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Abstract: In this study, we demonstrate that watershed-scale estimates of road sediment production are improved if field 
measurements of road runoff and sediment production are used in the analysis. We used several techniques to spatially ex
trapolate measurements of road runoff and sampled sediment: comprehensive road runoff measurements, runoff estimates 
derived from the Distributed Hydrology Soil Vegetation Model (DHSVM), and adjustment of the road erosion models 
WARSEM and SEDMODL2.The sediment yield for the Oak Creek, Oregon, road network based on measured road runoff 
and sediment was 6.5 tons/year. When DHSVM was used to simulate road runoff, the estimated sediment from roads was 
similar, 6.9 tons/years. The road sediment production estimated by SEDMODL2 and WARSEM, adjusted with field-meas
ured road runoff and sediment, was 28% and 34% less, respectively, than using the models with the default parameters. 
When applied to a road network in commercial forest land with frequent road use, the sediment yield estimated by SED
MODL2 and WARSEM without adjustment from field measurements was 480% and 610% higher, respectively, than with 
adjustments. We found that measuring runoff and sediment from one large storm event (≥1 year recurrence) provided a stat
istically significant relationship with the annual sediment yield. 

Résumé : Dans cette étude, nous démontrons que les estimations de production de sédiments associés aux chemins à l’é
chelle du bassin versant sont meilleures si des mesures de l’eau de ruissellement des chemins et de production de sédiments 
prises sur le terrain sont utilisées dans l’analyse. Nous avons utilisé plusieurs méthodes pour extrapoler dans l’espace les 
mesures de l’eau de ruissellement des chemins et des échantillons de sédiments : mesures détaillées de l’eau de ruisselle
ment des chemins, estimations du ruissellement dérivées du modèle DHSVM (« Distributed Hydrology Soil Vegetation Mo
del ») et calibration des modèles d’érosion des chemins WARSEM et SEDMODL2. La production de sédiments associés au 
réseau routier d’Oak Creek, Oregon, basée sur des mesures de l’eau de ruissellement des chemins et des sédiments, était de 
6,5 tons/an. Lorsque le modèle DHSVM était utilisé pour simuler le ruissellement, la quantité de sédiments associés aux 
chemins était semblable, soit 6,9 tons/an. La production de sédiments estimée par les modèles SEDMODL2 et WARSEM, 
calibrés avec les mesures de ruissellement et de sédiments prises sur le terrain, était respectivement 28 % et 34 % moins éle
vée que lorsque ces modèles étaient utilisés avec les paramètres implicites. Lorsqu’elle est appliquée à un réseau routier 
dans un territoire de forêt commerciale où les chemins sont fréquemment utilisés, l’estimation de la production de sédiments 
avec les modèles SEDMODL2 et WARSEM sans calibration avec les mesures prises sur le terrain était respectivement 480 
% et 610 % plus élevée comparativement aux résultats obtenus après calibration. Nous avons observé qu’il y avait une rela
tion statistiquement significative entre les mesures de ruissellement et des sédiments associés à une grosse tempête (période 
de récurrence plus longue qu’un an) et la production annuelle de sédiments. 

[Traduit par la Rédaction] 

Introduction vesting practices, and monitor reductions in sediment produc
tion. The implementation of forest policies has in many cases 

A large amount of the sediment attributed to timber har- required landowners to accurately monitor reductions in ero
vest activities is due to surface erosion from roads and road sion and the subsequent improvement of aquatic habitat over 
building (e.g., Reid 1981; Ketcheson and Megahan 1996). In- time. 
creases in sediment production from timber harvest activities, Assessing sediment production from the erosion of forest 
which include forest roads, can degrade water quality and roads is complex because of the many influences on the pro-
aquatic habitat (e.g., Spence et al. 1996; Haskell 2000; Gu- duction and transport of erosion. The assessment becomes 
cinski et al. 2001). Concerns regarding the impacts of sedi- more complex in efforts to estimate sediment production 
ment due to timber harvest have resulted in regulations that from forest roads at a watershed scale. Watershed-scale 
require landowners to repair erosion sites, use improved har- amounts of sediment inputs from forest roads are commonly 
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estimated from road erosion models. Common road surface 
erosion models used in forest watersheds are SEDMODL2, 
the Washington Road Surface Erosion Model (WARSEM), 
and WEPP:Road. These models have been widely used for a 
variety of objectives. For example, SEDMODL2 has been 
used as an evaluation tool in a model to decrease culvert 
spacing to assess sediment contributions (Damian 2001) as 
well as incorporated into haul routing evaluations (Krogstad 
and Schiess 2000) and road design and alignment evaluations 
(Akay and Sessions 2005). Both WARSEM and SED
MODL2 have been used in regulatory planning and decision 
making (LaPlante 2005) and monitoring of aquatic habitat 
conservation (Raines et al. 2005). WEPP:Road has been 
used by the US Forest Service and US Bureau of Land Man
agement for assessment and planning (e.g., USDA Forest 
Service LTBMU 2006). 
Models used to analyze road surface erosion can provide 

estimates of sediment production at a watershed scale or data 
that can help the user make those estimates. A crucial factor 
in the use of road erosion models is the accuracy of the 
model results. The assumption is that the models give a rea
sonable interpretation of the magnitude and spatial pattern of 
road sediment production. However, a lack of regional cali
brations of model algorithms can lead to inaccurate model re
sults (Sugden and Woods 2007). Further, without site-
specific data on the hydrologic response of roads, these mod
els cannot be expected to provide accurate results for the va
riety of hydrologic responses that roads exhibit. 
Overland flow is necessary to create surface erosion and 

