp EP + wo EO (5) 

wp and wo are the weighting factors and can be used to 
normalize their corresponding values. We recommend a value 
for wp as: 

1 
wp = (6)

2Pmax 

which Pmax is the maximum reach of the robot. To choose 
wo, the maximum and minimum allowable joint angles,qmax 

and qmin can be utilized to compute the following: 

1 
wo = (7) 

qmax − qmin 

III. BACKGROUND ON THE NICHING TECHNIQUES 

A Genetic Algorithm, through Selection, Cross-over and 
Mutation operations, finds the individuals that have the best 
fitness values and combines them to produce individuals that 
offer better fitness values than their parents. This process 
continues until the population converges around the single 
individual that have the best fitness value. However, in a 
large number of applications with multiple global (or local) 
optimums, identification of more than just one promising 
point per generation is required. For this purpose, niching 
methods modify the simple GA by changing the fitness 
value in a way to encourage convergence around multiple 
solutions in the search space[8]. In this section, we will 
briefly review the conventional niching techniques. Then the 
adaptive niching via coevolutionary sharing technique will 
be explained in greater detail. 

A. Conventional Techniques 

The sharing method[9], which is probably the most 
well-known niching technique, decreases the fitness value 
of the individuals in densely populated areas and as a 
result decreases their chance of being selected. The sharing 
method, with a complexity of O(N2), is computationally 
expensive. Also, in sharing methods a priori knowledge of 
the problem is required to tune the numerous parameters 
of the algorithm including niche radius parameter [8]. 
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Moreover, the algorithm is more suitable for problems 
with equidistant niches. The limitation of this technique 
for our application is that prior to solving the problem no 
knowledge about the relative position of the solutions in the 
search space exists. In addition, number of niches changes 
for different configurations of robots. These solutions will 
also change with the position of the end-effector and are 
completely different from one robot configuration to another. 
Crowding methods, another approach to niching includes 
Standard Crowding, Deterministic Crowding and Restricted 
Crowding. These methods have a complexity of O(N), 
however do not have the robustness of sharing methods [8]. 

B. Adaptive Niching via Coevolutionary Sharing 

As noted, one of the disadvantages of Fitness sharing is the 
need to set the niche radius σs as accurately as possible. This 
requires a priori knowledge of the solutions of the problem, 
which is not available in IK problems. 

To address this drawback, Goldberg and Wang intro­
duced an adaptive niching algorithm via coevolutionary 
sharing(CSN) [10]. This algorithm is loosely based on the 
economic model of monopolistic competition, in which busi­
nessmen try to position themselves, subject to a minimum 
distance, among geographically distributed customers to 
maximize their profit. In CSN two populations, businessmen 
and customers, work to maximize their separate interests. 

These two populations interact with each other according 
to the economic model. Businessmen try to maximize their 
profit by finding locations with more customers, while cus­
tomers try to shop from businessmen with better service, i.e. 
the closest businessman that is least crowded. 

For the customer population, fitness function modification 
resembles that of the standard fitness sharing. If at any 
generation t, customer c is being served by the businessman 
b who is the closest businessman, and that b is serving a total 
mb,t customers, the shared fitness of c is calculated by: 

f(c) 
�

f �(c) = � (8) 
mb ,t � 

c∈Cb 

where Cb denotes the customer set, whom businessman 
b serves. In other words, each customer shares its fitness 
value with the other customers of the same businessman. 
A Stochastic Universal Selection scheme and single point 
crossover has been used in the original paper [10]. 

