
2006 IEEE Congress on Evolutionary Computation
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

A Genetic Algorithm Approach to solve for Multiple Solutions of
Inverse Kinematics using Adaptive Niching and Clustering

Saleh Tabandeh, Member, IEEE, Christopher Clark, Member, IEEE, and William Melek, Member, IEEE

Abstract— Inverse kinematics is a nonlinear problem that
may have multiple solutions. A Genetic Algorithm(GA) for
solving the inverse kinematics of a serial robotic manipulator is
presented. The algorithm is capable of finding multiple solutions
of the inverse kinematics through niching methods.

Despite the fact that the number and position of solutions in
the search space depends on the the position and orientation
of the end-effector as well as the configuration of the robot,
the number of GA parameters that must be set by a user are
limited to a minimum through the use of an adaptive niching
method. The only requirement of the algorithm is the forward
kinematics equations which can be easily obtained from the
link parameters and joint variables of the robot. For identifying
and processing the outputs of this GA, a modified filtering and
clustering phase is also added to the algorithm. The algorithm
was tested to solve the inverse kinematic problem of a 3 degree-
of-freedom(DOF) robotic manipulator.

I. INTRODUCTION

Path planning and control of robot manipulators require
mapping from end effector cartesian space coordinates into
corresponding joint positions. This mapping is referred to as
the inverse-kinematics (IK) of the robot. Finding the position
and orientation of the end-effector from the joint angles
is called the forward-kinematics (FK) problem. Forward-
kinematics of a robot manipulator can easily be solved by
knowing the link parameters and joint variables of a robot,
while the inverse kinematics is a nonlinear and configuration
dependent problem that may have multiple solutions[1].

For some robot configurations the closed-form solution
of the IK exist (e.g. PUMA, FANUC, etc.) [2], [1]. These
solutions only exist for a few robot configurations and
can not be obtained for all robots. Another approach to
the IK problem is to use numerical methods [3], [4]. In
numerical methods, the algorithm converges on the solution
that is closest to the initial starting point of the algorithm.
Since most of these methods are divergence based, they are
vulnerable to local optimums. To solve IK for a redundant
robot, a genetic algorithm was used in [5]. In that work,
the focus is on finding the best solution among all the
possible solutions that minimize the joint displacements.
Most related is research from [6] and [7], where a fitness
sharing niching method was used to find multiple solutions
for a 2DOF robot. A prominent feature of these works is
the use of real-coded GA in conjunction with tournament
selection. A drawback is they suffer from the need to set
numerous unknown parameters. These parameters depend
greatly on the nature of the search space and are different
from one robot configuration to another.

In this paper, an adaptive niching method to solve the
IK problem is proposed. This algorithm is based on a
minimizing GA to find the joint angles that produce the least
positioning and orientation error of the end effector from
those of the desired values. The contributions of this paper
can be highlighted as:

•	 By using a niching method, the algorithm is able to find
all the possible solutions of the IK problem.

•	 Unlike the other Niching Genetic Algorithms for solving
IK, this algorithm requires few parameters to be set with
the prior knowledge of the problem. This feature allows
the algorithm to be used for solving IK of any robot
configuration.

•	 A Real coded Simulated Binary Crossover [12] is used.
This feature enables the algorithm to search in a con
tinuous joint space, not a binary one.

•	 A formulation for incorporating the joint limits in the
simulated binary crossover is presented.

•	 A modified Adaptive Niching method [10] was used
to increase the algorithm speed without sacrificing the
performance.

•	 A filtering and clustering method to find the solution
regions is presented.

•	 Performance of the algorithm was tested in solving for
4 solutions of the IK problem of a 3DOF robot.

This work consist of six sections. Section II explains
the IK problem and the objective function. In section III,
the conventional niching methods and the adaptive niching
method are explained. In section IV the proposed algorithm
to solve the IK problem is explained. Section V describes
the filtering and clustering method. Finally, the results of
running the algorithm for positioning of a 6DOF robotic
manipulator is illustrated in Section VI.

