

InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007.
�

Enhancing the Face of Service-Oriented Capabilities

By

Kym J. Pohl
CDM Technologies Inc.

kpohl@cdmtech.com

Abstract
With today’s focus toward discoverable web services, Service-Oriented Architectures (SOA) are
becoming increasingly prevalent. To support an effective interaction between services and their clientele,
the sophistication of the interface, or face, such services present is of critical importance. Without a rich,
expressive nature, such services struggle to satisfy the industry promises of reuse, composability, and
reduced inter-component dependencies. Especially relevant for domain-oriented applications, services
must present sufficient levels of expression to allow for an effective exchange of relevant context. Further,
such communication should be offered in an asynchronous manner to promote both work flow efficiency
and limited coupling.

This paper discusses several concepts and technologies that can significantly enhance the effectiveness of
SOA-based capabilities. Technologies including JavaBeans, embedded property change management,
and Object/Relational Mapping are leveraged to produce a client interface architecture rich in
expressiveness, asynchronous efficiency, and industry standards

KEYWORDS: Service-Oriented Architecture (SOA), JavaBeans, property change management,
object/relational mapping

Introduction
With the advent of web services [1, 2], the concept of a Service-Oriented Architecture (SOA) has
received considerable attention. Apart from offering benefits ranging from component reuse to runtime
composition of capabilities, SOAs are laying the groundwork for dynamic semantic discovery.
Considerably more powerful than technologies only able to convey a capability’s structure (e.g., XML),
the technologies associated with SOA endeavor to support the semantic discovery of a particular service’s
very nature (i.e., domain of service, semantic expectations and implications, etc.). A critical element in
successfully attaining this goal is the sophistication of the interface services present to their clients. This
paper describes a combination of design concepts and technologies that can be exploited to produce the
type of expressive client interfaces indicative of SOA.

JavaBeans Component Architecture Supplemented With the Property Change
Observation Model
The JavaBeans technology is one of the fundamental elements comprising the Java Component
Architecture. JavaBeans, or simply beans for short, are essentially blueprinted objects exhibiting the
following characteristics:

1
�

InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007.
�

•	 Contain properties whose access is provided through standardized accessor methods (i.e., getter
and setter methods).

•	 Serializable (useful for both persisting and streaming)
•	 May be enhanced with additional, application-specific methods for providing specific

functionality to its users.
•	 Support asynchronous interaction via the firing of property change events(i.e., responses can be

triggered by notification of the occurrence of previously listened to events)
•	 Can contain associated metadata (i.e., BeanInfo) offering a more precise description of its

mechanics than can be provided through more simplistic mechanisms (i.e., Java Reflection)

Although a frequently employed technology in mainstream software development, the standardized
protocols and embeddable event behavior promoted by the beans pattern provides a solid foundation upon
which expressive, self-describing and notifying interfaces can be built. Indeed, it is the latter of these
capabilities (i.e., property change management) that provides the asynchronous interaction model that
enables the successful exploitation of parallel processing environments. As such, property change
management warrants a brief discussion as to how this technology can be employed along with the
distribution benefits it offers to SOA-based systems.

Property Change Management (Observation Pattern)
Complimenting the JavaBeans Component pattern, the property phange observation model establishes an
implementable pattern allowing beans to essentially observe changes in the bound properties of other
beans. Observing objects are required to implement specialized interfaces that are automatically invoked
whenever the particular condition occurs. Although fundamentally scoped to changes in individual
properties, this pattern can be extended to support multi-faceted events occurring across heterogeneous
sets of beans. Further, although this mechanism operates locally within a single Java Virtual Machine
(VM), such functionality can be extended to seamlessly operate across any number of networked VMs
through incorporation of an appropriate transport mechanism (e.g., JMS, CORBA, JDO, etc.) together
with a degree of distribution management logic. Regardless of whether operating on a purely local basis
or operating in a distributed fashion across a network, users of such publish/subscribe facilities operate
against the exact same interface, transparent to whether this facility was housed locally or across the
network.

The JavaBeans component pattern combined with property change management has become an industry
standard. Together, these two technologies are an effective mechanism supporting the asynchronous,
event-driven interaction model inherent in parallel processing paradigms (i.e., clients are free to perform
other tasks while their requests are being processed). Further, this asynchronous model assists in
promoting loosely coupled architectures where component interactions occur as initiations of events
paired with any number of anonymous reactions. It should be noted that the latter of these features also
aligns well with the loosely coupled and extensible architectures of Aspect-Oriented programming.

Domain-Centricity
Some capabilities are inherently domain-centric. That is, a domain-centric capability is one that operates
over an expressive model closely representing concepts and entities conceivable in some reality. Such
subject matter may be tangible or intangible, represent actual reality or some hypothetical variation.

2
�

InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007.
�

Regardless, however, such descriptions comprise the domain over which the capability operates. For
example, a capability for planning the delivery of goods will quite plausibly operate over certain notions
fundamental to the domain of logistics support (e.g., requirements, transports, delivery routes, goods, time
schedules, known impediments, etc.) In essence, these notions form the subject matter upon which the
capability operates.

In cases where interaction with a capability’s clientele makes significant references to such notions and
entities, it is useful to structure the client interface around expressive, domain-specific object models, also
known as ontologies (Figure 1). Defining an interface explicitly in terms of the objectified context that is
conveyed between parties offers both an expressive and more natural language by which services and
clients can interact. Such enriched discourse can be substantially more effective and natural than the more
traditional approach where such domain-specific context is parameterized into a limited set of invocable
functions. Further, defining an interface in terms of such objectified, domain-specific context promotes
the efficiency and decoupling offered by asynchronous, event-based interaction as well as the
architectural simplicity and elegance incurred with an interaction model comprised of basic, object-level
operations (i.e., object creation, manipulation, etc.). Further, combining this concept of domain centricity
with the complimentary bean and observer patterns described above yields a standardized, yet expressive,
client interface that supports a decoupled, asynchronous interaction model.

