

A Translational Web Services Bridge for Meaningful

Interoperability Among Information Systems

Kym Pohl

CDM Technologies Inc.

2975 McMillan Ave.

San Luis Obispo, CA. 93401

805-541-3750 x233

kpohl@cdmtech.com

and

Lakshmi Vempati

CDM Technologies Inc.

2975 McMillan Ave.

San Luis Obispo, CA. 93401

805-541-3750 x248

lvempati@cdmtech.com

Abstract—An emerging issue in the world of context-centric
software-based decision-support is the need for potentially
disparate systems to interoperate in meaningful and useful
ways. Such interoperability must go beyond the elementary
communication of data and endeavor to support a more
powerful context-oriented inter-system relationship. A key
issue in such functionality is the support, moreover the
promotion, of meaningful interoperability while still
retaining individual system representations, or perspectives.
In other words, the meaningful integration of potentially
disparate systems in a manner that allows each collaborating
system to retain its potentially unique means of
representing, or perceiving, the domain over which it
operates. In the past, several approaches to this problem
have been postulated, such as development of a specific
translator for each source/target system pair combination,
development of a universal ontology to encompass both
systems, and so on. Specific, one-off translators are usually
tightly coupled with both systems and have limited support
for dealing with representational changes. The alternate
approach of developing a universal representation is not
only highly impractical but also requires an ongoing effort
of monumental proportions to achieve even a remotely
acceptable solution. Considering the potential complexity
inherent in mapping between possibly disparate perspectives
it is the opinion of the authors that a suitable solution will
require the employment of reasoning-enabling technologies
capable of supporting the high level analysis involved in
performing such context-based translation. Above and
beyond the need for complex translation among differing
perspectives, the authors see an additional critical ingredient
in supporting meaningful interoperability among systems as
being the application of a web services-oriented model of
inter-system collaboration. In this paradigm, both
formalized and more ad hoc system capabilities are
essentially defined and exposed as accessible web services.
Interoperability in this sense involves systems employing

each other’s services in an effort to perform their desired
tasks. Reliant on support for complex translation to map
between perspectives, this notion of remote service
invocation offers a simple yet effective metaphor for
addressing the increasing need for useful interaction among
potentially disparate systems. The focus of this paper1,2 is to
provide both a vision and supporting design for a
translation-based web services interoperability bridge
capable of supporting web services-oriented interoperability
among systems operating over potentially disparate
representations. Capitalizing on offerings from both the
artificial intelligence and semantic web-based worlds the
presented design incorporates technologies such as
inference engines, rule-based systems, XML, XSLT, web
services and service-oriented architectures to provide the
needed infrastructure to support meaningful interoperability
among context-based systems in an information age.

TABLE OF CONTENTS

1. THE PROBLEM ...1

2. INGREDIENTS FOR A SOLUTION......................................3

3. A SOLUTION: TRANSLATIONAL WEB SERVICES
INTEROPERABILITY BRIDGE ...4
4. CONCLUSION..7

REFERENCES..7

AUTHOR BIOGRAPHIES ...8

1. THE PROBLEM

As the demand for sharing information increases, an
additional burden is placed on the tools and systems that
support the decision-making process. Context-oriented

1 IEEE Copyright 0-7803-8870-4/05/$20.00©2005 IEEE
2 IEEEAC paper #1467, Version 3, Updated December 10, 2004

1

systems, as opposed to data-centric systems, rely heavily on
the contextual depth of the descriptions over which they
operate. Contextual depth, or semantics, forms the
fundamental enabler for such systems to offer users helpful
assistance in the decision making process. Driven by the
need for systems to understand more about the problems
they are helping to solve is the need for such systems to
interoperate. Whether interacting with other context-enabled
systems or accepting data feeds from legacy data-centric
systems, the need to understand the semantics of what is
being communicated places a significantly higher burden on
the representational depth of the overall exchange.
Providing support for such context-centric interoperability is
the topic of much research within academia and industry
alike [15].