The tendency of the businessmen is to place themselves 
in regions that are more densely populated by customers, 
subject to keeping a minimum distance of dmin from the 
other businessmen. The fitness value of the businessmen is 
simply the sum of the fitness values of its customers: 

φ(b) = f(c) (9) 
c∈Cb ,t 

In their paper, Goldberg and Wang used only a mutation 
operation for the businessmen population. If a mutated indi­
vidual: (1) is at least dmin far from other businessmen, and 

(2) is an improvement over the original businessman, it will 
replace the original one. If not, the mutation operation will 
be repeated up to a multiple of the businessman population. 
An imprint operation was also suggested which chooses new 
businessman randomly from the customer population instead 
of producing them by mutation. With imprint, the evolution 
of the businessman population will benefit from knowledge 
of the search space acquired by customers, and will not be 
completely random. If the chosen customer could satisfy the 
above two conditions it will replace the businessman. To 
find out if the selected customer is an improvement, the 
assignment of the customers to the businessmen must be 
repeated. To accomplish the assignment, the calculation of 
the customer distances from the members of the new set of 
businessmen is required. 

Although this algorithm is not as sensitive to the values 
of dmin as the conventional fitness sharing technique is to 
σs, choosing an appropriate dmin is still of considerable 
importance. 

CSN has been applied to a multi-objective softkill­
scheduling problem with the imprint operation [11]. Rank 
based selection, elitist recombination, and non-dominated 
sorting are some of the prominent features of that work. 

IV. ADAPTIVE SHARING TO SOLVE IK PROBLEM 

To solve the IK problem, the algorithm must be fast 
enough to evaluate the solution for a very large space (e.g. A 
6 dimensional space for a PUMA or general purpose robots). 
It must be able to find multiple solutions for all the possible 
poses of the end-effector. This algorithm must also be able 
to solve the IK for any robot configuration by the knowledge 
of the FK equations. In this section, the proposed algorithm 
to solve the IK is explained. 

A. The Algorithm 

An overview of the proposed algorithm can be seen in 
Table. I. A detailed explanation of each of the steps is as 
follows: 

1) Initialization: Two independent populations for Cus­
tomers and Businessmen are randomly created. Each indi­
vidual is consisted of n joint angles corresponding to the n 
joints of the robot: 

Q = [q1 q2 · · · qn]T (10) 

where q1, q2, · · · , qn are all real numbers. 
To allow more individuals to be associated to the IK 

solutions which are close to the reachable joint space borders, 
[qmin,qmax], an extended range of permissible angles,[qmin− 
ψ,qmax + ψ], is used. 

After the Customer and Businessmen populations are 
randomly generated, the initial dmin is calculated using the 
following equation: 

κ( qmax − qmin) 
= √ (11)dminstart 

1 + n 
b 
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Step 

1 

Desciprtion 

Randomly Initialize the Customer Population 
Randomly Initialize the Businessman Population 
Initialize dmin with dminstart 

2 Customers Raw Fitness Value Calculation 
Businessmen Raw Fitness Value Calculation 
Assignment of Customers to the closest Businessman 
Customers Shared Fitness Value Calculation 

3 Forming the customers parent pool by Tournament Selection 
Adding the fittest businessmen to the pool 

4 Customer Crossover 

5 Businessmen Imprint 

6 Updating dmin 

7 If the termination criterion is not reached return step 2 

TABLE I
 

THE IK ALGORITHM
 

where n, b, and κ correspond to the degree of freedom (i.e. 
number of joints), the number of businessmen, and the fitting 
index respectively. (11) uses κ > 1 multiplied by the distance 
between businessmen if they are spread equidistantly over 
the n dimensional joint space. That is, dminstart 

should be 
greater than the average distance between businessmen. 

2) Fitness value calculation: The fitness values f(c) and 
f(b) of customers and businessmen are calculated using (5). 
Then, customers are assigned to the closest businessman, 
where closeness is measured using the Euclidean distance 
between customers and businessman. Based on these as­
signments, the shared fitness values f �(c) of customers are 
calculated with the following equation. This equation is 

f �(c) = f(c) · mb ,t (12) 

3) Selection: Since Tournament Selection does not require 
a priori knowledge of the problem, it was used to create a 
parent pool. 

From the customers, nt individuals are selected at random. 
Of this subset, the customer with the least fitness value (error) 
is transferred to the parent pool. Choosing nt ≥ 2 individuals 
encourages faster algorithm convergence. 

