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Engineering tolerance design plays an important role in modern manufacturing. Both symmetric and asym-
metric tolerances are common in many manufacturing processes. Recently, various revised loss functions
have been proposed for overcoming the drawbacks of Taguchi’s loss function. In this article, Kapur’s
economic tolerance design model is modified and the economic specification limits for both symmetric
and asymmetric losses are established. Three different loss functions are compared in the optimal sym-
metric and asymmetric tolerance design: a revised Taguchi quadratic loss function, an inverted normal loss
function and a revised inverted normal loss function. The relationships among the three loss functions and
process capability indices are established. A numerical example is given to compare the economic spec-
ification limits established by using the three loss functions. The results suggest that the revised inverted
normal loss function be used in determining economic specification limits.
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1. Introduction

Product quality is highly regarded in today’s business environment. Generally speaking, quality
characteristics can be divided into three types: the ‘nominal the best’, the ‘larger the better’ and
the ‘smaller the better’. In the traditional quality evaluation system only the total cost to the
producer was considered and minimized. A product is determined to be non-conforming if the
quality characteristic of a product fails to meet the engineering specification limits defined by
the producer. Taguchi (1986) argued that the total cost to the user should be considered as well,
since a poorly designed product causes society losses from the initial design stage to the product
usage. He defined the loss function as the deviation from the target/nominal quality characteristic.



Taguchi’s (1986) loss function has been extensively used in determining engineering tolerance
(Kapur and Wang 1987, Kapur 1988, Kapur and Cho 1994). The drawbacks of Taguchi’s qual-
ity loss function are that it is unbounded and symmetrical (Tribus and Szonyi 1989, Leon and
Wu 1992). Currently various revised loss functions have been proposed for overcoming the
drawbacks of the Taguchi loss function. For a detailed literature review of loss functions see
Pan (2007).

In order to minimize total loss to the customer as well as to the producer, Kapur andWang (1987),
Kapur (1988) and Kapur and Cho (1994, 1996) proposed several optimization models for deter-
mining specification limits. Three costs were considered: inspection costs, scrap/rework costs
and loss due to variation. Assuming that the quality characteristic Y follows a normal distribution,
Kapur’s (1988) economic model can be written as

T C = L′
Q + (1 − q) × SC + IC (1)

where TC is the total expected losses per unit product, L′
Q is the expected loss per unit product

shipped to the customer, SC is the scrap cost per unit, IC is the inspection cost per unit and qis
the fraction of good products actually shipped to the customer. In this model, the scrap cost and
the rework cost were assumed to be the same. However, the scrap cost and rework cost may
not be same in many real manufacturing cases. For example, in a metal-cutting or machining
process, if the diameter of a shaft is greater than the upper specification limit (USL), the part may
be reworkable. On the other hand, if the diameter of a shaft is less than the lower specification
limit (LSL), the part may no longer be usable and has to be scrapped. In addition to the above
asymmetric losses, tolerance asymmetry is common in many manufacturing processes. If the
deviation from the ideal target of a quality characteristic is more costly in one direction than in
the opposite direction, an asymmetric tolerance design should be considered. Maghsoodloo and
Li (2000) considered both linear and quadratic loss functions in determining the optimal value of
a process mean that minimizes the expected losses for an asymmetric tolerance design. However,
the revised loss functions were not studied in their models. Feng and Kapur (2006) proposed
models that use asymmetric quality loss functions in both quadratic and piecewise linear cases
for determining the optimal process mean and specifications for inspection. However, only the
expected scrap cost per shipped unit incurred by the producer was considered in their expected
total cost models.

The objective of this study was to develop a new model without the limitation that the scrap
cost and the rework cost have to be the same in determining the economic specification limits.
The expected total cost includes the scrap cost, the rework cost, the inspection cost and the loss
due to variation. Considering that the quality losses above the upper or lower specification limits
may not be equal, Kapur’s (1988) economic tolerance design model is revised as

TC = L ∗ +q1 × SC + q2 × RC + IC (2)

where RC is the rework cost per unit, L∗ is the expected loss per unit product shipped to the
customer using the above-mentioned loss functions and q1 and q2 denote the probabilities of
scrap and rework, respectively.

The article is structured as follows. First, the expected total losses were estimated using three
different loss functions: a revised Taguchi quadratic loss function, an inverted normal loss function
(INLF) and a revised inverted normal loss function (RINLF). Then, the best loss function is
determined in the economic tolerance design and the relationships between process capability



indices and expected loss per unit under normal distribution are derived. Finally, a comparative
study of the economic tolerance design is conducted using a realistic example of the solder paste
stencil printing process.