Among the multitude of issues surrounding the subject of
meaningful interoperability, it is the fundamental strength of
context-centric, decision-support systems that posses the
most challenging problem to this endeavor. This critical
enabler, and simultaneous nemesis, is representational
depth. As the name implies, the context-oriented approach
to building decision-support systems endeavors to go
beyond the classical nuts and bolts approach to
representation (i.e., isolated chunks of typically numeric or
string-based data with little or no inter-relationships and
essentially void of any embedded semantics) and
incorporate the potentially numerous relationships,
implications, and rules that are needed for the more complex
analysis inherent in agent-based, decision-support systems.
A critical aspect of such representational depth is
perspective. The biases associated with how something is
viewed are very significant to the decision-making process
within a particular domain. As such, perspective is a critical
ingredient to effective context-oriented representation.
Supporting the perspective of viewing a truck as a
sequenced collection of assembly stages may be more
appropriate, and effective, to an assembly-line management
decision-support system than to view the automobile as a
means of transporting cargo, the latter being more
appropriate for a shipment planning system. The flip side to
such representational depth is the increased disparity that
inevitably develops between the representations upon which
particular systems operate. In other words, the most
empowering ingredient in context-oriented computing also
presents one of the most difficult issues to deal with when
such systems are asked to interoperate [18] [20].

The result of this paradigm is that for any meaningful
interaction to occur between context-oriented systems there
must be a translational component to the solution. To
preserve the native biases (perspective) inherent in each
interacting system, exchanged context must be transformed
in a manner that incorporates the applicable perspectives of
the receiver. It is this focus that drove the design and
development of the web services-based, translational
interoperability bridge presented in this discussion. The
following sections describe the criteria for an effective
solution to this paradigm, various technologies that show

significant applicability to this endeavor, and finally a
discussion of a solution in the form of a translational, web
services-based interoperability bridge successfully
incorporating these ingredients.

Criteria

To successfully address the issues presented above,
candidate solutions are required to meet several criteria.
These properties range from adoption of available standards
to exuding characteristics compatible with flexibility and
reuse.

One of the primary goals of any solution intended for
repeated application to varying interoperability scenarios is
the ability to be flexible. A key aspect to such adaptability is
the clear separation of framework from application
specifics. In other words, support for the various
abstractions associated with translation-based
interoperability should be designed and implemented as a
reusable framework. This framework should also identify
the necessary interfaces outlining its connection to the
application-specific side of the equation. The latter requiring
the necessary functionality to effectively adapt client
systems to the particular interoperability framework and
interaction model presented by the solution.

Another important quality of a candidate solution is the
promotion of available industry standards. This is
particularly significant when a high degree of reusability by
numerous parties is intended. Accordingly, the application
of such a tool should center on industry-familiar
technologies, standards, and tools. Not only does adherence
to available standards aid in adoption of a particular solution
but it constitutes an endeavor of significant importance in a
field where complexity and one-off solutions abound.

As was identified in the previous section, a critical
ingredient of interoperability among context-oriented
systems is the preservation of individual perspective. This
requires the ability to understand the subtleties inherent in
such a concept (e.g., implied domain-specific constraints
that have equally obscure and individual counterparts when
considered from other domain-related perspectives). The
logic required to support translation between such
perspectives presupposes a level of reasoning akin to expert
systems. In many respects, for the more complex context-
oriented interaction a level of decision-support on par with
solutions supporting multi-variable, complex problems may
be appropriate. At times this may even suggest the inclusion
human decision makers to represent higher-level concepts
not able to be adequately represented with current
technology.

An additional, yet often times overlooked, criterion for a
successful solution to the interoperability problem is not
only the support of complex context translation but also the
ability to support a more straightforward transformation
without incurring the overhead associated with support for

2

the former. This is often the case where solutions targeting
complex problems offer over-engineered and subsequently
inefficient solutions for less taxing scenarios. The goal is to
support a range of complexities and to limit any incurred
overhead to situations where it cannot be avoided.

2. INGREDIENTS FOR A SOLUTION

The solution offered in this discussion takes the form of a
translation-based, web service-oriented interoperability
bridge based on a reusable framework. The interoperability
bridge enhances the traditional web services architecture by
also addressing the issue of differing representations
between service users and service providers. As indicated
earlier, supporting meaningful interaction among potentially
disparate perspectives and subsequent representations is
particularly important when dealing with context-oriented
systems.