II. KINEMATICS AND OBJECTIVE FUNCTION

A. Forward and Inverse Kinematics

In Robotics, the problem of calculating the position and
orientation of the end effector of a robot from the joint
space coordinates is called the Forward Kinematics problem.
The solution to this problem can be found by defining the
position and orientation of each link frame with respect to
the previous link frame as a function of the joint variable.
This relative position and orientation of two consecutive
links, (according to the Denavit-Hartenberg convention), is
described by a Homogenous Transformation with the form:

0-7803-9487-9/06/$20.00/©2006 IEEE	 1815

�

⎛ ⎞

⎜ R
i

P
i

⎟

i−1(θi) i−1(θi)
⎜ ⎟

⎟T
i
i−1(θi) = ⎜ (1)

⎜ ⎟

⎝ ⎠

0 0 0 1

in this equation Ri (θ) and Pi (θ) describe the relative i−1 i−1

orientation and position of the frame respectively. The pa
rameters of these matrices can be extracted from the physical
shape and configuration of any robot. To calculate the posi
tion and orientation of the end-effector (Toe(θ1, θ2, · · · θn))
with respect to the base of the robot for an arbitrary
[θ1, θ2, · · · θn] the transformation will be:

n

Toe(θ1, θ2, · · · , θn) = Ti
i
−1(θi)

i=1

⎛ ⎞

⎜ ⎟Roe Poe
⎜ ⎟

⎜ ⎟= (2)
⎜ ⎟

⎝ ⎠

0 0 0 1

On the other hand, the inverse of the FK, the inverse
kinematics, is the problem of finding [θ1 θ2 · · · θn] from
Toe. This problem is a mapping from the 3D task space
to the joint angle space and usually has more than one
solution. For instance, a PUMA560 robot may have 4 or 8
Inverse Kinematics solutions [1].

B. Objective Function

In this paper, the approach to solving the IK problem is to
convert it to a minimization problem and then utilize a GA
to find all the global minimums of the problem.

In GAs, a measure of the fitness of each individual is
required to select the most potent individuals for crossover
operation. This measure can be defined as the difference
between the end-effector position and orientation of the
individual and that of the desired location.

To measure the position error we use the Euclidean norm
of the difference between the end-effector position of each
individual and that of the desired point in the cartesian space.

EP = �Pdesired − Pind� (3)

in this equation, Pdesired and Pind are the position vectors
of the end effector in the desired point and the individual
respectively. To find the orientation error the Euler angles
of the hand, α , β and γ, are used which give the same
orientation as α + π , −β and γ −π. The Euler angles of the
desired points can be obtained directly from the homogenous
transformation of the desired position/orientation of the end-
effector. For the individuals, these values can be calculated
from Roe in (2). The orientation error formulation will be:

⎡ ⎤

αd

Od = βd
⎣ ⎦

γd

⎡ ⎤ ⎡ ⎤

αi αi + π
EO = min(�Od − ⎣ βi

⎦ �, �Od − ⎣ −βi
⎦ �) (4)

γi γi − π

where Od is the desired orientation defined in Euler angles,
and [αi βi γi] are the Euler angles of the individual. With
(3) and (4), the objective function for the minimization can
be written as:

O.F. = wp EP + wo EO (5)

wp and wo are the weighting factors and can be used to
normalize their corresponding values. We recommend a value
for wp as:

1
wp = (6)

2Pmax

which Pmax is the maximum reach of the robot. To choose
wo, the maximum and minimum allowable joint angles,qmax

and qmin can be utilized to compute the following:

1
wo = (7)

qmax − qmin

III. BACKGROUND ON THE NICHING TECHNIQUES

A Genetic Algorithm, through Selection, Cross-over and
Mutation operations, finds the individuals that have the best
fitness values and combines them to produce individuals that
offer better fitness values than their parents. This process
continues until the population converges around the single
individual that have the best fitness value. However, in a
large number of applications with multiple global (or local)
optimums, identification of more than just one promising
point per generation is required. For this purpose, niching
methods modify the simple GA by changing the fitness
value in a way to encourage convergence around multiple
solutions in the search space[8]. In this section, we will
briefly review the conventional niching techniques. Then the
adaptive niching via coevolutionary sharing technique will
be explained in greater detail.

