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s u m m a r y  

A wide variety of approaches to hydrologic (rainfall–runoff) modeling of river basins confounds our abil­
ity to select, develop, and interpret models, particularly in the evaluation of prediction uncertainty asso­
ciated with climate change assessment. To inform the model selection process, we characterized and 
compared three structurally-distinct approaches and spatial scales of parameterization to modeling 
catchment hydrology: a large-scale approach (using the VIC model; 671,000 km2 area), a basin-scale 
approach (using the PRMS model; 29,700 km2 area), and a site-specific approach (the GSFLOW model; 
4700 km2 area) forced by the same future climate estimates. For each approach, we present measures 
of fit to historic observations and predictions of future response, as well as estimates of model parameter 
uncertainty, when available. While the site-specific approach generally had the best fit to historic mea­
surements, the performance of the model approaches varied. The site-specific approach generated the 
best fit at unregulated sites, the large scale approach performed best just downstream of flood control 
projects, and model performance varied at the farthest downstream sites where streamflow regulation 
is mitigated to some extent by unregulated tributaries and water diversions. These results illustrate 
how selection of a modeling approach and interpretation of climate change projections require (a) appro­
priate parameterization of the models for climate and hydrologic processes governing runoff generation 
in the area under study, (b) understanding and justifying the assumptions and limitations of the model, 
and (c) estimates of uncertainty associated with the modeling approach. 

1. Introduction 

The prediction and interpretation of uncertain hydrologic re­
sponses to climate change is a major challenge for water resource 
managers (Brekke et al., 2009). An important effect of climate 
change is modification of local and regional water availability 
due to the climate system’s interaction with the hydrologic cycle 
(e.g., Bates et al., 2008). Studies of climate change impacts on water 
resources in the Pacific Northwest (PNW) suggest changes will oc­
cur in the magnitude and timing of runoff (e.g., Chang and Jung, 
2010; Elsner et al., 2010; Hamlet et al., 2010), the frequency and 
intensity of floods and droughts (e.g., Mote et al., 2003; Jung and 
Chang, 2011b), water temperature (Mantua et al., 2010; Chang 
and Lawler, 2011), nutrient and sediment loading (Praskievicz 
and Chang, 2011), and quantity of water available for human use 

(e.g., IPCC, 2007; Mote et al., 2003). These hydrologic changes, in 
turn, influence various aspects of water resource management, 
including municipal, irrigation, and industrial supply, hydropower 
generation, flood management, channel morphology, and aquatic 
habitat conservation. Some of these effects may not necessarily 
be negative, but need to be evaluated because of the socio-eco­
nomic importance of water (Jiang et al., 2007). 

Downscaled General Circulation Model (GCM) simulations are 
frequently used within a hydrologic model to predict how the 
changes to climate affect the water balance and water-related sec­
tors using a variety of approaches and scales of analysis (e.g., Wilby 
et al., 2009). Large uncertainties are inherent in the predictions, 
depending on GCM structure and parameterization, downscaling 
procedure, greenhouse gas (GHG) emission scenario, hydrologic 
model used, and hydrologic model parameters (e.g., Maurer, 
2007; Surfleet and Tullos, 2012; Xu et al., 2005; Im et al., 2010). 
The effect on hydrologic predictions using different GCMs, down-
scaling techniques, and GHG emission scenarios have received con­
siderable attention (e.g., Maurer, 2007; Wood et al., 2004; Maurer 
and Duffy, 2005). However, fewer studies (e.g., Jiang et al., 2007; 
Najafi et al., 2011) have focused on differences in uncertainties of 
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predictions associated with the various hydrologic modeling ap­
proaches, though uncertainty should be considered in the selection 
of hydrologic models. 

The choice of the hydrologic model may depend on a number of 
selection criteria, including the character (e.g., relevant spatial and 
temporal scale, acceptable level of error and uncertainty for alter­
native screening vs. detailed design) (e.g., Clark et al., 2008) of the 
water resource management issue. In addition, the scale of vari­
ability in physical characteristics (e.g., land use, elevation, geology) 
that influences important hydrological processes (e.g., evapotrans­
piration, snow accumulation and melt, or groundwater recharge 
and discharge) can be a principle factor in selecting hydrologic 
models. Finally, aspects of the individual models may influence 
its appropriateness for an application, including ease of use that in­
cludes pre- and post-processing, hardware requirements, rigor and 
comprehensiveness of modeled processes, availability and quality 
of required data, adaptability of source code, model availability, 
and cost (Singh, 1995). 

In the PNW, several different hydrologic modeling approaches 
have been conducted for climate impact assessment. When conti­
nental scale information for a variety of climate predictions were 
needed, the VIC macroscale (�5–6 km grid cells) hydrologic model 
was applied (Nijssen et al., 1997; Hamlet and Lettenmaier, 1999; 
Elsner et al., 2010). If there is complexity and differences in hydro­
logic processes across the study area, but representation of small-
scale spatial differences is not needed, then use of basin scale or re­
gional parameters may be adequate (e.g., Chang and Jung, 2010; 
Jung and Chang, 2011a). If spatial heterogeneity in hydrogeology 
or subtle differences in hydrological processes over time have an 
important influence on runoff generation, then a site-specific mod­
eling approach may be needed. For example, Tague et al. (2008) 
investigated the sensitivity of two Oregon Cascades basins, charac­
terized by different geologic characteristics, under synthetic tem­
perature warming scenarios using the Regional Hydro-Ecologic 
Simulation System (RHESSys). In urbanizing watersheds with mul­
tiple land use and water quality issues, Franczyk and Chang (2009) 
and Praskievicz and Chang (2011) used US EPA’s physically-based 
model, BASINS-SWAT and BASINS-HSPF, respectively, in a site-spe­
cific approach. 

With the goal of facilitating discussion on hydrologic model 
selection and development for use in water resources planning 
and design, we undertook the comparison of three modeling ap­
proaches using identical climate forcing data. We differentiate 
the modeling approaches by the spatial scale of the model applica­
tion (Large Scale, Basin Scale, or Site-Specific) (Fig. 1) the model 
used, and the quantification of uncertainty within the modeling 
approach. 

(a) Large scale (LS) deterministic approach by the Variable Infil­
tration Capacity (VIC) model (Liang et al., 1994) for the 
Columbia River basin considering GCM uncertainty. 

(b) Basin scale parameters and uncertainty (BSPU) effort using a 
surface runoff model, Precipitation-Runoff Modeling System 
(PRMS) (Leavesley et al., 1983), with GCM uncertainty cas­
caded through a parameter uncertainty assessment using 
existing parameter set ranges. 

(c) Site-specific modeling with uncertainty (SSMU) effort with a 
coupled groundwater and surface-water flow model 
(GSFLOW) (Markstrom et al., 2008; Harbaugh, 2005) with 
GCM uncertainty cascaded through a parameter uncertainty 
assessm. 

The objectives of this analysis are: (a) to compare fit to his­
toric hydrologic observations across three hydrologic modeling 
approaches with varying model structures and spatial scales of 
parameterization; (b) examine differences in predictions of 

future hydrology from the three modeling approaches, and; (c) 
investigate the physical processes responsible for differences in 
predictions to facilitate discussion on hydrologic model selection 
and parameterization. Model simulation results are summarized 
into four classes of hydrologic responses (extreme peak flows 
events, extreme low flow events, average monthly flow, and 
snowmelt) that are generally relevant to water resources 
management. 

