
Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   1 

 

 

 

 

Kosmos, an OpenGL Android Game 
 

 

 

Senior Project 

Computer Engineering Department 

California Polytechnic State University, San Luis Obispo 

 

 

by 

Kodie Goodwin 

June 2012 

 

 

 

Advisor 

Dr. Hugh Smith 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   2 

Table of Contents 

Abstract 4 

Introduction 4 

Android Utilities vs. Games 4 
Libgdx, Game Engine 4 
Game Mechanics 5 
Upgrades 5 
Graphics 6 
Text 6 
Multi-touch Input 7 
Collision Detection 7 
Procedural Content Generation 7 

Background 8 

Why an Android Game? 8 
Why Kosmos? 8 

User Experience 8 

Main Menu 8 
Saved Games 9 
Upgrade Screens 9 
Pause Screen 10 
Playing a Wave 11 

Arena 11 

Heads up Display 11 

User Input 12 

Results Screen 12 

Music 13 

Putting it All Together 14 

Libgdx, an Open Source Game Engine 14 

Coding for Mobile Devices 14 

Garbage Collection 14 
Static Variables 15 

Model-View-Controller 16 

Lights, Camera, OpenGL 17 

Camera 17 
Perspective vs. Orthographic 19 

Accommodating Different Screen Sizes 19 

Touch Input 19 

Rendering Objects 20 

Mesh 20 
Indices with GL_LINES 21 
Buffered Vertices and Indices 22 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   3 

Base Object 23 

Circle 23 
Polygon 24 

Collision Detection 24 

Broad Phase 25 
Cell 25 

Grid 27 

Narrow Phase 27 
Separating Axis Theorem 28 

Bounding Circles 29 

Text 30 

Font Class 30 
Creating Characters 31 

Appendix 34 

Reference 34 
Table of Figures 34 
Table of Listings 34 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   4 

Abstract 
People primarily use mobile games as a time waster, waiting for the bus, using the bathroom, in 

the car, etc. Wave based games have become very popular in the mobile gaming market 

because a user can play a quick wave and get immediate satisfaction. On the developer side 

this is great for mobile advertising; the user gets to do something fun for a short period of time 

and in return has to look at an ad. The question of the free app developers is “how do I keep the 

user coming back to look at the ads”?  The answer for me was Kosmos, an OpenGL Android 

game.  

Kosmos is a new take of a familiar style of shooting game. It pays homage to the retro style 

shooters like Asteroids, Galaga, and Centipede. Featuring a top-down view with simple polygon 

graphics, Kosmos gives the user a feeling as if you are in an arcade. Ditching the outdated 

goals of trying to achieve a high score with three lives given to you upon payment of a quarter, 

Kosmos substitutes those mechanics with a modern RPG style.  

Kosmos is set in space where endless waves of enemies are attacking your ship. Each enemy 

killed gives the user money which must be used to upgrade your ship’s weapons and 

characteristics to help you progress through the game. Your ship’s arsenal includes a machine 

gun, rocket launcher, and laser that can be upgraded to help you defend against the onslaught 

of enemies. Featuring upbeat electronic music, smooth muti-touch controls, and fast paced 

gameplay, Kosmos is an entertaining game for the casual and even hardcore gamers.  

Introduction  

Android Utilities vs. Games 

All android applications are written and developed using Java. It’s an object oriented language 

that allows developers to represent objects as data structures. The main difference between 

utility applications and games is that utilities like Facebook and Instagram use the Android OS 

API to create the entire application, whereas games primarily use Open Graphics Library.  Open 

Graphics Library, or more commonly called OpenGL, is the “premier environment for developing 

portable, interactive 2D and 3D graphics applications” [1]. Common graphic rendering 

operations are performed using the GPU instead of the CPU, and is how developers are able to 

achieve high frame rate applications.  