In this step, bt businessmen with the best fitness values 
( f(b) ) are also added to the parent pool. By letting some 
businessmen in the pool, there will be an increase customers 
moving towards businessmen with high fitness values but few 
customers. These businessmen might not otherwise attract 
customers. 

4) Customer crossover: In this step, the new generation of 
customers are produced from the parent pool that was created 

in the previous step. Simulated Binary Crossover[12] is used 
for the crossover operation. Details can be found in section 
IV-B. 

5) Businessmen imprint: Each businessman is compared 
with an individual randomly selected from the newly formed 
parent pool. If this individual is an improvement over the 
businessman and was dmin away from all the other busi­
nessmen, it will replace the corresponding businessman. 

To check for improvement, we define the following value: 

f(x) 
�

F (x) = 
� 

(13)
Ndmin 

x∈P ∨B 

where P and B are the parent pool and the businessman 
populations respectively. Ndmin 

denotes the number of cus­
tomers in the distance dmin from individual x and f(x) is 
the raw fitness value of individual x. F (x) is a measure of 
the potential of the neighborhood of x for being a solution 
region. Regions with higher customer densities and better 
fitness values (lower errors) at the center have lower F (x). 
That is, individuals with lower F (x) are recognized as better 
businessmen. 

Use of F (x) enables us to evade the computationally 
costly process of reassigning the customers to businessmen 
in the imprint step of the original algorithm [10]. 

For each businessman, this process is repeated nlimit 

times, or until it is replaced by a better candidate. Here nlimit 

is a multiple of the population number of businessmen. 
As the algorithm progresses, dmin will decrease. Since the 

businessmen in close vicinity of the solution regions have 
a high concentration of customers around them, even with 
the decrease of dmin, they will still have customers in their 
local regions. Meanwhile businessmen further from solution 
regions will be left without customers and are forced to find 
better regions. 

6) Updating dmin: dmin is closely related to the accuracy 
of the end solutions. Lower values of dmin bring flexibility 
to the businessmen to locate regions with better fitness values 
and more concentrations of solutions. 

In step 1), dmin was set at its maximum value to prevent 
the GA from converging immaturely on only one niche. 
As the iterations continue, the niches begin to establish 
themselves around the solution points and the difference 
between their fitness values decreases. 

In this step, dmin is decreased in small step sizes towards 
its lowest value in the last iterations. In the GA proposed 
here, the following function was used for updating dmin : 

t 
dmin (1 − λ ) (14)= dminstart tmax 

where t and tmax correspond to the current iteration and 
maximum iteration number. λ is the coefficient that defines 
how small dmin can become. 

7) Check for the termination criterion: If the termination 
criterion is not satisfied the algorithm will return to step (2). 
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B. The continuous crossover operation 

Crossover operation randomly selects two parents, P1 and 
P2, from the parent pool and produces two children, C1 

and C2, from them. It has been shown that for continuous 
search spaces, real coded GAs are more suitable than binary 
coded algorithms [12]. In this paper, we use a Simulated Bi­
nary Crossover (SBX) [12] to apply the variable-by-variable 
crossover. The idea behind SBX is to create a random 
distribution of offsprings in the domain of real numbers. This 
distribution matches the distribution of the common binary 
crossovers. In other words, SBX uses a randomly generated 
number, uβ(i) to produce a random expansion ratio β(i) that 
defines how similar the offsprings are to their parents: 

� C2(i) − C1(i) � 
β(i) = . (15)

P2(i) − P1(i) 

Crossover is carried out with the following steps: 

1) Of the n joints, l joints ( l ≤ n ) are randomly selected 
for the crossover operation. The rest of the joint angles 
will be transferred from the parents to the children, 
unchanged. In our implementation l = 0.5n [13]. 