2. Estimation of the total expected loss

Assuming the quality characteristic Y follows a normal distribution, i.e. Y ∼ 2N(μ, σ ), the
expected loss per unit product can be derived for the revised Taguchi quadratic loss function,
INIF and RINLF. The revised Taguchi quadratic loss function can be written as

LQ(y) =
⎧⎨k1(y − 2T ) if y < T

⎩ 2k2(y − T ) if y ≥ T

where k1 and k2 represent the coefficients of two different quality losses and T is the target value.
The INLF loss function can be written as

⎧
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where U is the upper limit for the acceptable range of a quality characteristic and L is the lower
limit for the acceptable range of a quality characteristic since quality loss will not incur when
the quality characteristic falls within the neighbourhood of a target value from the customer’s
point of view and 2 2σL andσ

1 L are the parameters for controlling the shape of a function depending
2

on the realistic loss. Given the above loss functions, the formulae of the total expected losses
per unit product under two types of quality characteristics, i.e. the ‘nominal the best’ (bilat-
eral specification) and the ‘smaller the better’ (unilateral specification), are derived. When the
quality characteristics are the ‘larger the better’ (unilateral specification), the derivation of total
expected losses per unit product is very similar to the case of the smaller the better case. Note
that the asymmetric loss function proposed by Baker (1990) is used for the revised Taguchi loss
function.



2.1. Estimation of the expected losses for the nominal the best case

2.1.1. Expected loss estimation using the revised Taguchi loss function

In case 1 no inspection is performed. The total expected losses per unit product is the expected
loss per unit product shipped to the customer, which can be written as

LQ = E[LQ(y)] =
∫ ∞

LQ(y) × f (y)dy
−∞

=
∫ T 1 (y

k1(y − 2T ) × √ exp
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dy
2 2−∞ πσ

[
−
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]
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σ
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In case 2 a 100% inspection is performed. The expected loss per unit product shipped to the
customer can be written as

μ

L∗
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where

σ
E[YT ] = μ + φ(η1) φ(η2) and

q
[ − ]
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q
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q1 = 1 − �(η1) q2 = 1 − �(η2) q = �(η1) + �(η2) − 1

where φ(·) and �(·) denote the standard normal probability density function and the cumulative
distribution, respectively. Note that (μ − T )/σ ≤ η1 ≤ μ/σ and η2 ≥ (T − μ)/σ .



2.1.2. Expected loss estimation using the INLF

In case 1 no inspection is performed. The total expected losses per unit product can be written as

LINLF = E[LINLF(y)] =
∫ ∞
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2.1.3. Expected loss estimation using the RINLF

In case 1 no inspection is performed. The total expected losses per unit product can be written as
∞
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2.2. Estimation of the expected losses for the smaller the better case

When the quality characteristics are the smaller the better (unilateral specification), assume the
economic USL = μ + η1σ and the product will be reworked or scrapped if Y exceeds the USL.

2.2.1. Expected loss estimation using the revised Taguchi loss function

In case 1 no inspection is performed. The total expected losses per unit product is the expected
loss per unit product shipped to the customer, which can be written as

∞ ∞
LQ = E[ 2
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∫
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0
=

0
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In case 2 a 100% inspection is performed. The expected loss per unit product shipped to the
customer can be written as
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2.2.2. Expected loss estimation using the INLF

In case 1 no inspection is performed. The total expected losses per unit product can be written as
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In case 2 a 100% inspection is performed. The expected loss per unit product shipped to the
customer can be written as ∫ μ+ησ
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2.2.3. Expected loss estimation using the RINLF

In case 1 no inspection is performed. The total expected losses per unit product can be written as
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3. Relationship between loss functions and process capability indices

To answer which loss function is appropriate in determining the economic specification limits,
it is necessary to explore the relationship between loss function and process capability indices.
Assuming that a quality characteristics Y follows a normal distribution, the process capability
indices for a bilateral specification are

USL
Cp

− LSL �=
6σ

=
3σ

μ LSL USL μ � μ M
Cpk = min{Cpl, Cpu} = min

{ −
,

− − | −
3σ 3σ

} |=
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6{E(Y − 2T ) }1/2

=
3 2σ + (μ − 2T )

where M = USL + LSL/2 is the centre

√
of a bilateral specification and � = USL − LSL/2

denotes half of the specification width. The relationships between loss functions and process
capability indices for both symmetric and asymmetric tolerances are derived as below.



3.1. Relationship between loss functions and process capability indices for symmetric
tolerance

Assuming that the quality characteristic of a symmetric tolerance (T = M), as shown in Figure 1,
follows a normal distribution and its process capability indices Cp and Cpk are known, one can
obtain |μ − M| = 3σ(Cp − Cpk). Thus, the economic lower and upper specifications are

LSL = μ − η1σ =⇒ η1 = [� − (T − μ)]/σ = [3σCp − (T − μ)]/σ
USL = μ + η2σ =⇒ η2 = [3σCp + (T − μ)]/σ

When the process average μ is equal to the target value T , then Cp = Cpk and η1 = η2 = η = 3Cp.
Note that only the asymmetric loss (SC = RC) is plotted in Figure 1 since the symmetric loss
(SC = RC) can be considered as a special case of asymmetric loss. By utilizing Cp, one can derive
the following relationships between three different loss functions and process capability indices.