2. Methods 

2.1. Study areas, model comparison locations, and timeframes 

The Santiam River Basin (SRB, 4700 km2) is a tributary to the 
Willamette River Basin (WRB, 29,700 km2), which is itself a tribu­
tary to the Columbia River Basin (CRB, 671000 km2). Located on the 
western slopes of the Cascade Range in Oregon, USA (Fig. 1), the 
SRB is a valuable case study for model comparison because it is 
characterized by spatially heterogeneous hydrogeology, creating 
spatial variability in hydrologic response to changes in climate. 
The SRB varies from mountain terrain in high elevation alpine 
areas (3199 m) to low relief foothills to alluvial areas (50 m) that 
are hydrologically connected to the Willamette Valley. The land 
use classification within the basin is 80% forest, 15% agriculture, 
2% urban, and 3% range (USGS, 2009). The soils in the SRB are clas­
sified (NRCS, 2007) as 80% in Hydrologic Group B, with moderate 
rates of water transmission (infiltration and drainage) and 20% in 
Hydrologic Group A, with slow rates of water transmission. Precip­
itation varies from rain at the basin outlet to primarily snow at 
higher elevations, with a mix of rain and snow between the two 
(Fig. 1). Furthermore, two hydrologically-distinct seasons exist in 
the basin, a wet season (November through April) during which 
approximately 85% of precipitation occurs, and a dry season 
(May through October) during which 15% of precipitation occurs 
(NRCS, 2011). 

The runoff from the SRB is regulated by four flood control pro­
jects, Detroit and Big Cliff dams on the North Fork Santiam River 
and Foster and Green Peter Dams on the South Fork Santiam River. 
The high elevation areas of the Santiam River are composed of High 
Cascades geology where runoff is influenced by discharge from a 
substantial, deep groundwater aquifer and springs (Tague et al., 
2008; Chang and Jung, 2010; Surfleet and Tullos, 2012). The lower 
alluvial section of the basin include areas of considerable recharge 
for groundwater associated with the Willamette Valley aquifer, 
where low flow streamflow is strongly affected by aquifer condi­
tions (Lee and Risley, 2002). The remainder of the basin has Wes­
tern Cascade geology, characterized by moderate to low 
hydraulic conductivities coupled with shallow soils that result in 
a rapid runoff response with little groundwater storage (Tague 
et al., 2008). 

Our hydrologic model predictions were compared at four loca­
tions within the SRB (Fig. 1) with one additional location for histor­
ical streamflow only; South Santiam at Cascadia. The four locations 
were selected due to the availability of output from the LS model, 
proximity to a river gauging station, and spatial differences in ba­
sin characteristics affecting hydrologic response (Table 1). We 
summarized results of the model simulations for three time peri­
ods: historic (1960–2006), 2040s (2030–2059), and 2080s (2070– 
2099). These time periods, representative of the middle and the 
end of the21st century, were used to allow comparison to already 
completed VIC modeling (Hamlet et al., 2010). The VIC modeling 
used a 30 year time period that bracketed 2040 and 2080 to repre­
sent these respective time periods. The historical values for the 
BSPU and SSMU approaches were calculated from USGS stream-
flow data. We used the published values from the VIC modeling 



Fig. 1. Model approaches and Santiam River basin study area, Oregon, USA. 

of the CRB (Hamlet et al., 2010) for the historical values in fitness 
comparisons made with the LS approach. 

2.2. Hydrologic models and approaches 

We evaluated three hydrologic (rainfall–runoff) modeling ap­
proaches for their ability to predict streamflow at four locations 
(Table 1) within the SRB with important distinctions in model 
structure and application (Table 2). Each of the models solve full 
water and energy balances that consider the effect of meteorolog­
ical observations on potential evapotranspiration (from vegetation 
and land cover), water storage and routing (soil moisture, ground-

Table 1 

water, snow, and stream channel), and the subsequent runoff 
(streamflow). The primary differences among the models are in 
the representation of hydrologic processes, as defined by the 
parameterization, calibration, validation, and spatial scale of mod­
eling. The approach to the modeling differed as well with two of 
the approaches (BSPU and SSMU) considering parameter uncer­
tainty and one approach that did not (LS). In all three approaches, 
the same 1/16° resolution meteorological forcing data was used for 
historical and downscaled future predictions for the SRB (Table 3). 
We used eight GCM simulations with two emission scenarios 
(B1and A1B), which were statistically downscaled using the bias 
correction and spatial downscaling method (Wood et al., 2004). 

Characteristics affecting hydrologic response for the four locations of hydrologic model comparison in the Santiam River basin, Oregon. 

Location Area Natural or Major Mean Geology Groundwater influence on runoff 
(km2) regulateda runoff precipitation elev. (m) (high, moderate, low) 

type 

North Fork Santiam River 555 Natural Snow 1255 90% High Cascade, 5% Western Cascade, High 
below Boulder Creek 5% Alluvium 

North Fork Santiam River at 1700 Regulated Rain and snow 1160 30% High Cascade, 60% Western Moderate 
Mehamaa Cascade, 10% Alluvium 

South Fork Santiam River at 1660 Regulated Rain and snow 765 90% Western Cascade, 5% Alluvium, 3% Low 
Waterlooa Basalt, 2% High, Cascade 

Santiam River at Jeffersona 4700 60% of Basin Rain and snow 740 15% High Cascade, 60% Western Moderate 
regulated Cascade, 10% Alluvium, 5% Basalt 

a Regulated by flood control dams. 
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CCSM3 Collins et al. (2006) 
CNRM-CM3 Terray et al. (1998) 
ECHAM5/MPI-OM Jungclaus et al. (2006) 
ECHO-5 Min et al. (2005) 
IPSL-CM4 Marti et al. (2005) 
MIROC3.2 K-1 Developers (2004) 
PCM Washington et al. (2000) 
UKMO-HadCM3 Gordon et al. (2000) 

GCM References 

The average change of mean annual precipitation, mean daily max­
imum air temperature, and mean daily minimum air temperatures 
for the wet season (November through April) and dry season (May 
through October) from the downscaled GCM data used as input to 
the SRB modeling is presented (Table 4). 

The LS modeling approach is represented by VIC modeling at 
grids of the same scale as the downscaled 1/16° GCM data 
(Fig. 1). This equates to approximately 15 grid cells per 500 km2 

(Hamlet et al., 2010) (  33 km2 per grid cell). The VIC model was 
calibrated for eleven large basins located east of the Cascade 
mountain divide within the CRB. One parameter set was developed 
from the VIC model calibration and used over the entire CRB. The 
parameter selections were deterministic; No analysis of equifinal­
ity and parameter uncertainty was undertaken. Calibration of the 
VIC model was based on adjusting infiltration, Ds, Ws, Dsmax, 
and soil depth using the MOCOM-UA method to fit monthly data; 
for greater detail on VIC model calibration and validation, please 
see Hamlet et al. (2010). Consideration of GCM uncertainty was ad­
dressed using different GCMs and several different statistical 
downscaling techniques (Hamlet et al., 2010). Vegetation and soil 
parameters used by VIC for the LS approach came from the LDAS 
(Land Data Assimilation System) (see Hamlet et al., 2010) assimi­
lated from a scale of 1 km2. Leaf area index is the primary param­
eter used within VIC to model effects of vegetation on potential 
evapo-transpiration (PET). Soil parameters are used for calculation 
of variable infiltration capacity, which influence baseflow based on 
differences in soil moisture through time (Liang et al., 1994). Sub-
grid elevation bands are used to compensate for above-ground en­
ergy differences due to elevation. To calculate streamflow in larger 
basins, daily runoff and baseflow are used as input to a routing 
model (based on Lohmann et al. (1996)). 

For the BSPU modeling approach, we used and reanalyzed re­
sults from a PRMS model that discretizes the landscape into Hydro­
logic Response Units (HRUs) at a finer scale (on average <17 km2) 
than was used for the VIC model. The delineation of HRUs defined 
areas of similar vegetation type, land use, soil, aspect, and geology 
(Fig. 1) to serve as the spatial scale for model calculations. Param­
eters used to represent effects of vegetation types and land use 
were developed from GIS layers at 30 m resolution obtained from 
the United States Geological Survey (USGS, 2009). A 30 m digital 
elevation model was used to represent topographic changes of ele­
vation and aspect (USGS, 2009). Soil attributes for model parame­
ters were developed from soil data for the state of Oregon (NRCS, 
1986). For fitting the PRMS and GSFLOW models to historical 
streamflow and snow data, we adjusted thirteen sensitive model 
parameters, as identified in previous PRMS models for the area 
(Chang and Jung, 2010; Laenen and Risley, 1997; Jung and Chang, 
2011a,b) (Table 5). The published ranges of model parameters pre­
viously applied in the region were used as the a priori parameter 
distributions for an uncertainty assessment (see Section 2.3). 

