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NOMENCLATURE 
d Penetration depth 
d1 Diameter of standard pitch circle 
e Contact Force exponent 
i Gear Ratio, gear/ pinion 
x0 Initial size of the deformable body 
x Distance between the contacting bodies 
C Damping coefficient 
E1, E2 Young’s Modulus of pinion and gear respectively 
E* Equivalent Young’s Modulus of two contacting bodies 
F Contact force 
K Stiffness 
R Equivalent radius of two contacting bodies 
S Step function 
αt’, αt Transverse pressure angle at engaged, standard pitch circle 
β, βb Helical angle at the pitch, base circle 
ν1, ν2 Poisson ratio of the pinion and gear respectively 

ABSTRACT 
Gearboxes sustain a variety of faults such as broken-shafts, eroded, broken, or missing teeth, and even 
broken-cases. Casing mounted accelerometers can detect fault patterns but the signals are complicated and 
difficult to interpret. This study considers the tooth loading of ideal gears and gears with defects. A large industrial 
gearbox used in a 12m3 electric mining shovel is modeled. The nonlinear contact mechanics is analyzed to predict 
the bearing supporting force variation vs. the gear tooth loading after a 3-D CAD model of the gearbox is 
transferred into multi-body dynamics software. The contact mechanics model of the meshing teeth is built by 
careful calculation and selection of the contact simulation parameters such as the stiffness, force exponent, and 
damping and friction coefficients. To simulate the real working environment of the gearbox, simulated bearing 
support forces are mixed with white noise. The signal is subsequently processed by the Db5 wavelet of the 
MATLAB Wavelet toolbox. Wavelet analysis results show that bearing supporting force fluctuation cycle is almost 
the same with that of the meshing forces of the fault gearing pairs, which could be used to predict the tooth 
malfunction of the gearbox. 

Keywords: Malfunction Diagnostics, Contact Mechanics, Gearbox, Wavelet, Simulation 
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1. Introduction 
Gearboxes of construction vehicles like electric mining shovels and dump trucks sustain a variety of faults such as 
broken-shafts, eroded, broken, or missing teeth, and even broken-cases because of heavy loads and harsh 
working conditions. Early malfunction detection is important to limit damage and avoid accidents. Generally, casing 
mounted accelerometers are used to detect gearbox faults based on vibration analysis techniques. 
Frequency/cepstrum analysis, time/statistical analysis, and time-frequency analysis have all been used by many 
researchers. Wang et al. [1] experimentally tested healthy, cracked, spalled, and chipped gear teeth and compared 
the sensitivity and robustness of the different data processing techniques. Dalpiaz et al. [2] investigated a gear pair 
with a fatigue crack and discussed the effectiveness and sensitivity of the time-synchronous average (TSA) 
analysis, cyclostationary analysis, and traditional cepstrum analysis on the basis of experiment. Parey et al. [3] 
developed a six DOF nonlinear model for a pair of spur gears on 2 shafts, calculated the Hertzian stiffness for the 
tooth surface contact, and implemented the empirical mode decomposition (EMD) method to simulate the different 
defect widths. Different methods of estimating stiffness have been utilized by a number of authors [4-9]. Previous 
research shows that the fault signal patterns are very complicated and depend on specific gear pairs, i.e., the 
signals from a specific gearbox are difficult to interpret until a series of modeling, testing and data processing work 
are carried out. However, it is not practical to test each type of gearbox, especially a large one, for the specific fault 
patterns. To solve this issue, a virtual experiment method based on multi-body dynamics and nonlinear contact 
mechanics simulation is presented. 

The crawler traveling gearbox of a 12 m3 electric mining shovel is investigated in this paper to predict the bearing 
supporting force variation vs. the gear tooth loading based on the nonlinear contact mechanics analysis. The 
gearbox is a three-stage, dual-motor driven and dual-output. The drive train of the gearbox is shown in Fig.1 and 
the technical specifications are listed in Table 1. The 3-D CAD model of the gearbox, as shown in Fig.2, is built by 
the Pro/Engineer Wildfire software and then transferred into the multi-body dynamics model by the software MSC 
ADAMS. The driving torques from both of the traveling motors and resistant torques from the crawler system are 
applied to the input and output shafts of the gearbox respectively. The contact forces of the meshing teeth in the 
gear set is described by a contact mechanics model which is determined by parameters such as the stiffness, force 
exponent, and damping and friction coefficients. 