3.1.1. The relationship between the revised Taguchi’s loss function and process
capability indices

Assume the quality losses exceed the upper or lower specification limits which are not equal and
k1 and k2 represent the coefficients of two different quality losses, namely

k1 = 2 2K1/� = K1/(3σCp)

k2 = 2K2/� = K2/(3
2σCp)

where K1 denotes the maximum loss including both producer and consumer costs if the quality
characteristic deviates from the target and exceeds the LSL and K2 denotes the maximum loss
including both producer and consumer costs if the characteristic deviates from the target and
exceeds the USL. The expected loss per unit product shipped to the customer can be written as

2�(3C 3 )C
L∗

Q = (K1 + p) 6φ( Cp p 1
K2)

{
− −

18[2�(3Cp) − 1] 2Cp

}

Considering the scrap, rework and inspection costs, the total expected loss per unit product is

TC L∗
Q 1 �(3Cp) (SC RC) IC




= + [ − ] × + +

Figure 1. Comparison of three loss functions for symmetric tolerance (T = M).



3.1.2. The relationship between the INLF and process capability indices

At the specification limits, the loss reaches its maximum value. Therefore, the parameters are set
according to the rule proposed by Spiring (1993): σL1 = σL2 = �/4 = [(3σ)4]Cp. The expected
loss per unit product shipped to the customer can be written as
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3.1.3. The relationship between RINLF and process capability indices

The parameters are set according to the rule proposed by Spiring (1993):
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The expected loss per unit product shipped to the customer can be written as
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where m = T − L/� denotes the difference between the target and the lower limit for the accept-

⎪⎭

able range, in which no quality loss will be incurred, divided by half of the specification width: here
n = U − T /� denotes the difference between the target and the upper limit for the acceptable
range, divided by half of the specification width. According to Equation (2), the total expected
loss per unit product is TC = L∗

RINLF + [1 − �(3Cp)] × (SC + RC) + IC.



When a process average μ is greater or less than the target value T , the derivation of the
relationship between the process capability indices and loss functions is similar to the case of the
process average μ = T , as described above.

Based on the relationship between various loss functions and process capability indices for
symmetric tolerance, the comparison of expected loss estimation using three loss functions is
shown in Table 1. It shows that, given the maximum loss of scrap K1 and the maximum loss of
rework K2, then the three expected losses per unit can be estimated with respect to different Cp

indices and their corresponding defect rates are also indicated accordingly.

3.2. The relationship between loss function and process capability indices for asymmetric
tolerance

When the quality characteristic of an asymmetric tolerance (T = M), as shown in Figure 2,
follows a normal distribution and its process capability indices Cp and Cpm are known, then let
d = T − M/� denote the difference between the target and the centre of specification divided
by half of the specification width, where |d| ≤ 1. Then Cp = �/3σ ⇒ � = 3σCp and Cpm =
�/(3

√
2σ + (μ − 2T ) ) = (σ × Cp)/

√
2σ + (μ − 2T ) . Hence,

|μ − T | = 2 2(σ/Cpm)

√
Cp − Cpm

LSL = μ − η1σ =⇒ η1 = [�(1 + d) − (T − μ)]/σ = [3σ(1 + d)Cp − (T − μ)]/σ
USL = μ + η2σ =⇒ η2 = [3σ(1 − d)Cp + (T − μ)]/σ.




Table 1. A comparison of three loss functions (m = 0.5, n = 0.5) for different Cp indices.

Cp

Defect rate

(p.p.m)

Expected Unit Loss

Revised Taguchi INLF RINLF

0.10
0.20
0.30
0.33
0.40
0.50
0.60
0.67
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.33
1.40
1.50
1.60
1.67
1.70
1.80
1.90
2.00

764177.1556
548506.2355
368120.2507
322174.1190
230139.3404
133614.4025

71860.6382
44431.1889
35728.8411
16395.0718

6933.9476
2699.7961

966.8483
318.2172

96.1927
66.0733
26.6915

6.7953
1.5867
0.5443
0.3397
0.0666
0.0120
0.0020

5.541∗(K1 + K2)

1.382∗(K1 + K2)

0.612∗(K1 + K2)

0.506∗(K1 + K2)

0.344∗(K1 + K2)

0.219∗(K1 + K2)

0.152∗(K1 + K2)

0.122∗(K1 + K2)

0.111∗(K1 + K2)

0.085∗(K1 + K2)

0.067∗(K1 + K2)

0.054∗(K1 + K2)

0.045∗(K1 + K2)

0.037∗(K1 + K2)

0.032∗(K1 + K2)

