Necessary and Sufficient Condition that the Limit of Stieltjes Transforms is a Stieltjes Transform

Jeffrey S. Geronimo\(^1\) and Theodore P. Hill\(^2\)
School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332-0160

Abstract

The pointwise limit \(S\) of a sequence of Stieltjes transforms \((S_n)\) of real Borel probability measures \((P_n)\) is itself the Stieltjes transform of a Borel p.m. \(P\) if and only if \(iyS(iy) \to -1\) as \(y \to \infty\), in which case \(P_n\) converges to \(P\) in distribution. Applications are given to several problems in mathematical physics.

Key words and phrases: real Borel probability measure, convergence in distribution, Stieltjes transform, Lévy continuity theorem, Akhiezer-Krein theorem, weak convergence of probability measures.

Lévy’s classical continuity theorem says that if the pointwise limit of the characteristic functions of a sequence of real Borel probability measures \((P_n)\) exists, then the limit function \(\varphi\) is itself the characteristic function for a probability measure \(P\) if and only if \(\varphi\) is continuous at zero, in which case \(P_n \to P\) in distribution. The purpose of this note is to prove a direct analog of Lévy’s theorem for Stieltjes transforms, complementing those for other representing functions in [HS] and [HK], and to give several examples of applications.

Throughout this note, \(\mathbb{R}\) and \(\mathbb{C}\) denote the real and complex numbers, respectively; p.m. and s.p.m. denote Borel probability measures, and sub-probability (mass \(\leq 1\)) measures, respectively, on \(\mathbb{R}\); and s.p.m.’s \((\mu_n)\) converge vaguely to a s.p.m. \(\mu\) [C, p. 80], if there exists a dense subset \(D\) of \(\mathbb{R}\) such that for all \(a, b \in D, a < b, \mu_n((a, b]) \to \mu((a, b])\). (Thus if \((\mu_n), \mu\) are p.m.’s, vague convergence is equivalent to convergence in distribution.)

\(^1\) Research partially supported by NSF Grant DMS-9970613.
\(^2\) Research partially supported by NSF Grant DMS-9971146 and Göttingen Academy of Sciences Gauss Professorship (Fall 2000).
Definition 1. The Stieltjes transform S_P of a p.m. P is the function $S_P : \{\text{Im}(z) > 0\} \to \mathbb{C}$ given by

$$S_P(z) = \int_{-\infty}^{\infty} \frac{1}{w - z} dP(w).$$

A basic property of Stieltjes transforms, which has important applications in the theory of moments (cf. [A], [S1], [ST]) and in mathematical physics (), is that they are a representing class for finite measures.

Lemma 1. For s.p.m.’s P and Q, $P = Q$ iff $S_P = S_Q$.

Proof. Follows immediately from the Stieltjes transform inversion formula [A, p. 125].

Just as limits of characteristic functions of p.m.’s are in general not characteristic functions, and limits of Hardy-Littlewood functions or expected-extrema functions are not in general Hardy-Littlewood or expected-extrema functions [HK], limits of Stieltjes transforms are not always Stieltjes transforms, as the next easy example shows.

Example 1. For $n = 1, 2, \ldots$, let $P_n = \delta_n$, the Dirac point mass at n. Then $S_{P_n}(z) = (n - z)^{-1}$ for all n and all z with $\text{Im}(z) > 0$, so $\lim_{n \to \infty} S_{P_n}(z) \equiv 0$, which is clearly not the Stieltjes transform for any p.m. P (see Lemma 2 below).

On the other hand, just as with Lévy’s theorem, the limit of Stieltjes transforms is itself a Stieltjes transform if and only if it satisfies one single universal limit condition. The next theorem is the main result of this note.

Theorem 1. Suppose that (P_n) are real Borel probability measures with Stieltjes transforms (S_n), respectively. If $\lim_{n \to \infty} S_n(z) = S(z)$ for all z with $\text{Im}(z) > 0$, then there exists a Borel probability measure P with Stieltjes transform $S_P = S$ if and only if

$$\lim_{y \to \infty} iyS(iy) = -1,$$

in which case $P_n \to P$ in distribution.

Corollary 1. If $P, (P_n)$ are real Borel p.m.’s with Stieltjes transforms $S, (S_n)$, respectively, then $P_n \to P$ in distribution if and only if $S_n \to S$ pointwise.
Proof of Corollary. If $S_n \to S$, then $P_n \to P$ in distribution by Theorem 1. Conversely, suppose that $P_n \to P$ in distribution. Since $f_z(w) := (w - z)^{-1}$ is continuous and bounded in w for fixed z in $\{\text{Im}(z) > 0\}$, then $\text{Im}(f_z)$ and $\text{Re}(f_z)$ are also continuous and bounded, so by the basic equivalence of convergence in distribution of p.m.’s and convergence of integrals of bounded continuous functions [C, Theorem 4.4.2], $\int \text{Im}(f_z)dP_n \to \int \text{Im}(f_z)dP$ and $\int \text{Re}(f_z)dP_n \to \int \text{Re}(f_z)dP$, so $S_n(z) \to S(z)$. □

To facilitate the proof of Theorem 1, two additional lemmas are useful, which are stated here for ease of reference.