Libgdx, Game Engine 

Prior to this project, I had absolutely no experience with graphics programming and OpenGL. I 

researched what it would take to develop a game without experience, and came to the 

conclusion I would need some help. OpenGL has a very steep learning curve and just rendering 

a square to the screen can be quite a hurdle. A game engine is a set of libraries that are 

developed to ease the amount of work required for developers to write games. Without a game 

engine I would have to design everything from the ground up. This becomes more of a 

challenge, because performance on a mobile device is very critical. Inefficient code means slow 

frame rate and jerky mechanics. Libgdx allowed me to quickly jump into developing the 

http://www.opengl.org/about/


Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   5 

mechanics of the game and not worry about the efficiency of OpenGL code and rendering 

objects to the screen.  

Game Mechanics 

Kosmos is described as a top-down, 2D shooter, role playing game (RPG). A top-down 2D 

shooter has the camera position above the action and graphics are rendered on a flat surface or 

plane. Role playing games is a category that is not as straightforward as the rest. RPGs are 

games where the user takes the role of a character and improves their attributes throughout 

experiences in the game.  

In Android gaming, 2D shooters are becoming a common sight to see in the Marketplace. 

Kosmos distinguishes itself among the crowd by utilizing an RPG based upgrade system. 

Gamers tend to stay interested in a game when they are playing for something other than a high 

score. They want to see the effects of saving up for a specific upgrade that helps them mow 

down their enemies. 

Upgrades 

A machine gun, rocket launcher, and laser are available in Kosmos, and each weapon’s 

damage, fire rate, and special feature can be upgraded to destroy your enemies. Special 

features give each weapon a unique characteristic that should be taken into consideration when 

developing a strategy.  

 

Figure 1- Machine gun, rocket launcher, and laser examples 

Figure 1 shows three ships that have one of the weapons equipped and also shows the 

weapons special feature. The orange machine gun has a multi-shot capability that shoots 

multiple projectiles per round. It has low damage and high fire rate that will appeal to the “spray 

and pray” style of gamer. The red rocket launcher explodes upon impact making its special 

feature the best weapon for crowd control. It has the highest damage but the slowest fire rate 

which means every rocket counts when dozens of enemies are trying to attack you. In terms of 

fire rate and damage, the cyan laser is designed to be the median between the machine gun 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   6 

and rocket launcher. The lasers special feature is a chain effect where the beam hits multiple 

enemies upon impact of the first one.   

Graphics 

Kosmos is an OpenGL game written in Java. It differs from most OpenGL games because of the 

way objects are rendered to the screen. Instead of importing premade images that make up 

objects in game, lines are drawn to create simple outlined shapes.   Figure 2 shows an example 

of this graphical style. In Kosmos, objects are represented as common shapes, such as 

squares, diamonds, hexagons, or octagons.  

 

 

Figure 2- Example Gameplay 

Rendering these shapes is fairly straightforward thanks to libgdx and a helper object called a 

Mesh. All that is needed is an array of vertices and an accompanying array of indices. Each 

vertex needs to have an X, Y, and Z component that correspond to its position in 3D space. For 

example, a square enemy will have an array of 12 values; three values per vertex and four 

vertices to create a square.  

Text 

Writing text to the screen is usually performed by importing an image that contains every 

potential character that could be used. That image is then broken up into smaller images and is 

then displayed to the screen as characters. I chose to implement a font system the same way I 

chose to render shapes, with lines and arrays holding the vertices of every character. This 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   7 

added a lot of unnecessary work, but in the end gave me a consistent look and feel to Kosmos 

that really stands out.   

Multi-touch Input 

With the improvement of capacitive multi-touch screens, developers are able to create intuitive 

and smooth touch input systems. Kosmos uses a commonly used input style in which virtual 

joysticks are used to control the direction of movement and the direction of fire. The two orange 

conical shapes are the mentioned virtual joysticks, and Figure 3 show them in action. The left 

joystick controls movement and the right joystick controls the angle projectiles are being fired. In 

the image below, the ship would be moving directly downward and shooting to the top right.  

 

Figure 3 - Virtual joysticks 

Collision Detection 

Once I found a way to render a shape to the screen, receive touch input, and move the 

rendered shape based upon input, the next logical step in development was to implement 

collision detection. I initially chose to use an advanced collision detection system that uses the 

separating axis theorem, a mathematical calculation that can tell if any convex polygon overlaps 

another convex polygon. This provided very accurate collision detection, but poor performance 

when a lot of objects were on the screen. I was getting roughly 58 frames per second when 

there were a few enemies, but in later waves gameplay slowed down to 50 or even sometimes 

40 frames per second.  