0.030∗(K1 + K2)

0.027∗(K1 + K2)

0.024∗(K1 + K2)

0.021∗(K1 + K2)

0.019∗(K1 + K2)

0.018∗(K1 + K2)

0.016∗(K1 + K2)

0.015∗(K1 + K2)

0.013∗(K1 + K2)

0.341∗(K1 + K2)

0.336∗(K1 + K2)

0.326∗(K1 + K2)

0.323∗(K1 + K2)

0.313∗(K1 + K2)

0.297∗(K1 + K2)

0.279∗(K1 + K2)

0.265∗(K1 + K2)

0.259∗(K1 + K2)

0.239∗(K1 + K2)

0.218∗(K1 + K2)

0.199∗(K1 + K2)

0.182∗(K1 + K2)

0.165∗(K1 + K2)

0.151∗(K1 + K2)

0.147∗(K1 + K2)

0.138∗(K1 + K2)

0.126∗(K1 + K2)

0.116∗(K1 + K2)

0.109∗(K1 + K2)

0.107∗(K1 + K2)

0.098∗(K1 + K2)

0.091∗(K1 + K2)

0.084∗(K1 + K2)

0.169∗(K1 + K2)

0.161∗(K1 + K2)

0.148∗(K1 + K2)

0.144∗(K1 + K2)

0.132∗(K1 + K2)

0.112∗(K1 + K2)

0.092∗(K1 + K2)

0.078∗(K1 + K2)

0.072∗(K1 + K2)

0.054∗(K1 + K2)

0.038∗(K1 + K2)

0.026∗(K1 + K2)

0.018∗(K1 + K2)

0.011∗(K1 + K2)

0.007∗(K1 + K2)

0.0061∗(K1 + K2)

0.0043∗(K1 + K2)

0.0033∗(K1 + K2)

0.0015∗(K1 + K2)

0.0010∗(K1 + K2)

0.00085∗(K1 + K2)

0.00047∗(K1 + K2)

0.00026∗(K1 + K2)

0.00014∗(K1 + K2)



Figure 2. Comparison of three loss functions for asymmetric tolerance (T = M).


By utilizing the relationship between the process capability indices Cp and Cpm and various
loss functions, the expected loss per unit product can be obtained.

If a process average is μ = T , then η1 = 3(1 + d)Cp and η2 = 3(1 − d)Cp. Again, only the
asymmetric loss (SC = RC) is plotted in Figure 2 since the symmetric loss (SC = RC) can be
considered as a special case of asymmetric loss. By utilizing Cp, one can derive the following
relationships between three different loss functions and process capability indices:

3.2.1. The relationship between the revised Taguchi loss function and process capability
indices

Assuming the quality losses exceed the upper or lower specification limit and are not equal, let k1

and k2 represent the coefficients of two different quality losses, namely

= 2 = 9 1 + 2 2 2k1 K1/(η1σ) K1/( ( d) σ Cp), k2 = 2 2 2 2K2/(η2σ) = K2/(9(1 − d) σ Cp),

where K1 denotes the maximum loss including both the producer and consumer costs if the quality
characteristic deviates from the target and exceeds the LSL and K2 denotes the maximum loss
including both the producer and consumer costs if the characteristic deviates from the target and
exceeds the USL. The expected loss per unit product shipped to the customer can be written as

2� 3(1 d)C
L∗

Q = p 6φ 3(1 d)Cp Cp(1 d) 1
K1

[
[ + ] − [ + ] + −

18[ [3 1 + ] + [3 1 − ] − 1] 1 + 2 2� ( d)Cp � ( d)Cp ( d) Cp

]
[

2�[3(1 − d)Cp] − 6φ[3(1 − d)Cp]C (+ p 1
K2

− d) − 1

18[�[3(1 + d)Cp] + �[3(1 − d)Cp] − 1](1 − 2 2d) Cp

]

According to Equation (2) the total expected loss per unit product is

TC = L∗
Q + [1 − �(3(1 + d)Cp)] × SC + [1 − �(3(1 − d)Cp)] × RC + IC






3.2.2. The relationship between the INLF and process capability indices

Set the parameters according to the rule proposed by Spiring (1993):
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According to Equation (2), the total expected loss per unit product is

TC = L∗
INLF + [1 − �(3(1 + d)Cp)] × SC + [1 − �(3(1 − d)Cp)] × RC + IC

3.2.3. The relationship between the RINLF and process capability indices

Since the loss reaches its maximum value at the specification limits, the parameters are set
according to the rule proposed by Spiring (1993) as

L L
σL

− LS 3σ(1
1

− m + d)Cp USL
σL2

− U 3σ(1 − n − d)C=
4

= ; = = p
.

4 4 4



The expected loss per unit product shipped to the customer can be written as
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where d denotes the difference between the target and the centre of specification divided by half
of the specification width, m denotes the difference between the target and the lower limit for the
acceptable range, in which no quality loss will be incurred, divided by half of the specification
width and n denotes the difference between the target and the upper limit for the acceptable range,
in which no quality loss will be incurred, divided by half of the specification width. Considering
the scrap, rework and inspection costs, the total expected loss per unit product can be written as

TC = L∗
RINLF + [1 − �(3(1 + d)Cp)] × SC + [1 − �(3(1 − d)Cp)] × RC + IC

Pan (2007) proposed a loss function-based risk assessment method by paring the process capability
indices and loss functions. To demonstrate that various manufacturing and environmental risks
can be evaluated by exploring the relationship between three loss functions and process capability
indices, he illustrated the method using two numerical examples. However, the expected losses
per unit product in determining the economic specification limits using different loss functions
were not considered in his model.

When a process average is greater or less than the target value T , the derivation of the relationship
between process capability indices and loss functions is similar to the case of the process average
μ = T , as described above.

4. Selection of the appropriate loss function for economic tolerance design

Based on the relationship between process capability indices and the total expected losses per
unit product for various loss functions, the total expected losses per unit product for three loss
functions under various Cp can be compared. The total expected losses per unit product have
been estimated under various Cp values for both the symmetric and asymmetric tolerances when



Figure 3. Comparison of the total expected losses per unit product for various loss functions under different Cp

(symmetric tolerance and symmetric loss case).

a process average μ is equal to T . Figure 3 shows that the total expected losses per unit product
decline as the process capability index Cp improves regardless of which loss function is used
(here the case of symmetric tolerance and symmetric loss is illustrated as an example). Notice
that the failure/defect rate is 66 p.p.m. (part per million) for Cp = 1.33 or a four-sigma process,
0.54 p.p.m. for Cp = 1.67 or a five-sigma process and 0.002 p.p.m. for Cp = 2 or a six-sigma pro-
cess (see Table 1 for details). When Cp = 2, the total expected losses per unit product calculated
using three different loss functions are $0.14 (K1 + K2) for the revised Taguchi quadratic loss
function, $0.084 (K1 + K2) for the INLF loss function and $0.00004 (K1 + K2) for the RINLF,
respectively. Pan (2007) provided a new loss function-based method for evaluating manufacturing
and environmental risks. Through two numerical examples he showed that the expected losses
using Taguchi’s loss function and the INLF are overestimated, especially for the four-, five- and
six-sigma processes and the actual losses could be realistically reflected by the RINLF. Since engi-
neering specification plays a key role in the calculation of Cp or Cpk and the loss estimation of the
RINLF is more consistent with the defect rate than that of the revised Taguchi loss function and the
INLF, it is suggested that the RINLF be used in the determination of economic specification limits.

5. A numerical example

Stencil printing is one of the most cost-effective processes for solder paste deposition and it has
been widely used in traditional high-volume surface mount assembly. There are many variables
that influence the quality of the stencil printing process, which are mainly measured by the
amount and position of solder paste deposited. Instead of using the traditional way of setting
the tolerance by T ± 5σ in most electronic industries, the new economic specification limits are
established based on the revised Kapur economic tolerance design model to minimize the product
variation/loss shipped to the customer. To demonstrate how to determine the new economic
specification limits using the RINLF, this article uses the solder volume on Quad Flat Package



(QFP) pads deposited by a stencil of a thickness of 0.15 mm and aperture sizes of 0.5 mm. The
procedures of the new economic tolerance design are as follows.

5.1. Economic tolerance design for the solder deposited volume of QFP pads

In step 1 a statistical test is performed. The solder deposited volume data on 264 pads data
were from experimental data (Pan et al. 2004). The data passed the normality test. The normal
probability density function of the solder volume is shown in Figure 4, where the mean μ =
0.0507 mm3 and the standard deviation 3σ = 0.005 mm .
Step 2. Determine RINLF for the solder deposited volume

The target of solder deposited volume = 0 059 mm3T . . Assume the maximum quality loss per
unit, K1 = K2 = $50 (i.e. symmetric loss function) if the solder deposited volume is deviated from
the target and exceeds the specification limits. Since solder paste applied to the board is washable
and the board itself is reusable even if its deposited volume is out of the specification limits.
Therefore, the scrap cost is not considered in the solder paste stencil printing process. Assume the
rework cost RC = $20 per unit if the solder deposited volume exceeds the specification limits and
the inspection cost IC = $5 per unit if 100% inspection is conducted. Suppose that the RINLF
reaches its maximum loss at T

T

± 5σ limits, where T − 5σ = 0.059 − 5 × 0.005 = 0.034 and
+ 5σ = 0.059 + 5 × 0.005 = 0.084, no quality loss will be incurred if the solder deposited

volume falls in the acceptable range (L, U) (0.0465, 0.0715), where L 0.059 0.0125
0. U

= = − =
0465 and = 0.059 + 0.0125 = 0.0715. Note that the parameters for controlling the shape of

RINLF are: σL1 = (0.0465 − 0.034)/4 = 0.0031 and σL2 = (0.084 − 0.0715)/4 = 0.0031.
Step 3. Determine the economic specification limits for the solder deposited volume

Based on the revised Kapur economic tolerance design model, plug the parameter settings of
RINLF from step 2 into Equation (2). Due to the fact that the board can be reworked if it exceeds
specification limits, the total unit cost can be written as:

TC = L∗
RINLF + (1 − q) × RC

η

+ IC. Moreover, the total unit cost TC is the function of η1 and
2, the mathematical equation for determining the new economic specification limits can be

written as: Min{η1, η2: TC(η1, η2) = L∗
RINLF + (1 − q) × RC + IC}.

Figure 4. New (LSL, USL), RINLF and the probability density function N (0.0507, 0.0052).



Table 2. Comparison of the economic tolerance design for solder deposited volume.

Economic lower limit Economic upper limit
Loss Functions η1 η2 LSL = 0.0507 − η1 × 0.005 USL = 0.0507 + η2 × 0.005 Min{TC}

Revised Taguchi’s 1.9736 4.7250 0.0408 0.0743 12.3781
INLF −1.2409 2.0791 0.0569 0.0611 24.1814
RINLF 1.4653 4.7846 0.0434 0.0746 7.2421

Table 3. The new economic tolerance design for solder deposited volume using RINLF.

Parameter Settings for RINLF New economic specification

Quality

Characteristic

Parameters of process data

T μ σ

K1 = K2 = $50, RC = $20, IC = $5 limits (LSL, USL)

LSL USL Min{TC}L, U σL

QFP6mil,20 0.059 0.0507 0.005 (0.0465, 0.0715) 0.0031 0.0434 0.0746 $7.2421

One can solve the above equation using the attached R computer program (see Appendix
for details) and achieve the optimal solution η1 = 1.4653, η2 = 4.7846 and Min{TC(η1, η2)} =
7.2421. After plugging the optimal solution η1 and η2 into the formula (LSL, USL) = (μ

η

−
1σ, μ + η2σ), then the new economic lower specification limit, LSL − μ − η1σ = 0.0507 −

1.4653 × 0.005 = 0.0434 and the new upper specification limit, USL + μ

. . . η η

+ η2σ = 0.0507 +
4 7846 × 0 005 = 0 0746, where the range of 1 and 2 are:

μ − L μ 0.0507≤ η1
− 0.0465 0.0507≤ =⇒ ≤ η1 ≤ =⇒ 0.84 .

0
≤ η1 10

σ σ .005 0.005
≤ 14

U − μ 0.0715 − 0.0507
η2 ≥ =⇒ η2

σ
≥

0.005
=⇒ η2 ≥ 4.16

The new economic specification limits (LSL, USL), RINLF and the probability density function
N (0.0507, 0.000025) for the volume of QFP pads are shown in Figure 4.

Notice that one can simply input the data into the attached R program to obtain new economic
specification limits and minimum total costs using various loss functions even if the scrap cost
and the rework cost are different for the case of asymmetric loss. Furthermore, similar procedures
can be applied to obtain the economic specification limits for the solder deposited volume of
QFP flat pads using the INLF and revised Taguchi loss functions. A comparison of the economic
specification limits using the RINLF, INLF and revised Taguchi loss function as well as their
respective total quality losses are summarized in Table 2.

It can be seen in Table 2 that the economic specification limits for the solder deposited volume
of QFP flat pads using the RINLF has the minimum total unit cost and the new specification limits
(0.0434 and 0.0746) are the most realistic ones for monitoring the product quality of the solder
deposited volume.

The basic statistics of the process data, parameter settings for the RINLF and the economic
specification limits for the solder deposited volume are summarized in Table 3.

6. Conclusions and future research

This article proposes a new method for relaxing the limitation that the scrap and rework costs
are the same (the case of symmetric loss). Six models were derived for estimating the total
expected loss in determining the economic specification limits. The six models include three



models for bilateral specification (the ‘nominal the best’ case) using the revised Taguchi quadratic
loss function, the INLF and the RINLF and three models for the unilateral specifications (the
‘smaller the better’ case) using the three loss functions. To decide which loss function is the
best in the economic tolerance design, the relationships between process capability indices and
expected loss per unit under normal distribution were derived. The results suggest that the RINLF
may be the most appropriate loss function in the economic tolerance design. Then, a comparative
study of the economic tolerance design was conducted using the solder paste stencil printing
process as an example. Although only the rework cost was considered in the numerical example,
the results show that the new economic specification limits using the RINLF are the most realistic
for monitoring the quality of solder deposited volume. One can easily extend it to the case of
asymmetric loss (when the scrap cost is not equal to the rework cost) by simply changing the
input parameters in the attached R program. Due to the fact that the true loss structure might not be
symmetric in many situations, the use of symmetric loss function in determining new economic
specification limits is not always recommended. Therefore, the asymmetric loss was considered in
this article’s models and it is suggested that RINLF be used in optimal symmetric and asymmetric
tolerance design.

