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The design of circulation control (CC) dual radius flap systems were investigated to 
characterize the parameters that make up the flap surface to offer further knowledge into 
the CC field of study.  Multiple dual radius flap geometries, along with variants, were 
developed by varying specific flap parameters from a baseline configuration that had 
previously developed.  The aerodynamics of the different flap geometries were analyzed 
using two-dimensional CFD. This research will explore the design of CC pneumatic flap 
systems to improve the performance of existing CC flap configurations, and provide insight 
into the characteristics of the CC flap geometry. 

Nomenclature 
α = angle of attack (°) � = 2-D mass flow rate (kg/(m*s)) mslot 

A = area of slot exit (m2) M = slot Mach 

A* = critical area of slot exit (m2) M∞ = freestream Mach
 
c = chord length (m) μ∞ = freestream dynamic viscosity (kg/(m*s))
 
c' = flap modified chord length (m) P∞ = freestream pressure (Pa)
 
cf = flap chord length (m) Pslot = slot local static pressure (Pa)
 
Cd = drag coefficient Pstag = slot stagnation pressure (Pa)
 
Cf = skin friction coefficient ρ∞ = freestream density (kg/m3) 

Cl = 2-D lift coefficient q∞ = freestream dynamic pressure (kg/(m*s2))
 
Cm, (c/4) = quarter-chord moment coefficient r1 = first radial arc of CC flap (m)
 
Cμ = momentum coefficient r2 = second radial arc of CC flap (m)
 
Cp = pressure coefficient r2 avg = average second radius of CC flap (m)
 
γ = ratio of specific heats R∞ = freestream gas constant(J/(kg*K))
 
δf = flap deflection (°) T∞ = freestream temperature (K)
 
ε = turbulence dissipation rate Tslot = slot local static temperature (K)
 
ƒ = elliptic relaxation factor Tstag = slot stagnation temperature (K)
 
hslot = trailing edge slot height (m) v2 = velocity scale
 
θ = departure angle from upper surface (°) Vslot = slot velocity (m/s)
 
k = turbulence kinetic energy x = chord-wise direction (m)
 
κ = curvature y+ = dimensionless wall distance
 
L/D = lift-to-drag ratio ω = specific dissipation
 

I. Introduction 
evelopment of circulation control (CC) flap systems has long been part of a vision for next-generation subsonic Dtransport aircraft, offering significant payoffs in both performance and in system complexity1. CC flap systems 

augment aerodynamic forces by entraining and deflecting the airfoil flow field pneumatically, rather than solely by 
deflecting a mechanical surface2. The use of pneumatic devices in the form of blown jet airfoils in aerodynamics 
have been under investigation as far back as the 1930's, and possibly earlier2.  A Romanian inventor, by the name of 
Henri Coanda, discovered the phenomena of CC (claimed to be in 1910) in a near-fatal plane crash where the 
exhaust deflection plates he developed entrained the hot flow and directed onto the aircraft, causing it to ignite3. 
The concept of CC entails ejecting high momentum, jet flow out of a slot located near the trailing edge of an airfoil, 
shown in Figure 14. The slot emits this air over a curved or radial surface.  The high momentum flow follows the 
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curved surface due to both the sub-ambient pressure of the jet flow and the centrifugal force created by the curved 
surface, a phenomena which is known as the Coanda effect.  The airflow over the wing is then entrained over the 
curved surface by the pressure gradient caused by the high momentum air.  This lowers both, leading and trailing 
edge, stagnation points to the bottom surface of the wing, increasing effective camber which increases circulation. 
Figure 25 presents the streamlines encountered during the operation of a CC flap.  The increased circulation has been 
seen to produce two-dimensional lift coefficients (Cl) upwards of 7 and 106. It has been demonstrated that CC flap 
systems can produce substantial lift gains over the conventional flapped airfoil7,8. The CC flaps can also be coupled 
with over-the-wing engine configurations to provide even greater lifting capability, turning engine thrust well past 
90° from the horizontal2. 

Figure 1. CC with Coanda effect over trailing edge4 . Figure 2. Streamlines during CC operation5 . 

The area of application of the CC flaps will be on an N+2 (expected 2018-2022) cruise efficient short takeoff and 
land (CESTOL) 100 passenger airliner developed for a NASA research grant9, advanced model for extreme lift and 
improved aero-acoustics (AMELIA), to validate CFD's predictive capability with a large-scale wind tunnel test, 
which is displayed in Figure 3. Table 1 presents the desired goals set forth by NASA10 for an N+2 design, like 
AMELIA. 

Figure 3. N+2 CESTOL design for AMELIA. 

Table 1. NASA N+2 goals10. 