Lemma 2. Let $S : \{\text{Im}(z) > 0\} \to \mathbb{C}$ be analytic. Then there exists a p.m. P with $S_P(z) = S(z)$ for all z with $\text{Im}(z) > 0$ if and only if (1) holds and

$$\text{Im}(S(z)) > 0 \quad \text{for all } z \text{ with } \text{Im}(z) > 0. \quad (2)$$

Proof. By the classical Akhiezer-Krein theorem [A, p. 93], $S = S_P$ for some finite Borel measure P if and only if: S is analytic in $\{\text{Im}(z) > 0\}$; S satisfies (2); and

$$\sup_{y \geq 1} |yS(iy)| < \infty. \quad (3)$$

Suppose P is a p.m. with $S = S_P$. The Akhiezer-Krein theorem implies that (2) holds, and (1) follows immediately from the definition of S_P. Conversely, suppose that S is analytic and satisfies (1) and (2). Since $yS(iy)$ is continuous in y, (1) easily implies (3), so by the Akhiezer-Krein theorem again, there is a finite Borel measure P with $S_P = S$. Since clearly $\lim_{y \to \infty} [-iyS_P(iy)] = \text{mass}(P)$, (1) implies that P is a p.m. □

Lemma 3. Let \mathcal{F} be a family of functions analytic in a connected open domain D. If for each compact $K \subset D$ there exists a constant $M(K) < \infty$ such that

$$|f(z)| \leq M(K) \quad \text{for all } z \in K \text{ and all } f \in \mathcal{F}, \quad (4)$$

then all pointwise limits of functions in \mathcal{F} are also analytic in D.
Proof. ([H, Theorem 15.2.3]). □

Proof of Theorem 1. If \(\lim S_n = S = S_P \) for some p.m. \(P \), then (1) follows by Lemma 2.

Conversely, suppose that \(S = \lim S_n \) satisfies (1). Let \(F = \{ \bigcup S_n \} \), and for \(K \subset D := \{ \Im(z) > 0 \} \), let \(d(K) = \inf \{ \|y - z\| : y \in \mathbb{R}, z \in K \} \) be the smallest distance from \(K \) to the real line. Clearly \(0 < d(K) < \infty \) for all compact \(K \subset D \), and \(M(K) = 1/d(K) \) satisfies (4), so Lemma 3 implies that \(S = \lim S_n \) is analytic in \(D \). By Lemma 2, \(\Im(S_n(z)) > 0 \) for all \(z \in D \), so \(\Im(S(z)) \geq 0 \) for all \(z \in D \). Suppose, by way of contradiction to (2), that \(\Im(S(z_0)) = 0 \) for some \(z_0 \in D \). Since \(S \) is analytic, \(\Im(S) \) and \(\Re(S) \) are harmonic on \(D \) [K, p. 590]. By the maximum principle [K, p. 760], a non-constant function which is harmonic in a simply connected bounded open set \(G \) has neither a maximum nor a minimum in \(G \), so since \(\Im(S(z)) \geq 0 \) on \(G \) for every simply connected open bounded set \(G \) with \(z_0 \in G \subset D \), it follows (taking \(G_t = \{ z \in D : \|z\| < t \} \), and letting \(t \to \infty \)) that \(\Im(S(z)) \equiv 0 \) for all \(z \in D \), which contradicts (1). Thus (2) holds, and since \(S \) is analytic and (1) holds by assumption, Lemma 2 implies there exists a real Borel p.m. \(P \) with \(S_P = S \).

For the convergence in distribution conclusion, suppose that \(S_n = S_{P_n} \to S_P \) pointwise in \(D \) for p.m.’s \((P_n)\), \(P \). By the Helly selection theorem [C, Theorem 4.3.3], there exists a s.p.m. \(Q \) and a subsequence \((P_{n_k})\) of \((P_n)\) such that \(P_{n_k} \to Q \) vaguely. Fix \(z \) in \(D \), and let \(f_z : \mathbb{R} \to \mathbb{C} \) be given by \(f_z(w) = (w - z)^{-1} \). Since \(f_z \) is continuous in \(w \) and vanishes at infinity, \(\Re(f_z) \) and \(\Im(f_z) \) are continuous and vanish at infinity, so it follows by the equivalence of vague convergence of s.p.m.’s and convergence of integrals of continuous functions which vanish at infinity [C, Theorem 4.4.1] that \(S_{P_{n_k}}(z) \to S_Q(z) \) as \(k \to \infty \) for all \(z \in D \). By hypothesis, \(S_{P_n} \to S_P \), so \(S_P = S_Q \), which by Lemma 1 implies that \(P = Q \). Since every vaguely convergent subsequence of \((P_n)\) thus converges to \(P \), this implies [C, Theorem 4.3.4] that \(P_n \) converges vaguely to \(P \), that is, since \((P_n)\) and \(P \) are p.m.’s, \(P_n \) converges to \(P \) in distribution. □

Sketch of Alternative Proof. (B. Simon [S2]). The functions \(\{S_{P_n}\} \) are Herglotz functions, so the limit \(S \) is Herglotz, and pointwise convergence \(S_n \to S \) implies weak convergence for the measures \((1 + x^2)^{-1}dP \) to a measure \(P \) on \([-\infty, \infty]\), where \((1 + x^2)^{-1}dP \) is finite. Given that \(S(iy) \to 0 \) as \(y \to \infty \), \(P\{\infty, \infty\} = 0 \), so it follows using the fact...
that $S_{P_n} \to S_P$, the Herglotz representation theorem, and the monotone convergence theorem, that P is a p.m. Then weak convergence of P_n to P can be shown given the weak convergence of the measures when multiplied by $(1 + x^2)^{-1}$. (For related ideas, see pp. 129–130 in [S1]).
References