To solve the issue I changed to a simpler collision detection system that uses bounding circles. I 

create a circle around each object and check to see if the circles overlap. This circle is not 

rendered of course; it is only used for collision detection.  Using bounding circles instead of the 

separating axis theorem drastically improved performance and the accuracy tradeoff was almost 

unnoticeable.  

Procedural Content Generation 

I needed a way to allocate enemies to a wave in way that wasn’t repetitive and kept the user 

interested. Dr. Foaad Khosmood, the game design professor at Cal Poly, suggested procedural 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   8 

content generation (PCG). It’s a method in which content is determined by using dynamic 

elements like user interaction or random numbers. Games like Spore depend upon this concept 

to completely give a unique experience every time a user plays through the game.  

Kosmos uses random numbers to generate the types of enemies set out to destroy the user. 

Each enemy has a weapon, movement, and size that are determined randomly by weighted 

probabilities. For example, the probability that an enemy is equipped with a weapon increases 

by one percent every successful wave. Therefore by wave 100 every enemy will have a weapon 

equipped. Once the enemy is equipped with a weapon, it has an even chance to be randomly 

assigned to have one of three weapons; goo, ice, or bomb.  

Background 

Why an Android Game? 

The summer prior to senior project, I interned in the Android group at Intel. There I became 

familiar with Android development and wrote a few utility applications that test and benchmark 

our hardware and software against the competition. I really enjoyed developing software for 

Android OS and decided that I wanted to develop an Android application for my senior project.  I 

chose to develop a game despite my complete lack of experience in mobile game development, 

because there is more potential to make more money in mobile games than there is in other 

areas. In Millennial Media’s Mobile Mix it states that “gaming applications moved into the 

number one spot on the Top Mobile Application Categories in 2011, growing 16% year-over-

year” [2]. On top of the obvious market trends, I am a long time gamer and know what generally 

works and what doesn’t in games.  

Why Kosmos? 

I wanted to make a two dimensional space based shooter because it lends well to the style of 

graphics I wanted to use. Instead of using pre-made images and importing them into my game I 

wanted to use simple geometric shapes to make up everything; enemies, projectiles, menus, 

font, etc. The name needed to reflect that the game is set in space and also needed to reflect 

the simplicity of the game itself. Cosmos quickly became a great fit for the game, and because 

my name is Kodie with a K, I chose Kosmos to add some of my identity into the game.  

User Experience 

Main Menu 

The menu reflects the style and simplicity of the Kosmos. The user is immediately introduced to 

the graphical style of bright colors and outlined shapes. Figure 4 shows the main menu and the 

options the user has once in the game. The music button will take you to a screen where you 

may turn the music on or off, and find out more about the producer of the in-game music. The 

tutorial button will allow a new user to play through a tutorial and become familiar with Kosmos. 

The play button will take you into the load game screen shown in Figure 5. 

http://www.millennialmedia.com/mobile-intelligence/mobile-mix/


Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   9 

 

Figure 4 - Main menu screen 

           

 

Figure 5 - Load game screen 

Saved Games 

The load game screen shows the current wave and amount of money available for that specific 

saved game.  The user can have up to three saved games at a time. If a game slot has never 

been played a new game button will be displayed. If a game has been started and also saved, 

then the user may resume the saved game, or delete that game to start a new one. If a user 

does want to delete a game, a confirm screen is displayed to ensure accidents don’t happen 

and a user deletes their game unintentionally.  

Upgrade Screens 

The upgrade screen, shown in Figure 6, is where the user spends money to improve their ship’s 

characteristics and weapons. The user simply touches a box to go into another upgrade screen. 

For example Figure 7 shows a weapon upgrade screen where the user has selected to upgrade 

the laser. The weapon upgrade screen shows how much each upgrade costs and the current 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   10 

value of the upgrade. You can see in Figure 7 that the user can upgrade its damage and fire 

rate, but cannot upgrade its chain effect. This is because the user only has 21 dollars and the 

cost of the chain upgrade is 500. The upgrade button displays green when the upgrade is 

available and white when unavailable.  