NASA Goals for N+2 100 Passenger Airliner 
→ Balanced field length of 2,000 feet 
→ Efficient cruise at Mach 0.8 
→ Takeoff and land speeds less than 50 knots 
→ Turn radius in terminal area less than 0.25 nm 
→ 1400 - 2000 mile range 
→ Noise footprint within the airport boundary 

A three view of the AMELIA design is displayed in Figure 4 below. The decision for CC flaps on the aircraft 
was chosen due to the efficiency of the CC flaps when compared to other blown high lift systems in the ΔCl/ΔCμ 
values, which are presented in Figure 511 below. AMELIA will incorporate leading edge blowing as well to prevent 
upper surface separation of the airfoil, which has been experienced in flight tests of a CC flap system12. The leading 
edge slot has been proven experimentally13 and has shown greater performance in increasing stall α over more 
complex mechanical leading edge devices1. The CC slot air for this configuration will be provided by an auxiliary 
power unit (APU), which will not require engine bleed to feed the slots which result thrust losses during flap 
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operation and oversize the engines.  This APU could also be used for heating/air conditioning or pressurization 
when it isn't needed to power the flap system14. The CC flap system employed on the AMELIA design will 
incorporate slots that will retract when the system is not in operation, to provide decreased cruise drag which is 
important for optimizing fuel burn15. The CC flaps provide many benefits to the AMELIA design; a less complex 
flap system, increased lift from over-the-wing engine exhaust entrainment, and a better performing flap that will 
result in shorter takeoff and landing distances, steeper climb-out and approach angles that reduce community noise, 
and decreased cruise drag. The use of CC flaps have also shown to be more acoustically acceptable than 
conventional mechanical flaps16, by eliminating the vortex shedding in the trailing edge region of the airfoil. 

Figure 4. Three-view of AMELIA model. 

Figure 5. Flap efficiency for various blown high-lift systems11 . 

Supercritical airfoils have been the most successful in the integration of the CC dual radius flaps.  The large 
leading edge radius helps in keeping flow attached during CC operation, and provides sufficient space for any 
leading edge devices.  The trailing edge thickness of the supercritical geometry accommodates both the trailing edge 
slot plenum along with the radial surfaces of the flap17. The transonic cruise performance of the supercritical airfoil 
is also desirable, delaying shock-induced drag. The NASA SC(2)-0414 (Figure 6) was the airfoil chosen for the 
analysis, being the most similar to AMELIA's airfoil. 
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Figure 6. NASA SC(2) - 0414 airfoil. 
Of the exiting CC flap configurations that have been developed (displayed in Figure 712), the dual radius will be 

the configuration further investigated.  The dual radius flap first acquires the benefit of the smaller radius by turning 
the slot flow over a larger angle in a smaller chord-wise distance, which occurs because of the high momentum the 
flow still carries from being ejected from the slot.  It then takes advantage of the larger radius to keep the flow 
attached as it travels along the flap and its high momentum energy is reduced17. The dual radius also employs a 
sharp trailing edge which increases the jet thrust recovery during deployment and operation and greatly reduces the 
pressure drag in cruise configuration17.  These contributions render the dual radius the best performing CC flap 
configuration of the existing designs, thus making it the baseline flap to be developed in the forthcoming analysis. 

Figure 7. CC flap configurations12. 

II. CC Flap Geometry and Design
 Figure 8 below describes the defining geometry of the CC flap to be investigated. 

Figure 8. CC flap geometry. 
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Due to the importance of entraining the flow over the top of the wing using the high momentum air on the 
Coanda/flap surface, this design study explores the impact of the geometry of the flap on the aerodynamic 
performance of the CC flap system.  In doing so, the leading edge slot will not be incorporated into this analysis, 
isolating the performance characteristics to be solely effected by the changes in the aft flap geometry.  The baseline 
CC dual radius flap configuration was designed to specifications developed by previous research18. To create an 
effective dual radius flap, Figure 918 was followed in defining the trailing edge slot height (hslot) and radius of the 
first radius (r1) of the dual radius flap.  The design point was chosen to aid in the manufacturing of the wind tunnel 
model's slots, along with keeping the flap within the region of most effective Coanda operation.  The flap was 
designed to r1 because it is the first radius that the slot flow will encounter when the flap is deflected. The chord 
was chosen to be the mean aerodynamic chord of the design.  The baseline flap parameters are presented in Table 2. 
Due to the importance of capturing the correct flow in the region of the flap, the plenum was also incorporated into 
the model.  This allowed for proper flow characteristics of the slot flow, allowing the boundary layer to grow from 
the plenum inlet, throughout the slot, and onto the flap surface. 

Figure 9. CC Coanda performance18. 

Table 2. Baseline CC flap design parameters. 

c (m) 0.47370 
hslot/c 0.00238 
r1/c .04857 
hslot/r1 .04900 

To place the flap on the airfoil (Figure 10a.), several constraints were enforced.  The first, having a circular arc 
of radius r1 intersect the upper and lower surface of the aft part of the airfoil (Figure 10b.).  The upper intersection 
was then constrained to have the circular arc become tangent with the upper surface of the airfoil (Figure 10c.).  The 
circular arc of r1 is then constrained to be perpendicular to the horizontal at the lower intersection of the airfoil 
(Figure 10d.), which finalizes the flap's chord-wise placement. The second flap surface is then extended from the 
top end point of the first r1 arc, being tangentially constrained to it (Figure 10e.). The second flap surface is then 
extended to the specified length, and ending on the airfoil's chord line (Figure 10f.).  A spline is then added between 
the end of the second flap surface and the start point of the r1 arc on the bottom of the airfoil and constrained to be 
tangent to the existing airfoil at that location (Figure 10g.).  Figure 10h. shows the completed flap integration for one 
of the analyzed flap configurations. 
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Figure 10. Flap placement. 