The SSMU modeling approach used the GSFLOW model with 
calculations at the land surface performed at the same HRUs 

Table 3 
The eight Global Climate Models (GCM) used in the three 
modeling approaches. 
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defined for the BPSU approach. The SSMU approach with GSFLOW 
adds the MODFLOW groundwater model to simulate sub-surface 
water. In GSFLOW infiltrated water passes from the smaller HRU 
scales, modeled by PRMS, into the deeper groundwater MODFLOW 
grids (a 4 km finite difference grid) with two to three- sub-surface 
layers for modeling of sub-surface water (Fig. 1) (for more details 
see Surfleet and Tullos, 2012). The groundwater model component 
of GSFLOW was calibrated by fitting model predictions to ground­
water elevations from wells in the Willamette Valley and summer 
low flow as no groundwater elevation measurements were avail­
able for the mountainous portion of the SRB. A DREAM uncertainty 
assessment (see Section 2.3) was used for three sub-basins of the 
SRB for the SSMU approach to develop posterior distributions of 
parameter ranges for up to 13 model parameters (Table 5) in the 
surface water component of GSFLOW. 

Both the BSPU and SSMU were parameterized by the same thir­
teen PRMS parameters (Table 5) (Chang and Jung, 2010; Laenen 
and Risley, 1997). To calculate precipitation differences for eleva­
tions and HRUs, observed precipitation is adjusted by monthly cor­
rection factors (rain_adj, snow_adj). Daily maximum infiltration of 
snowmelt into the soil is defined for PRMS and GSFLOW (snowin­
fill_max). The surface runoff is computed using a nonlinear equa­
tion that takes into account antecedent soil moisture and rainfall 
(smidx_coef, smidx_exp). When the soil water reaches maximum 
soil water holding capacity, additional infiltration is routed to the 
subsurface and ground water reservoirs (soil2gw_max). Subsurface 
runoff is simulated as a nonlinear coefficient to route subsurface 
reservoir to streamflow (ssrcoef_sq). Within PRMS, the groundwa­
ter reservoir is conceptualized as a linear reservoir recession coef­
ficient (gwflow_coef). PRMS also simulates the movement of water 
from a subsurface reservoir to a groundwater reservoir, computed 
as a routing function (ssr2gw_rate, ss2gw_exp). For calculating po­
tential evapotranspiration, the Hamon method (Hamon, 1961) was 
used (hamon_coef). In the SSMU approach we included monthly 
corrections of maximum and minimum daily air temperatures for 
differentiation of energy balance calculations within HRUs. 

An important distinction between the SSMU and BSPU ap­
proaches is the use of different ranges of parameters to predict 
the different hydrologic regimes in wet and dry seasons (e.g., 
Gan et al., 1997) of the SRB for the SSMU approach. The BSPU ap­
proach applied existing parameter sets developed for a larger basin 
to simulate the SRB streamflow, therefore the same parameter sets 
were used between wet and dry seasons. However, we found bet­
ter fit of the SSMU model (GSFLOW) when different values were 
used for the evapo-transpiration parameter (hamon_coef), surface 
runoff exponent (smidx_exp), and groundwater routing coeffi­
cients (ssr2gw_rate, ssr2gw_exp, gwflow_coef) between the 
hydrologically active wet season compared to the baseflow driven 
dry season. The parameters for monthly corrections of precipita­
tion and temperature did not improve model performance for the 
dry season and were not adjusted from a priori values for the SSMU 
approach. 

2.3. Uncertainty assessment 

For the assessment of uncertainty in posterior parameter ranges 
for the SSMU and BSPU approaches, we applied the Differential 
Evolution Adaptive Metropolis (DREAM) assessment (Vrugt et al., 
2009). DREAM is a formal Bayesian approach that uses a Markov 
Chain Monte Carlo sampling algorithm to estimate the posterior 
probability density function of parameters, automatically tuning 
the scale and orientation of the a priori distribution during evolu­
tion of the posterior parameter distributions. Posterior distribu­
tions of parameter values were developed from DREAM for three 
sub-basins representing the range of topographic and geologic con­
ditions within the SRB. The posterior distributions from the 



 

Table 5 
Range of parameter distributions for SSMU and BSPU modeling approaches produced with the DREAM uncertainty assessment. 

Model Parameter description A priori SSMU wet season posterior SSMU dry season posterior BSPU posterior 
parameter parameter parameter range parameter range parameter range 

range 

Rain_adj Monthly rain adjustments by HRU 0.7–2.0 0.97–1.47 a 0.7–1.3 
Snow_adj Monthly snow adjustments by HRU 0.7–2.0 0.97–1.47 a 0.7–1.3 
Tmax_lapse Monthly maximum temperature lapse rates 0–5 3.2–4.2 a a 

Tmin_lapse Monthly minimum temperature lapse rates 0–3.5 3.0–3.1 a a 

Hamon_coef Hamon evapotranspiration coefficient 0.004–0.009 0.0082–0.009 0.006–0.007 0.004–0.008 
Smidx_coef Coefficient in surface runoff contributing 0.0001–0.001 a a a 

area computations 
Smidx_exp Exponent coefficient in surface runoff 0.1–0.9 0.2–0.29 0.2–0.78 0.1–0.3 

contributing area computations 
Ssr2gw_rate Coefficient to route water from subsurface to 2.0 0.17–0.2 0.14–0.25 0.8–1.0 

groundwater 
Ssr2gw_exp Exponent coefficient to route water from 0.2–2.0 0.49–0.5 1.4–1.94 0.02–0.3 

subsurface to groundwater 
Ssrmax_coef Maximum gravity drainage to groundwater 0.1–10.0 a a a 

Soil2gw_max Maximum soil water to groundwater per day 0.01–1.0 0.09–0.1 a 0.15–1.0 
Gwflow_coef Linear coefficient to route groundwater to 0.01–0.2 0.011–0.015 0.02–0.03 0.01–0.05 

streams 
Snowinfil_max Maximum snow infiltration per day 0.1–10.0 0.01–1.0 a 2.0–10.0 

a Posterior parameter range was no different than the apriori parameter range. 

DREAM assessment were extrapolated to the remainder of the SRB 
based on similar physical characteristics to the three sub-basins. 
GCM and parameter uncertainties were addressed by cascading 
the range of model output from the posterior distribution of 
parameter sets through the eight GCMs. For further details on 
the DREAM uncertainty assessment and GSFLOW model validation, 
please see Surfleet and Tullos (2012). 

2.4. Evaluation of historical model fitness 

The fit of modeled streamflow for the three hydrologic model­
ing approaches was compared to measured daily and monthly 
streamflow (Table 6) for five USGS stream gauging stations for 
the historic period of 1960–2006 (Fig. 1). The stations on the South 
Santiam River at Waterloo, North Santiam River at Mehama, and 
Santiam River at Jefferson are below reservoirs. For consistency 
with previous modeling efforts (Hamlet et al., 2010; Chang and 
Jung, 2010), we made no correction to the measured streamflow 
to reflect reservoir modifications of the flow regime. We evaluated 
fit of historical streamflow above reservoirs at the North Santiam 
River below Boulder Creek and Santiam River at Cascadia, though 
no VIC output was directly available for the Santiam River at Cas­
cadia location. We thus adjusted the VIC output for the South Sant­
iam River at Waterloo by the unit area of South Santiam River at 
Cascadia. We also compared peak and low flow predictions to his­
toric observations (Table 7). The Generalized Extreme Value distri­
bution was used to estimate the 20, 50, and 100 year return peak 
daily streamflow and the 10-year 7-day low flow for the three 
model approaches and measured streamflow. 

We also evaluated the fitness of the models to predict the Snow 
Water Equivalent (SWE) during the historic period. We were only 
able to perform this evaluation for the North Fork Santiam below 
Boulder Creek sub-basin because it was the only sub-basin entirely 
within the snow-dominated climate of the SRB (Fig. 1), and long-
term snow measurements were not available for low elevation 
areas of the SRB. 