A. Conventional Techniques

The sharing method[9], which is probably the most
well-known niching technique, decreases the fitness value
of the individuals in densely populated areas and as a
result decreases their chance of being selected. The sharing
method, with a complexity of O(N2), is computationally
expensive. Also, in sharing methods a priori knowledge of
the problem is required to tune the numerous parameters
of the algorithm including niche radius parameter [8].

1816

�

�

�

Moreover, the algorithm is more suitable for problems
with equidistant niches. The limitation of this technique
for our application is that prior to solving the problem no
knowledge about the relative position of the solutions in the
search space exists. In addition, number of niches changes
for different configurations of robots. These solutions will
also change with the position of the end-effector and are
completely different from one robot configuration to another.
Crowding methods, another approach to niching includes
Standard Crowding, Deterministic Crowding and Restricted
Crowding. These methods have a complexity of O(N),
however do not have the robustness of sharing methods [8].

B. Adaptive Niching via Coevolutionary Sharing

As noted, one of the disadvantages of Fitness sharing is the
need to set the niche radius σs as accurately as possible. This
requires a priori knowledge of the solutions of the problem,
which is not available in IK problems.

To address this drawback, Goldberg and Wang intro
duced an adaptive niching algorithm via coevolutionary
sharing(CSN) [10]. This algorithm is loosely based on the
economic model of monopolistic competition, in which busi
nessmen try to position themselves, subject to a minimum
distance, among geographically distributed customers to
maximize their profit. In CSN two populations, businessmen
and customers, work to maximize their separate interests.

These two populations interact with each other according
to the economic model. Businessmen try to maximize their
profit by finding locations with more customers, while cus
tomers try to shop from businessmen with better service, i.e.
the closest businessman that is least crowded.

For the customer population, fitness function modification
resembles that of the standard fitness sharing. If at any
generation t, customer c is being served by the businessman
b who is the closest businessman, and that b is serving a total
mb,t customers, the shared fitness of c is calculated by:

f(c)
�

f �(c) = � (8)
mb ,t �

c∈Cb

where Cb denotes the customer set, whom businessman
b serves. In other words, each customer shares its fitness
value with the other customers of the same businessman.
A Stochastic Universal Selection scheme and single point
crossover has been used in the original paper [10].

The tendency of the businessmen is to place themselves
in regions that are more densely populated by customers,
subject to keeping a minimum distance of dmin from the
other businessmen. The fitness value of the businessmen is
simply the sum of the fitness values of its customers:

φ(b) = f(c) (9)
c∈Cb ,t

In their paper, Goldberg and Wang used only a mutation
operation for the businessmen population. If a mutated indi
vidual: (1) is at least dmin far from other businessmen, and

(2) is an improvement over the original businessman, it will
replace the original one. If not, the mutation operation will
be repeated up to a multiple of the businessman population.
An imprint operation was also suggested which chooses new
businessman randomly from the customer population instead
of producing them by mutation. With imprint, the evolution
of the businessman population will benefit from knowledge
of the search space acquired by customers, and will not be
completely random. If the chosen customer could satisfy the
above two conditions it will replace the businessman. To
find out if the selected customer is an improvement, the
assignment of the customers to the businessmen must be
repeated. To accomplish the assignment, the calculation of
the customer distances from the members of the new set of
businessmen is required.

Although this algorithm is not as sensitive to the values
of dmin as the conventional fitness sharing technique is to
σs, choosing an appropriate dmin is still of considerable
importance.

CSN has been applied to a multi-objective softkill
scheduling problem with the imprint operation [11]. Rank
based selection, elitist recombination, and non-dominated
sorting are some of the prominent features of that work.

IV. ADAPTIVE SHARING TO SOLVE IK PROBLEM

To solve the IK problem, the algorithm must be fast
enough to evaluate the solution for a very large space (e.g. A
6 dimensional space for a PUMA or general purpose robots).
It must be able to find multiple solutions for all the possible
poses of the end-effector. This algorithm must also be able
to solve the IK for any robot configuration by the knowledge
of the FK equations. In this section, the proposed algorithm
to solve the IK is explained.