To create the trailing edge slot on the airfoil, a vertical element was added at the location of the flap's 
intersection of the upper surface.  The element has a height of hslot plus an additional 0.254 mm, to account for the 
upper surface material that will be encountered.  To keep the continuity of the upper airfoil surface with the slot and 
to ensure mechanical feasibility, a spline was added from 55% chord of the airfoil to the slot location.  This spline 
was constrained to be tangent to the airfoil surface at 55% chord and to be parallel to the tangent of the airfoil 
surface below the slot.  Figure 11 depicts the modification of the airfoil to accommodate the trailing edge slot. Once 
this process of modifying the airfoil takes place, the CC dual radius flap system will be placed and incorporated onto 
the airfoil of interest. 

Figure 11. Trailing edge slot modification. 
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III. Parameter Studies 
Due to the emphasis on the geometrical design of the CC dual radius flap system, some of the parameters of the 

flap were held constant throughout the analysis.  The first of which was the two-dimension slot jet momentum 
coefficient (Cμ), which is the driving parameter in the lift augmentation (ΔCl/Cμ) of the CC operation.  The other 
parameters that were held constant were the flap location (chord wise-direction), slot location, slot height, the 
plenum shape, and the first radial surface of the flap, r1. This left the flap surface aft of the r1 arc to be further 
investigated, detailed in Figure 12. 

Figure 12. Aft segment of flap surface. 

A. Preliminary Dual Radius Study 
The parameters of interest in this research were initially the second radius (r2) and the length of strictly the dual 

radius flap configurations.  The first of the parameters that was studied was length of the dual radius flap which had 
a direct influence on the departure angle (θ) due to the previous constraints that placed the flap.  By changing the 
length of the flap or θ, it influenced the turning angle of the flow.  By having a shorter flap with a greater θ, it was 
predicted that the flow would be influenced to more turning by the decreased radius of the curved surface, but also 
have more difficulty staying attached as the flow proceeds along the flap and loses momentum with the radial 
surface still at a smaller radius.  Although this shorter flap and larger θ was going to cause more pressure drag 
during cruise, the lift-augmentation it provides during takeoff and landing operations may prove more beneficial to 
the aircraft's performance 

The second of the parameters that was investigated in this preliminary study on the dual radius configurations, 
was r2 and the resulting ratio of r2/r1. Having small r2 values, similar to r1, was thought to result in increased flow 
turning angles, and while producing shorter flaps.  Although, a shorter and steeper flap may encounter flow 
separation due to the slot flow not being able to follow the steep radial surfaces, the less drastic change in radii could 
help the flow stay attached.  With r2 values significantly larger than r1, the flow would not have as much difficulty 
staying attached to the contour of the flap but may encounter issues with the larger discontinuity in the radii when r1 
changes to r2. This larger r2 would also not be as effective in turning the flow, by not being able to obtain high θ 
values. 

The results of this preliminary study on dual radius flaps, being performed under a NASA research contract9, 
provided insight into what additional flap parameters should be investigated to properly characterize the CC flap. 
This analysis was carried out using two-dimensional CFD and a k-ε turbulence model.  The tested geometries, with 
specifications are presented blow in Figure 13.  The study showed that the shorter dual radius flaps with larger θ 
values augmented greater lift, but the flaps with larger r2/r1 ratios had better L/D characteristics.  Though the flaps 
with larger r2/r1 ratio produced an increase in L/D, as the length of the same flap is increased, the favorable L/D 
values quickly diminish. 

7
 
American Institute of Aeronautics and Astronautics
 



 
 

 

 

 
    

  
 

 
   

 
    

 
  

 
    

 
   

  
  

 
 
     

    
  

 
  Figure 13. Previously studied CC dual radius flap configurations. 

B.  Geometry Study 
Additional research was performed on the geometric parameters of the flap surface, given the preliminary 

results, to further characterize the flap shape.  The next parameters that were examined were the shape, slope, slope 
rate of change, and curvature of the flap surface.  The goal of this study was to analyze the geometric properties of 
the dual radius and develop alternative surface curves that would possibly offer enhanced aerodynamics. 

The alternate curve that was compared to the constant radius curve of the dual radius flap was a prescribed radius 
curve.  The prescribed radius curve takes on a specified radius given a position along the chord, similar to that of a 
spiral, which experiences self-preserving boundary layer characteristics along its surface19. This curves close 
characteristics to a spiral give it no instantaneous change in radius of curvature as the radius increases, unlike the 
dual radius flap surface.  This prescribed radius curve matched the location, slope, and slope rate of change of the 
first constant radius curve of r1 at the end of the curve.  From there, it was chosen to have a cubic relationship with 
respect to the chord-wise direction of the airfoil. Allowing the radius to vary cubically, provided additional 
constraints that could be defined.  One of these constraints is the control of the end radius of curvature of the 
surface, which was set to zero to assist in the flow leaving the trailing edge of the flap/airfoil with no angular 
component, increasing Kutta condition.  On top of the constraints that were set by the first r1 curve, the cubic-
varying radius permits the end location and end radius of the curve.  These design parameters define the next set of 
configurations to be analyzed. 