Statistical fit of the monthly and daily time series to measured 
streamflow was evaluated by the Nash Sutcliffe efficiency (NS), 
Relative Efficiency (E rel), and percent bias (Pbias). The NS effi­
ciency is a common measure of goodness-of-fit for hydrologic 
models that uses squared values (see the annotation of Table 6 
for fitness measure equations), making them sensitive to high 

streamflow events. The E rel value modifies the NS as relative devi­
ations, adjusting model fit based on size of event, thus better 
reflecting fit of the entire series and reducing the influence of the 
absolute differences during high flows. As a result, E rel values 
are more sensitive to systematic over- or under-prediction, in par­
ticular during low flow conditions (Krause et al., 2005), with higher 
values indicating higher model fit. Pbias describes the over- or un­
der-estimation of simulated data relative to observed data, and 
tends to vary more during periods of low streamflow than high 
streamflow (Gupta et al., 1999). For Pbias, higher values indicate 
higher error or bias to observed data. Statistical fit to SWE in the 
North Santiam below Boulder Creek sub-basin was evaluated using 
the NS statistic. 

2.5. Comparison of projected change in future runoff 

For the LS approach, the range of estimates of peak flows and 
low flows from each of eight GCMs represent GCM uncertainty. 
No parameter uncertainty was available from the VIC modeling. 
For the BSPU and SSMU approaches, hydrologic response measures 
were calculated from 2.5, 50, and 97.5 percentile values of model 
output cascaded through eight GCMs to represent the uncertainty 
attributed to hydrologic model parameters. For the BSPU and SSMU 
approaches, we compared the GCM ensemble mean of the 2.5, 50, 
and 97.5 percentile values to the same percentiles from the range 
of historic predictions from the GCMs. The LS approach used bias 
corrected data and compared future predictions to a single histor­
ical value (Hamlet et al., 2010). 

3. Results 

3.1. Fit of hydrologic model predictions to historic measurements 

3.1.1. Monthly and daily streamflow 
Across all sites, all three modeling approaches provided accept­

able (Moriasi et al., 2007) fit to measured monthly streamflow 
based on NS values greater than 0.7 and Pbias values <10% with 
the exception of the two streamflow locations directly down­
stream of regulated streamflow from reservoirs (South Santiam 
at Waterloo and North Santiam at Mehama) (Table 6). Models of 
daily streamflow generated a greater range in the metrics of statis­
tical fit than were generated for monthly streamflow estimates, 



 
 

    
 
   

Table 6 
Modeling approach fit to historic streamflow as measured at USGS gauging stations (1960–2006) and fit to monthly Snow Water Equivalent for snow dominated North Santiam 
below Boulder Creek sub-basin; Monthly streamflow with daily streamflow statistical fit in parenthesis; Santiam River at Jefferson, North Santiam at Mehama, and South Santiam 
at Waterloo are below reservoirs with regulated flow. 

USGS gauging station NS Pbias (%)c E rel 

LS BSPU SSMU LS BSPU SSMU LS BSPU SSMU 

Santiam R. at Jefferson 0.89 (0.63) 0.89 (0.74) 0.88 (0.73) 5.4 7.0 7.5 0.74 (0.60) 0.81 (0.49) 0.84 (0.86) 
N Santiam at Mehama 0.77 (0.38) 0.78 (0.43) 0.75 (0.56) 2.2 0.9 6.4 0.55 (0.48) 0.59 (0.22) 0.65 (0.74) 
S Santiam at Waterloo 0.85 (0.50) 0.82 (0.66) 0.55 (0.52) 1.2 5.5 0.9 0.57 (0.35) 0.51 (0.48) 0.39 (0.73) 
N Santiam below Boulder Crka 0.61 (0.51) 0.80 (0.62) 0.70(0.71) 7.7 12.0 12.6 0.38 (0.51) 0.56 (0.67) 0.72 (0.79) 
South Santiam at Cascadiaa 0.56b (0.87b) 0.91 (0.75) 0.91 (0.75) 4.5 2.7 2.7 0.64 (0.24) 0.35 (0.67) 0.78 (0.67) 

Snow Water Equivalent – monthly 
N Santiam below Boulder Crka 0.95 0.86 0.96 – – – – – – 

2 RðOi SiÞ 2Nash–Sutcliffe efficiency (NS) = ½RðOi OÞ 2i=RðOi OÞ . 

Percent bias (Pbias) = ½RSi ROii=ROi x 100%. ( ( (( 2 2
Oi Si ðOi OÞRelative Efficiency (Erel) = 1 R =R .Oi O 

Here, O is observed flow, S is simulated flow, n is a number of data, and i indicates time. 
a Streamflow not regulated by flood control dam; predominately snow dominated precipitation. 
b VIC South Santiam at Cascadia is estimated by unit area from S. Santiam at Waterloo discharge. 
c Percent bias is same for monthly and daily values. 

Table 7 
Comparisons of hydrologic model estimates for historic streamflow 10-year 7-day low flow. 

Streamflow North Santiam below Boulder Creek North Santiam at Mehama South Santiam at Waterloo Santiam River at Jefferson 
source (m3/s) (m3/s) (m3/s) (m3/s) 

Measured 8.6 25 24.7 26.7 
LS2 0.2 0.4 0.4 1.9 
BSPUa 0.1–19.9 0.3–52.4 0.03–5.5 0.3–32.7 
SSMU1 7.8–9.5 10.2–16.1 3.5–9.1 35.7–46.2 

a Range of median values presented based on GCM and parameter uncertainty. 

with NS values ranging from 0.38 to 0.87 (Table 6). There is no dif­
ference in Pbias values for daily or monthly streamflow because it 
is calculated by the proportion of sums of total streamflow. The 
Erel statistic results, representing fit of the entire time series but 
sensitive to low flow fitness of model output, are generally highest 
for SSMU than BSPU and LS for daily and monthly values except at 
the two locations directly below reservoirs. 

For the two unregulated locations (S. Santiam River at Cascadia 
and N. Santiam River below Boulder Creek), the SSMU and BSPU 
approaches generally provide higher NS values, indicating better 
fit for high stream flows, than the LS approach. Comparing the ap­
proaches based on Pbias and Erel, SSMU had the highest Erel of the 
three approaches at North Santiam River below Boulder Creek and 
at South Santiam River at Cascadia, but also produced a high Pbias 
compared to the LS Approach for the same site. The LS approach 
generated streamflow values that had a lower underestimation 
bias (Pbias) but poorest fit across the time series (Erel) at N. Sant­
iam below Boulder Creek. In contrast, the LS approach generated 
the highest Pbias but performed better than SSMU by the Erel fit­
ness measure at the other unregulated site (S. Santiam River at 
Cascadia). Fitness measures for BPSU generally fell between values 
for LS and SSMU. 

The evaluation of modeled streamflow fit for the three USGS 
gauging locations regulated by flood control dams requires cau­
tious interpretation. The simulated streamflow for these locations 
did not consider flood control dams, so it is not realistic that hydro­
logic model output at locations in close proximity to dams would 
have close fit to measured streamflow. The flood control dams 
influence both high and low flow magnitudes, though the extent 
of these effects vary by season and year. For example, streamflow 
records, over the period of 1990–2010, at Foster dam indicate that 
the minimum ratio of outflow: inflow is 0 during the wet month of 

January, indicating inflow is equal to outflow, but the ratio is 2.1 
during the driest month of August, reflecting outflow that is twice 
that of the inflow (Tom Lowry, unpublished data). 

These effects of flood regulation are likely to be less evident at 
the locations farthest downstream of the flood control dams for 
two primary reasons. First, lower basin sites drain a large area with 
un-regulated streamflows. For the SRB, approximately 40% of the 
basin area is located downstream of the reservoirs, representing 
27% of the total precipitation that falls on the basin (PRISM Climate 
Group, 2012). Second, the number of diversions for irrigation, 
including municipal, irrigation, and commercial uses, increases 
with distance downstream in the SRB, mitigating, to some extent, 
the effect of dams on increasing summer baseflow. For example, 
while only 2 cfs (66 points of diversion) has been allocated above 
the site on the S. Fork of the Santiam at Cascadia, over 990 cfs of 
water rights (1951 points of diversion) have been allocated in 
the Santiam River above the Jefferson site. Though these values re­
flect water rights rather than actual annual diversions and are 
likely not all consumptive uses, they illustrate how the intensity 
of diversions moving downstream into the agricultural areas of 
the basin, in combination with unregulated tributaries, likely mit­
igate some influences of higher baseflow releases from the reser­
voirs. Thus, while we acknowledge that the model results do not 
directly reflect the impacts of water management (flood control 
regulation and diversions), it is still constructive to compare model 
predictions in regulated and unregulated reaches to investigate 
systematic errors in the models. 