A. The Algorithm

An overview of the proposed algorithm can be seen in
Table. I. A detailed explanation of each of the steps is as
follows:

1) Initialization: Two independent populations for Cus
tomers and Businessmen are randomly created. Each indi
vidual is consisted of n joint angles corresponding to the n
joints of the robot:

Q = [q1 q2 · · · qn]T (10)

where q1, q2, · · · , qn are all real numbers.
To allow more individuals to be associated to the IK

solutions which are close to the reachable joint space borders,
[qmin,qmax], an extended range of permissible angles,[qmin−
ψ,qmax + ψ], is used.

After the Customer and Businessmen populations are
randomly generated, the initial dmin is calculated using the
following equation:

κ(qmax − qmin)
= √ (11)dminstart

1 + n
b

1817

�

�

�

Step

1

Desciprtion

Randomly Initialize the Customer Population
Randomly Initialize the Businessman Population
Initialize dmin with dminstart

2 Customers Raw Fitness Value Calculation
Businessmen Raw Fitness Value Calculation
Assignment of Customers to the closest Businessman
Customers Shared Fitness Value Calculation

3 Forming the customers parent pool by Tournament Selection
Adding the fittest businessmen to the pool

4 Customer Crossover

5 Businessmen Imprint

6 Updating dmin

7 If the termination criterion is not reached return step 2

TABLE I

THE IK ALGORITHM

where n, b, and κ correspond to the degree of freedom (i.e.
number of joints), the number of businessmen, and the fitting
index respectively. (11) uses κ > 1 multiplied by the distance
between businessmen if they are spread equidistantly over
the n dimensional joint space. That is, dminstart

should be
greater than the average distance between businessmen.

2) Fitness value calculation: The fitness values f(c) and
f(b) of customers and businessmen are calculated using (5).
Then, customers are assigned to the closest businessman,
where closeness is measured using the Euclidean distance
between customers and businessman. Based on these as
signments, the shared fitness values f �(c) of customers are
calculated with the following equation. This equation is

f �(c) = f(c) · mb ,t (12)

3) Selection: Since Tournament Selection does not require
a priori knowledge of the problem, it was used to create a
parent pool.

From the customers, nt individuals are selected at random.
Of this subset, the customer with the least fitness value (error)
is transferred to the parent pool. Choosing nt ≥ 2 individuals
encourages faster algorithm convergence.

In this step, bt businessmen with the best fitness values
(f(b)) are also added to the parent pool. By letting some
businessmen in the pool, there will be an increase customers
moving towards businessmen with high fitness values but few
customers. These businessmen might not otherwise attract
customers.

4) Customer crossover: In this step, the new generation of
customers are produced from the parent pool that was created

in the previous step. Simulated Binary Crossover[12] is used
for the crossover operation. Details can be found in section
IV-B.

5) Businessmen imprint: Each businessman is compared
with an individual randomly selected from the newly formed
parent pool. If this individual is an improvement over the
businessman and was dmin away from all the other busi
nessmen, it will replace the corresponding businessman.

To check for improvement, we define the following value:

f(x)
�

F (x) =
�

(13)
Ndmin

x∈P ∨B

where P and B are the parent pool and the businessman
populations respectively. Ndmin

denotes the number of cus
tomers in the distance dmin from individual x and f(x) is
the raw fitness value of individual x. F (x) is a measure of
the potential of the neighborhood of x for being a solution
region. Regions with higher customer densities and better
fitness values (lower errors) at the center have lower F (x).
That is, individuals with lower F (x) are recognized as better
businessmen.

Use of F (x) enables us to evade the computationally
costly process of reassigning the customers to businessmen
in the imprint step of the original algorithm [10].

For each businessman, this process is repeated nlimit

times, or until it is replaced by a better candidate. Here nlimit

is a multiple of the population number of businessmen.
As the algorithm progresses, dmin will decrease. Since the

businessmen in close vicinity of the solution regions have
a high concentration of customers around them, even with
the decrease of dmin, they will still have customers in their
local regions. Meanwhile businessmen further from solution
regions will be left without customers and are forced to find
better regions.

6) Updating dmin: dmin is closely related to the accuracy
of the end solutions. Lower values of dmin bring flexibility
to the businessmen to locate regions with better fitness values
and more concentrations of solutions.

In step 1), dmin was set at its maximum value to prevent
the GA from converging immaturely on only one niche.
As the iterations continue, the niches begin to establish
themselves around the solution points and the difference
between their fitness values decreases.