For the analytic comparison of the two curves, a common dual radius shape1, 2, 12, 13, 17, 20, 21, with a r2/r1 ratio of 5, 
was evaluated with a prescribed radius with a r2_avg/r1 of 30.7 and an end radius 60*r1.  The results are presented 
below in Figure 14. 
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Figure 14. Flap surface analysis. 

From the flap shape plot, the two curves appear very similar in physical appearance with the prescribed radius 
curve dipping slightly under the dual radius curve.  Though, the rest of the four plots show the analytical difference 
between the curves. The flap slope plot shows the smooth transition from the r1 curve to the secondary curve for the 
prescribed radius, where the dual radius has a non-smooth change in slope even though the flap slope is continuous. 
This can be seen further in the flap slope rate of change plot, where the dual radius has a discontinuity between r1 
and r2. Although the prescribed radius curve experiences a steep slope after the r1 curve on the curvature plot, it 
keeps a smooth slope transition between the two curves.  Figure 15 displays a close up of the transition, where the 
smoothness can be seen more clearly on the prescribed radius curve.  This smooth transition in curvature 
transitioning into a prescribed variation in radius, is believed to encourage flow attachment as the jet flow travels 
over the flap surface, thus being a central component in the following analysis. 

Figure 15. Curvature of flap surfaces. 

Using analytical analysis of the curves, along with preliminary results, six geometries were created to further 
analyze and are presented in Figure 16 with specifications of each in Table 3.  The callout names of each represent 
either dual radius (DR) or prescribed radius (PR), and the percentage of flap chord (cf) of flap-modified chord (c'). 
The driving parameters of the dual radius flaps were r2 and the length of the flap, where the prescribed radius flaps 
were driven by r2_avg and length due to the cubic variation in radius. DR16 was the baseline dual radius 
configuration, being a common configuration of CC flap systems and having previous experimental1, 2, 12, 13, 17, 20 and 
numerical data available20, 21. PR16 was base on the same length as DR16, with the smooth slope and curvature 
transitions accomplished by the prescribed radius.  DR22 and PR22 were created by extending the length of the flap 
and increasing r2 or r2_avg to have the upper surface of the flap to closely math the top of the original airfoil. This 
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effort was made to keep the flap-modified airfoil as close as possible to the original airfoil's shape.  DR19 and PR19 
where then developed to add an intermediate flap between the -16 and -22 series, resulting in a length and radius in 
between the two. All flap configurations will be analyzed at a 60° flap deflection, due to the lift augmentation 
encountered with moderate drag penalties to follow. This will be an adequate representation of  flap setting used for 
takeoff or approach. 

Figure 16. Flap configurations. 

Table 3. Flap configuration specifications. 

Configuration c'/c cf/c' (r2 or r2_avg) /r1 � 
DR16 0.9414 0.1558 5 33.12° 

PR16 0.9414 0.1558 30.7 23.92° 

DR19 0.9782 0.1875 14.14 21.22° 

PR19 0.9782 0.1875 291.5 16.18° 

DR22 1.015 0.2169 48 14.36° 

PR22 1.015 0.2170 3721 12.35° 

IV. Numerical Simulation 

A.  Grid Generation 
To accurately capture the complex flow physics of circulation control, a semi-structured mesh was utilized.  The 

different regions that were created across the domain comprised of a structured exterior, an unstructured interior 
region, and a structured slot, boundary layer, and wake region.  Figure 17 below displays the entire domain.  This 
figure shows the details of the structured exterior region which promote cell orientation in the freestream direction, 
helping in reducing the time for the solver to compute the governing equations.  The exterior region extends five 
chord-lengths above and forward of the airfoil, ten chord-lengths downward, and 15 chord-lengths aft.  This large 
domain ensured that the flow physics of the CC airfoil were captured. 
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Figure 17. Entire computational domain. 

The interior region was left unstructured to help in the transition from the structured grid of the curved airfoil 
and flap to the structured grid of the orthogonal exterior region.  The unstructured grid also allowed for a more rapid 
growth in cells in regions that did not need the refinement.  This interior region was extended a half of a chord-
length forward and above the airfoil and a chord-length and a half below and aft of the airfoil.  Figure 18 below 
depicts this interior region. 

Figure 18. Interior unstructured region. 

Using the CAD program, Pro/ENGINEER Wildfire 4.0, the boundary layer, slot, and wake regions were created 
and broken into segments.  Figure 19 shows how these different regions and segments were created.  Figure 20 
displays the computational grid of these segments and how the unstructured interior grows from the structured 
segments. 
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      Figure 19. Different segments of structured grid. Figure 20. Computational grid of airfoil. 
A structured grid was used in the boundary layer to ensure orientation in the flow direction and to keep from cell 

skewness in this region. The first slot height of the boundary layer was specified to aim for a y+ value of 1 or lower 
to keep high accuracy of the solution. The structured segments of the boundary layer, slot, and wake flow regions 
started on the airfoil or plenum and travel all the way through the domain out the exit of the exterior, to capture the 
high property gradients of these regions.  Figure 21 presents the details of the slot region with the various different 
structured segments. This figure also details the growth of the boundary layer region into the transition of the 
unstructured interior. 

Figure 21.  Details of the slot region. 