2) For each of the l joints angle selected in the last step, 
a random number, uβ(i), is generated. The expansion 
ratio, β, is then calculated using: 

⎧ 

1 
⎪ 

⎪ 

(2uβ(i)) η+1 if uβ(i) ≤ 0.5 
⎨ 

β(i) = 
� � 

1 
(16) 

⎪ 

⎪ 

⎩ 

1 η+1 
otherwise2(1−uβ(i)) 

where η denotes the distribution index and can be any 
nonnegative real number. For small values of η, points 
far away from the parents have higher probability of 
being chosen, while with large values of η points closer 
to the parents are more likely to be chosen. A value 
of 2–5 produces a good estimate of the binary coded 
crossover [13]. In our algorithm, η initially has a small 
value ( 2 ) and with the progress of the algorithm it 
will increase(to around 5) to let the solutions fine tune 
into the centers of the solution regions. 
When joint angles have physical limits, (as commonly 
found), (16) must be modified to produce offsprings 
that are located inside the joint limits. To accomplish 
this, the following method has been proposed. First, 
βL and βH are calculated from the following equation 
for each of the joint variables: 

0.5(P1(i) + P2(i)) − qmin 
βL(i) = |P1(i) − P2(i)| 

−0.5(P1(i) + P2(i)) + qmax 
βH(i) = (17)|P1(i) − P2(i)| 

where P1(i) and P2(i) denote the ith variable of the 
two parents. Value of uβ is then updated as follows: 

⎧ 

⎨ 
βL(i) if βL ≤ βH 

βlimit(i) = (18) 
⎩ 

βH(i) otherwise 

1 
k(i) = 0.51 − 

βlimit(i)η+1 

uβ(i) 
uβ(i) = (19)

k(i) 

This modification, by changing the probability distri­
bution of β(i), will guaranty that the produced children 
are inside the variable range. Since the expansion ratio 
of the children to parents is limited by the joint variable 
limits, (17) calculates the maximum allowable value of 
this parameter corresponding to each limit. (18) and 
(19) modify uβ in a way to set the probability of 
choosing a β less than βlimit(i), equal to one. In other 
words, for any arbitrary uβ , the produced children will 
be in range [qmin,qmax]. 
Finally, β(i) is calculated from (16) with the updated 
uβ(i). 

3) In the last step children are produced from the follow­
ing equation: 

C1(i) = 0.5[ (1 + β(i)) P1(i) 

+ (1 − β(i)) P2(i) ] (20) 

C2(i) = 0.5[ (1 − β(i)) P1(i) 

+(1 + β(i)) P2(i) ] (21) 

and will be placed in the new generation population. 

V. PROCESSING THE OUTPUT 

The output of the GA is a set of points with high 
population density around the solution regions, and with 
lower concentration in the rest of the search space. In order 
to distinguish solution regions, a mechanism to detect the 
regions with high concentration of individuals and low error 
is required. 

If the robot has 2 DOF, identifying these results in the 
2D space can be accomplished by observation, which is 
not convenient if the GA is a building block for other 
software peripherals. Moreover, for robots with more DOFs 
(for example a 6 DOF PUMA), identifying these solution 
regions must be done in a 6 dimensional space, which is not 
possible by visual inspection. Hence, a robust algorithm for 
clustering the results is required. 

In this section, an overview of the filtering and clustering 
method is presented. 

A. Filtering 

The fitness function of each individual is the orienta­
tion/position error from the desired value. It is convenient to 
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use the fitness function as a measure of filtering the results 
before the clustering. 

In the filtering phase, individuals with high fitness value 
(Error) are rejected and individuals with lower fitness value 
are transferred to the clustering step. 

B. Clustering 

Since no priori knowledge about the number of solutions 
of IK exist, the number of solution niche or clusters is also 
unknown. To resolve this issue, Subtractive Clustering [14] 
is used to find niches. Subtractive Clustering is a one-pass 
algorithm for estimating the number of clusters and their 
centers for a set of data when the number of the clusters is 
unknown. 

Subtractive clustering assumes that every point in the data 
set is a potential cluster center. This algorithm measures the 
potential of each of the points based on the density of the 
data set around it and then assigns the point with the highest 
potential a cluster center. It then removes all other points in 
the Rcluster from the cluster center, and repeats the process 
until all of the points in the data set are within the radius of 
a cluster. 