transport detached soil from a road tread. Some road treads, 
the running surface of a road, or ditches draining a road can 
have infiltration capacities that exceed rainfall intensities and 
thus do not promote the overland flow necessary for surface 
erosion. Road cutslopes, the steepened slope adjacent to 
roads created from removing hillslope material while build
ing roads, can intercept hillslope water, which can increase 
road runoff. However, in many areas, road cutslopes do not 
intercept hillslope water (e.g., Sugden and Woods 2007). 
The quantity of water running off roads is not necessarily a 
function of the road dimensions and associated precipitation 
(Luce 2002). Since surface erosion on roads requires surface 
runoff and the hydrologic responses of roads are not easily 
predicted, measurement of road runoff is an important ap
proach in assessing road erosion. 
The physical attributes of roads may not provide a reliable 

predictor of road hydrologic response; however, many physi
cal attributes of roads do correlate with sediment loss. For 
example, roads with a native surface texture can have as 
much as 15–20 times the sediment production than a road 
with a competent rock surface (e.g., Reid 1981; Bilby et al. 
1989;). Rutting of the road surface from vehicle traffic cre
ates depressions where road runoff is concentrated, generat
ing greater sediment loss (Foltz and Burroughs 1990; Toman 
and Skaugset 2011). As the slope of a road increases, the 
force of road runoff for detachment of surface material in
creases, producing greater sediment loss (e.g., Megahan and 
Ketcheson 1996; Luce and Black 1999; Sugden and Woods 
2007). Vegetation cover of road cutslopes provides signifi
cant protection against sediment loss (Wischmeier and Smith 
1960; Luce and Black 1999). External factors such as the 
amount of heavy vehicle traffic or intensity of precipitation 

further affect road sediment loss (Wischmeier and Smith 
1960; Reid 1981; Bilby et al. 1989). Road inventories and 
field methods that identify physical factors such as these, 
that cause greater risk of sediment loss are important. How
ever, the runoff of a road determines whether erosion will oc
cur. 
We propose that watershed-scale estimates of road sedi

ment production will be improved if field-measured road run
off and sediment production are used in the analysis. Field 
measurements must be obtained by means of an appropriate 
sampling design to allow inference to watershed-scale esti
mates. Several different approaches could be used for the 
spatial extrapolation of road runoff and sediment production 
observed in the field. One approach would be to measure 
road runoff at all road locations in a watershed and then sam
ple road sediment production at representative sites. Sediment 
production would be extrapolated to roads from the runoff 
and sediment load relationship developed for the watershed. 
However, measuring the runoff from all roads in a watershed 
is unrealistic, particularly for large watersheds. Another ap
proach would be to use a hydrologic model that estimates 
road runoff in combination with the sediment–runoff rela
tionship to provide spatial extrapolation of road sediment 
contribution. Yet another approach would be to adjust the pa
rameters used in existing road erosion models such as SED
MODL2 and WARSEM based on field-sampled road runoff 
and sediment measurements and then use these adjusted 
models to spatially extrapolate sediment production estimates 
to the roads in the watershed. 
This paper presents the results of road runoff and sus

pended sediment sampling from forest roads for Oak Creek 
watershed, Oregon. The road network in Oak Creek repre
sents roads with low levels of use; the use is primarily light 
vehicles with infrequent heavy truck and equipment use. We 
used road runoff – sediment loss relationships in conjunction 
with road runoff measurements to estimate watershed-scale 
sediment losses. We also applied a hydrologic model and 
two road erosion models to also estimate watershed-scale 
sediment losses. We then applied our Oak Creek approach at 
the South Fork of the Albion River, California, a watershed 
with a road network used for commercial forest management, 
a road network representing a high level of heavy truck and 
equipment use. We additionally tested if grab suspended sam
ples alone could provide a reasonable prediction of the mag
nitude or relative amount of road erosion from road 
segments. 

Study sites 

This study was conducted at Oak Creek, Oregon, with ad
ditional research at the South Fork of the Albion River, Cal
ifornia. Oak Creek is located within the Oregon Coast Range 
approximately 4.5 km northwest of Corvallis, Oregon. Oak 
Creek is part of the McDonald/Dunn Forest owned and man
aged by the College of Forestry, Oregon State University. 
Average annual precipitation measured at Oak Creek from 
water years 2003–2007 was 970 mm/year with a range of 
830–1110 mm/year. The bedrock underlying the watershed, 
the Siletz River Volcanics, is a basalt formation (Knezevich 
1975). Soils in the watershed are classified as silty clay loam 
with some areas of silty loam (Knezevich 1975). Minor tim



ber harvest operations and low levels of heavy equipment use 
occur on the low-traffic roads in Oak Creek. 
The South Fork of the Albion River is in a coastal water

shed in western Mendocino County, California, approxi
mately 200 km north of San Francisco, California. Rainfall 
is seasonal in this region, with most of the rain (approxi
mately 1200–1400 mm/year) occurring between October and 
May. The South Fork of the Albion River is characterized by 
the Coastal Belt of the Franciscan Complex. The highly 
sheared rocks of the Coastal Belt are composed of structur
ally deformed, massive, hard greywacke sandstone and shale 
interbedded with small amounts of limestone and pebble con
glomerate. Soils in the Coastal Belt are of the Inceptisol soil 
order with primarily silt loam and clay loam textures (Ritti
man and Thorson 1993). The roads in the area of the South 
Fork of the Albion River are used for timber harvest opera
tions. Road traffic throughout the road network varies from 
heavy to none depending on forest harvest timing and prox
imity. 

Methods 

Road hydrology, turbidity, and suspended sediment 
measurements for Oak Creek 
From 2001 to 2007, all road drainage structures (114 cul

verts and road ditches) in Oak Creek were instrumented for 
collecting stage measurements to be used in calculating dis
charge based on a rating curve developed for the Oak Creek 
culverts. Stage measurements for the 23 stream-crossing cul
verts were recorded continuously by Tru-Track capacitance 
rods installed in trapezoidal flumes in the adjoining road 
ditches. Stage measurements for the 91 road drainage culverts 
were recorded at the inlets of the culverts by Tru-Track ca
pacitance rods or crest gages that recorded peak stage meas
urements. Crest gages and capacitance rods were randomly 
placed among the 91 cross-drain culverts. 
During the 2006 and 2007 water years, we used a turbidity 

threshold sampling (TTS) approach (Lewis 1996) to collect 
measurements of suspended sediment, turbidity, and road 
runoff at 17 road segments in the Oak Creek watershed. 
From the populations of road drainage culverts, we chose 
road segments for measurement based on a spatially balanced 
sample (Stevens and Olsen 2004). Oak Creek has relatively 
similar road design and level of road use across the water
shed. Spatial variations in road response due to climate or 
hillslope hydrologic conditions were present, making a sam
ple balanced across the watershed important. 
The TTS monitoring stations had to be located at the out

lets of culverts. This was to ensure that adequate water depth 
was available for submersion of the turbidity instrument. Be
cause of this, no stream-crossing culverts could be used. The 
discharge from the outlet of stream-crossing culverts was not 
exclusively road runoff. The TTS monitoring station equip
ment consisted of a metal flume fitted with a Druck PDCR 
1830 pressure transducer for discharge calculation, an OBS-3 
turbidimeter from D&A Instruments (now Campbell Scien
tific), a Campbell CR10-X data logger, and an ISCO 3700 
automated water sampler for collecting suspended sediment 
samples. Turbidity and stage were measured continuously; 
suspended sediment samples were taken based on changes in 
incremental turbidity and discharge thresholds (Lewis and 

Eads 2001). Monitoring took place for 1–2 months at each 
road segment during winter precipitation. The equipment 
was then moved to the next sites in the sample. In all, we 
monitored 17 road segments over the course of two winters. 
Continuous stage or crest gage measurements continued at 
the inlet of a culvert when the TTS equipment was removed. 
We developed relationships between turbidity and sus

pended sediment according to storm or groups of storms dur
ing which four or more sediment samples were taken 
following the approach discussed in Lewis (1996). We used 
the continuous turbidity measurements with these relation
ships to calculate the storm sediment loads. We also devel
oped sediment rating curves for each culvert to calculate the 
suspended sediment load for the remainder of winter storms 
without TTS monitoring. 
For the culverts where we did TTS monitoring, we deter

mined storm runoff volumes and peak flows for the 2006 
and 2007 water years. We used linear regression to determine 
relationships between storm runoff volumes or peak flows 
and storm sediment load. We also used linear regression to 
determine relationships between storm peak flow and sedi
ment load for culverts at which only crest gages had been 
placed. We calculated annual suspended sediment load for 
each road by summing the storm suspended sediment loads 
for each water year and then averaging the annual sediment 
loads for the two water years. 

Using measured road runoff and simulated runoff to 
estimate watershed-scale road sediment 
The sediment measured in the runoff from Oak Creek 

roads was suspended sediment (fine sediment). As a percent
age of total sediment load in Oak Creek, sediment that 
quickly settled (coarse sediment) varied from 10% to 90% 
with a median value of 50% (Amann 2004). To obtain a rep
resentation of total sediment production from road surface 
erosion, we increased the suspended sediment load estimates 
generated from field measurements by 50%. 
We also simulated the road runoff to Oak Creek with the 

Distributed Hydrology Soil Vegetation Model (DHSVM) 
(DHSVM 2009) for the 2006 and 2007 water years. We ob
tained meteorological inputs to DHSVM from the meteoro
logical station and precipitation gauges in the watershed. 
When meteorological inputs were missing from the Oak 
Creek station, we used measurements from the Corvallis 
Agrimet weather station, Corvallis, Oregon (maintained by 
the US Bureau of Reclamation). Soil inputs for DHSVM 
consisted of soil textures from the Benton County Soil Sur
vey (Knezevich 1975). We calibrated DHSVM based on 
comparison with runoff results for the entire watershed 
(630 ha), two smaller watersheds (55 and 4 ha), and two 
road ditch observations (<1 ha). We used a systematic man
ual calibration approach similar to the technique from Whi
taker et al. (2003). The calibration time period selected 
(October 2005 through summer 2006) showed the greatest 
variety of stream flow magnitudes and the largest events of 
the time period analyzed. We evaluated model fit to stream 
hydrographs quantitatively according to (i) volume error for 
predicted versus observed runoff, (ii) model efficiency (Nash 
and Sutcliffe 1970), and (iii) coefficient of determination (D!) 
(Whitaker et al. 2003). Because it proved impossible to get 
good quantitative fits for the model output at the wide variety 



of scales used for the calibration, particularly the road runoff 
locations, we also qualitatively evaluated the general fit of 
model output to measured values. We used only the one cali
brated parameter set for the road runoff simulation from 
DHSVM. We used the relationship between storm runoff vol
ume and sediment load to calculate storm sediment loads for 
the DHSVM simulated road runoff to Oak Creek for the 
2006 and 2007 water years. 

Road erosion model use 
We combined the sampled road runoff and sediment load 

measurements with two road erosion models to spatially ex
trapolate the sediment estimates to the watershed scale. The 
models were SEDMODL2, a GIS-based road erosion deliv
ery model (NCASI 2002), and the Washington Road Surface 
Erosion Model (WARSEM), a database road erosion delivery 
model. Both models use the same calculations to estimate 
road surface erosion; the difference between the models is 
data input to the models. SEDMODL2 is an Arcinfo-based 
tool where many of the road attributes are developed from 
analysis of a digital elevation model. WARSEM is a spread
sheet model; we populated WARSEM with measurements 
from a road inventory. Detailed descriptions of SEDMODL2 
and WARSEM can be found in technical documents provided 
from web pages maintained by the National Council of Air 
and Stream Improvement (NCASI 2002) and the Washington 
Department of Resources (2007), respectively. 
In SEDMODL2 and WARSEM, total sediment delivered 

(in tons per year) from each road segment is calculated by 
the road tread plus the sediment delivered by the cutslope 
times a road age factor; both models incorporate a road age 
factor that increases the sediment delivery estimate if the 
road was built in the last 2 years: tread delivered sediment = 
geologic erosion factor × tread surfacing factor × traffic fac
tor × segment length × road width × road slope factor × 
rainfall factor × delivery factor; and cutslope delivered sedi
ment = geologic erosion factor × cutslope cover factor × 
segment length × cutslope height × rainfall factor × delivery 
factor. 
We used annual suspended sediment load estimates from 

the 17 roads measured in the Oak Creek watershed to calcu
late a combined geologic erosion factor, precipitation factor, 
and traffic factor within WARSEM and SEDMODL2. The 
geologic erosion factor represents the erosion rate based on 
the geology of the watershed; direct measurement of erosion 
from roads replaces this factor. The precipitation factor repre
sents the hydrology affecting road erosion; the direct obser
vation of road runoff replaces this factor. The traffic factor 
represents the amount of hauling and vehicle use on the road 
tread. We selected both inactive roads and roads on which re
cent hauling had occurred, thus capturing the range of traffic 
effects on road erosion for this watershed. This strategy al
lowed us to replace the traffic factor from the WARSEM 
and SEDMODL2 calculations with the road hydrology and 
sediment measurements for a watershed-scale estimate of 
road sediment production. The geologic erosion, precipita
tion, and traffic factors are multiplied in the model analysis; 
thus, they can be represented as one number. 
For each of the road sites measured for runoff and sus

pended sediment, we adjusted a variable that represented the 
combined geologic erosion, precipitation, and traffic factors 

within SEDMODL2 and WARSEM until the model results 
equaled the annual sediment load determined for each road 
observed in the field. We then calculated a mean factor of 
geologic erosion, precipitation, and traffic for all 17 of the 
observed roads. We used the mean value of the geologic ero
sion, precipitation, and traffic factors in WARSEM and SED
MODL2 to calculate the sediment contribution for the Oak 
Creek watershed for the 2006 and 2007 water years. Using 
this approach, we adjusted the modeled sediment contribu
tion by the percentage of coarse sediment to provide an esti
mate of total sediment production. 

Road hydrology and suspended sediment measurements 
for the South Fork of the Albion River, California 
In the watershed of the South Fork of the Albion River, we 

measured runoff and erosion yield for 22 road segments dur
ing the 2007 water year. We used a stratified random sample 
to select road segments from the population of road segments 
that deliver sediment to watercourses. We sampled six strata 
based on slope position (upper or lower half of the slope) and 
log hauling traffic (hauled or not hauled that year). We also 
sampled the main haul road exiting the watershed (both 
hauled and not hauled segments). 
We collected road hydrologic measurements in low-cost 

circular flumes as described in Samani and Herrera (1996). 
The flumes were placed at locations where runoff left the 
road, either in the road ditch or at the outlet of a dip or ero
sion control feature. Stage was measured in the flumes by 
Odyssey water level recorders or crest gages. We collected 
suspended sediment samples at the flumes by hand during 
four winter storms. We calculated storm sediment load for 
each of the storms from sediment rating curves developed 
for individual road locations or aggregates of roads within 
sampled strata. We developed relationships between storm 
runoff volume and peak flow to storm sediment load for the 
different road strata and used these relationships to calculate 
the sediment loads for the storms without rating curve infor
mation. 
The annual sediment load for each road segment was the 

sum of storm sediment loads. To represent total erosion yield 
for each road, we increased the total annual suspended sedi
ment load by 67%, the percentage of coarse particles from 
roads determined in an adjacent study (Barrett and Tomberlin 
2007). We back-calculated geologic, traffic, and precipitation 
factors from the annual sediment loads measured and used 
within WARSEM and SEDMODL2 to spatially extrapolate 
the road erosion measurements to the watershed. 

Calculation of sample size 
We used the following power analysis to estimate the num

ber of road sites at Oak Creek and the South Fork of the Al
bion River that might be monitored to reduce errors for 
watershed-scale sediment load estimates: 

2 2½1 Number of road sites ¼ ðZa=2Þ S2 =e 

where (Za/2)2 is the Z statistic squared for a standard normal 
distribution with a two-tailed probability of a/2, S2 is the var
iance of sediment load estimates, and e2 is the acceptable er
ror of the answer squared. 



 

 

Grab water samples for estimation of magnitude of road Fig. 1. Relationship between suspended sediment load for the cul
sediment load verts with TTS measurements at Oak Creek and (a) storm runoff 

volume and (b) storm peak flow for the 2006 and 2007 water years. 
Estimating storm sediment load from grab water samples
 
We used TTS measurements from the 17 Oak Creek road 

segments to determine if samples for suspended sediment 
concentration (SSC) alone could be related to storm sediment 
load. We used the SSC samples to represent random grab
 
samples. To attempt to replicate the random collection tim
ing, we randomly selected four, three, and two TTS samples
 
per storm. We used linear regression to determine if there
 
was a relationship between the mean of the randomly se
lected SSCs for each storm and storm sediment load. We
 
also tested additional variables of storm peak flow and storm
 
runoff volume to see if they improved the relationship.
 
We used linear regression to determine if there was a rela

tionship between storm event sediment yield and the annual 
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sediment yield from the road segments in Oak Creek during 
two large winter storms (the largest annual events), one in the 
2006 water year and the other in the 2007 water year. 

Results 

Relationship between storm volume or peak flow and 
storm sediment load 
For road drainage locations measured with TTS within 

Oak Creek for the 2006 and 2007 water years, the ratio of
 
storm sediment load (tons) and storm runoff volume (litres) 
was 5.18 × 10–9 with 95% confidence intervals of 2.328 × 
10–9 and 8.027 × 10–9 (p < 0.001, adjusted r2 = 0.25) 
(Fig. 1a; eq. 2). The ratio of storm sediment load (tons) and 
storm peak flow (litres per second) was 0.0006 with 95% 
confidence intervals of 0.00029 and 0.00092 (p < 0.001, ad
justed r2 = 0.27) (Fig. 1b; eq. 3). The resulting model ex
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plained only some of the variability in these relationships, as 
shown by low adjusted r2 values of 0.25 and 0.27: 

½2 Storm sediment load ðtonsÞ 

¼ 5:18 x 10-9 x storm runoff volume ðLÞ - 0:0004 

½3 Storm sediment load ðtonsÞ 

¼ 0:0006 x storm peak flow ðL=sÞ - 0:0002 

Variability was high for the storm peak flow and runoff vo
lume relationships with storm sediment loads in Oak Creek, 
which is common for sediment–runoff relationships. How
ever, there were chronic soil failures at one road site used in 
this relationship. As a result, this road had much higher 
storm sediment loads than other roads (see outlier point in 
Figs. 1a and 1b). If that one road is removed from the analy
sis, the relationships between storm volume or peak flow and 
storm sediment load remain statistically significant and the 
adjusted r2 values increase to 0.5 and 0.52, respectively. We 
chose not to remove the road from the sediment–runoff rela
tionships used to predict sediment load from Oak Creek 
roads. The sediment measurements from this road represent 
a statistical outlier; however, problematic high-erosion sites 
occur on road networks in watersheds. A relationship that 
considers these high sediment delivery occurrences provides 
a more realistic estimate of the total sediment load for roads 
in a watershed. 
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Storm peak flow (L/s) 

Road sediment estimates for Oak Creek 
From the observed road runoff and the relationship of ob

served storm volume and storm suspended sediment load, ad
justed to include coarse sediment, the watershed-scale 
estimate of sediment production from roads in the Oak Creek 
watershed was 6.2 tons/year with 95% confidence intervals of 
4.5 and 7.8 tons/year. From the relationship of storm volume 
and storm suspended sediment load, with DHSVM simulated 
storm volume adjusted to include coarse sediment, the esti
mate of sediment production was 6.5 tons/year with 95% 
confidence intervals of 4.7 and 8.2 tons/year (Fig. 2). 
For the 17 road segments in our Oak Creek study, the 

average product of the geologic erosion, precipitation, and 
traffic factors derived from field-measured sediment load 
was 2.7; the value suggested from the technical documenta
tion (NCASI 2002) is 8. With the 2.7 factor derived from 
field observations, SEDMODL2 estimated sediment delivery 
from roads of the Oak Creek watershed, with an adjusted in
crease for coarse sediment, at 9.1 tons/year and 95% confi
dence intervals of 8.1 and 10.0 tons/year (Fig. 2). With this 
same factor, WARSEM estimated sediment delivery, with an 
adjusted increase for coarse sediment, at 8.8 tons/year and 



Fig. 2. Comparison of total annual road sediment load for Oak 
Creek with SEDMODL2, WARSEM, observed road runoff, and 
DHSVM simulated road runoff for the 2006 and 2007 water years. 
Error bars can only be presented for models with field measure
ments where a variance for the inputs to the model could be calcu
lated. 

14 

Fig. 3. Road sediment load from SEDMODL2 and WARSEM for 
the South Fork of the Albion River for the 2007 water year. Error 
bars can only be presented for models with field measurements 
where a variance for the inputs to the model could be calculated. 
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95% confidence intervals of 8.0 and 9.7 tons/year (Fig. 2). 
With the factor of 8 suggested by the technical documenta
tion (NCASI 2002), SEDMODL2 and WARSEM estimated 
average annual road sediment delivery at 12.7 and 13.3 tons/ 
year, respectively. A confidence interval is not available from 
the models using default parameters; only a single answer is 
provided. 

Road sediment estimates for the South Fork of the Albion 
River 
For all road sites monitored in the watershed of the South 

Fork of the Albion River, there was no statistically significant 
relationship between road runoff volume or peak flow and 
storm sediment load. However, when the roads were catego
rized into the six sampling strata, we observed relationships 
between storm volume or peak flow and storm sediment 
load. The relationships were not statistically significant be
cause of the low number of measurements within each of the 
six sample strata. For the 22 road segments measured, the 
average product of the geologic erosion, precipitation, and 
traffic factors for use in SEDMODL2 and WARSEM was 
1.16. The values for the models suggested by the technical 
documentation (NCASI 2002) varied between 11.2 and 56 
depending on road traffic class. With the 1.16 factor calcu
lated from the observed road sediment measurements, SED
MODL2 estimated sediment delivery for the 2007 water 
year, with an adjusted increase for coarse sediment, at 14.3 
tons with 95% confidence intervals of 0.05 and 57.7 tons 
(Fig. 3). With the 1.16 factor, WARSEM estimated fine sedi
ment delivery, with an adjusted increase for coarse sediment, 
at 18.0 tons with 95% confidence intervals of 0.06 and 69.8 
tons. When the factors varied between 11.2 and 56, as sug
gested by the technical documentation (without field meas
urements; NCASI 2002), SEDMODL2 and WARSEM 

w/o field measurement adjustment 

Field measurement adjusted 

estimated average annual road sediment delivery for roads of 
the South Fork of the Albion River watershed at 103.2 and 
129.7 tons/year, respectively. 

Sample size estimate for watershed-scale road sediment 
measurement from road runoff 
Tables 1 and 2 present estimates, based on field measure

ments taken at Oak Creek and at the South Fork of the Al
bion River, of the numbers of road sites to be monitored for 
runoff and sediment measurements for estimation of storm 
sediment loads with confidence level and error. These results 
represent not only a consideration of the confidence in the 
results (a) to not have a type I error (a false positive of a 
tested hypothesis) but also consider the error (b) to avoid a 
type II error (a false negative of a tested hypothesis). Com
paring the sample sizes calculated from estimated road sedi
ment loads from Oak Creek and South Fork of the Albion 
River, much fewer samples are needed in a watershed like 
Oak Creek, with uniform low traffic roads, using a TTS ap
proach for road runoff and sediment load estimation. 

Grab suspended sediment samples for estimation of the 
magnitude of road sediment load 
The ratio of storm sediment load (tons) and the mean of 

four randomly selected SSC samples (milligrams per litre) 
from individual storms was 0.0001 with 95% confidence in
tervals of 0.00005 and 0.00015 (p = 0.01, adjusted r2 = 
0.19) (Fig. 4; eq. 4). The resulting model explained little of 
the variability in the relationship, as shown by a low adjusted 
r2 of 0.19. There was no statistically significant relationship 
between the mean of either three or two randomly selected 
suspended samples from a storm and the storm sediment 
load at the 95% confidence level with p values of 0.07 and 
0.84, respectively: 



 

 

 

 

Table 1. Number of road sites to be sampled, based on error and confidence level, by the turbid
ity threshold sampling and road sampling scheme used at Oak Creek. 

Number of road sites by confidence level (a) 

Error (b) 90% confidence 95% confidence 99% confidence 
1% 13 18 21 
5% 1 1 1 

Table 2. Number of road sites to be sampled, based on error and confidence level, by the low-
technology approach of sediment sampling used at the South Fork of the Albion River. 

Number of road sites by confidence level (a) 

Error (b) 90% confidence 95% confidence 99% confidence 
1% 10620 15000 20600 
5% 425 600 825 
10% 110 150 210 
20% 26 37 52 

Fig. 4. Relationship between the mean of four randomly selected 
suspended sediment samples and suspended sediment load for 
storms at Oak Creek for the 2006 and 2007 water years. 
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½4 Storm sediment load ðtonsÞ 

¼ 0:0001 x mean of four SSC samples ðmg=LÞ - 0:0003 

Multiple linear regression showed that including the peak 
flow value in a model with four randomly selected sediment 
samples explained more of the variability for the storm sedi
ment load estimate. We found a statistically significant rela
tionship for the estimate of the natural log of the storm 
sediment load by combining the mean of four randomly sus
pended sediment samples and the storm peak flow (p < 0.02, 
adjusted r2 = 0.47) (eq. 5). Evidence was not sufficient to 
show that including storm volume (instead of peak flows) 
provided a better model for the sediment load estimates than 
using only four randomly selected sediment samples (p < 
0.001): 

½5 Storm sediment load ðtonsÞ 

¼ 0:0001 x mean of four SSC samples ðmg=LÞ 

þ 0:0006 x peak flow ðL=sÞ - 0:0032 

We observed a statistically significant relationship between 
road storm sediment load and the total annual road sediment 
load for the 2006 (Fig. 5a; eq. 6) and 2007 (Fig. 5b; eq. 7) 
water years (WY) (p < 0.0001 for both relationships, r2 = 
0.86 and 0.77, respectively): 

½6 2006 WY annual sediment load ðtonsÞ 

¼ 9:27 x large storm sediment load ðtonsÞ - 0:004 

½7 2007 WY annual sediment load ðtonsÞ 

¼ 7:94 x large storm sediment load ðtonsÞ - 0:006 

Discussion 

Sediment yield estimates for roads 
The road sediment yield for the 2006 and 2007 water years 

varied according to the technique used to quantify it. When 
modeled by SEDMODL2 and WARSEM, estimates of total 
annual road sediment production for Oak Creek were 40% 
and 51% higher, respectively, without adjustment from field 
measurements than with adjustments. At the South Fork of 
the Albion River, the sediment yields estimated by SED
MODL2 and WARSEM without adjustment from field meas
urements were 480% and 610% higher, respectively, than 
with adjustments. 
WARSEM and SEDMODL2 provide estimates interpreted 

as long-term averages of erosion from roads. Average erosion 
over many years, with both wet and dry years, is assumed in 
the WARSEM and SEDMODL2 estimates. For this study, 
the field-measured sediment yield was for two water years 
for Oak Creek and one water year for the South Fork of the 
Albion River. The South Fork of the Albion River received 
32 inches of rain, well below the average annual rainfall of 
50 inches. At Oak Creek, annual rainfall for the 2006 and 
2007 water years was about average, but several large storms 
(>1 year recurrence interval) occurred during the 2006 water 
year. The large storms of 2006 used for the Oak Creek anal
ysis probably make the comparison of results between the 
modeled and measured sediment estimates reasonable. How
ever, the year of low precipitation for the South Fork of the 
Albion River partly explains why WARSEM and SED



Fig. 5. Relationship between storm sediment load and total annual 
sediment load for road suspended sediment Oak Creek for (a) one 
storm in the 2006 water year and (b) one storm in the 2007 water 
year. 
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MODL2, without adjustments for field measurements, over
estimated the sediment yield. However, the difference in esti
mated sediment yields is so large that we concluded that 
model inputs in addition to low rainfall contributed to errors. 

Road hydrologic response and sediment yield 
The relationship between storm peak flow or runoff vol

ume and storm sediment load demonstrated that road runoff 
measurements can be used for estimating sediment produc
tion from roads. Forest road runoff is highly variable. Some 
roads exhibit infiltration excess overland flow from the road 
surface, some roads intercept significant amounts of hillslope 
water, while other roads do not, and many roads have road 
treads with high infiltration capacity that have little to no 
runoff. Almost all road surface erosion models rely heavily 
on measurements of the physical attributes of a road. Physi
cal attributes such as road surface type, surface ruts, traffic 
on the road, gradient of the road, length of the road segment, 
or vegetation cover on road cut- and fill-slopes are related to 
road erosion (e.g., Reid 1981; Bilby et al. 1989; Luce and 
Black 1999). Yet the amount of runoff on the road influences 
how these physical attributes affect erosion. If a road with 
high erosion potential, as predicted by its physical features, 
has no runoff, then no erosion will occur. Similarly, a road 
with low erosion potential yet very high runoff could have 
considerable erosion. Given the uncertainties associated with 
using the physical attributes of a road to estimate hydrologic 

response, developing techniques for predicting or observing 
road hydrologic response used in conjunction with invento
ries of road physical features would (i) enable more accurate 
estimates of road sediment yield and (ii) provide more accu
rate indications of the magnitude of sediment delivery from 
individual road locations. 
In this study, we used the hydrologic model DHSVM to 

estimate road hydrologic response for the Oak Creek roads. 
We estimated sediment yield by means of the storm volume 
to sediment load relationship for the simulated road runoff 
from DHSVM. The 95% confidence interval of total annual 
road sediment load estimated from DHSVM simulated road 
runoff was 4.7–8.2 tons/year. This result was closer to the 
sediment estimate produced from the actual road runoff 
measurements than the estimates produced from SED
MODL2 and WARSEM adjusted by field measurements. 
At Oak Creek, DHSVM performed poorly at simulating 

site-specific effects from roads, but at the watershed scale, 
DHSVM simulated the hydrologic response from roads well 
(Surfleet et al. 2010). This result suggests that a hydrologic 
model that estimates road response in conjunction with a 
road runoff and sediment sampling scheme could be useful 
in quantifying the watershed-scale production of road-associ
ated sediment. However, the watershed size must be large 
enough for the hydrologic model to accurately quantify the 
volume of road runoff. Given the uncertainties seen in 
DHSVM predictions of individual road locations (Surfleet et 
al. 2010), DHSVM may not provide accurate quantification 
of the magnitude of sediment production for individual road 
sites. 
The relationships determined at Oak Creek between sedi

ment load and storm volume or peak flow were also ob
served at the South Fork of the Albion River. However, we 
had to develop the relationships by the road sample stratifica
tion class because of variability in road design and hydro
logic response throughout the watershed. At the South Fork 
of the Albion River, these relationships were not statistically 
significant because of the few data points used. We also ob
served the linear relationship between road runoff and sedi
ment load, but again, it had no statistical significance. In 
watersheds with a variety of road designs, road uses, geology, 
soils, and precipitation, these variations must be considered 
in efforts to determine the relationships between road runoff 
and sediment load. 

Reducing uncertainty for estimates of road sediment 
production 
At Oak Creek, the TTS approach for measuring road sedi

ment and turbidity, combined with continuous measurement 
of road runoff, provided estimates of sediment yield with 
low variance. At the South Fork of the Albion River, we did 
not monitor road runoff continuously throughout the winter 
and we collected road sediment measurements at varying 
times throughout a few storm events. This approach provided 
a sediment yield estimate with high variance. Achieving 
comparable precision in results, at a 95% confidence interval 
within a 1% margin of error, would require 18 roads to be 
sampled via the Oak Creek TTS approach but 15 000 roads 
with the approach used at the South Fork of the Albion 
River. Continuous measurements of road runoff throughout a 
winter, along with sampling techniques that provide accurate 



measurement of sediment and turbidity, would provide con
siderable reduction in uncertainty of estimates of road sedi
ment production. 
The sediment load estimated by SEDMODL2, adjusted by 

field measurements, for the South Fork of the Albion River 
resulted in a wide 95% confidence interval (0.05–57.7 tons/ 
year), a range of close to 700% of the estimate of 14.3 tons/ 
year. Most sediment budget calculations accept an order of 
magnitude margin of error; a range of 700% would be within 
this range. However, to discern long-term changes in sedi
ment delivery trends from forest roads, a range of 700% in 
the confidence interval is probably too high. The number of 
roads suggested for measurement to achieve a 95% confi
dence interval within a 10% margin of error, as calculated 
from results at the South Fork of the Albion River, was 150. 
Because an average annual sediment yield is desired, roads 
do not have to be measured in the same year. The effort 
could be spread over several consecutive years to represent 
the road sediment contributions for that time frame. This 
strategy would provide a greater number of road sediment 
delivery locations for monitoring, spanning many storm 
events, and thus reduce uncertainty in the watershed’s road 
sediment estimates. 
To measure a greater number of roads at the South Fork of 

the Albion River, throughout the winter, we moved the 
flumes and the 12 capacitance rods that were measuring 
road runoff. At Oak Creek, we moved the TTS system 
throughout the winter, but road runoff measurement equip
ment remained in place. Moving the road runoff equipment 
at the South Fork of the Albion River necessitated extrapolat
ing hydrologic responses from one road to another based on 
the relationship between sites, which introduced error, in
creasing the variance of the estimates. The most accurate 
storm sediment load estimates are those generated from ac
tual hydrologic measurements of road runoff for the storm 
being estimated. To reduce uncertainty in road sediment esti
mates, hydrologic measurements throughout the entire winter 
at selected road locations should be used. The hydrologic 
measurements are necessary to allow the extrapolation of 
sediment and discharge relationships to other storms. Contin
uous observation of discharge at road sites is preferable, but 
crest gages that provide the peak flow can be useful for a 
subset of road sites. 
The number of sediment samples used to determine sedi

ment rating curves influences the variance of sediment load 
estimates. Using a turbidity and sediment sampling scheme 
such as TTS ensures adequate samples for reduction in var
iance of sediment load estimates. Using grab samples, taken 
by hand during storms, to develop sediment rating curve will 
be less accurate and result in a higher variance for sediment 
load relationships; this increases the uncertainty in sediment 
yield estimates. Increasing the number of grab samples per 
storm will reduce this uncertainty, but at the trade-off of a 
considerable effort of labor. 

Storm sampling for magnitude of road sediment 
production 
The road sediment load for the two large storms sampled 

in 2006 and 2007, respectively, had a linear relationship 
with the corresponding annual sediment yield from those 
roads. This suggests that a road sediment sampling approach 

with the objective of quantifying the sediment load for a sin
gle large storm would provide enough information to de
scribe the magnitude of sediment delivery from roads in a 
watershed for at least that year if not longer. 
At Oak Creek, 50% of the annual sediment delivery came 

from 13 road segments out of a total of 94 road segments. 
From a management perspective, that result might be more 
important than accurate quantification of watershed-scale 
sediment delivery. An approach whereby one grab sample is 
taken from each road site would not approximate the storm 
sediment load magnitude from a site. At Oak Creek, we 
found that at least four grab suspended sediment samples 
had to be taken throughout a storm event to correlate with 
the road’s storm sediment load. Admittedly, the relationship 
between four suspended sediment samples and storm sedi
ment load is weak (r2 = 0.19), but it is statistically different 
from zero. This suggests that taking at least four suspended 
sediment samples of road runoff from large storm events can 
be used to determine the magnitude of road sediment contri
butions, if not the actual quantity. 

Conclusions 
This study demonstrated that field measurements of road 

runoff and sediment load from roads improved estimates of 
road sediment production at a watershed scale. Field meas
urements of road runoff and suspended sediment were used 
to adjust the hydrologic, geologic, and traffic hazard factors 
in the road erosion models WARSEM and SEDMODL2. 
The adjusted WARSEM and SEDMODL2 models improved 
watershed-scale estimates of road sediment delivery. This 
demonstrated that not only is model calibration important 
but the use of road runoff combined with physical attributes 
of roads that influence erosion provides a more accurate ap
proach to evaluation of road sediment production. The impor
tance of road runoff for road sediment estimates was shown 
in Oak Creek, a watershed with a uniform road design and 
level of road use. The estimates of road sediment yield from 
measured road runoff were similar but slightly lower than es
timates from WARSEM and SEDMODL2 adjusted with field 
measurements. When the sediment yield from roads was esti
mated with simulated road runoff from a hydrologic model, 
DHSVM, the result was similar to the sediment yield esti
mated from observed road runoff. 
A sampling approach in which sediment loads from roads 

during a large storm were quantified provided a linear rela
tionship with the annual sediment yield from those roads. 
We found a statistically significant relationship with four 
grab suspended samples and a road’s storm sediment load. 
These findings suggest that a road sediment sampling ap
proach that has the objective of quantifying the sediment 
load for a single large storm with only grab suspended sedi
ment samples could provide information that would help de
scribe at least the magnitude of sediment delivery from 
individual road locations in a watershed. 
A tremendous amount of resources are spent on inventory

ing roads for prioritization of road sediment control or moni
toring of road sediment production. Yet, road inventories 
alone may not accurately predict the response that they intend 
to measure. An approach where the runoff of roads is consid
ered along with the physical features and conditions of the 
roads will address the processes that affect road sediment 



production. Indeed, the measurement of road runoff may be 
the more important variable to measure for determining road 
sediment production. 
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