B. Solver Settings 
The solver used for the simulation was Fluent 6.3.  A pressure far-field was the boundary type assigned to the 

inlet, outlet, and symmetry planes. The airfoil and plenum wall were treated as walls, with the plenum inlet getting 
assigned a pressure inlet boundary type.  The solver was set to implicit and density-based.  The turbulence model 
selected for this simulation was the realizable k-�22 with no near-wall treatment due to the grid refinement.  This 
model was chosen over the Spalart-Allmaras23 and k-�24 models because of its ability to capture turbulence features 
with a high quality near-wall mesh, and being commonly used and robust25.  Table 4 below displays the rest of the 
solver settings that were used for the following analysis in Fluent. 

Table 4. Fluent 6.3 solver settings. 

Solver Density-Based/Compressible 
Turbulence Model Realizable k-� 
Near-Wall Treatment None 
Density Calculator Ideal-Gas Law 
Viscosity Calculator Sutherland's Law 
Domain Boundary Type Pressure Far-Field 
Plenum Inlet Boundary Type Pressure Inlet 
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C.  Boundary Conditions 
The boundary conditions were set to achieve a moderate momentum coefficient (C�) and the low-speed airspeed 

encountered during takeoff, landing, and approach. The target 2-D C� was 3, and was calculated using

m� *Vslot slotCμ = (1)
q∞ * c 

where �  is the 2-D slot mass flow rate calculated with only the slot height. The goal of the slot flow was to staymslot 

below sonic.  This would add less complexity to the plenum and slot design, not having to devise a converging-
diverging nozzle which was also impractical for the AMELIA wind tunnel model by the noise implementations 
sonic flow would impose on the N+2 goals.  Though it should be noted that above sonic flow has been seen to not 
have negative effects on the Coanda flow of CC, but yield additional lift gains6, 8.  To ensure sonic flow was not 
achieved, the critical area of the slot was computed using 

γ +1 

γ
A 1
 2
 −1
 2∗(γ −1)
M 2∗
 ∗
 1
 ∗
 (2)+
= * γ
A
 M
 1
 2
+
 

With this equation, the design geometry, and sea level static conditions, a plot of C� vs. M� was constructed with a 
sonic slot limit line to visualize the design area. This graph is presented in Figure 22 below, with the chosen design 
point which represents a freestream Mach of 0.1 or 66 knots. 

Figure 22. Maximum C� attainable. 

From the chosen M�, sea level static conditions, and Equation 1, the slot boundary conditions were computed. 
To do this, the 2-D mass low rate had to be derived from the mass flow definition and Equation 1.  The resulting 
equation follows 

C ∗ P ∗ h ∗ q ∗ cμ slot slot ∞ (3)m� = slot R∞ ∗T∞ 

where Pslot represents the static pressure at the exit of the slot, which has been measured from previous analysis of 
the geometry, and �  represents the 2-D mass flow rate per span.  From Equation 3 and Equation 1, Vslot and Mslotmslot 

can be backed out. This is then used to find the stagnation pressure and temperature at the slot assuming freestream 
static temperature at the slot exit and with the following equations 
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Table 5 below presents all of the boundary conditions that were used in Fluent for the simulation. 
Table 5.  Boundary conditions. 

Freestream Conditions Slot Conditions 
M� 0.1 M 0.8128 
�� (kg/m3) 1.225 hslot (m) 1.127406*10-3 

T� (K) 288.15 Pstag (Pa) 148,220 
P� (Pa) 101,325 Tstag (K) 326.2 
�� (kg/(m*sec)) 1.81205*10-5  C� 0.3 
R� (J/(kg*K)) 287.058 �f (°) 60 
q� (kg/(m*sec2)) 709.29 

V. Results 
The six different flap configurations were analyzed at three different �'s for the same freestream and C� values. 

The objective of this analysis was to characterize the geometric parameters of these different CC flap configurations 
to better understand the resulting flow features and performance of each. Cl, Cd, Cm, (c/4), Cp, and Cf were measured 
for each of the configurations to determine their performance, along with plots of Mach contours and streamlines to 
help visualize the flow physics occurring around the airfoil.  Table 6, on the next page, presents the results for all six 
of the different flap configurations for the � = 0° cases. For visual results of the configurations at all of the �'s 
tested, refer to the Appendix. 
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Table 6. Streamlines and contours of Mach at � = 0°. 

cf/c' Dual Radius Prescribed Radius 

16% 

19% 

22% 
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Several points can be taken from the flow visualization of the simulation, presented in Table 6.  The first being 
the difference in stagnation point location, not only for the different length in flaps but also the dual radius versus 
the prescribed radius configurations.  The location of the stagnation points for the different configurations point 
toward the effect each have on their ability to augment forces. For the dual radius configurations, the lengthening of 
the flap brings the stagnation point further forward on the lower surface of the airfoil. This is not quite the case for 
the prescribed radius flaps, with PR16 and PR22 having similar stagnation point locations and PR19 experiencing a 
further aft location.  When comparing the 16% dual radius to the prescribed radius, the prescribed radius encounters 
a significantly forward stagnation point location. Though when observing the 19% and 22% flaps, this occurrence 
does not appear as noticeable.  Looking at the aft region of the flow visualization, it is noted that the longer flaps 
with smaller � allow the aft streamlines to smoothly transition over the  trailing edge of the flap surface rather than 
experience the much more abrupt and rapid turns of the shorter flaps. Again, this shows the flaps effectiveness on 
force augmentation, but more specifically drag and moment augmentation. 