Figure 1: Layout of the Crawler Traveling Gearbox           Figure 2: CAD Model of the Gearbox 
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2.1 

2. Multi-body Dynamics Model 
Although the finite element method is a general numerical method applicable to model gear contact with high 
simulation accuracy, a huge computational effort is required for contact of several pairs of gear wheels in a large 
gearbox. Rigid body modeling has high computational efficiency, but it can not describe the contact of the meshing 
gear teeth. Fortunately, commercial multi-body dynamics simulation software MSC ADAMS has the capability of 
rigid-elastic model computation, which is suitable for the multi-body model of the gearbox. The rigid-elastic model 
is a compromise between the rigid body and elastic body, in which the shafts and wheel bodies are taken as rigid, 
but the contact surfaces of the meshing gears are deformable bodies. 

Table 1: Gearbox Technical Specification 

Gear ID 

Tooth 

Number 

Normal 

Modulus 

Speed 

Ratio 

Helical 

Angle 

Wheel Center 

Distance 

Gear Widths Pressure 

Angle 

Z1 11 12mm 7.3636 16º 580mm 130mm 

20º 

Z2 81 120mm 

Z3 12 16mm 5.666 12º 665mm 210mm 

Z4 68 200mm 

Z5 11 30mm 3.273 12º 750mm 280mm 

Z6 36 270mm 

Total Speed Ratio i 136.56 

Rated Motor Power kW 110×2 

Rated Motor Velocity rpm 740 

Motor Overload Capacity 2.5 

Max. Output Torque of the Gearbox kNm 437×2=874 

Transformation of the Gearbox Model 
The 3-D CAD model of the gearbox, as shown in Fig.2, is 
transferred into an ADAMS multi-body model using the 
Mechanical/Pro interface embedded in Pro/Engineer. The case 
and bearings are hidden for good visual effect of the simulation. 
The multi-body model of the gearbox is shown in Fig. 3. The 
bearings to support the wheel shafts in the gearbox are described 
by revolute and cylindrical joints. A fixed joint is added to every 
gear wheel and corresponding shaft, so that the torque applied to 
the input shafts is transferred onto the output shaft. The 
transferred model should be checked for the consistency with the 
Pro/Engineer model on mass and density to assure correct 
transformation. 

Figure 3: Multi-body Model of the Gearbox 
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2.2 Determination of the Contact Parameters 
2.2.1 The Definition of Contact in ADAMS 

The contact force model is shown in Fig. 4. The contact force in ADAMS [12] can be expressed as 

⎧K (x − x)e + CSx� x < x
F = ⎨ 

0 0 (1)
0 x ≥ x⎩ 0 

Figure 4: Contact Force Model in ADAMS Figure 5: Damping Force vs. Penetration Depth 

In Eq.(1), x0-x is the deformation in the process of contact-collision. Eq.(1) shows that the contact does not 
occur while x ≥x0 and the contact force is zero. Contact occurs while x<x0 and the contact force is related to the 
parameters such as stiffness K, the deformation x0-x, contact force exponent e, damping coefficient C and the 
penetration depth d which is the maximum value of x0-x. S is a step function defined as 

⎧0 x > x0 
⎪ 2S = ⎨(3 − 2Δd )Δd x0 − d < x < x0                      (2) 
  
⎪
1 x ≤ x0 − d⎩ 

In Eq. (2), Δd = x0-x, is the deformation of the body. Eq. (1) also shows that the contact force defined in ADAMS is 
composed of two parts. An elastic component K(x0-x)e, acts like a nonlinear spring. The other is the damping force 
CS(dx/dt), which is a function of the contact-collision velocity. By the definition of the step function in Eq.(2) we 
know that the damping force is defined as a cubic function of penetration depth. To avoid the function discontinuity 
caused by the dramatic variation of the damping force while contact-collision occurs, as shown in figure 5, the 
damping force is set to zero when the penetration depth of the two contacted bodies is zero, and approaches a 
maximum value Fmax when the specified penetration depth d is reached.      

2.2.2 The Types of Contact 
Two types of contact are modeled between the surfaces of the contacted bodies. One type is discontinuous contact, 
such as a falling ball bouncing on the floor. The other is continuous contact, where the contact is defined as a 
nonlinear spring. Two algorithms for the computation of contact force are available in ADAMS/View, the Restitution 
Method and the Impact Method. Considering the computing efficiency and accuracy, the latter is adopted in this 
paper. Necessary parameters for this method are listed in Table 2. The contact force computed by this method is 
composed of two parts, the elastic force caused by the deforming components and the damping force caused by 
the relative deforming velocity. 