In comparing the measured monthly and daily streamflow to 
model predictions at the location farthest downstream from flood 
control dams (Santiam River at Jefferson), we find that the SSMU 
approach generated predictions with the highest Erel values, 
though all three approaches had similar NS statistics of monthly 



and daily streamflow. Pbias at this far downstream site was high 
for the SSMU and BSPU approaches, with results trending towards 
overestimation (negative Pbias) for BSPU and SSMU and underesti­
mation (positive Pbias) for the LS approach. 

At the sites nearest to a regulating project (S. Santiam at Water­
loo and N. Santiam at Mehama), the LS and BPSU approaches re­
sulted in the highest NS statistics for monthly streamflow of the 
three modeling approaches. Interestingly, based on Pbias, the 
SSMU approach performed worst of the three models for the 
groundwater-based N. Santiam at Mehama while performing best 
in the mixed surface water-groundwater system draining to the 
S. Santiam at Waterloo location. An opposite pattern was seen with 
Erel values, with SSMU performing best of the three modeling ap­
proaches at the N. Santiam at Mehama site for both daily and 
monthly streamflow and worst at the S. Santiam at Waterloo loca­
tion for the monthly, but not daily, streamflow. For both sites all 
approaches underestimated streamflow (positive Pbias), except 
the overestimation of streamflow (negative Pbias) with the LS ap­
proach for the N. Santiam at Mehama. 

In summary, we see some general trends in model performance 
across the landscape and across model performance measures that 
are sensitive to different aspects of the hydrograph. These results 
suggest that, when comparing regulated streamflow observations 
to the unregulated model predictions, the SSMU approach gener­
ally performed best across all measures (except for Pbias at the 
N. Santiam below Boulder Creek). At the sites just downstream of 
the flood control projects LS outperformed SSMU for monthly sta­
tistics. At the site furthest downstream of the dams where the 
hydrologic impact of regulation is likely mediated to some extent, 
all approaches performed similarly with respect to the high flow 
fitness measures (NS) at the monthly resolution, though SSMU 
showed some greater fitness for daily resolution and across the en­
tire series (E rel). However, SSMU and BSPU performed worse than 
LS with respect to low flow biases (Pbias). 

3.1.2. Snow Water Equivalent (SWE) 
SWE predictions by each of the modeling approach fit historical 

monthly SWE closely (Table 6). The NS were high for all three of 
the modeling approaches; NS values P0.82. The BSPU approach 
had only slightly lower NS Values than the LS and SSMU ap­
proaches. Differences in posterior parameter values for the SSMU 
and BSPU approaches associated with precipitation and air temper­
ature adjustments influenced the SWE predictions. The SWE statis­
tical fit was based on only one snow measurement location and 
one sub-basin of the SRB, making it difficult to determine the effi­
cacy of the model approaches at predicting SWE across the entire 
SRB. However, the hydrology of the sub-basin contributing to 
North Santiam below Boulder Creek streamflow is dominated by 
snow precipitation and predicting SWE in this basin gives us con­
fidence in the energy calculations for snow processes for all of the 
model approaches. 

3.1.3. Extreme peak daily streamflow 
For the unregulated streamflow location (North Santiam below 

Boulder Creek), estimates of the historical extreme peak daily 
streamflow (20, 50, and 100 year events) were very similar across 
the three modeling approaches (Fig. 2). At sites downstream of 
flood control projects (the North Santiam at Mehama, South Sant­
iam at Waterloo, and Santiam River at Jefferson locations), the 
SSMU and BSPU peak flow estimates were consistently higher than 
peak flows calculated from observed streamflow. This overestima­
tion of peak flows is expected since the influence of regulated 
streamflow from the flood control projects was not considered. 
However, the LS approach consistently underestimated the peak 
flow relative to measured streamflow for the three regulated loca­
tions. At the site nearest the dam (South Santiam at Waterloo), the 
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Fig. 2. Comparisons of hydrologic modeling approach estimates for historic 20, 50, 
100 year peak daily flow. LS estimate is mean value of eight GCM estimates from 
VIC. SSMU and BSPU estimates are the ensemble mean of median values and range 
of median estimates from cascading parameter uncertainty from GSFLOW and 
PRMS, respectively, through 8 GCMs. Thick grey line and thin black line error bars 
represent the 95 percentile uncertainty of median predictions from SSMU and BSPU 
approaches respectively. * – streamflow measured downstream of flood control 
dams. 

LS model performed the best of all three approaches, as was seen 
with the daily and monthly model fit parameters. At the site with 
the largest drainage area (Santiam River at Jefferson), the LS model 
largely under predicted the peak flows, while the BPSU and SSMU 
approaches overestimated peak flows. 

Results of the DREAM analysis (shown in Fig. 2 for BSPU and 
SSMU), reflects uncertainty in the estimates of peak flows as a 
function of both GCM and hydrologic model structure and param­
eterization. We note that the range of historical predictions was 
not available for comparison for the LS approach because the 
authors of the VIC model (Hamlet et al., 2010) identified only 
one historic value rather than the range of historic values from 
GCMs and because no uncertainty analysis was performed. For 
our own calculations with BSPU and SSMU, we found that the BSPU 
values had a wider range of the median peak flow predictions than 
the SSMU approach at all sites (Fig. 2), demonstrating greater 
uncertainty for BSPU estimates than for SSMU. The BSPU range of 
median predictions spanned approximately 15% above and below 
the average historic peak flow predictions (approximately 30% 
range) while the range of median SSMU predicted peak flows 
spanned approximately 10–15% above and below the average his­
toric peak flow predictions (approximately 20–30% range). The 
uncertainty increases moving downstream below the flood control 
dams, with the highest uncertainty range for both modeling ap­
proaches generated at the most downstream site (South Santiam 
at Jefferson). 

3.1.4. 10-Year 7-day low flow 
The LS model underestimated historic low flow for all measured 

streamflow locations (Table 7). Both SSMU and BSPU estimates 
were also generally lower than the observed streamflow estimate 
for the three locations downstream of flood control dams, except 
for the site on the Santiam River at Jefferson where SSMU and some 
BSPU estimates over-predict the observed 10-year 7-day low flow, 
which is also reflected in the negative Pbias values (Table 6). This 
underestimation of flow is expected since reservoirs are generally 
releasing stored winter runoff for irrigation and domestic uses dur­
ing the dry summer period. As noted previously, it is likely that the 



effects of reservoir releases is dampened in the downstream direc­
tion by additional runoff from tributaries and diversions for agri­
cultural and municipal uses, hence the improvement in estimates 
of historical low flow at the farthest downstream site (Santiam Riv­
er at Jefferson). 

All three approaches underestimate the 10-year 7-day low flow 
of measured streamflow for North Santiam at Mehama and South 
Santiam at Waterloo, locations close to reservoirs. The low flow 
estimates from the LS approach are very low. The highest LS esti­
mate of 10-year 7-day low flow, on the Santiam River at Jefferson, 
was only 7% of the 10-year 7-day low flow calculated from mea­
sured streamflow (1.9 m3/sec compared to 26.7 m3/sec; Table 7). 
This systematic underestimation across the modeling approaches 
is likely due to the lack of representation of reservoir operations. 
For the unregulated streamflow location (North Santiam below 
Boulder Creek), the range of the median estimates of 10-year 7­
day low flow for SSMU and BSPU span the 10-year 7-day low flow 
calculated from observed streamflow, while the 10-year 7-day low 
flow estimate by the LS approach greatly underestimated the mea­
sured streamflow (Table 7). 