The above economic tolerance designs are based on the assumption that the quality characteristic
follows a normal distribution. However, Cho and Phillips (1998) stated that the gamma distribution
is more appropriate for the ‘smaller-the-better’ (S-type) quality characteristic and Chan et al.
(2005) extended the cost model using loss functions for multiplying S-type quality characteristics.
Research on the economic tolerance design under a non-normal distribution on the ‘nominal the
best’ (N-type) quality characteristics needs to be further explored.
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Appendix

Listed below is the R program for solving the optimization models using various loss functions.
Solve the optimization model using the revised Taguchi’s quadratic loss function.

Q <- function(eta1, eta2) pnorm(eta1)+pnorm(eta2) -1
Q1 <- function(eta1) 1-pnorm(eta1)
Q2 <- function(eta2) 1-pnorm(eta2)
EY <- function(eta1, eta2, mu, sigma) mu+(sigma/Q(eta1,eta2))*(dnorm(eta1)-dnorm(eta2))
VY <- function(eta1, eta2, mu, sigma) (sigmaˆ2)*(1-(eta1/Q(eta1,eta2))*dnorm(eta1)-(eta2/Q(eta1,eta2))*dnorm(eta2)-
((dnorm(eta1)-dnorm(eta2))/Q(eta1,eta2))ˆ2)
A1 <- function(eta1, eta2, k1, k2) (k2-k1)/Q(eta1,eta2)
A2 <- function(mu, y0, sigma,eta2) ((mu-y0)ˆ2+sigmaˆ2)*(pnorm(eta2)-pnorm((y0-mu)/sigma))
A3 <- function(mu, y0, sigma) sigma*(mu-y0)*dnorm((y0-mu)/sigma)
A4 <- function(mu, y0, sigma,eta2) 2*sigma*((mu-y0)+(eta2*sigma)/2)*dnorm(eta2)
Lq <- function(mu, y0, sigma, k1, k2, eta1, eta2) {k1*(VY(eta1, eta2, mu, sigma)+(EY(eta1, eta2, mu, sigma)-
y0)ˆ2)+A1(eta1, eta2, k1, k2)*(A2(mu, y0, sigma, eta2) +A3(mu, y0, sigma)-A4(mu, y0, sigma,eta2))}
TC <- function(mu=10, y0=9.9, sigma=0.5, k1=5, k2=5, SC=2, RC=2, IC=0.1){function(eta= c(–1.658, 1.658)){Lq(mu,
y0, sigma, k1, k2, eta[1], eta[2])+Q1(eta[1])*SC+Q2(eta[2])*RC+IC}}
optim(c((10-9.9)/0.5-0.00001, (9.9-10)/0.5), function(p) TC()(p))

Calculate and printout eta values and the minimum cost for the solder deposited volume.

TC <- function(mu=0.0507, y0=0.059, sigma=0.005, k1=50/((5*0.005)ˆ2), k2=50/((5*0.005)ˆ2), SC=20, RC=20, IC=5){
function(eta= c(–1.658, 1.658)){Lq(mu, y0, sigma, k1, k2, eta[1], eta[2])+Q1(eta[1])*SC+Q2(eta[2])*RC+IC}}
optim(c((0.0507-0.059)/0.005-0.00001, (0.059-0.0507)/0.005), function(p) TC()(p),
lower=c((0.0507-0.059)/0.005-0.00001,(0.059-0.0507)/0.005),upper=c(0.0507/0.005,Inf))

Solve the optimization model using the INLF and RINLF.