  
 

 

 

 
 
 

 
 

 

 

 
 

                                            
 

 

       
 

 
 

                                                  

  
 

  

 
  

 

 
 

 

 
 

Table 2: Contact Model Parameters 

Stiffness (K) 

Force Exponent( e)
 
Damping(c) 


Penetration Depth( d)
 

Static Friction Coefficient (μs) 
Static Friction Slip Velocity(vs) 
Dynamic Friction Coefficient(μd) 
Dynamic Friction Slip Velocity(vd) 

2.2.3 Determination of the Parameters for a Helical Gearing Pair Contact Model 
(1) Stiffness K: According to the Hertzian elastic contact theory [10], the stiffness of the two contacted bodies could 
be described by a pair of ideal contacted cylindrical bodies, and Bi et al [8] derived the equivalent radii of the 
engaged helical gear pair. Consequently, the stiffness could be expressed as 

1⎧ 1 ' 4 4 ⎡ id cos α tan α ⎤ 2⎪ 2 ∗ 1 t t ∗K = R E = E⎪ 3 3 ⎣
⎢ 2(1 + i)cos β b ⎦

⎥ 
⎪ 

2 2                                  (3)  
⎪ 1 1 −ν 1 1 −ν 2⎨ = + 
⎪ E ∗ E1 E2 

⎪β = a tan(tan β cos α )
⎪ b t 

⎪ 
⎩ 

The materials for the pinions and gears of the gearbox are alloy steel and cast steel respectively, and the values for 
the Poisson ratio and the Young’s Modulus are listed in Table 3. Through calculation, the stiffness values for the 
three gear pairs in the drive line of the gearbox are listed in Table 4. 

Table  3:  Gear  Material  Properties  Table  4:  Stiffness  for  the  Gear  Pairs  

Item Gear ID Material Young’s Modulus Poisson Ratio 

Pinion Z1,Z3,Z5 Alloy Steel 2.1×105 N/mm2 

0.29Gear Z2,Z4,Z6 Cast Steel 1.75×105 N/mm2 

Gear Pair Stiffness 

Z1, Z2 K1=6.824×105 N/mm3/2 

Z3, Z4 K2=8.102×105 N/mm3/2 

Z5, Z6 K3=10.941×105 N/mm3/2 

(2) Force Exponent e: Considering numerical convergence and computation speed, a force exponent of e=1.5 is 
determined by several times of trial simulation. 
(3) Damping Coefficient C: Based on previous experience for gearboxes of this size the damping coefficient 
generally takes values 0.1%~1% of the stiffness K. For this study the damping coefficient is set to C=1000 Ns/mm. 
(4) Penetration Depth d: The relationship between damping force and penetration depth is shown in Fig.5. In 
common cases, a reasonable value for penetration depth is 0.01 mm. We used d = 0.1 here considering the 
numerical convergence in ADAMS. 
(5) Dynamic and Static Friction Coefficient and Viscous Velocity: The materials for the engaged pinions and gears 
are alloy steel and cast steel respectively, and the meshing pairs are lubricated. The static friction coefficient μs, 
static transition velocity vs, dynamic friction coefficient μd and friction transition velocity vd listed in Table 5 are 
typical values found in mechanical design handbooks. 
Table 5: Friction Coefficient Values 
Static Friction Coefficient(μs) 
Static Transition Velocity(vs) 
Dynamic Friction Coefficient(μd) 
Friction Transition Velocity(vd) 

0.1 


1 mm/s 

0.08 


10mm/s 




 
 

 

 
 

 

 
 

 

 

 
 
 
 

 

 
 

 
 

   
 

 
 

  
  

 
 

 

3. The Algorithm Selection for Nonlinear Contact Dynamics Simulation 
ADAMS offers four stiff stable solvers, the Gstiff, Wstiff, Dstiff and Constant-BDF, to solve the Differential-Algebra 
Equation (DAE) for the multi-body dynamics simulation. All four solvers use multi-step, variable order algorithms. 
There are three integration formats, the Index3, SI2 and SI1, available for the DAE solution. 

3.1 Comparison of the Integration Formats 
The Index3 (short for I3) format monitors only the error of the displacement and other state variables of the 
differential equations, but not the velocities and constrained reaction forces. Therefore, the accuracy for 
computation of the velocity, acceleration and constrained reaction forces is not as good as other formats. The SI2 
format is able to control the errors of the Lagrange multiplier and velocity by considering the velocity constrained 
equations. Therefore, more accurate solutions could be obtained for the velocity and acceleration computation. 
The SI1 format is able to monitor all state variables such as displacement, velocity and Lagrange multiplier by 
introducing the velocity constrained equations, instead of acceleration constrained equations. Therefore, this 
format has higher accuracy than SI2 format. However, it is too sensitive to the models with friction and contact 
problems. 

3.2 Comparison of the Solvers 
The Gstiff solver is a stiff stable algorithm with characteristics of multi-step, variable order, variable step and fixed 
coefficients. It could solve the DAE explicitly with I3, SI2 and SI1 formats. The Gstiff solver has the features of fast 
computation and high displacement accuracy. However, this solver could produce larger error on the computation 
of velocity. This can produce discontinuities in acceleration. Nevertheless, the error could be controlled by 
limitation of the maximum step during the simulation. 