The analytical plots of Cl vs. � and Cd vs. � displayed in Figure 23 and Figure 24, respectively. 

Figure 23. Lift curve for different flap configurations. Figure 24. Drag coefficient as a function of �. 

From Figure 23 above, it is evident that configuration DR16 achieves the greatest lift augmentation, reaching a 
2-D Cl of 6.4 at � = 3°.  The lift curve for DR19 drops off significantly from DR16, having a 5.5% average drop in 
lift. The reason for this significant variation in lift between DR16 and the other flaps can be attributed to the larger 
departure angle (�) encountered on DR16 with the smallest flap exit radius.  DR19 slightly outperforms PR16, 
having only a 1.2% average increase in lift.  Though this increase in lift of DR19 over PR16 cannot be attributed to 
�, due to PR16 having a slightly larger � of 23.92° compared to the 21.22° of DR19.  Instead these additional lift 
gains can be ascribed to the 3% increase in flap length.  Configurations PR19 and PR22 perform very similarly, 
having about the same lift curve and being an average of 2.8% below the PR16 lift curve and 1.7% below the DR22 
curve.  The similar lift-performance of PR19 and PR22 could be due to the additional 3% length of flap in the PR22 
making up for the smaller � angle of PR22 and yielding about the same lift. 

Observing the drag values from Figure 24 revels that configuration PR19 has the lowest average drag of about 
0.1778 throughout the three �'s.  PR22 has a slight increase in average drag for the �-sweep of 1.38% over PR22, 
having the second lowest drag curve.  PR16 and DR22 have very similar drag values for � = -5°, but then the drag 
for DR22 increases throughout � = 0° and 3°. Similar to the PR-series, the average drag values increase 2.31% from 
the 22% to the 19% dual radius configurations.  DR16 exhibits the largest drag values by far, with an average Cd 
value of 0.2081.  This can be tied to the significantly larger lift augmentation achieved by this configuration.  All of 
the prescribed radius configurations outperform the dual radius configurations in drag-performance.  This is partly 
due to the additional lift values attained by most of the dual radius configurations over the prescribed radius flaps, 
except for DR22 and PR16.  In this instance the lift of PR16 surpasses that of DR22, along with keeping lower drag 
values.  Looking back at the specifications of each of the flaps, this shows that low drag values can be achieved with 
high � values even though the r2/r1 ratio of DR22 (48) is greater than the r2_avg/r1 value of PR16 (30.7).  This 
contradicts what was found in the preliminary studies preformed on the various dual radius configurations, but can 
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be attributed to the different geometrical shape of the prescribed radius configurations. Through the observations of 
lower Cd values experienced by the prescribed radius configurations over the dual radius configurations, the drag 
benefits of the prescribed point to their smoother transitions in slope and curvature, on-average lower �, and lower 
end curvature. 

To directly compare the Cl and Cd values with each other and �, the plots of Cd vs. Cl and L/D vs. � were 
constructed and presented below in Figure 25 and Figure 26. 

Figure 25. Drag polar for flap configurations. Figure 26. Lift-to-drag ratio as a function of �. 

From the Cd vs. Cl plot above, it can be seen that all of the CC flap configurations have very similar drag values 
given lift.  DR16 curve still extends significantly further than the rest, due to the large amount of lift augmentation 
created.  The top two curves of this plot are the 22% flaps, with PR22 just exceeding the DR22 configuration. The 
bottom two curves of this plot are both of the 16% flaps, with PR16 the lowest for low Cl then transitions to DR16 
once the Cl values exceed 5.9. 

The L/D vs. � plot above provides more insight between the lift and drag numbers of the analysis.  This plot 
clearly highlights PR19 with the highest L/D ratio over the other configurations, reaching up to an L/D of 32.8 at � = 
-5° and average L/D of 30.8.  The next two best performers of L/D ratio are the other two prescribed radius 
configurations, with PR16 having an average L/D of 30.5 and PR22 with average L/D of 30.4.  The next two curves 
represent DR19 and DR22 both with average L/D values of 30.0.  DR16 falls an average of 3.5% below the two 
other dual radius configurations.  The trends presented by this plot clearly shows better L/D performance out of all 
the prescribed radius configurations, with PR19 performing the best. Looking at both dual radius and prescribed 
radius L/D performance, the intermediate 22% flaps obtain the best L/D values.  This suggests that the best 
configuration for high L/D being one with a prescribed radius with intermediate flap length and � of about 16°. 
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Figure 27 and Figure 28 display the Cm, (c/4) data for the six different configurations below. 

Figure 27. Quarter-chord moment given �. Figure 28. Lift for a given quarter-chord moment. 

The Cm, (c/4) plots show the large negative moments encountered by the use of CC flap systems, which has been 
seen in past research1, 2, 4, 12, 13, 17, 18.  DR16 experiences the worst negative Cm, (c/4) of -1.5, which can be directly 
attributed to its large lift augmentation.  Following DR16 is PR16 with a 7.2% decrease in negative moment. 
Looking at dual radius and prescribed radius results separately, they experience a similar relationship with the length 
of the flap and the magnitude of the negative quarter-chord moment with the longest flaps encountering the least 
moment.  The Cl vs. Cm,(c/4) plot above helps visualize what negative moment has to be taken for a given lift value. 
This shows that the DR16 configuration obtains the highest lift, but with highest moment to follow.  DR19 obtains 
the next highest lift with a 5.5% average decrease in lift and an 11.4% decrease in quarter-chord moment.  These 
plots clearly show that flap length directly influences the negative moment encountered. 