The application of a service request metaphor to inter-
system collaboration allows each interoperating system to
view other systems, and expose itself, as a collection of
available services. The resulting interoperability model
promotes a decoupled environment requiring no notion of
system identity other than the standard service descriptors
registered with the bridge’s web services registry. Further,
due to the embedded translational quality of this solution,
bridge clients (i.e., service users and service providers) need
not be concerned that the other might speak a different
language. In support of such an interoperability model, a
number of established, and emerging technologies may be
employed.

Technologies

The web service-based, translational interoperability bridge
incorporates a number of prominent technologies to
accomplish its goal. First among these is web services
architectures [2] [3] [10] [11] [12] [13]. By supporting
standardized service lookup registries and interaction
protocols, web services architectures present an extensible
decoupled, capability-oriented model for system interaction.
In this model services are employed on an as-needed basis
allowing the classical notion of operational boundaries to
effectively expand and contract, as additional capabilities
are needed. Furthermore, adhering to standard interaction
protocols, systems are empowered with a vehicle for
discovering and engaging new capabilities. Although the
issue of semantic discovery is still an area of significant
research, web services architectures lay an effective
foundation for such discovery-oriented dynamics.

The eXtensible Markup Language (XML) [9] [14] together
with its Extensible Stylesheet Language Transform (XSLT)
[1] language counterpart are two additional technologies
employed by the interoperability bridge. XML provides a
flexible means of defining structure through the use of
syntactical tags. XML schemas can be developed to describe
the structural aspects of entities, notions, and concepts.

Receivers can process XML documents based on these
schemas in an interpretational manner. The result is a means
whereby software components can process incoming
content based on a previously unknown representation.
However, it should be noted that such discovery is limited
to structural characteristics and does not include the
discovery of semantics, or meaning, vital in context-
oriented decision-support systems. Even considering a
schema describing the domain of concepts, rules, and
implications, there is still a requirement for a pre-defined
understanding by the receiver of the basic concepts, rules,
and implications of the domain. At some point, the
semantics need to be adequately represented beyond simply
their structure. That said, however, structural discovery does
play a significant role in the eventual goal of true contextual
discovery but is only a piece of the puzzle.

The ability to describe discrete, interpretable structure can
be exploited to support structural transformation between
XML schemas. XSLT is one such language that can be used
to describe exactly how content based on one schema can be
mapped into another. XSL transforms, or rules, can be
defined statically or dynamically and can be effectively
applied in the case of straightforward, property-to-property
translation. Translation at this level is useful however, for
the more complex transformation inherent in context-
oriented representations a more powerful paradigm is
required. The additional reasoning required for this level of
transformation can be successfully addressed through the
use of inference engine-based technology. Similar to XSLT,
inference engine-based transformation represents
transformation logic as sets of managed rules. However, in
the case of inference engines, these rule sets can be
significantly more complex with support for extensive
condition-based pattern matching and the subsequent
management of progressively satisfied pattern matches.
Some examples of rule-based inference engines are the
CLIPS expert system shell developed by NASA [17] and
the JESS inference engine developed by Sandia
Laboratories [6]. In either case, complex transformation
logic can be implemented as expert systems applying
various levels of reasoning to determine the appropriate
transformation. An illustration of the benefits of such
capabilities would be the case, for example, where the
transformation of a heavily constrained plan may need its
truth maintained as it moves from one representational
world to another. Under these capabilities assured truth
maintenance may require a level of decision-support capable
of reorganizing the plan in a manner that complies with the
additional constraints described in the target world while
still representing the initial intent, or goals, outlined in the
source world. Availability of this level of transformation
capabilities allows such activities to be functionally and
architecturally encapsulated within the conceptual inter-
system bridge. This ensures that any artifacts passing into a
connected system’s representational world are fully
compliant with native constraints. The resulting
interoperability model avoids the representational
contamination associated with having to distinguish foreign

3

Service DelegateService DelegateAdhoc CapabilityAdhoc Capability
Web Service

Web Service

TranslatorTranslator

Web Service User
Web Service User

Formal CapabilityFormal Capability

Session Manager

Translation Manager

Session Manager

Translation Manager

content from native content within a particular world, the
former requiring a level of additional local processing to
become compliant with local constraints before it can be
reacted to.