In this step, dmin is decreased in small step sizes towards
its lowest value in the last iterations. In the GA proposed
here, the following function was used for updating dmin :

t
dmin (1 − λ) (14)= dminstart tmax

where t and tmax correspond to the current iteration and
maximum iteration number. λ is the coefficient that defines
how small dmin can become.

7) Check for the termination criterion: If the termination
criterion is not satisfied the algorithm will return to step (2).

1818

� �

� �

� �

B. The continuous crossover operation

Crossover operation randomly selects two parents, P1 and
P2, from the parent pool and produces two children, C1

and C2, from them. It has been shown that for continuous
search spaces, real coded GAs are more suitable than binary
coded algorithms [12]. In this paper, we use a Simulated Bi
nary Crossover (SBX) [12] to apply the variable-by-variable
crossover. The idea behind SBX is to create a random
distribution of offsprings in the domain of real numbers. This
distribution matches the distribution of the common binary
crossovers. In other words, SBX uses a randomly generated
number, uβ(i) to produce a random expansion ratio β(i) that
defines how similar the offsprings are to their parents:

� C2(i) − C1(i) �
β(i) = . (15)

P2(i) − P1(i)

Crossover is carried out with the following steps:

1) Of the n joints, l joints (l ≤ n) are randomly selected
for the crossover operation. The rest of the joint angles
will be transferred from the parents to the children,
unchanged. In our implementation l = 0.5n [13].

2) For each of the l joints angle selected in the last step,
a random number, uβ(i), is generated. The expansion
ratio, β, is then calculated using:

⎧

1
⎪

⎪

(2uβ(i)) η+1 if uβ(i) ≤ 0.5
⎨

β(i) =
� �

1
(16)

⎪

⎪

⎩

1 η+1
otherwise2(1−uβ(i))

where η denotes the distribution index and can be any
nonnegative real number. For small values of η, points
far away from the parents have higher probability of
being chosen, while with large values of η points closer
to the parents are more likely to be chosen. A value
of 2–5 produces a good estimate of the binary coded
crossover [13]. In our algorithm, η initially has a small
value (2) and with the progress of the algorithm it
will increase(to around 5) to let the solutions fine tune
into the centers of the solution regions.
When joint angles have physical limits, (as commonly
found), (16) must be modified to produce offsprings
that are located inside the joint limits. To accomplish
this, the following method has been proposed. First,
βL and βH are calculated from the following equation
for each of the joint variables:

0.5(P1(i) + P2(i)) − qmin
βL(i) = |P1(i) − P2(i)|

−0.5(P1(i) + P2(i)) + qmax
βH(i) = (17)|P1(i) − P2(i)|

where P1(i) and P2(i) denote the ith variable of the
two parents. Value of uβ is then updated as follows:

⎧

⎨
βL(i) if βL ≤ βH

βlimit(i) = (18)
⎩

βH(i) otherwise

1
k(i) = 0.51 −

βlimit(i)η+1

uβ(i)
uβ(i) = (19)

k(i)

This modification, by changing the probability distri
bution of β(i), will guaranty that the produced children
are inside the variable range. Since the expansion ratio
of the children to parents is limited by the joint variable
limits, (17) calculates the maximum allowable value of
this parameter corresponding to each limit. (18) and
(19) modify uβ in a way to set the probability of
choosing a β less than βlimit(i), equal to one. In other
words, for any arbitrary uβ , the produced children will
be in range [qmin,qmax].
Finally, β(i) is calculated from (16) with the updated
uβ(i).

3) In the last step children are produced from the follow
ing equation:

C1(i) = 0.5[(1 + β(i)) P1(i)

+ (1 − β(i)) P2(i)] (20)

C2(i) = 0.5[(1 − β(i)) P1(i)

+(1 + β(i)) P2(i)] (21)

and will be placed in the new generation population.

V. PROCESSING THE OUTPUT

The output of the GA is a set of points with high
population density around the solution regions, and with
lower concentration in the rest of the search space. In order
to distinguish solution regions, a mechanism to detect the
regions with high concentration of individuals and low error
is required.