More detailed analysis of the different configurations can be observed through the Cp vs. x/c' plot for the � = 0° 
cases, displayed below in Figure 29 with the red vertical line representing the slot location. 

Figure 29. Cp distribution on the airfoil. 
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From the Cp plot above, all configurations experience similar pressure distributions over the airfoil with a large 
suction peak near the leading edge and even bigger peak occurring over the blown flap surface. This larger pressure 
peak of the aft part of the airfoil is caused by the CC blowing performed on the trailing edge of the airfoil and gives 
the airfoils the large associated negative pitching moment. It is evident that the configurations vary the most on the 
suction peaks, as well as the longer flaps extending further in the x-direction. Another observation, would be the 
sudden drop in Cp, or sudden flow deceleration, around x/c' of 0.89. This location corresponds with the change in 
flap surface, from the constant arc r1 to the secondary flap surface determined by each flap configuration. All of the 
configurations experience this adverse pressure gradient, which could be problematic in causing upper surface 
separation for lower C� cases. To examine the variations in suction peaks between the configurations, a zoomed in 
view of both leading edge and trailing edge peaks are pictured below in Figure 30 and Figure 31. 

Figure 30. Leading edge suction peak. Figure 31. Trailing edge suction peak. 

The leading edge suction peak plot displays all three dual radius configurations superior in obtaining a more 
negative pressure peak, with DR16 below the rest at -17.4 and DR22 following at -17.1.  PR22 generates the most 
negative pressure peak of the prescribed radius flaps at -16.6, falling just shy of the peak of DR19 at -16.8. Figure 
31 displays very similar trends of the different configurations on the trailing edge suction peak, with DR16 and 
DR22 achieving more negative pressure peaks (-20.8 and -20.4) than any of the prescribed radius flaps, and DR19 
having about the same pressure peak as the best performing prescribed radius configuration of PR22 at -20.2. These 
pressure plots reveal the dual radius configuration attains more negative pressure peaks than the prescribed radius 
flaps. There is a small deceleration in the flow directly aft of the slot, shown by the slight decrease in slope of Cp 
just aft of the red, slot location line in Figure 31.  The source of this is believed to be the small recirculation region 
near the slot, caused by the small gap between the slot opening and the upper surface of the airfoil.  This occurrence 
is depicted in Figure 32 below. 

Figure 32. Recirculation caused by material gap between slot and airfoil upper surface. 

19
 
American Institute of Aeronautics and Astronautics 




 

         
    

    
 

        

    
      
        

    
          

  

 

Figure 33, below, features the Cp values acting directly on the flap surface. This clearly shows that all three dual 
radius flaps carry a more negative Cp further aft on the flap surface when compared to the prescribed radius flaps. 
This is the cause of the dual radius encountering larger negative pitch down moments when compared to the same 
length prescribed radius configuration. 

Figure 33. Pressure distribution over each flap. 

Cf was then computed on the surface of each of the airfoils for analysis, which is shown in Figure 34 below. 

Figure 34. Skin friction coefficient on airfoil surface. 

This plot provides the general skin friction encountered during CC operation, with slot location given with 
vertical red line.  Forward of the slot, all of the configurations behave very similar, with the leading edge peaks vary 
slightly between the configurations, occurring in the same order as the Cp plots above.  It is evident that the main 
variation of Cf takes place aft of the slot, where the influences of the geometry of each of the configurations come 
into play.  Figure 35 below details Cf numbers in the region aft of the slot which is where the surface of each 
configuration varies. 
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Figure 35. Skin friction distribution on flap. 
All of the configurations have a small decrease in Cf shortly aft of the slot, which is again attributed to the small 

amount of recirculation caused by the material gap between the slot opening and the upper surface of the wing 
(Figure 32).  When inspecting this aft region of the airfoil, it can be seen that the length of each of the flaps has the 
most effect on the Cf value. The longer the flap length, the larger the Cf value for the duration of the flap.  When 
comparing the same length dual radius and prescribed radius flaps follow about the same Cf along the flap until they 
encounter a pronounced drop-off and recovery at about a x/c' of 0.89.  After this “dip” in Cf the dual radius 
configurations’ skin friction rises back up slightly, where the corresponding length prescribed radius flaps remain at 
this decreased skin friction slope for the shorter flaps and only slightly rebound for the longer prescribed radius 
flaps. This gives more insight into why the dual radius configurations experience more drag than the corresponding 
prescribed radius flaps, though might be favorable in keeping the flow attached to the flap surface during extreme 
deflections or low values of C�. This Cf “dip” is explored in greater depth below in Figure 36. 