The Wstiff solver is a stiff stable algorithm with characteristics of multi-step, variable order, variable step and 
variable coefficients. It could also solve the DAE explicitly with I3, SI2 and SI1 formats. The coefficients could be 
modified according to the variable steps without any loss of accuracy. Therefore, this solver is more robust and 
more stable, but it takes more computation time than Gstiff solver. The Dstiff solver is similar to the Wstiff, but it has 
only one integration format I3. 

The Constant-BDF solver is a stiff stable algorithm with characteristics of multi-step, variable order and fixed step. 
It has three integration formats I3, SI2 and SI1. This solver is very robust when using SI2 format with shorter step. 
Although this solver is not as fast as Gstiff and Wstiff solvers for some problems, it has high accuracy for the 
solution of displacement and velocity and it is not as sensitive to the discontinuity of the acceleration and force as 
the Gstiff solver. Therefore, the Constant-BDF solver is suitable for problems where the Gstiff fails to converge. 
Trial simulations showed that the Gstiff solver failed to complete the simulation for this gearbox model. Therefore, 
the Constant-BDF solver with SI2 integration is adopted in this paper. 

4. Simulation of the Ideal Gear Set 
4.1 Input velocity and Output Torque 
The resistant torque acting on the output shaft of the gearbox is adopted from Table 1, i.e., the maximum output 
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torque of the gearbox is applied to the output shaft. The rated motor velocity from Table 1 is applied on both of the 
input shafts. 
4.2 Simulation Results of Gear Teeth Contact Force 

Since the gear box drive line configuration is symmetric, the investigation is focused on the left part of the driveline. 

The simulation results of the gear teeth contact forces are shown from Fig.6 to Fig.8. 


Figure 6: First Stage Gearing Contact Forces and Frequency Spectrum 

Figure 7: Second Stage Gearing Contact Forces and Frequency Spectrum 

Figure 8: Third Stage Gearing Contact Forces and Frequency Spectrum
 

According to Table1 and Fig.1, the theoretical gearing frequencies from the first stage to the third stage are
 

determined to be 135.667Hz, 20.099Hz and 3.251 Hz respectively. From frequency spectrums of Figures 6 to 8,
 
we could conclude that the simulation results of the ideal gear set match the theoretical values well. 
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5. Gear Fault Simulation 
5.1 Fault State of the Gearbox 

Part of a tooth is removed on pinion Z5 to simulate a broken tooth state of the gearbox, as shown in Fig.9.
 
5.2 Fault Detection Based on Wavelet Decomposition
 

According to Table 1, the angular velocity of the pinion Z5 is 17.734 

rpm, from which the impact cycle of the broken tooth pinion could
 

be derived as 3.38s for motors driven synchronously at the rated 


velocity of 740 rpm. After simulation on the gearbox model with 


broken tooth pinion Z5, the corresponding bearing support force 


signal is obtained, and then it is transferred into MATLAB software. 

White noise is mixed in to simulate the real gearbox with disturbing
 

noise. It appears at the top row marked as “S” in Fig.10. The
 

simulation time is set for 15s, 6456 steps in ADAMS. The horizontal axis in Fig.10 represents the simulation steps 

and the vertical axis represents the bearing support forces (Newton). The cycling feature of the broken tooth 


impact is not explicit from the raw signal of the bearing support force. The Db5 wavelet with 5 levels of 


decomposition is used for noise canceling to make the fault feature of the broken tooth pinion distinct. The 5th level
 
wavelet decomposition is marked as a5 in the second row of Fig.10, from which the impact cycle could be
 

measured as 1452 steps, about 3.37s, close to the theoretical value 3.38s. 


Figure 9: Pinion Z5 with Chopped Tooth 

Figure 10: Bearing Support Force Signal and Db5 Wavelet Decomposition 



 

 
 

  

  
 

 

 
 
 
 

     

 

 

 
 

 
 

 

 

 
 

6. Summary and Conclusion 

This paper summarizes an efficient and accurate method to model gear tooth dynamics using modern 
engineering tools.  A CAD model is transferred into multi-body dynamics software.  Post processing of 
loading is then accomplished using the MATLAB Wavelet toolbox. The method allows for nonlinear contact 
mechanics to include the effects of friction, damping, and hertzian-contact in a localized region of gear mesh. 
The localization of the elastic portion of the model apart from the rigid body portions reduces computing time. 
The method is demonstrated on a large industrial gearbox model. Simulation results show that this method can 
predict the fault pattern of the gearbox. Wavelet analysis is shown to have good resolution in the time and 
frequency domain and it is effective to obtain the cyclic features of the gearbox fault signals. 
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