If the robot has 2 DOF, identifying these results in the
2D space can be accomplished by observation, which is
not convenient if the GA is a building block for other
software peripherals. Moreover, for robots with more DOFs
(for example a 6 DOF PUMA), identifying these solution
regions must be done in a 6 dimensional space, which is not
possible by visual inspection. Hence, a robust algorithm for
clustering the results is required.

In this section, an overview of the filtering and clustering
method is presented.

A. Filtering

The fitness function of each individual is the orienta
tion/position error from the desired value. It is convenient to

1819

use the fitness function as a measure of filtering the results
before the clustering.

In the filtering phase, individuals with high fitness value
(Error) are rejected and individuals with lower fitness value
are transferred to the clustering step.

B. Clustering

Since no priori knowledge about the number of solutions
of IK exist, the number of solution niche or clusters is also
unknown. To resolve this issue, Subtractive Clustering [14]
is used to find niches. Subtractive Clustering is a one-pass
algorithm for estimating the number of clusters and their
centers for a set of data when the number of the clusters is
unknown.

Subtractive clustering assumes that every point in the data
set is a potential cluster center. This algorithm measures the
potential of each of the points based on the density of the
data set around it and then assigns the point with the highest
potential a cluster center. It then removes all other points in
the Rcluster from the cluster center, and repeats the process
until all of the points in the data set are within the radius of
a cluster.

Choosing Rcluster has a great effect on the number of clus
ters that are detected by the algorithm. The larger Rcluster,
the less clusters detected. Because the GA has filtering and
runs until a relatively good convergence is achieved, Rcluster

can be set to small values to detect all the solution regions
with good precision.

Note that in the GA, in cases where qmin = −π and
qmax = π, if an IK solution is close to π or −π, a
concentration of individuals close to the other end of the
joint space(around −π or π respectively) might form. For
example, in a 2D search space, if one solution of the IK
is [−π + ε , · · ·], a concentration of individuals around
[π − ε , · · ·] might form in the population. In the clustering
phase, these concentrations will be detected as two different
regions. To counter this problem, the following equation is
proposed for calculating the distance of the joint variables of
two individuals:

d = min(q1 − q2 q1 − (q2 − 2π) q1 − (q2 + 2π)) (22)

VI. RESULTS: PUMA560 IK SOLUTION

The algorithm was used to solve the IK problem of the
first three joints of a PUMA560. The reason that only the first
three joints were used is that these joints are responsible for
most of the positioning of the robot. The responsibility of
the 3 distal joints, the spherical wrist joints, is only setting
the orientation of the hand. In other words, the problem can
be decoupled to only a positioning by the first three degrees
of freedom and then an orientation for the wrist joints. The
second part of this problem, orienting with the wrist, can be
solved analytically, so here we try to solve the first part of
the problem.

Parameter Value

Customer Population 600
Businessman Population 30

κ 1.2
λ 0.9

qmin −π
qmax π
ψ π
η 2-5

Rcluster 0.795
Filtering threshold 0.1

nlimit 90
nt 10
bt 15

TABLE II

PARAMETERS USED IN THE GENETIC ALGORITHM

Case Number x y z

Case 1 -0.3071 -0.5193 -0.0249
Case 2 0.4151 -0.6273 0.285
Case 3 0.5525 -0.3913 -0.5522

TABLE III

TEST HAND POSITIONS FOR PUMA560

The parameters used to run the algorithm are shown in
Table II. The algorithm was used to solve the IK problem
for three different hand positions. The coordinate of these
points in the cartesian space are given in Table. III.

Tables. IV, V, and VI show the actual solution of each
case in comparison to the results of the algorithm. All these
values are expressed in the joint space and are in radians. In
Fig. 1, Fig. 2 and Fig. 3 the results of the algorithm and the
actual solutions of the IK are shown. In these figures, the
smaller circles denote the output of the filtering algorithm,
while the larger circles denote the output of the clustering
algorithm. The large filled circles are the actual solutions and
the crosses represent the position of the businessmen.