In comparing BSPU to SSMU, we find that the range of BSPU 10­
year 7-day low flow estimates was wider than SSMU at three of the 
sites than SSMU, similar to the wider range of peak flow estimates 
of the BSPU approach (Fig. 2). Further, the range of median esti­
mates from BSPU often had values that were much lower than 
the 10-year 7-day low flow streamflow calculated from measured 
streamflow. We believe these differences in low flow magnitude 
and range are explained by the use of different parameter sets 
for the wet and dry seasons and a more sophisticated groundwater 
modeling by the SSMU approach. However, we cannot identify the 
relative importance to seasonal parameterization and groundwater 
model on model fit. 

3.2. Model parameters and structure 

The DREAM uncertainty assessment for the BSPU and SSMU 
modeling approaches produced different ranges of parameter val­
ues from the a priori parameter range for several parameters as 
well as important differences between the BSPU and SSMU models. 
These differences are likely due to the wet/dry season parameter­
ization and to the interactions of a MODFLOW groundwater model 
with the SSMU approach. For example, the DREAM analysis con­
verged on monthly rain and snow adjustments with a slightly 
higher but narrower range of values for the SSMU approach com­
pared to BSPU (Table 5). Air temperature lapse rates were within 
a smaller range of values for the SSMU approach compared to 
BSPU. The Hamon evapotranspiration coefficient (hamon coef) 
was higher during the wet season for SSMU than the dry season, 
reflecting the need to increase evaporation rates in the wet season 
calculations. The exponent coefficient in surface runoff contribut­
ing area calculations, a coefficient of area in the non-linear surface 
runoff equation, varied between SSMU wet and dry seasons, illus­
trating parameter sensitivity to wet and dry conditions in the cal­
culations. Differences exist in the parameters that control 
groundwater calculations (ssr2gw_rate, ssr2gw_exp, soil2gw_max, 
gwflow_coef) between the SSMU and BSPU approaches, emphasiz­
ing the importance of groundwater processes in the SRB. The great­
est parameter differences between SSMU and BSPU were between 
the coefficients that route water to groundwater (ssr2gw_rate, 
ssr2gw_exp) and the coefficient that routes groundwater to 
streams (gwflow_coef). The exponent coefficient to route water 
from subsurface to groundwater was much lower for BSPU than 
SSMU (and the a priori parameter range). A lower exponent of 
groundwater routing indicates less groundwater recharge being 
predicted for BSPU compared to the SSMU approach. We also note 
that SSMU groundwater parameter ranges, when different from 

the a priori ranges, tended to have higher values for the wet season 
than the dry season in response to greater routing of groundwater 
to fit the model during wet season conditions. 

3.3. Differences in hydrologic model projections for climate change 

3.3.1. Monthly streamflow 
The timing and magnitude of future runoff vary across the three 

modeling approaches (Fig. 3). Generally higher winter and lower 
summer runoff were predicted with LS and BSPU approaches than 
were predicted by the SSMU approach, particularly for the North 
Santiam locations (Fig. 3A and B) where groundwater has a stron­
ger influence on the hydrology than at the South Santiam site 
(Fig. 3C). 

In North Santiam below Boulder Creek, historically with snow 
dominated precipitation, the SSMU and BSPU approaches predict 
greater spring and summer runoff in the future than the LS ap­
proach (Fig. 3A). The North Santiam below Boulder Creek was the 
smallest basin evaluated. The differences between the future run­
off predictions for the three approaches are most pronounced at 
this location. When modeling hydrology in a snow dominated ba­
sin, site-specific information on aspect and vegetation interception 
differences become more sensitive for model predictions as the ba­
sin size decreases. Further, the North Santiam below Boulder Creek 
historically has a higher spring and summer unit area runoff than 
the other study locations in SRB. The higher spring runoff can be 
attributed to spring snowmelt, however the higher summer runoff 
is attributed to long residence times and sustained groundwater 
discharges (Tague et al., 2008). The SSMU and BSPU approaches re­
sulted in the best statistical fit to historical runoff for this location 
(Table 6), with the SSMU approach providing better fit to summer 
low flow (highest E rel value) of all approaches. Although it cannot 
be stated that historical fitness of a model corresponds to correct 
future predictions, we can state that the processes represented in 
this sub-basin were better captured by the SSMU and BSPU 
approaches. 

3.3.2. Extreme value peak daily flow 
The BSPU and SSMU approaches generally predicted a decrease 

in the 100-year event in all periods and scenarios, with small in­
creases predicted by the SSMU models for the North Santiam at 
Mehama and South Santiam at Waterloo. In contrast, the LS ap­
proach predicts increases in the 20-, 50-, and 100-year peak flows 
(Fig. 4). Where increases in the 20- and 50-year events were pre­
dicted by the BSPU and SSMU approaches, they were no greater 
than 1–2% of the historical peak flow, while the LS approach pre­
dicted larger increases (5–40% depending on location, time period, 
and emission scenario). 

The uncertainty around predictions of BPSU peak flows (Fig. 4) 
demonstrates how the use of regional parameter sets lead to great­
er variability in the predictions of extreme peak flows. The BSPU 
approach predicted a range of peak daily flow of up to 25–35% 
above and below the average value (total range of 50–70%) 
(Fig. 4). The SSMU approach predicted a deviation of peak daily 
flow values of approximately 10–25% above and below the average 
value (total range between 20% and 50%). The LS approach had a 
slightly smaller range of peak flow predictions than SSMU, approx­
imately 5–15% above and below the average value. However, be­
cause no parameter uncertainty assessment was available for the 
LS approach, this range reflects only uncertainty due to use of 
different GCMs. In contrast, the uncertainty ranges for the BSPU 
and SSMU approaches characterize both parameter and GCM 
uncertainty. 
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3.3.3. 10-Year 7-day low flow 
The LS and BSPU approaches predicted decreases in the 10-year 

7-day low flow for all future scenarios and time periods in the SRB 
(Fig. 5A–D). In contrast, the SSMU predicted no change in the 10­
year 7-day low flow in the future for North Santiam below Boulder 
Creek (Fig. 5A) and North Santiam at Mehama (Fig. 5B), both sites 
heavily influenced by groundwater. Further, the SSMU also pre­
dicted much smaller decreases in the 10-year 7-day low flow than 
LS or BSPU approaches for the South Santiam at Waterloo (Fig. 5C) 
and Santiam at Jefferson (Fig. 5D) locations. Both the high elevation 
and the lower alluvial areas of the SRB have significant groundwa­
ter interactions with streamflow. The high elevation areas, consist­
ing of High Cascade geology, have long sub-surface water residence 
times producing continual discharge from sub-surface waters (e.g., 
spring fed streams) (Lee and Risley, 2002). The lower alluvial areas 
are locations of recharge to the valley aquifer in the wet season and 
discharges water for streamflow during the dry season. Likely as a 
result of the groundwater simulations, the SSMU approach pre­
dicted less change in low flow discharge and considerably lower 
uncertainty around the results than the BSPU and LS approaches 
(Fig. 5A–D). The BSPU approach had a high range of low flow pre­
dictions than SSMU, in some cases as much as four orders of mag­
nitude (Fig. 5). The BSPU approach had its greater range of 
predictions, or highest uncertainty, in the North Santiam below 
Boulder Creek location (Fig. 5A). The North Santiam below Boulder 
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Fig. 3. Mean monthly runoff (mm) for 2040 and 2080 time periods compared to historic for two scenarios B1 and A1B. (A) North Fork Santiam below Boulder Creek, (B) North 
Santiam at Mehama, (C) South Santiam at Waterloo, and (D) Santiam at Jefferson. 
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Creek has a substantial summer groundwater discharge and is not 
regulated by an upstream dam. The BSPU and LS parameter sets did 
not predict this summer groundwater influence as the SSMU ap­
proach, and generated a greater range of low flow results. All of 
the LS approach low flow values, including the historic value, are 
well below those calculated from measured USGS streamflow sug­
gesting a high degree of uncertainty in the low flow estimates from 
the LS approach. However, without a parameter uncertainty 
assessment for the LS approach we do not know the amount of 
uncertainty associated with the LS approach predictions. 