 

Figure 6 - Upgrade screen 

 

Figure 7 - Weapon upgrade screen 

Pause Screen 

The pause screen is the last step before getting into the action. This screen, shown in Figure 8, 

is where you can equip different weapons by pressing in the boxes that say “EQUIP”. Once a 

user equips a different weapon, the color of the words “PRESS AND HOLD HERE TO PLAY” 

and the equip box changes to the corresponding weapon color. In order to start playing the user 

must hold their finger in an imaginary box that surrounds that text. In order to stay in the game 

the user must have at least one finger touching the screen at all times, hence the text “PRESS 

AND HOLD HERE TO PLAY”. If the user does lift up on both fingers, then the game will 

smoothly transition back up to the pause screen. There the user may equip another weapon and 

with one click and be back in the action. This implementation turned out to be very useful for 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   11 

Kosmos because sometimes a user may want to switch between weapons in certain situations. 

For example if several enemies are grouped together, one perfectly placed rocket can take 

them all out because of the splash damage.  

 

Figure 8 - Pause screen 

Playing a Wave 

Arena 

When the user enters a wave he or she is surrounded by a large octagon that acts as an arena. 

The user’s ship can touch the arena without consequences, but cannot travel outside of the 

octagon. When projectiles reach the boundary because they did not hit an enemy, the projectile 

is then removed from the screen. Enemies enter the arena in a random location, but will always 

be inside the arena. Enemies enter in from the very depths of space at a location of -99 or right 

at the far clipping plane. This effect gives the user time to see where an enemy is coming in and 

react accordingly.  

Heads up Display 

Figure 9 shows the heads up display in Kosmos. The heads up display, or HUD, contains 

important information the user needs to see at all times, such as health, money, and how many 

enemies are left on the screen. The money gathered for the current wave is displayed in the top 

left corner of the screen. The health bar is located in the top right corner and displays the 

current health of your ship. A bar that is half red and half green indicates that your health is half 

full. The amount of enemies left for the current wave is displayed by the bottom center of the 

screen. This gives the user an indication of how long the rest of the wave will be. The two 

joysticks are located in the bottom corners of the screen.  



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   12 

 

Figure 9 - Gameplay 

User Input 

The ship in Kosmos has a velocity vector that controls the movement. Every frame the ship 

moves based upon how much time has elapsed since the last frame and the current velocity of 

the ship. Velocity is represented by a 2 dimensional vector that has an X and Y component to it. 

The left joystick is the reference point for an angle between the center of the joystick and the 

user’s finger. That angle directly controls the velocity vector and thus controls the ships 

movement. If the ship has a speed of 10 and the angle from the joystick to the touch location is 

45 degrees, then the velocity of the X and Y component is going to be 7.07. The equation below 

shows the velocity calculations. 

                        (     ) 

                        (     ) 

 

The right joystick controls the angle of which the ship fires projectiles. Again, the angle is 

determined by using the users touch location, and the center of the joystick. While the user has 

his or her finger down, the ship will fire projectiles as long as the delay between projectiles has 

elapsed. As stated in the Pause Screen section, the user must hold down at least one finger to 

remain in game.  

Results Screen 

The results screen is shown upon completion of a wave regardless of winning or losing. To 

complete a wave successfully, the user must kill every enemy on that wave and losing a wave 

will occur when the ships health reaches zero.  

The results screen shown in Figure 10 displays some interesting statistics. It displays the 

damage given to enemies, damage taken from enemies, and how many enemies were killed. It 

also shows how much money was gathered this wave and how much money the user has total 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   13 

after the previously completed wave. It also shows statistics about the amount of shots fired, hit, 

and missed. The accuracy is displayed to the user as a convenient way to quickly see how 

efficient the user was with its weapon. The results screen is also of importance, because on 

mobile devices, an ad is displayed in the bottom right section. Screenshots were taken on the 

desktop version and thus does not show the ads. The results screen takes the user back to the 

upgrade screen where they can then upgrade their ship and weapons to better their defense 

against the waves of enemies.  

 

 

Figure 10- Results screen 

Music 

Music for video games is more important than most people understand. Music needs to 

enhance a user’s interaction with the game while not being intrusive toward the experience. I 

wanted music to reflect the emotion of Kosmos and improve the overall experience while 

playing it. I approached a music producer named Bodusdank, who primarily makes electronic 

dance music, if he would be interested in producing music for Kosmos. I didn’t offer him any 

money but I did promise him a music section where users can click on his web pages. Being a 

gamer himself, he agreed to my proposal. Figure 11 shows the music screen that promotes 

Bogusdank. 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   14 

 

Figure 11 - Music screen 

Putting it All Together 

Combined with smooth multi-touch controls, simple but interesting graphics, upbeat music, and 

an addicting upgrade system, Kosmos will give an experience that will entertain the casual 

gamer to the hardcore gamers, and everyone in between. On top of all of those reasons 

mentioned, Kosmos is free, and who can complain about free software? 

Libgdx, an Open Source Game Engine 
I chose libgdx as a game engine primarily for the cross-platform capabilities of developing on 

the desktop and then writing an extra 6 lines of code and running the same game on an Android 

devices.  This sped up development significantly because of the inline debugging and hot-

swapping abilities of the eclipse IDE for java. Libgdx and hot-swapping became very important 

when designing the user interface and menus. I was able to run Kosmos on the desktop and 

then change position values of the GUI and immediately be able to see the changes in the 

application. Libgdx was a huge component of Kosmos that allowed me to complete a polished 

game in less than 6 months.  

Coding for Mobile Devices 
Developing desktop games is different than developing games on mobile phones. Sure they 

both run essentially the same code, but the hardware architecture is very different. Desktop 

applications are focused more on coding convenience, and not strictly performance. When I first 

complied and ran Kosmos on a phone, I got a max of only four frames per second. I quickly 

realized that I needed to completely rethink how I was developing Kosmos.  

Garbage Collection 

The java virtual machine has a neat feature called garbage collection that manages unused 

memory. It is great for developing utilities and other application, but for games, garbage 

collection slows frame rates because the processor cleans up lost data instead of rendering the 

screen. When I first tested Kosmos I was creating new arrays that held the vertex data every 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   15 

update to the screen. After I set the vertices to a Mesh, the array was discarded. Performing this 

process several times would evoke garbage collection thus slowing the game down to an 

embarrassing speed.  

Static Variables 

To get around garbage collection data allocation must be kept in the back of your mind at all 

times while developing games. Static variables should be used as often as possible because 

they alleviate the issue of leaking memory. Java objects are created with the “new” keyword and 

when an object is created, the developer must ensure that that object is meaningful and will not 

be wasted.  

Listing 1 shows an example of bad code that leaks memory, and listing 2 shows an example of 

how the developer would get around the memory leak. Do not look too much into the details of 

the code, but more of how memory is allocated during the steps of the function. At each step a 

new Vector2 object is created and when the function returns, that memory is leaked and 

eventually collected by the Java virtual machine. These types of function are very bad for 

performance, especially because this function is called every time a collision is checked using 

the separating axis theorem. 

 

Listing 1 – Example of leaking memory 

Listing 2 shows how I optimized the getAxes function by using static variables to manipulate and 

return the array of Vector2 objects. This method of allocating the memory at runtime is great 

because memory is never leaked, therefore garbage collection isn’t evoked. 