As can be seen from Fig. 1 and Fig. 2, some of the
individuals had converged on the points close to the limits
of the joint angle on a position mirror to the actual solution
point. With the modifications to the subtractive clustering that
was explained in section V-B, these points were assigned
to the same cluster they tried to converged on. In the two

Actual Solution q1 q2 q3
1 0.7854 2.3562 0.1309
2 0.7854 -2.2711 3.1046
3 -1.8534 0.7854 3.1046
4 -1.8534 -0.8705 0.1309

Algorithm Solutions q1 q2 q3
1 0.8015 2.3975 0.0554
2 0.7256 -2.3149 3.0705
3 -1.8453 0.8953 3.0716
4 -1.8776 -0.8388 0.0722

TABLE IV

ACTUAL SOLUTIONS AND ALGORITHM OUTPUT FOR CASE 1

1820

Actual Solution q1 q2 q3
1 1.9546 2.3562 -0.6914
2 1.9546 -3.0941 -2.3562
3 -0.7854 0.7854 -2.3562
4 -0.7854 -0.0475 -0.6914

Algorithm Solutions q1 q2 q3
1 1.9638 2.3363 -0.7530
2 1.9357 -3.0838 -2.4796
3 -0.7775 0.7547 -2.2749
4 -0.7791 -0.0356 -0.7024

TABLE V

ACTUAL SOLUTIONS AND ALGORITHM OUTPUT FOR CASE 2

Actual Solution q1 q2 q3
1 2.3019 -2.5337 -1.3464
2 2.3019 -2.3562 -1.7012
3 -0.3927 -0.6079 -1.7012
4 -0.3927 -0.7854 -1.3464

Algorithm Solutions q1 q2 q3
1 2.2651 -2.4617 -1.5835
2 2.3038 -2.3154 -1.8715
3 -0.4047 -0.6220 -1.6732
4 —— —— ——

TABLE VI

ACTUAL SOLUTIONS AND ALGORITHM OUTPUT FOR CASE 3

figures convergence regions that are actually the same have
been distinguished with arrows.

In case 3, the solution regions are very close to each
other. As a result, the algorithm may confuse the two very
close regions as one cluster and converge on them as a
single solution. In Fig. 3, which is the output of case 3, the
algorithm has detected 3 of the 4 possible solutions. As can
be observed from Table. VI, Two of these found solutions
are in the close vicinity of each other. The other solution that
was located by the algorithm was actually two very close
solutions of the IK.

Table. VII the errors in detecting the different niches are
shown. These results were obtained after 15 iterations. For
each of the points, the algorithm reached the results on an
average of 60 seconds, with MatLab on a P4 processor
with 512MB RAM. If higher precisions are required, the
algorithm can be run for longer iterations to converge more
on the niches. However, increasing the iterations brings the
risk of loosing some of the niches.

In Fig. 4 the decrease of error of each case is shown as
the generations evolve.

Fig. 5 shows that the average of error of the individuals
is also decreasing.

Case number

1
2
3

Niche.1

0.049
0.066
0.005

Niche.2

0.02
0.101
0.031

Niche.3

0.049
0.019
0.041

Niche.4

0.035
0.037
—–

TABLE VII

THE ERRORS OF CASES 1–3 (M)

−3

−2

−1

0

1

2 −2

−1

0

1

2

3

2

1

0

−1

−2

−3

q23 −3
q1

Fig. 1. Output of the Algorithm for case 1

q3

−3

−2

−1

0

1

2 −2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

q3

q2

q1
3 −3

Fig. 2. Output of the Algorithm for case 2

VII. CONCLUSION AND DISCUSSION

An adaptive niching strategy was presented and used to
solve for multiple solutions of the IK problem. Since this
algorithm uses the minimum preset parameters, it can be
generalized to solve IK of a robot with unknown degrees
of freedom and configuration. The algorithm is benefiting
from real coding, adaptive minimum distance setting of
businessmen and adaptive real coding distribution index.
To process the results, a subtractive clustering algorithm
was also modified for the application. It was shown that
the algorithm works with good precision/speed performance
in the whole search space and for all the possible hand
position/orientations in space.

1821

3

Average Error with Respect to the iteration number

−3

−2

−1

0

1

2 −2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

q3

3	 −3 q2

q1

Fig. 3. Output of the Algorithm for case 3

Minimum Error with respect to the Generation Number

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

M
in

im
um

 E
rr

or

Case 1

Case 2

Case 3

2 4 6 8 10 12 14
Generation Number

Fig. 4. minimum error of the cases 1–3 with respect to iteration number

This algorithm can also be used in conjunction with a
numerical method in order to increase the resolution and
precision of the results. The regions that were detected in
this algorithm will be used in the numerical method as the
initial search points and the numerical method can continue
the convergence of the result to any required precision.