LSL <- function(mu, eta1,sigma) mu-eta1*sigma
USL <- function(mu, eta2,sigma) mu+eta2*sigma
L <- function(y0, delta1) y0-delta1
U <- function(y0, delta2) y0+delta2
Q <- function(eta1,eta2) pnorm(eta1)+pnorm(eta2) -1
Q1 <- function(eta1) 1-pnorm(eta1)
Q2 <- function(eta2) 1-pnorm(eta2)
A1L <- function(y0, delta1, mu, sigma) (L(y0, delta1)-mu)/sigma
A1U <- function(y0, delta2, mu, sigma) (U(y0, delta2)-mu)/sigma
A2L <- function(y0, delta1, mu, sigma, sigmal1) ((mu-L(y0, delta1))ˆ2)/((sigmaˆ2+sigmal1ˆ2)*2)
A2U <- function(y0, delta2, mu, sigma, sigmal2) ((mu-U(y0, delta2))ˆ2)/((sigmaˆ2+sigmal2ˆ2)*2)
A3L <- function(sigma, sigmal1) sigmal1/((sigmaˆ2+sigmal1ˆ2)ˆ0.5)
A3U <- function(sigma, sigmal2) sigmal2/((sigmaˆ2+sigmal2ˆ2)ˆ0.5)
A4L <- function(y0, delta1, mu, sigma, sigmal1) ((L(y0, delta1)-mu)*sigmal1)/(sqrt(sigmaˆ2+sigmal1ˆ2)*sigma)
A4U <- function(y0, delta2, mu, sigma, sigmal2) ((U(y0, delta2)-mu)*sigmal2)/(sqrt(sigmaˆ2+sigmal2ˆ2)*sigma)
A5L <- function(y0, delta1, mu, sigma, sigmal1, eta1) ((mu-L(y0, delta1))*sigma-eta1*(sigmaˆ2+sigmal1ˆ2))/(((sigmaˆ2
+sigmal1ˆ2)ˆ0.5)*sigmal1)



A5U <- function(y0, delta2, mu, sigma, sigmal2, eta2) ((mu-U(y0, delta2))*sigma + eta2*(sigmaˆ2+sigmal2ˆ2))/(((sigmaˆ2
+sigmal2ˆ2)ˆ0.5)*sigmal2)
Lrinlf <- function(K1, K2, sigmal1, sigmal2, y0, mu, sigma, delta1, delta2, eta1, eta2) { (K1/Q(eta1,eta2))*(pnorm(A1L(y0,
delta1, mu, sigma))+pnorm(eta1)-1-(exp(-A2L(y0, delta1, mu, sigma, sigmal1)))*A3L(sigma, sigmal1)*(pnorm(A4L(y0,
delta1, mu, sigma, sigmal1))-pnorm(A5L(y0, delta1, mu, sigma, sigmal1, eta1))))+ (K2/Q(eta1,eta2))*(pnorm(eta2)-
pnorm(A1U(y0, delta2, mu, sigma))-(exp(-A2U(y0, delta2, mu, sigma, sigmal2)))*A3U(sigma, sigmal2)*(pnorm(A5U
(y0, delta2, mu, sigma, sigmal2, eta2))-pnorm(A4U(y0, delta2, mu, sigma, sigmal2))))}
TC <- function(K1=50, K2=50, sigmal1=(3*0.005*1.67)/4, sigmal2=(3*0.005*1.67)/4, y0=0.059, mu=0.0507,
sigma=0.005, delta1=0, delta2=0,SC=20, RC=20, IC=5){ function(eta= c(-1.658, 1.658)){Lrinlf (K1, K2, sigmal1,
sigmal2, y0, mu, sigma, delta1, delta2, eta[1], eta[2])+Q1(eta[1])*SC+Q2(eta[2])*RC+IC}}

Calculate and printout eta values and the minimum cost for the solder deposited volume using the INLF.

TC <- function(K1=50, K2=50, sigmal1=(3*0.005*1.67)/4, sigmal2=(3*0.005*1.67)/4, y0=0.059, mu=0.0507,
sigma=0.005, delta1=0, delta2=0,SC=20, RC=20, IC=5){function(eta= c(-1.658, 1.658)){Lrinlf (K1, K2, sigmal1,
sigmal2, y0, mu, sigma, delta1, delta2, eta[1], eta[2])+Q1(eta[1])*SC+Q2(eta[2])*RC+IC}}
optim(c((0.0507-0.059)/0.005-0.00001, (0.059-0.0507)/0.005), function(p) TC()(p),
lower=c((0.0507-0.059)/0.005-0.00001,(0.059-0.0507)/0.005),upper=c(0.0507/0.005,Inf))

Calculate and printout eta values and the minimum cost for the solder deposited volume using the RINLF.

TC <- function(K1=50, K2=50, sigmal1=(3*0.005*1.67*0.5)/4, sigmal2=(3*0.005*1.67*0.5)/4, y0=0.059, mu=0.0507,
sigma=0.005, delta1=3*0.005*1.67*0.5, delta2=3*0.005*1.67*0.5,SC=20, RC=20, IC=5){
function(eta= c(-1.658, 1.658)){Lrinlf (K1, K2, sigmal1, sigmal2, y0, mu, sigma, delta1, delta2, eta[1], eta[2])+Q1(eta[1])
*SC+Q2(eta[2])*RC+IC}}
optim(c((0.0507-(0.059-3*0.005*1.67*0.5))/0.005, ((0.059+3*0.005*1.67*0.5)-0.0507)/0.005), function(p) TC()(p),
lower=c((0.0507-(0.059-3*0.005*1.67*0.5))/0.005, ((0.059+3*0.005*1.67*0.5)-0.0507)/0.005),upper=c(0.0507/0.005,
Inf))