3. A SOLUTION: TRANSLATIONAL WEB

SERVICES INTEROPERABILITY BRIDGE

The overall design of the interoperability bridge is divided
into two primary components. The first of these
components, the Translational Web Services Center (or
Service Center for short) forms the heart of the bridge and is

Non-Web Services-Oriented System

responsible for standard web services administration
including management of the central web services registry
as well as interaction between service requestors and the
services they utilize. In addition, however, to effectively
bridge representational differences between service
requestors and providers, the Service Center is also
responsible for transparently employing an appropriate
translation service to perform any required translation. As
such, both collaborators are effectively shielded from any
differences in native representations yet are able to interact
in a meaningful manner. The following section provides an
in depth discussion of the Service Center and how it
supports this level of interoperability.

Web Services Center (WSC)

Web Services Group

System
Connector

Service Delegate

Connector Framework

Adhoc Capability
Web Service

Translation Web Service

Services Registry

Translator

<<Service Registration>>

Adapter

Web Services-Oriented System

Web Service User

Formal Capability

<<Service Registration>>

<<Service Registration>>

Session Manager

Translation Manager

<<Service Lookup>>

Web Service Users

<<Service Access>>

OBJECTIVES:
- Support, and promote, web services-based interoperability between systems
- Adapt non-web services-enabled systems to a web services paradigm
 - Expose well-formed, as well as adhoc capabilities to web clients
 - Refrain from requiring internal system changes
- Support efficient interaction for web-enabled services
- Support a virtual personalized, web-wide, homogeneous representation
 - Support transparent simple and complex translation between clients
- Provide web service fault management transparent to service users
- Support standard models for web service security

Figure 1 – Overall Session Architecture Supporting Meaningful Interoperability Between Collections of Both Formal and Ad

Hoc Services

Translational Web Services Center (Service Center)

The Service Center is based on a standard web services
framework [10], however, enhanced with a translation
management facility. Figure 1 provides an illustration of
how the Service Center integrates into a web services
architecture consisting of both formal and more ad hoc-
oriented services. As its primary role, the Service Center
provides a web-enabled facility where service clients can
discover and engage registered services using XML
structured content over SOAP-based (Simple Object Access
Protocol) [21] communication. As is illustrated in Figure 1,
services can exist in fully formalized web-enabled form or
in a more ad hoc manner that can be adapted to this web-
services paradigm through employment of the Connector
Framework (the Connector Framework will be discussed in
greater depth in a later section). Regardless of the formality
and sophistication of services, the Service Center presents
its clients with a congruent web-services view regardless of
native representation.

Although centered on a standard web services architecture,
this solution extends such a model through its ability to
seamlessly bridge representational differences between
clients and the services they interact with. The Service
Center manages this activity in the form of a Translation
Manager. Not a translator itself but rather a manager of such
activity, the Translation Manager is responsible for
discovering and engaging suitable translation web services
to perform the required representational mappings.
Adhering to the common web services interaction model by
itself acting as a client to the Service Center, determination
and engagement of translation services by the Translation
Manager is performed through Universal Description,
Discovery, and Integration (UDDI)-based registry lookup
and XML-based SOAP communication [10]. Where security
is an issue, this process would include a level of
authentication of trust since the chosen translation service
would be decrypting the message content in order to
perform the necessary translation. Since the translation

4

service is engaged in a standard web-services manner such
authentication would follow well-established procedures.

Once web service clients locate a suitable service via the
Service Center registry, interaction with that service occurs
via the Service Center itself, rather than directly with the
service. This is a clear departure from the typical model
where once engaged, interaction between web service client
and web service provider occurs in a direct point-to-point
fashion. The motivation behind this deviation is based on
the desire to shield both service client and provider from
any responsibility for, or even notion of the representational
translation occurring behind the scene. The disadvantage of
this interaction model is the inclusion of an extra node (i.e.,
the Service Center) in service client and provider
interaction. However, in practice there are numerous
opportunities for various levels of optimization ranging
from the spawning of dedicated Translation Managers per
service session to actually supporting direct service client
and provider communications when translation is not
actually needed (i.e., client and provider speak the same
language). In the case of direct interaction, the Service
Center provides the client with the reference of the actual
service as opposed to that of the Service Center itself. In any
case, once a service has been located (i.e., a suitable service
has been discovered and the Service Center has returned an
appropriate reference) both parties collaborate with each
other according to their own native languages. In essence,
with respect to Service Center-based interaction each party
is provided with a homogeneous representational view of
the world.

In practice, the translation activity comes in multiple levels
of complexity. In its simplest form, translation may be
straightforward property-to-property mappings. In this case,
a translation service employing XSLT-based transformation
would suffice. However, in the case of context-centric
systems (as service clients or providers), translation between
representations may require a more sophisticated
environment. In such situations an inference engine-based
translator capable of managing communities of rule-based
agents may be more appropriate. In either case, the
Translation Manager can utilize the discovery-based registry
to locate a suitable translation service.

As is alluded to above, the current design of the solution
presented in this paper imparts no explicit responsibility on
any part of the Service Center for configuring translation
services with either the relevant representational schemas or
the knowledge of how to map between them. Rather, the
Service Center relies on its ability to locate and engage
other web services capable of carrying out the needed
translation. Outsourcing such responsibilities to those
services that essentially own particular domains promotes
the notions of maintainability, scalability, and design
simplicity.

Connector Framework

The second component comprising the interoperability
bridge, the Connector Framework, offers a reusable
framework for adapting non-web services-savvy capabilities
to the interoperability model promoted by the Service
Center. Figure 2 illustrates the internal architecture of the
Connector Framework along with the implemented
interfaces encapsulating various client-specific details
including exactly how to interact with local capabilities (i.e.,
actual services). Service Center clients requiring adaptation
utilize a Connector configured with specific
implementations of such interfaces to facilitate all direct
interaction with the Service Center. Such interaction is
essentially predicated on either the issuance or reception of
web services-based communications (e.g., service
registration, service lookup, service requests, and request
results).

Outgoing communications, whether a request for service or
the results of a locally satisfied service request, are managed
collectively by the Export Manager, Export Adapter, and
Export Formatter. The main function of the Export Adapter
is to employ the mechanism offered by the local capability
to receive outgoing communications. In many cases this
mechanism may take the form of an event service capable of
notifying interested parties (in this case, the Export Adapter)
of various events (e.g., issuance of a service request). In
other cases, such a mechanism may simply take the form of
explicit method calls made to an extended Export Adapter
implementation. However, the Connector Framework makes
no demands of the efficiency or sophistication of such a
facility other than its existence.

5

<< Notation >> << Notation >>

Export Mgr

Service Delegate

Specifies the interface for delegating a request to a local service. Any
number of delegate implementations can be developed and registered
directly with the Web Servicve Center depending on the number and variety
of available local services.

<< Notation >>

Brokers incoming remote requests for service to
the appropriate registered local service
delegate. Synchronous results to locally-carried
out services (request success codes and, if a
synchronous service, the results of the request)
are passed to the Export Mgr for propagation
across the bridge to the request initiator.

<< Notation >>

Specifies the interface for adapting to the 'export object'
invocation mechanism. In many cases this may be a local
subscription service that the adapter uses to be receptive to
localy initiated requests for remote service. However, the
specifics of how such behavior is carried out in the local
environment are isolated to the adapter's implementation.

<< Notation >>

Import Formatter

Specifies the interface for
performing specific reformatting of
incoming XML documents into
native formats (i.e., XML, POWs,
etc.).

<< Notation >>

Export Formatter

Specifies the interface for performing specific
reformatting of outgoing native objects into
Web Service Center-compliant XML documents.

<<Request>>
Export

Export Adapter

Responsible for propagating outgoing requests
to the Web Service Center (even requests to
publish the results of a service request in the
requestor's environment).

Figure 2 – Connector Framework Architecture

Once the Export Adapter has received outgoing
communications, it is passed to the Export Manager for
standard outgoing communications processing. Such
processing involves reformatting the content into its XML
equivalent. Recall that all direct interaction with the Service
Center is XML-based. The specifics of this reformatting
operation are completely encapsulated inside the particular
Export Formatter implementation. While Service Center
clients already capable of communicating in XML can avoid
the overhead associated with this extra step, having such a
reformatting capability allows non-XML capabilities to
effectively utilize this interoperability solution in an
architecturally organized manner. This again illustrates an
underlying theme of this solution to limit constraints placed
on system representation. Once the communication has been
appropriately formatted into its XML equivalent, the Export
Manager passes the content to the Service Center for
processing as either a request for service or the results of a
locally satisfied service request.

Incoming communications in the form of service requests
are passed from the Service Center directly to the
appropriate service delegate for processing. Adhering to the
interface specified by the Connector Framework, each
Service delegate implementation essentially represents a
proxy, or representative, for a locally available capability.
Adapting system capabilities to the web services
interoperability model presented by the Service Center,
service delegates are responsible for registering the
capabilities they represent with the Service Center and
fielding any requests for their use. It should be noted that at
this point, the Service Center has already performed any
necessary representational transformation on the
communication ensuring that the target connector only
receives content compliant with the native representation of
the system, or capability, it is representing. Once a request is
received from the Service Center, service delegates pass the
communication through the Import Formatter converting its
content to the appropriate native format. Similar to the
employment of the Export Formatter, this step is only
necessary if the native format is non-XML based. It should

6

also be noted that both the Export and Import Formatters do
not perform the type of representational transformation
undertaken by the translational component of the Service
Center. These formatters simply convert non-XML formats
to their XML equivalents, and vice versa.

Once the request has been converted into the native format,
the particular service delegate invokes the native capability
to perform the requested service and manage the returning
of any results to the Service Center as outgoing
communications. Details of exactly how local capabilities
are invoked and interacted with are fully encapsulated inside
the service delegate and may take a variety of forms
including direct interface interaction or creation of a local
event triggering the desired functionality. Regardless of the
means of invocation, the functionality being requested may
be at varying stages of formality. In other words, since the
service delegates are essentially the web service-savvy
representatives of a particular set of functionality, exactly
what local functionality constitutes an externally exposed
service is encapsulated, and can therefore be essentially
determined, by the particular delegate. This is particularly
useful when adapting legacy functionality to a web service-
oriented interoperability paradigm. The actual functionality
comprising a particular service need not be aware of the
grander scheme of interoperating with other systems.

The scenario presented above is, of course, most suitable
where there is no native concept of web services
interoperability. However, in the case where native
capabilities are designed to operate in a web services
paradigm, the role of Service Delegates can be reduced to
managing the reformatting of communications in the case of
non-XML systems, or, in the case where XML is supported,
omitted completely. In the latter scenario the native web
services capability would manage its own exposure to the
Service Center but would still benefit from the virtual
homogeneous representational environment supported by
the translational component of the Service Center.

4. CONCLUSION

The Translational Web Services Interoperability Bridge
presents an effective means where by existing, perhaps
loosely defined, system functionality can be adapted to
operate in a web services paradigm. Through the use of
Service Delegates, the details associated with directly
interfacing with local system functionality are encapsulated
and effectively isolated from reusable framework
components. With flexibility as a fundamental theme,
systems developed with such service-oriented concepts
more native to their design are able to avoid any undue
overhead associated with such adaptation and exploit the
functionality offered by the Service Center in a more direct
fashion.

The solution to interoperability presented in this discussion
goes beyond traditional web services architectures by

supporting the representational disparity typically exhibited
by context-oriented systems. Rather than constraining
interoperating systems to common representations, the
interoperability bridge provides a mechanism for managing
the potentially complex representational translation between
interoperating systems. As a result, interoperating systems
can function in an extended service-oriented world while
still maintaining their significantly biased perspectives
critical to context-based decision-support.

REFERENCES

[1] Cagle, K., M.	 Corning, J. Diamond, T. Duynstee, O.
Gudmundsson, M. Mason, J. Pinnock, P. Spencer, J.
Tang, A. Watt, J. Jirat, P. Tchistopolskii, and J. Tennison,
“Professional XSL”, Wrox Press Ltd,. Birmingham, UK.,
2001

[2] Daconta M., L. Obrst and K. Smith, “The Semantic Web:
A Guide to the Future of XML, Web Services, and
Knowledge Management”, Wiley, Indianapolis, IN., 2003

[3] Ewalt D., “The Next Web”, Information Week, October
2002,
(www.informationweek.com/story/IWK20021010S0016)

[4] Fikes R. and D. McGuinness, “An Axiomatic Semantics
for RDF, RDF Schema and DAML+OIL”, KSL
Technical Report (KSL-01-01), October 2001,
(www.ksl.stanford.edu/people/dlm/daml-
semantics/abstract-axiomatic-semantics.html)

[5] Fowler M and K Scott, “UML Distilled: Applying the
Standard Object Modeling Language”, Addison-Wesley,
Reading, Massachusetts, 1997.

[6] 	Friedman-Hill, E., “JESS In Action”, Manning
Publications Co., Greenwich, CT, 2003

[7] Garshol L. and G. Moore (eds.), “The XML Topic Maps
(XTM) Syntax”, JTC1/SC34:ISO 13250, July 22, 2002,
(www.y12.doe.gov/sgml/sc34/document/0328.htm)

[8] Giarratano J. and Riley G., “Expert Systems: Principles
2ndand Programming”, Edition, PWS Publishing

Company, Boston, MA.

[9] Gil Y. and V. Ratnakar, “Markup Languages: Comparison
and Examples”, Information Sciences Institute, University
of Southern California, TRELLIS project, 2002,
(www.isi.edu/expect/web/semanticweb/comparison.html)

[10] Graham S., S. Simeonov, T. Boubez, D. Davis, G.
Daniels, Y. Nakamura, and R. Neyama, “Building Web
Services with Java: Making Sense of XML, SOAP,
WSDL, and UDDI”, Sams Publishing, Indianapolis, IN,
December 2001

7

[11] Heflin J., R. Volz and J. Dale (eds.), “Requirements for a
Web Ontology Language”, W3C Working Draft, July 8,
2002, (www.w3.org/TR/webont-req)

[12] Hendler J., T. Berners-Lee and E. Miller, “Integrating
Applications on the Semantic Web”, Journal of the Institute
of Electrical Engineers of Japan, 122(10), October 2002,
(pp.676-680).

[13] Horrocks I., “DAML+OIL: A Description Language for
the Semantic Web”, IEEE Intelligent Systems, Trends and
Controversies., 2002

[14] Hunter D., C. Cagle, D. Gibbons, N. Ozu, J. Pinnock,
and P. Spencer, “Beginning XML”, Wrox Press Ltd.,
Birmingham, UK., 2000

[15] Karsai G., “Design Tool Integration: An Exercise in
Semantic Interoperability”, Proceedings of the IEEE
Engineering of Computer Based Systems, Edinburgh,
UK, March, 2000

[16] Manola F. and E. Miller (eds.), “RDF Primer”, W3C
Working Draft, March 19, 2002,
(www.w3.org/TR/2002/WD-rdf-primer-20020319/)

[17] NASA, “CLIPS 6.0 	Reference Manual”, Software
Technologies Branch, Lyndon B Space Center, Houston,
Texas, 1992

[18] Pohl J., “Information-Centric Decision-Support Systems:
A Blueprint for Interoperability”, Office of Naval
Research (ONR) Workshop hosted by the CAD Research
Center in Quantico, VA, June 5-7, 2001

[19] Pohl J, A Chapman, K Pohl, J Primrose and A Wozniak,
“Decision-Support Systems: Notions, Prototypes, and In-
Use Applications”, Technical Report, CADRU-11-97,
CAD Research Center, Design Institute, College of
Architecture and Environmental Design, Cal Poly, San
Luis Obispo, CA, January, 1997

[20] Pohl K., “Perspective	 Filters As A Means For
Interoperability Among Information-Centric Decision-
Support Systems”, Office of Naval Research (ONR)
Workshop hosted by the CAD Research Center in
Quantico, VA, June 5-7, 2001

[21] Simple Object Access Protocol (SOAP) Version 1.1;
www.w3.org/TR/soap

AUTHOR BIOGRAPHIES

Kym J. Pohl is a senior software engineer with CDM
Technologies Inc. in San Luis
Obispo. His current focus is on
agent-based, collaborative
decision-support systems with
particular interest in
representation and collaboration
architectures. Following an
undergraduate degree in Computer
Science he earned Master degrees
in Computer Science and

Architecture. Over the past 15 years he has provided
technical leadership in the design and development of a
number of multi-agent decision-support systems for the US
Department of Defense, including the Integrated Marine
Multi-Agent Command and Control System (IMMACCS) for
tactical command and control and the SEAWAY system for
the coordination of logistical sea-based sustainment
operations.

Lakshmi Vempati is a Software Developer Specialist at
CDM Technologies Inc. in San Luis
Obispo, CA. Some of her interests
include agent based decision
support systems, modeling and
simulation and all aspects of
aviation and spaceflight. She has a
Bachelors degree in Electrical
Engineering and a Masters degree
in Aerospace Engineering.

8