Figure 1 - Domain-Centric Client Interface

To illustrate how these complimentary patterns function together, consider the Delivery service briefly
described above. The client interface offered by such a service could be composed of an expressive
domain model that includes explicit object –level descriptions representing Requirements, Constraints,
Resources, etc. Populated by the requesting client, this inter-related cluster of ontology objects can be
used to effectively convey the particular problem definition the service is being engaged to solve.
Creation and population of instances of these objects would, in turn, trigger the observing Delivery
service to analyze this information in conjunction with its knowledge of the environment within which the
solution would execute (i.e., weather, traffic, security risk, etc.) the deliveries are to be executed within.
Because the interaction model is event-driven, the requesting client is free to perform other tasks as its
request is being processed. Upon formulating a suitable solution, the service would follow the same
asynchronous interaction model as before producing a populated ontology fragment describing the
proposed solution (e.g., delivery trips comprised of aspects including timing, stowing, sequencing,
routing, mitigation instructions for possible impediments, etc.) To receive such results, clients would
simply observe the creation/modification of such model fragments relating to their original problem
context.

3
�

InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007.
�

The example above illustrates the use of the property change observation mechanism of the JavaBeans
Component Architecture, including the asynchronous interaction model that it promotes. The example
also highlights the structuring of a client interface around the domain-specific notions that are the
fundamental basis of a contextual discourse. Further, such domain-centric interface also provides an
effective means of decoupling clients from a capability’s underlying architecture (i.e., functional libraries,
information management infrastructure, middleware used to distribute the service across a network, etc.).

Objectifying Relational Schemas
The client interface architecture described above can also be applied to capabilities whose domain models
are internally housed within relational environments (e.g., RDBMS, etc.). Whether fully formed services,
or simply managed sources of content (i.e., database), such components can expose their domains equally
well as collections of interrelated domain objects (Figure 2). Such objectification can be achieved through
the application of any number of Object/Relational Mapping (O/RM) technologies (i.e., Hibernate,
TopLink, EJB3, JDO, etc.) aimed at addressing the object/relational impedance mismatch [7]. These
technologies offer the ability to expose a relational model in an object-oriented form, complete with
support for potentially extensive mappings between object fields and corresponding table columns.

Figure 2 - Presenting an Objectified View of Relational Content

A key part of O/RM technologies is the specification (typically in the form of metadata) and subsequent
runtime management of mappings that effectively tie both diverse worlds together (i.e., object classes and
relational tables). Finally, by applying the complimentary JavaBeans and property change management
technologies, clients to such relational environments can be presented with domain-centric interfaces
supporting an efficient, asynchronous interaction model. As such, relationally-oriented capabilities can
also enjoy the contextual, efficiency, and decoupling benefits afforded by presenting clients with a
domain-centric, event-driven interface.

4
�

InterSymp-2007, Baden-Baden, Germany, July 30 to August 4, 2007.
�

Conclusion
With the increased application of Service-Oriented Architecture, there is a growing need to address the
ease and efficiency by which such services are employed. This need is even greater when domain-centric
capabilities are considered. Technologies that promote standardized, self-descriptive, expressive, and
efficient interaction are paramount in supporting the collaboration-intense nature of an evolving, domain-
centric and dynamically discovering semantic web topology [1, 2].

References
[1] Antoniou G and F. Van Harmelen, “A Semantic Web Primer”, MIT Press, Cambridge, Massachusetts,

2004

[2] Burke B., R. Richard Monson-Haefel, “Exterprise JavaBeans 3.0 (5th Edition)”,

[3] Daconta M., L. Obrst and K. Smith, “The Semantic Web: A Guide to the Future of XML, Web Services,
and Knowledge Management”, Wiley, Indianapolis, IN., 2003

[4] Erl T.,	 “Service-Oriented Architecture (SOA: Concepts, Technology, and Design”, Prentice Hall
Service-Oriented Computing Series, Prentice Hall, Englewood, NJ, 2005.

[5] Fowler, M., “Analysis Patterns: Reusable Object Models”, Addison-Wesley, Reading, Massachusetts,
1997.

[6] Fowler	 M., D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R. Stafford, “Patterns of Enterprise
Application Architecture”, Addison-Wesley, Reading, Massachusetts, 2003

[7] Hay D., “Data Modeling Patterns: Conventions of Thought”, Doset House Publishing, New York, NY.,
1996.

[8] Karsai G., “Design Tool Integration: An Exercise in Semantic Interoperability”, Proceedings of the IEEE
Engineering of Computer Based Systems, Edinburgh, UK, March, 2000

[9] Pohl J., “Information-Centric Decision-Support Systems: A Blueprint for Interoperability”, Office of
Naval Research (ONR) Workshop hosted by the CAD Research Center in Quantico, VA, June 5-7, 2001

[10] Pohl J, A Chapman, K Pohl, J Primrose and A Wozniak, “Decision-Support Systems: Notions,
Prototypes, and In-Use Applications”, Technical Report, CADRU-11-97, CAD Research Center, Design
Institute, College of Architecture and Environmental Design, Cal Poly, San Luis Obispo, CA, January,
1997.

[11] Rodrigues L., “The Awesome Power Of Java Beans”, Manning Publication, Greenwich, CT., 1998.

5
�

