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Abstract. On a hyperbolic Poincaré manifold, we derive an explicit relation­
ship between the eigenvalues of Weyl-Schouten tensor of a conformal represen­
tative of the conformal infinity and the principal curvatures of the level sets 
of the associated geodesic defining function. This considerably simplifies the 
arguments and generalizes the results of Gálvez, Mira and the second author. 
In particular, we obtain the equivalence between Christoffel-type problems for 

hypersurfaces in a hyperbolic Poincaré manifold and scalar curvature problems 
on the conformal infinity. 

1. Introduction 

The relationship between the geometry of a conformally compact space and the 
geometry of its conformal infinity has been of recent interest in both physical and 
mathematical communities. The current interest in such association is motivated 
primarily by the AdS/CFT correspondence. In fact, the study of such connections 
date back to the 1980’s in the seminal paper of Fefferman and Graham [7]. 

Recently a correspondence between the geometry of hyperbolic space Hn+1 and 
the conformal geometry of the round sphere Sn was exhibited in [5] in the context 
of the hypersurface geometry of Hn+1 and curvature prescription problems on Sn 

in the conformal class of the round metric. Of particular interest is the Christoffel 
problem for hypersurfaces in hyperbolic space Hn+1 where one is asked to find 
a hypersurface Σn ⊂ Hn+1 with prescribed mean of the curvature radii. In [5] 
the relevant notions of the hyperbolic Gauss map and the hyperbolic principal 
curvature radii are developed using the ambient structure of the hyperboloid model 
of Hn+1. Moreover, [5] exhibits a precise relation between Christoffel-type problems 
for immersed hypersurfaces in Hn+1 and scalar curvature prescription problems of 
conformal geometry on Sn . 

In this paper we take a viewpoint more reflective of conformal geometry, which 
allow us to considerably simplify the arguments and generalize the correspondences 
in [5]. A hyperbolic Poincaré manifold is a conformally compact hyperbolic mani­
fold. From the work of [8], given a representative γ ∈ [ĝ] of the conformal infinity 
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of a hyperbolic Poincaré manifold (Xn+1, g) and its associated geodesic defining 
function r, we may write the metric in the normal form 

(1) g = r −2(dr2 + gr) 

with 

4r
(2) gr = γ − r 2Pγ + Q(Pγ),

4 

where Q(Pγ)ij = γkl(Pγ)ik(Pγ)jl and where Pγ is the Weyl-Schouten tensor of γ 
when n ≥ 3 and is a symmetric 2-tensor on M satisfying 

γij(Pγ)ij = 
Rγ 

and γjk(Pγ)ij,k = (Rγ),i
2 

when n = 2. A straightforward calculation based on (2) yields a generalization 
of the relation in [5] between the eigenvalues of the Schouten tensor of the horo­
spherical metric and the hyperbolic principal curvature radii of the level sets of the 
associated geodesic defining function. We recall that the second fundamental form 
of a hypersurface Σ in Xn+1 with respect to an orientation induced by a choice a 
normal direction N is defined to be 

1 
(3) II = − LNg,

2 

where L is the Lie derivative. In our convention, for instance, the principal curva­
ture of a unit sphere in Euclidean space with the orientation induced by the inward 
normal direction is 1. 

Theorem 1.1. Suppose that (Xn+1, g) is a hyperbolic Poincaré manifold and let 
γ be a representative of its conformal infinity (Mn , [ĝ]) with associated geodesic 
defining function r. Then the eigenvalues λi of the tensor Pγ in the expansion (2) 
satisfy 

2r 2 
(4) 1− λi = ,

2 1− κi 

where κi = κi(r) denotes the i
th outward principal curvature on the level sets of the 

2geodesic defining function r and 1−κi 
is considered to be the ith hyperbolic principal 

curvature radius. 

As studied in [5], when n ≥ 3, the relationship (4) in Theorem 1.1 can be 
used to turn questions regarding foliations near the conformal infinity by particular 
classes of hypersurfaces in hyperbolic Poincaré manifolds into questions regarding 
the conformal geometry of the conformal infinity and vice versa. For example, 
taking the trace of (4), one finds that 

n 
4(n− 1) 2 

(5) Rγ = n− . 
r2 1− κii=1 

Therefore, finding a foliation by hypersurfaces with constant mean of the hyperbolic 
curvature radii is equivalent to finding a constant scalar curvature metric on the 
conformal infinity. Hence, due to the resolution of the Yamabe problem we have 
the following corollary. 
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Corollary 1.1. Suppose that (Xn+1, g) is a hyperbolic Poincaré manifold. Then 
there always exists a foliation of hypersurfaces of constant mean of the hyperbolic 
curvature radii near the infinity. Such foliations are parameterized by geodesic 
defining functions r associated with constant scalar curvature S representatives of 
the conformal infinity, and the mean of the hyperbolic curvature radii of the foliation 
is given by 

1 
n � 2 r2 

(6) 
n 

i=1 
1− κi 

= 1− 
4n(n− 1) 

S. 

Moreover, if the conformal infinity (M, [ĝ]) of (Xn+1, g) has negative Yamabe in­
variant, then such foliations are unique. 

More generally, the relationship (4) can similarly be applied to the generalized 
Yamabe or σk curvature problem to give foliations of certain hyperbolic Poincaré 
manifolds by hypersurfaces with constant linear combinations or rational functions 
of generalized mean curvatures. For 1 ≤ k ≤ n and λ = (λ1, . . . , λn) ∈ R

n, let  

σk(λ) :=  λi1 · · ·λik 

i1<···<ik 

denote the kth elementary symmetric function on Rn. Let  Γk denote the connected 
component of 

{λ ∈ R
n | σk(λ) > 0}

containing the positive cone {λ ∈ R
n | λ1, . . . , λn > 0}. Given a representative g0 

of the conformal infinity (Mn , [ĝ]) of a hyperbolic Poincaré manifold (Xn+1, g), we 
denote the eigenvalues λ = (λ1, . . . , λn) of the the Schouten tensor Pg0 by λ(Pg0) 
and the kth elementary symmetric function of the eigenvalues of the Schouten tensor 
Pg0 by σk(Pg0). Moreover, if g̃0 = e2φ0g0 is a conformally related metric on M , 
then we denote the kth elementary symmetric function of the eigenvalues of the 
Schouten tensor Pg̃0 corresponding to g̃0 by σk(Pg̃0). Applying the works of [10] 
[11] [13], it follows from that fact that M is compact and locally conformally flat, 
that for n ≥ 3, if λ(Pg0) ∈ Γk, then there exists a smooth positive function φ0 on 
M such that ̃g0 = e2φ0g0 with 

(7) λ(Pg̃0) ∈ Γk and σk(Pg̃0) = 1. 

In light of (4), (7) and the observations above, we have the following corollary. 

Corollary 1.2. For n ≥ 3, let  (Xn+1, g) be a hyperbolic Poincaré manifold with 
conformal infinity (Mn , [ĝ]). Suppose that there exists a metric g0 ∈ [ĝ] with 
λ(Pg0) ∈ Γk for some 1 ≤ k ≤ n. Then there exists a foliation near M param­
eterized by a geodesic defining function r associated to a conformal metric g̃0 ∈ [g0] 
with constant σk curvature σk(Pg̃0) = 1  such that the level sets of r have outward 
principal curvatures κi = κi(r) satisfying � �k � 1 + κi1 1 + κi2 1 + κik 

r2 
(8) · · · ·  = . 

1− κi1 1− κi2 1− κik 
2 

i1<···<ik 

To reconcile the two different approaches in [5] and in [7] and [8], we will show 
that the horospherical metric associated to a horospherical ovaloid in hyperbolic 
space Hn+1 can be realized as a representative of the conformal infinity (Sn , [g0]) of 
hyperbolic space (Hn+1, g

H
). This is because a horospherical ovaloid in hyperbolic 
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space Hn+1 determines a geodesic defining function r for the infinity Sn of Hn+1 , 
where r = e−s and s is the hyperbolic distance to the horospherical ovaloid. A 
similar idea was used in the early works of Epstein [4]. 

This paper is organized as follows. In Section 2 we introduce hyperbolic Poincaré 
manifolds and the asymptotic expansion (2) from [8]. Then we will do the straight­
forward calculation to prove Theorem 1.1. In Section 3 we introduce the notion 
of the horospherical metric associated to a horospherical ovaloid in Hn+1 and we 
relate such horospherical metrics to representatives of the conformal infinity. This 
observation allows us to put the two constructions in [5] and in [7] and [8] in the 
same light. 

2. The calculation 

In this section we carry out the straightforward calculation to prove our main 
theorem. Let Xn+1 denote the interior of a smooth compact manifold X̄n+1 with 
boundary ∂X = Mn. A smooth function r : X̄ → R is said to be a defining function 
for M in X if r >  0 in  X, r = 0  on  M and dr �= 0  on  M . A Riemannian metric 
g on X is then said to be conformally compact if for a defining function r for M , 

2the conformal metric ̄g = r g extends to a metric on X̄. The metric ̄g restricted to 
TM induces a metric ̂g on M , which rescales by conformal factor upon change in 
defining function and therefore defines a conformal structure (M, [ĝ]) on M called 
the conformal infinity of (X, g). A complete Riemannian manifold (Xn+1, g) is  
said to be asymptotically hyperbolic if g is conformally compact and |dr|2 = 1  on  ḡ

M for a defining function r for M in X. We recall from [9]and [12] that there 
is a unique geodesic defining function r associated with a representative in the 
conformal infinity of an asymptotically hyperbolic manifold. Moreover, such choice 
of coordinates yields the normal form 

g = r −2(dr2 + gr) 

with formal asymptotic expansion 

gr = g0 + rg1 + r 2 g2 + · · · , 

where the coefficients gj are symmetric 2-tensors on M . The asymptotic expansions 
described above are fundamental in many works concerning the geometry and topol­
ogy of conformally compact manifolds in the spirit of the AdS/CFT correspondence 
(see for example [1], [2], [3], [6], [14]) . 

In this paper we focus on a class of manifolds that serve as the prototypical mod­
els of asymptotically hyperbolic manifolds known as hyperbolic Poincaré manifolds, 
which are conformally compact hyperbolic manifolds. Suppose that (Xn+1, g) is  
a hyperbolic Poincaré manifold and (Mn , [ĝ]) is its conformal infinity. Let γ be a 
representative of the conformal infinity and let r be the geodesic defining function 
associated to γ so that g has the normal form 

g = r −2(dr2 + gr) 

near M . Due to the fact that hyperbolic Poincaré manifolds are exactly conformally 
compact Einstein manifolds with locally conformally flat conformal infinities, we 
recall from [8] that 

4r
gr = γ − r 2Pγ + Q(Pγ),

4 
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where 

Q(Pγ)ij = γkl(Pγ)ik(Pγ)jl 

and for n ≥ 3, � � 
Pγ = 

1 
Ricγ − Rγ 

γ 
n− 2 2(n− 1) 

is the Schouten tensor of γ. For  n = 2,  Pγ is a symmetric 2-tensor on M satisfying 

γij(Pγ)ij = 
R

2 
γ 

and γjk(Pγ)ij,k = (Rγ),i. 

Then the level sets of r give a foliation near M with induced metric 

2r
Ir = r −2 gr = r −2γ − Pγ + Q(Pγ)

4 

and outward pointing normal Nr = −r∂r, where  ∂r := ∇ḡr. Hence, the level sets 
of r have second fundamental form, according to our definition (3), 

21 � � r−2IIr = r∂r r gr = −r −2γ + Q(Pγ). 
2 4 

Now let {e1, . . . , en} denote an orthonormal basis with respect to γ that diagonalizes 
the tensor Pγ . Then  

γ(ei, ej) =  δij and Pγ(ei, ej) =  λiδij , 

where λi denotes the i
th eigenvalue of the tensor Pγ . Moreover,  � �22r−2Ir(ei, ej) =  r 1− λi δij