3.3.4. Monthly Snow Water Equivalent (SWE) 
There was little relative difference in the average monthly SWE 

predicted by the three modeling approaches for the North Santiam 
River below Boulder Creek sub-basin for both 2040 and 2080 time 
periods for B1 and A1B scenarios (Fig. 6A). While the LS approach 
tended to underestimate SWE during the late summer months, rel­
ative to BSPU and SSMU approaches, historical fitness with the 
SWE for the North Santiam River below Boulder Creek was shown 
to be similar among the three approaches. This general similarity 
suggests that the above ground energy calculations for snow pro­
cesses in the high elevation areas of the SRB were comparable 
among the model approaches. However, the change in SWE predic­
tions for the entire SRB (as evaluated at the Santiam River at Jeffer­
son) does vary among the approaches (Fig. 6B). The lower elevation 
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Fig. 4. Comparison of 20, 50, and 100 year peak daily flow predicted by three modeling approaches for two climate change scenarios, B1 and A1B for 2040 and 2080 time
 
periods and three modeling approaches. (A) North Fork Santiam below Boulder Creek, (B) North Santiam at Mehama, (C) South Santiam at Waterloo, and (D) Santiam at
 
Jefferson. The markers indicate the percent change in median monthly values from historical observations while error bars indicate the percent change for 2.5 and 97.5
 
percentile predictions for SSMU and BSPU approaches or the range of results from only GCMs for the LS approach.
 

areas of the SRB have rain-dominated climate, with the middle ele- the LS approach in the A1B scenario. During the B1 scenario the 
vations being a mix of rain and snow depending on the air temper- SSMU approach predicted approximately 15% less decrease in 
ature during the precipitation event. The LS approach predicted a SWE than LS approach during the late spring to early summer of 
slightly smaller decrease in SWE than SSMU or BSPU during the the SRB, a period of declining snow water storage due to snow 
peak snow months (January through March) for the A1B scenario melt. During summer all model approaches show large decreases 
for both 2040 and 2080 time periods for the SRB. The SSMU and in summer SWE, however, there are only small amounts of snow 
BSPU both predict less change in late summer SWE compared to in summer in the SRB, primarily in the highest elevations. 
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Fig. 5. Comparison of 10-year 7-day low flow estimated from three modeling approaches for 2040 and 2080 time periods compared to historic for two climate scenarios B1 
and A1B. (A) North Fork Santiam below Boulder Creek, (B) North Santiam at Mehama, (C) South Santiam at Waterloo, and (D) Santiam at Jefferson. Vertical axis is the 7-day 
average discharge m3/s with a 10-year return interval. The markers indicate the percent change in median monthly values from historical observations while error bars 
indicate the percent change for 2.5 and 97.5 percentile predictions for SSMU and BSPU approaches or the range of results from only GCMs for the LS approach. 

4. Discussion 

4.1. Comparison of model approaches for historic and future 
hydrologic response 

Model performance varied across the sites and fitness measures 
with respect to historical streamflow. The SSMU approach gener­
ally provided the highest level of statistical fit across many of the 
hydrologic response metrics tested. The BSPU approach was sec­
ond in level of fit to historic conditions, with notable inaccuracy 
in both SSMU and BSPU for the prediction of summer low flow 
(Pbias, Table 6) at two of the sites below dams and one of the 
unregulated sites. The SSMU and BSPU approaches had slightly 
better fit for historic daily streamflow than LS, particularly in the 
lower discharges of the summer season based on E rel values 
(Table 6). 

When the modeling approaches were compared based on his­
torical extreme events of peak flows (Fig. 2) and low flows (Table 7), 
the three approaches differ considerably. The LS approach underes­
timates the 20, 50 and 100 year peak flows and the 10-year 7-day 
low flows, as calculated from measured historical streamflow. The 
10-year 7-day low flow prediction is particularly low, with predic­
tions by the LS approach ranging from 0.2 to 1.9 m3/s across the 
sites compared to calculated values from measured streamflow 
of 8.6–26.7 m3/s (Table 7). The BSPU approach produced a wide 
range of low flows, spanning three to four orders of magnitude 
(Fig. 5). The overall better fit by the SSMU approach supports the 
conclusions from another model comparison (Hamlet et al., 
2010), which found that models with finer scaling of local param­
eters offer better spatial representations of processes influenced by 
solar radiation (e.g., snowmelt, evapotranspiration). 

Despite the similarity in historic SWE, the hydrologic responses 
associated with decreased SWE in the future differed among the 
three approaches; e.g., extreme peak flows, seasonal monthly run­
off changes, or extreme low flows. The LS approach predicted fu­
ture increases in the 20, 50, and 100-year peak flows, while the 

SSMU and BSPU approaches predicted either little change or de­
creases in these extreme peak flows. Similarly, the LS and BSPU ap­
proaches predicted large decreases in the 10-year 7-day low flow, 
while the SSMU predicted smaller decreases with low model 
uncertainty. All three modeling approaches predicted increases in 
runoff in winter months and decreases in summer months, but 
with differences in magnitude of change among the approaches. 
The most pronounced changes were at the smallest spatial scale 
evaluated, North Santiam below Boulder Creek, where groundwa­
ter influences and site specific topography in the parameterization 
of the models produced considerable differences in the predicted 
response (see Fig. 3A). 

The differences in the future changes can be attributed not only 
to the scale of the modeling effort but also to the ability of the 
models to capture the local hydrologic processes. The parameter 
sets for each model approach were derived from different sources 
and levels of detail (see Table 2 and Section 2.2), resulting in vari­
ability in the how the hydrologic seasons and hydrogeology are 
represented in the models. For example, the greatest difference 
among the approaches was at the location on North Santiam below 
Boulder Creek, where BSPU and LS predict between 25–75% de­
creases in streamflow for the summer months (June–August) yet 
SSMU predicts little streamflow decrease during this period. Given 
the relatively similar representation of land use and soils between 
the three models (Table 2), we interpret that these differences in 
low flow predictions are related to the presence of algorithms 
within the SSMU model that simulates groundwater interactions; 
This basin has substantial groundwater contributions that have 
been shown to mediate summer low flow changes to climate 
change in other areas of the Cascade Mountains (Chang and Jung, 
2010; Tague et al., 2008). However, without detailed output on 
all of the hydrological processes for each of the models, we are un­
able to determine this relationship conclusively. 

From the DREAM assessment, we found that the BSPU approach 
produced considerable uncertainty in model results. The BSPU ap­
proach used regional parameters within an uncertainty assessment. 



Fig. 6. Percent change in Monthly Snow Water Equivalent (SWE) for 2040 and 2080 time periods compared to historic for two scenarios B1 and A1B. (A) North Fork Santiam 
below Boulder Creek, and (B) Santiam at Jefferson. The markers indicate the percent change in median monthly values from historical observations while error bars indicate 
the percent change for 2.5 and 97.5 percentile predictions for SSMU and BSPU approaches or the range of results from only GCMs for the LS approach. 

The parameter ranges were previously defined for the Willamette 50, and 97.5 percentile values of BSPU outputs varied considerably 
Valley and evaluated for prediction of the SRB hydrology. Further among the different percentiles. When predicted change is consis­
the BSPU parameters were developed for the entire streamflow re- tent for all percentiles, greater confidence can be placed on conclu­
cord, not separated into two distinct seasons as was simulated for sions regarding shifts in modeled hydrologic responses (Surfleet 
the SSMU approach. The higher uncertainty for the BSPU approach and Tullos, 2012). The differences in predicted change by percen­
was expressed in both the 10-year 7-day low flow and extreme tiles in the BPSU responses alert the user to limitations in interpre­
peak flow predictions (Figs. 5 and 6, Table 7). The change in 2.5, tations of the model results as evidenced by the high uncertainty in 
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the BPSU estimates (Figs. 5 and 6). The high uncertainty with the 
BPSU approach likely resulted in part from the seasonal differences 
in hydrologic processes for the PNW. With different parameter sets 
(e.g. used different snow and precipitation adjustment rates, smal­
ler range of air temperature lapse rates) to address the temporal dif­
ferences in hydrology, as was used with SSMU, the BSPU approach 
would likely generate lower levels of uncertainty. Although not 
necessary in all hydrological settings, the separation of energy bud­
get related parameters values between wet and dry seasons were 
useful for the SRB. 