Figure 36. Detailed view of flap surface transition. 
By examination of the above plot and the geometry of the different flap configurations, it can be noted that this 

"dip" signifies a large decrease in speed and takes place at the location where each flap transitions from r1 into either 
r2 for the dual radius or into the cubically varying radius of the prescribed radius flap. The effect of this curvature 
change on the skin friction can be seen by the severity of the “dip” encountered by each flap.  When tracking the 
influence of the flap length on the skin friction it appears that the longer the flap, the greater the rebound in Cf values 
after the sharp decrease.  Comparing the prescribed radius flaps to the dual radius flaps, it is evident that the 
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prescribed variation in radius, greatly smoothes the sharp fluctuation in skin friction, with PR16 enduring the 
smoothest change in the skin friction slope and PR22, having the sharpest change. This is characterized by how 
quickly each of the prescribed radius flap curvatures departs from the curvature of the r1 arc on the flap.  This 
concept is visualized in Figure 37 below. 

Figure 37. Departing curvature of the prescribed radius flaps. 

When comparing the flap characteristics presented on the above plot to Figure 36, the effect of the departing 
curvature of each flap is more clearly observed.  The more severe "dip" in PR22 is due to its curvature quickly 
departing from the original curvature of r1. This also shows how the smooth and gradual curvature changes of PR16 
are beneficial in keeping the flow over the top of the flap surface attached through large flap deflections for lower 
cases of C�. Another point is that the rapid change in Cf also coincides with the large pressure increase in the Cp 
plots, defining a rapid deceleration of flow.  This proposes that the more rapid changes in curvature directly 
influence adverse pressure gradients, which could cause separation at lower values of C� or larger flap deflections. 
This influence of flap curvature could provide an example of the onset of the "super-circulation control" observed by 
past research2, 26, 27. 

Figure 38, below, presents the wall y+ values encountered during the simulation. 

Figure 38. y+ values of the different flap configurations. 
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The y+ values for all of the different flap configurations stay at one or below, except for the slot location.  The 
same problem was encountered by Lee-Rausch20, who reduced spacing by a factor of four to see little difference in 
solution.  Reduction of the cell height at the slot would significantly drive up cell count, greatly increasing solving 
time.  For these reasons, the current y+ values deemed adequate. 

VI. Conclusions 
By exploring the design space of various CC flap systems, several performance characteristics were developed 

which provide insight into the geometrical effects of the CC flap.  The parameters varied in this study showed that 
the largest lift augmentation was achieved with the shorter, dual radius flap that keeps a large curvature throughout 
the exit of the flap and a large � value. Although very large negative pitching moments are associated with such lift 
augmentation, along with large drag penalties resulting in the lowest L/D values of all of the flap configurations. 
This could yield negative impacts on the design of the system implementing such a flap configuration, requiring 
additional thrust and control surface area.  In terms of the lowest adverse moments encountered, the longer the flaps 
experienced less negative moment with the prescribed radius geometry performing better by not carrying as much 
negative pressure over the blown flap surface as the comparable dual radius flap. 

Although the prescribed radius configuration developed in the paper does not match the same lift augmentation 
as the dual radius flaps, it outperformed the dual radius in several other categories.  Those being the drag induced by 
the flap, higher achievable L/D ratios, lower negative moments, and a more favorable curvature promoting flow 
attachment for lower values of C�.  The skin friction measurements revealed the importance of a smooth and gradual 
change in curvature by developing sudden gradients along the flap surface where the curvature changed 
instantaneously or rapidly, where flaps with this steady transition encountered a slower change in Cf.  This research 
provides insight into the arena of CC flap design in order to improve existing CC flaps, along with aid in the 
development of new better performing systems. 

VII. Future Work 
The same set of flap configurations is set to be simulated with 90° flap deflection to observe the characteristics at 

a larger flap deflection. This data will provide further insight into the geometrical effects of the flap at a more 
extreme case. A cruise configuration of the six flap configurations is also set out for analysis to measure the airfoil 
performance when the flaps are at 0° deflection and speeds are reaching super-critical. 

Throughout further research into the curvature parameter of the CC flap, an additional assortment of prescribed 
radius flaps are well within reach of being developed and could greatly enhance the performance flap system.  With 
control over the prescribed variation of the flap radius, the flap can be altered to achieve a specific desired 
performance. This area of CC studies is not thoroughly researched, and could hold some interesting results. 

Further work will be performed on the k-� turbulence model, since it has been shown to over predict lift 
significantly28 due to the assumptions it takes on29.  This is caused by the over predicting of the turbulent kinetic 
energy production30 and failure for the model to follow streamline turning during CC flows26. This makes the k-� 
turbulence model inadequate for capturing separation or recirculation regions.  A parallel effort is underway to 
improve the CFD modeling of CC configurations with the development of an improved turbulence model for CFD 
that will predict the increased circulation flow field of the CC flap much more accurately31.  This model will be a v2
ƒ extension of the k-� model which will account for non-local wall effects, nonlinear eddy viscosity, and curvature 
corrections.  Preliminary case studies of this model show results almost matching experimental data exactly, where 
the k-� and k-� models over-predict Cl significantly.  The linear and nonlinear v2-ƒ extension of the k-� model is 
currently being validated with more basic predictions, before used for CC flap analysis. Though the extent of this 
research was to observe the performance characteristics of the different geometrical flap parameters, rather then 
validation of experimental data or simulating stall where these problems would degrade the solution. 
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