To incorporate a spherical wrist in the problem, the
positioning part of IK can be solved with the proposed
algorithm. Then the joint variables of the spherical wrist can
be calculated analytically in order to set the orientation of
the end-effector to the desired values.

The proposed algorithm can also be used in conjunction
of another optimization measure, e.g. minimum joint angle
change, obstacle avoidance, and joint singularity avoidance
to solve the IK problem of redundant robotic manipulators.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

A
ve

ra
ge

 E
rr

or

Case 1

Case 2

Case 3

1	 2 3 4 5 6 7 8 9 10 11 12 13 14
Iteration Number

Fig. 5. Average error of the cases 1–3 with respect to iteration number

REFERENCES

[1]	 R.P. Paul, Robot Manipulator: Mathematics, Programming and Con
trol ,MIT Press , Cambridge, Mass., 1981.

[2]	 L. Tsai and A. Morgan, “Solving the kinematics of the most general
six- and five-degree-of-freedom manipulators by continuation meth
ods”, Journal of Mechanisms, Transmissions and Automation in
Design, Vol.107, pp.189–200, 1985.

[3]	 A.A. Goldenberg, B. Benhabib and G. Fenton, “A Complete Gen
eralized Solution to the Inverse Kinematics of Robots”, IEEE J. of
Robotics and Automation, Vol.RA-1, No.1, March 1985.

[4]	 A.A. Goldenberg and D.L. Lawrence, “A generalized solution to the
inverse kinematics of robotics manipulators”, ASME J. Dynamic Syst.,
Meas., Contr., Vol. 107, pp.103–106, Mar. 1985.

[5]	 J.K. Parker, A.R. Khoogar, D.E. Goldberg, “Inverse kinematics of
redundant robots using genetic algorithm”, IEEE Int. Conf. on Robotics
and Cybernetics, Vol.1, pp.271–276, 1989.

[6]	 P. Karla, P.B. Mahapatra and D.K. Aggarwal, “On the solution of
Multimodal Robot Inverse Kinematic Function using Real-coded Ge
netic Algorithms”, IEEE Int. Conf. on Systems, Man and Cybernetics,
Vol.2, pp. 1840–1845, 2003.

[7]	 P. Karla, P.B. Mahapatra and D.K. Aggarwal, “On the Comparison of
Niching Strategies for Finding the Solution of Multimodal Robot In
verse Kinematics”, IEEE Int. Conf. on Systems, Man and Cybernetics,
Vol.6, pp. 5356–5361, 2004.

[8]	 B. Sareni, L. Kr¨ uhn, “Fitness sharing and niching methods ahenb¨
revisited”, IEEE Trans. on Evolutionary Computation, Vol.2, No.3,
SEP. 1998.

[9]	 D.E. Goldberg and J. Richardson, “Genetic algorithms with sharing
for multimodal function optimization”, Proc. 2nd. Int. Conf. Genetic
Algorithms, 1987, pp.41–49.

[10]	 D.E. Goldberg and L. Wang, “Adaptive niching via coevolutionary
sharing”, Illigal Report No.97007, Urbana, IL: University of Illinois
at Urbana-Champaign, 1997.

[11]	 M. Neef, D. Thierens, H. Arciszewski, “A case study of a multiob
jective recombinative genetic algortihm with coevolutionary sharing”,
Proc. of 1999 Congress on Evolutionary Computation, Vol.1, 1999.

[12]	 K. Deb and R.B. Agrawal, “Simulated binary crossover for continuous
search space”, Complex systems, Vol.9, No.2, pp.115–148, 1995.

[13]	 K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS)
for engineering design”, Computer Science and Informatics, Vol.26,
No.4, pp.30–45, 1995.

[14]	 S. Chiu, “Fuzzy Model Identification Based on Cluster Estimation,”
Journal of Intelligent and Fuzzy Systems, Vol.2, No. 3, Sept. 1994.

1822

15