2 

and 
2 2r r−2IIr(ei, ej) =  −r 1− λi 1 +  λi δij . 
2 2 

Therefore, 
2 r � � 1 +  λi 

I−1 2IIr (ei, ej) =  − δij .r 
1− r2 λi2 

But the Weingarten matrix I−1IIr on the level sets of r satisfies r 

I−1 rII (ei, ej) =  κr r i δij , 

rwhere κ denotes the ith principal curvature of a level set of r with respect to the i 

outward direction. Hence, 

2rκ = − + 1i 
1− r2 

2 
λi 

so that 
2r 2 

1 − λi = ,r2 1− κi 

which establishes Theorem 1.1. 
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3. Horospherical metrics 

In this section we introduce the horospherical metric on the space of all horo­
spheres as a parametrization of a neighborhood of the infinity of hyperbolic space. 
Our goal is to relate horospherical metrics to representatives of the conformal in­
finity and to reconcile the two constructions in [5] and in [7] and [8]. 

Consider the hyperboloid model of hyperbolic space 

H
n+1 2 = {(x, t) ∈ Rn+1,1 | |x|2 − t = −1, t >  0}, 

where Rn+1,1 denotes Minkowski spacetime equipped with the Lorentz metric g
L 
= 

−|dt|2 + |dx|2. Horospheres in Hn+1 are intersections of degenerate affine hyper­
planes of Rn+1,1 with Hn+1 and can be uniquely characterized by their points at 
infinity x ∈ Sn , which are the null directions inside the hyperplanes, and the signed 
hyperbolic distance α from the horosphere to the vertex en+2 ∈ Hn+1, where  α is 
positive if en+2 is inside a given horosphere and negative otherwise. Accordingly, 
one can identify the space of horospheres in Hn+1 with Sn ×R and endow the space 

2αof horospheres with a natural degenerate metric �· , ·�∞ = e g0, where  g0 is the 
standard round metric on Sn . 

Now suppose 
φ : Σn → Hn+1 

is an immersed oriented hypersurface and let 

η : Σn → Sn+1 
1 

denote the Lorentzian unit normal map taking values in de-Sitter spacetime 

S
n+1 = {(x, t) ∈ Rn+1,1 | |x|2 − t2 = 1}.1 

From the map 

(9) ψ := φ + η : Σn → Nn+1 ,+ 

taking values in the positive light-cone 

N
n+1 = {(x, t) ∈ Rn+1,1 | |x|2 − t2 = 0, t >  0},+ 

one defines the hyperbolic Gauss map as the direction of the light-cone map (9) in 
S
n . One finds that the light-cone map of horospheres is constant for the inward 

orientation and that parallel horospheres correspond to collinear vectors in Nn+1 .+ 

Hence, one can also identify the space of horospheres in Hn+1 with Nn+1. Moreover,  + 

it is easily seen that the horospherical metric on the space of all horospheres is 
exactly the same as the induced metric on the light-cone from the Lorentz metric 

of Minkowski spacetime. g
L 

One can therefore realize the horospherical metric associated to a horospherical 
ovaloid in Hn+1, that is, a compact hypersurface Σn ⊆ Hn+1 for which the Gauss 
map is regular, as the pull-back by the light-cone map ψ of the induced metric on 
the hypersurface as viewed in the positive light-cone Nn+1. We recall from [5] that + 

a compact immersed hypersurface is said to be a horospherical ovaloid in Hn+1 if 
it can be oriented so that it is horospherically convex at every point and that an 
oriented hypersurface in Hn+1 is horospherically convex at a point if and only if all 
the principal curvatures at the point are simultaneously less than 1 or greater than 
1. 