These results would not be evident without the analysis of 
parameter uncertainty, which greatly contribute to the interpreta­
tion of model results. For example, predictions of peak and low 
flows by the BPSU approach were found to have high uncertainty 
compared to SSMU predictions. The information that uncertainty 
was high in predictions provides both a contrast between ap­
proaches and the ability to better interpret predictions. VIC model­
ing in the LS approach focused on calibrated model parameters for 
the CRB east of the Cascade mountain divide (the majority of the 
CRB; Hamlet et al., 2010) without any analysis of parameter uncer­
tainty across the landscape. This area of the CRB has a drier and 
colder winter than west of the Cascade mountain divide, with pre­
dominately snow precipitation. The SRB is located west of the Cas­
cade mountain divide with generally warmer winters and mixed 
rain and snow precipitation. This parameter calibration approach 
may explain why the LS approach was not as accurate in the SRB. 
If a parameter uncertainty assessment was conducted for the LS 
approach, the result would likely have illustrated high uncertainty 
associated with its predictions. For example, this study found dif­
ferences in accuracy and uncertainty of model predictions between 
the use of regionally developed parameters, e.g., BPSU approach, 
compared to parameters developed in a site specific approach, 
SSMU approach, even when both approaches were developed west 
of the Cascade divide. 

4.2. Model selection and management of climate change effects on 
water resources 

The approach to model development and interpretation can 
have important influences on the approach to water resources 
management (Beven, 2001). A number of key factors (e.g., param­
eterization for spatial heterogeneity in the landscape, presence of 
groundwater interactions, and spatial and temporal differences in 
climate) were identified in this study as potentially important to 
the selection of modeling approach. 

Our results suggest that a site-specific approach to climate 
change modeling is more likely to represent the suite of processes 
that contribute to hydrology in areas where climate and hydroge­
ology are heterogeneous. In the SRB, the varied geologic setting 
created spatially-explicit ground and surface water interactions 
that were better captured by the SSMU approach than by LS and 
BSPU approaches. Consequently the SSMU approach generally pro­
vided a better fit to historical measurements, particularly at the 
smallest, unregulated sub-basin scale evaluated (North Santiam 
below Boulder Creek). As the size of the modeled basin increased, 
the benefits of the SSMU approach were less distinct and the BPSU 
and LS approaches provided similar levels of fitness to measured 
streamflow. 

A LS approach may be appropriate in areas where the climate 
and hydrologic processes are relatively homogeneous. When a LS 
modeling approach is used in heterogeneous landscapes to inform 
water resources planning, parameterizing the model by different 
climate zone of the area would improve the reliability of model 
predictions. Detailed differences in mountain terrain, soil charac­
teristics, and geology are not assessed in a LS approach; Processes 
that rely on accurate solar radiation flux (e.g., mountain snowmelt, 

sublimation, evaporation, or transpiration) can be inaccurately 
represented (Hamlet et al., 2010). 

With each refinement of spatial scale for the modeling, the time 
and cost of the modeling increases, influencing the modeling ap­
proach selection. The resources required to develop SSMU models 
can be substantial, particularly when a large land area must be 
analyzed. For the analysis of the SRB presented here, the SSMU ap­
proach required a computer network with multiple nodes to per­
form the calculations and stochastic parameter selections 
required of the uncertainty assessment. This process took several 
months to complete. 

When a site-specific or basin-scale modeling approach is justi­
fied but only a large-scale evaluation can be afforded, it is impor­
tant that model uncertainty be evaluated. This can be 
approached in many different ways. Parameter uncertainty ap­
proaches are increasingly automated and incorporated in model 
use (e.g., Vrugt et al., 2009). At a minimum, sensitivity analysis of 
parameter values across hydrographic regions can provide some 
quantification of model uncertainty. Providing comparison of small 
scale site-specific modeling to predictions by the large-scale effort 
can give indications of short-comings in the large scale approach. 
For example, although differences were apparent between a coarse 
VIC and finer resolution DHSVM model, a (2010) comparison by 
Hamlet et al. found a clear advantage for using DHSVM at finer spa­
tial resolutions for basins where spatial variation in solar radiation 
is an important driver of study outcomes (i.e. vegetation studies) or 
change in land use. 

Ultimately, model selection should be based on consistency be­
tween the needed resolution of the water resources management 
issue and model structure, uncertainty, and resource demand. In 
a comparison of six different monthly water balance models in Chi­
na (Jiang et al., 2007) and three semi-distributed models in South 
Korea (Bae et al., 2011), models were found to predict historic run­
off equally well. However, large differences were found among the 
six models’ results for perturbed climate change scenarios. The dif­
ferences depended on climate scenarios, the season, and the hydro­
logic variable under investigation (Jiang et al., 2007). Other studies 
confirm that use of different hydrologic models for climate change 
studies have not provided consistent results based on climate 
change scenario and season (Boorman and Sefton, 1997; Panagou­
lia and Dimou, 1997). 

If multiple sources of information (e.g., multiple modeling ef­
forts) are available, all of the sources should be considered in water 
resources planning to increase confidence in the outcomes of man­
agement actions. For example, the SSMU approach predicted a de­
crease in the 100-year peak flow in the future for the North 
Santiam below Boulder Creek sub-basin. However, the LS approach 
predicted an increase in the 100-year peak flow for the same sub-
basin. A possible water resource decision could be to implement a 
policy to manage for the decreased 100-year peak flow, but be pre­
pared with an adaptive management strategy should the increase 
in the 100-year peak flow occur. In this case, the emphasis was 
placed on managing from site-specific results but implements an 
adaptive management strategy that considers all projected results. 
Again, we emphasize that uncertainty in the results of the model­
ing efforts should be used in the interpretation of the model results 
and consequently in the decision making process. 

We note that recent studies (Merz et al., 2011; Rosero et al., 
2010) have emphasized the potentially large biases resulting from 
the calibration of hydrologic model parameters to historic runoff 
due to the relationships between the climate (temperature, precip­
itation) and landscape (i.e. evapotranspiration, soil and groundwa­
ter storage) being nonstationary. Until new techniques, as well as 
those recently proposed (e.g. Singh et al., 2011), to address the 
temporal instability in climate and landscape relationships are 
developed and operationalized, assessment of climate change 



impacts will be limited by the ability of models to reliably repre­
sent hydrological processes that are changing with the climate. 

5. Conclusions 

This study demonstrated that differing hydrologic modeling ap­
proaches using the same downscaled GCM forcing data predicted 
different monthly, low flow, and peak flow changes due to climate 
change. The differences in the future changes can qualitatively be 
attributed not only to the scale of the modeling effort but also to 
the ability of the models to represent the suite of processes that 
contribute to hydrology in areas where climate and hydrogeology 
is heterogeneous and/or groundwater interactions contribute to 
hydrology. For the SRB, surface and groundwater interactions are 
influential in the water resource response to climate change. As 
expected, our results suggest that, in heterogeneous basins, a 
site-specific model generally provides greater accuracy over pre­
dictions from models developed for basin or large scale modeling 
efforts. However, a water resource manager might accept lower 
accuracy as an acceptable trade-off compared to the additional ef­
fort and resources needed for accuracy gained from a site-specific 
approach. As best practice in accepting the lower accuracy of large 
scale models, as well as in modeling efforts at any scale, our results 
emphasize the importance of: (a) performing parameter uncer­
tainty analysis in providing confidence that a LS or BSPU modeling 
approach is predicting the macro changes or trends in, if not mag­
nitude of, hydrologic response correctly, (b) to the extent possible, 
developing spatially and temporally variable parameterizations 
that reflect seasonal variability in the hydrograph and spatial var­
iability in land use/land cover, soils, elevation, climate, etc. that oc­
cur at the sub-regional scale , and (c) algorithms reflecting 
groundwater interactions when predictions of low flow are an 
important management concern. 
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