Choosing Rcluster has a great effect on the number of clus­
ters that are detected by the algorithm. The larger Rcluster, 
the less clusters detected. Because the GA has filtering and 
runs until a relatively good convergence is achieved, Rcluster 

can be set to small values to detect all the solution regions 
with good precision. 

Note that in the GA, in cases where qmin = −π and 
qmax = π, if an IK solution is close to π or −π, a 
concentration of individuals close to the other end of the 
joint space(around −π or π respectively) might form. For 
example, in a 2D search space, if one solution of the IK 
is [−π + ε , · · · ], a concentration of individuals around 
[π − ε , · · · ] might form in the population. In the clustering 
phase, these concentrations will be detected as two different 
regions. To counter this problem, the following equation is 
proposed for calculating the distance of the joint variables of 
two individuals: 

d = min( q1 − q2 q1 − (q2 − 2π) q1 − (q2 + 2π) ) (22) 

VI. RESULTS: PUMA560 IK SOLUTION 

The algorithm was used to solve the IK problem of the 
first three joints of a PUMA560. The reason that only the first 
three joints were used is that these joints are responsible for 
most of the positioning of the robot. The responsibility of 
the 3 distal joints, the spherical wrist joints, is only setting 
the orientation of the hand. In other words, the problem can 
be decoupled to only a positioning by the first three degrees 
of freedom and then an orientation for the wrist joints. The 
second part of this problem, orienting with the wrist, can be 
solved analytically, so here we try to solve the first part of 
the problem. 

Parameter Value 

Customer Population 600 
Businessman Population 30 

κ 1.2 
λ 0.9 

qmin −π 
qmax π 
ψ π 
η 2-5 

Rcluster 0.795 
Filtering threshold 0.1 

nlimit 90 
nt 10 
bt 15 

TABLE II
 

PARAMETERS USED IN THE GENETIC ALGORITHM
 

Case Number x y z 

Case 1 -0.3071 -0.5193 -0.0249 
Case 2 0.4151 -0.6273 0.285 
Case 3 0.5525 -0.3913 -0.5522 

TABLE III
 

TEST HAND POSITIONS FOR PUMA560
 

The parameters used to run the algorithm are shown in 
Table II. The algorithm was used to solve the IK problem 
for three different hand positions. The coordinate of these 
points in the cartesian space are given in Table. III. 

Tables. IV, V, and VI show the actual solution of each 
case in comparison to the results of the algorithm. All these 
values are expressed in the joint space and are in radians. In 
Fig. 1, Fig. 2 and Fig. 3 the results of the algorithm and the 
actual solutions of the IK are shown. In these figures, the 
smaller circles denote the output of the filtering algorithm, 
while the larger circles denote the output of the clustering 
algorithm. The large filled circles are the actual solutions and 
the crosses represent the position of the businessmen. 

As can be seen from Fig. 1 and Fig. 2, some of the 
individuals had converged on the points close to the limits 
of the joint angle on a position mirror to the actual solution 
point. With the modifications to the subtractive clustering that 
was explained in section V-B, these points were assigned 
to the same cluster they tried to converged on. In the two 

Actual Solution q1 q2 q3 
1 0.7854 2.3562 0.1309 
2 0.7854 -2.2711 3.1046 
3 -1.8534 0.7854 3.1046 
4 -1.8534 -0.8705 0.1309 

Algorithm Solutions q1 q2 q3 
1 0.8015 2.3975 0.0554 
2 0.7256 -2.3149 3.0705 
3 -1.8453 0.8953 3.0716 
4 -1.8776 -0.8388 0.0722 

TABLE IV
 

ACTUAL SOLUTIONS AND ALGORITHM OUTPUT FOR CASE 1
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Actual Solution q1 q2 q3 
1 1.9546 2.3562 -0.6914 
2 1.9546 -3.0941 -2.3562 
3 -0.7854 0.7854 -2.3562 
4 -0.7854 -0.0475 -0.6914 