Alternatively, one can define the horospherical metric as in [15] by 

(10) h := IΣ − 2IIΣ + IIIΣ, 
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where IΣ, IIΣ and IIIΣ are respectively the first, second and third fundamental 
forms of Σ in Hn+1. In [5] Espinar, Gálvez and Mira view the image of the light 
cone map (9) as a co-dimension 2 hypersurface in Minkowoski spacetime and derive 
a relation between the principal curvatures of an immersed hypersurface in Hn+1 

and the eigenvalues of the Schouten tensor of its associated horospherical metric. In 
order to connect the work of [5] with ours in the context of conformal geometry, we 
compute the horospherical metric as defined in (10). Given a hyperbolic Poincaré 
manifold (Xn+1, g) and a representative γ of its conformal infinity (Mn , [ĝ]), we 
first compute the third fundamental form on level sets determined by the associated 
geodesic defining function r. A straightforward computation gives 

IIIr(∂i, ∂j) =  Ir(∇∂i
Nr,∇∂j 

Nr) =  Ir(∇∂i
r∂r,∇∂j 

r∂r) 

1−2 r r pq r r = r gij − r −1∂rgij + gr ∂rgip∂rgjq. 4

In terms of an orthonormal basis {e1, . . . , en} with respect to γ that diagonalizes 
the tensor Pγ , it follows that � �22r−2IIIr(ei, ej) =  r 1 +  λi δij . 

2 

Therefore, the horospherical metric associated to a level set of a geodesic defining 
function r is 

h(ei, ej) =  Ir(ei, ej) − 2IIr(ei, ej) + IIIr(ei, ej) = 4r −2δij . 

Thus, given a conformal representative γ of the conformal infinity (Mn , [ĝ]) of a hy­
perbolic Poincaré manifold (Xn+1, g) and its associated geodesic defining function 
r, the horospherical metrics associated to the level sets of r are given by h = 4r−2γ. 
On the other hand, given an outwardly convex smooth hypersurface Σn ⊂ X from 
which the exponential map is a diffeomorphism from the normal bundle to the out­
side, we find from the associated geodesic defining function ̃r = e−dΣ , where  dΣ is 
the signed geodesic distance from Σ, that the horospherical metric on Σ = {r̃ = 1}
is given by h ∈ [ĝ]. Hence, in the context of conformal geometry one may re­
gard horospherical metrics associated to the hypersurfaces given in [5] simply as 
conformal representatives of the conformal infinity. 

Now we would like to illustrate that the ambient metric construction in [8] some­
how gives a nice extension to the notions of the horospherical metrics in [5]. As in 
[8], given a hyperbolic Poincaré manifold (Xn+1, g) with conformal infinity (M, [ĝ]), 
we define the metric bundle G over M to be the space of pairs (h, x) with x ∈ M 
and h = s2ĝ(x) for  some  s ∈ R+. The metric bundle G assumes the role of the 
light cone, that is, the space of horospheres, and the metric bundle comes with 
a tautological degenerate metric, gG = π∗h at z = (h, x), where π is the bundle 
projection. 

Fixing a representative g0 of the conformal infinity (M, [ĝ]), one obtains a trivi­
alization of metric bundle G ∼ R+ ×M by identifying = 

2(t, x) ∈ R+ ×M with (t g0(x), x) ∈ G. 
1Given local coordinates (x) = (x , . . . , xn) on  U ⊂ M we obtain local coordinates 

(t, x) on  π−1(U) where  
G 2 0 gij = t gijdx

idxj 
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so that the representative g0 of the conformal infinity of (X, g) can be considered as 
the section of the bundle G ∼ R+×M determined by the level submanifold {t = 1}.= 
On the ambient space (R+ ×M)×R with coordinates (t, x, ρ), the ambient or cone 

2metric ̃g = s g − ds2 with X = {s = 1} takes the normal form 

2 g̃ = 2ρdt2 + 2tdtdρ + t gρ, 

where 

−2ρ = r 2 , s  = rt for ρ ≤ 0, 
and r is the geodesic defining function uniquely associated to g0. Therefore, given 
an outwardly convex hypersurface Σn ⊂ Xn+1 and letting α = dΣ denote the 
signed geodesic distance from Σ, which is positive outside Σ, one finds that under 
the change of variables 

αt = e 

the ambient metric restricted to X takes the form 

g̃� = dα2 + e 2α gα. X 

Hence, one may view the change of variables t = eα with respect to a given hyper­
surface as straightening out the hypersurface and giving a new coordinate on the 
metric bundle, which results in determining a new representative of the conformal 
infinity. 
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