Algorithm Solutions q1 q2 q3 
1 1.9638 2.3363 -0.7530 
2 1.9357 -3.0838 -2.4796 
3 -0.7775 0.7547 -2.2749 
4 -0.7791 -0.0356 -0.7024 

TABLE V 

ACTUAL SOLUTIONS AND ALGORITHM OUTPUT FOR CASE 2 

Actual Solution q1 q2 q3 
1 2.3019 -2.5337 -1.3464 
2 2.3019 -2.3562 -1.7012 
3 -0.3927 -0.6079 -1.7012 
4 -0.3927 -0.7854 -1.3464 

Algorithm Solutions q1 q2 q3 
1 2.2651 -2.4617 -1.5835 
2 2.3038 -2.3154 -1.8715 
3 -0.4047 -0.6220 -1.6732 
4 ——­ ——­ ——­

TABLE VI
 

ACTUAL SOLUTIONS AND ALGORITHM OUTPUT FOR CASE 3
 

figures convergence regions that are actually the same have 
been distinguished with arrows. 

In case 3, the solution regions are very close to each 
other. As a result, the algorithm may confuse the two very 
close regions as one cluster and converge on them as a 
single solution. In Fig. 3, which is the output of case 3, the 
algorithm has detected 3 of the 4 possible solutions. As can 
be observed from Table. VI, Two of these found solutions 
are in the close vicinity of each other. The other solution that 
was located by the algorithm was actually two very close 
solutions of the IK. 

Table. VII the errors in detecting the different niches are 
shown. These results were obtained after 15 iterations. For 
each of the points, the algorithm reached the results on an 
average of 60 seconds, with MatLab on a P4 processor 
with 512MB RAM. If higher precisions are required, the 
algorithm can be run for longer iterations to converge more 
on the niches. However, increasing the iterations brings the 
risk of loosing some of the niches. 

In Fig. 4 the decrease of error of each case is shown as 
the generations evolve. 

Fig. 5 shows that the average of error of the individuals 
is also decreasing. 

Case number 

1 
2 
3 

Niche.1 

0.049 
0.066 
0.005 

Niche.2 

0.02 
0.101 
0.031 

Niche.3 

0.049 
0.019 
0.041 

Niche.4 

0.035 
0.037 
—– 

TABLE VII
 

THE ERRORS OF CASES 1–3 (M)
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Fig. 1. Output of the Algorithm for case 1 
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Fig. 2. Output of the Algorithm for case 2 

VII. CONCLUSION AND DISCUSSION 

An adaptive niching strategy was presented and used to 
solve for multiple solutions of the IK problem. Since this 
algorithm uses the minimum preset parameters, it can be 
generalized to solve IK of a robot with unknown degrees 
of freedom and configuration. The algorithm is benefiting 
from real coding, adaptive minimum distance setting of 
businessmen and adaptive real coding distribution index. 
To process the results, a subtractive clustering algorithm 
was also modified for the application. It was shown that 
the algorithm works with good precision/speed performance 
in the whole search space and for all the possible hand 
position/orientations in space. 
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Average Error with Respect to the iteration number 
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Fig. 3. Output of the Algorithm for case 3 

Minimum Error with respect to the Generation Number 
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Fig. 4. minimum error of the cases 1–3 with respect to iteration number 

This algorithm can also be used in conjunction with a 
numerical method in order to increase the resolution and 
precision of the results. The regions that were detected in 
this algorithm will be used in the numerical method as the 
initial search points and the numerical method can continue 
the convergence of the result to any required precision. 

To incorporate a spherical wrist in the problem, the 
positioning part of IK can be solved with the proposed 
algorithm. Then the joint variables of the spherical wrist can 
be calculated analytically in order to set the orientation of 
the end-effector to the desired values. 

The proposed algorithm can also be used in conjunction 
of another optimization measure, e.g. minimum joint angle 
change, obstacle avoidance, and joint singularity avoidance 
to solve the IK problem of redundant robotic manipulators. 
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Fig. 5. Average error of the cases 1–3 with respect to iteration number 
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