 

private static Vector2[] getAxis(Vector2[] verts){ 
 
    // Creates the array of axis 
    Vector2 [] axis = new Vector2[verts.length]; 
   
    for(int i = 0; i < axis.length; i++ ){ 
 
        // get the current vertex 
        Vector2 p1 = new Vector2( verts[i] ); 
        // get the next vertex 
        Vector2 p2 = new Vector2( verts[i + 1 == verts.length ? 0 : i + 1] ); 
        // subtract the two to get the edge vector 
        Vector2 edge = p2.sub(p1); 
        // get either perpendicular vector 
        // this method is just (x, y) => (-y, x) or (y, -x) 
        Vector2 perp = new Vector2(-edge.y, edge.x); 
        // Sets the axis to the array  
        axis[i] = perp; 
    } 
    return axis; 
} 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   16 

 

Listing 2 - Example of not leaking memory by using static variables 

Model-View-Controller 
In order to maintain the project in an organized fashion, I used the Model-View-Controller (MVC) 

programming technique throughout the entire project. MVC is a way to isolate certain parts of 

the program which helps increase the efficiency of development and debugging. The model 

component contains all of the data objects and structures, the View contains all of the rendering 

logic, and the Controller contains all of the simulation code that manipulates data and the flow of 

the program.  

Kosmos is organized in the MVC style by grouping all of the Java files into four main packages, 

screens, objects, renderer, and simulation. The screen file is the top level file and is the most 

important because it handles user input, runs the simulation code, and renders the objects each 

frame. The object files contain all of the data that is relevant for the logic state. The object files 

know nothing about how to render their data. Rendering these objects is the job of the render 

files, and when given an object they know how to render it. The simulation files handle the flow 

between logic states and force the objects to update certain values during logic state transitions.  

Figure 12 shows the simplest state in Kosmos, the Confirm state. The data required for this 

screen is the string that says “CONFIRM?” and the two Selection boxes. The Screen file, which 

handles the input, is checking to see if the user selects either of the two boxes. If yes, the 

private static Vector2 p1 = new Vector2(); 

private static Vector2 p2 = new Vector2(); 

private static Vector2 perp = new Vector2(); 

private static Vector2[] axis = new Vector2[]{  
    new Vector2(), new Vector2(), new Vector2(), new Vector2(), new Vector2(), 
    new Vector2(), new Vector2(), new Vector2(), new Vector2(), new Vector2()}; 

 

private static Vector2[] getAxis(Vector2[] verts){ 
 
    for(int i = 0; i < axis.length; i++ ){ 
 
        // get the current vertex 
        p1.set(verts[i]); 
        // get the next vertex 
        p2.set(verts[i + 1 == verts.length ? 0 : i + 1]); 
        // subtract the two to get the edge vector 
        Vector2 edge = p2.sub(p1); 
        // get either perpendicular vector 
        // this method is just (x, y) => (-y, x) or (y, -x) 
        perp.set(-edge.y, edge.x); 
        // Sets the axis to the array  
        axis[i] = perp; 
    } 
    return axis; 
} 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   17 

Screen file erases the saved game and then returns to the previous state by setting a global 

variable that holds the current state of the game. When the current state variable changes from 

CONFIRM to PLAY, the simulation file then takes over and handles the screen transition. Using 

the MVC design methodology, I was able to quickly add new features and states, and was able 

to efficiently debug any issues that arose during development. 

 

Figure 12 - The Confirm State 

Lights, Camera, OpenGL 
OpenGL is the standard for graphics programming on mobile devices. OpenGL versions 1.0, 

1.1, and 2.0 are supported on Android devices with OS version 1.5 or higher. I chose to use 

OpenGL version 1.0 because I didn’t have a need for shaders due the simplicity of how I render 

objects to the screen. Before I dive deeper into the details of Kosmos, I need to first describe a 

few component of OpenGL. 

Camera 

“A camera is defined by a position in 3D space, a direction given as a unit length vector and it’s 

“up” vector, again given as a unit length vector” [3]. Besides the position and orientation, the 

view frustum is the third piece to the puzzle. Figure 13 shows a pyramid with the top cut off and 

an eye representing where a user would be looking. This pyramid is the view frustum, and 

anything inside this pyramid can be seen, anything outside of the clipping lines is just that, 

clipped out of view. 

http://www.badlogicgames.com/wordpress/?p=1550


Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   18 

 

Figure 13 - Frustum example 

The frustum is delimited by 6 so called clipping planes: near, far, left, right, top and bottom. In Figure 

13 above those planes are the sides of the pyramid. You can think of a camera in OpenGL as a 

movie producer looking through his hands in “L” shapes to make a rectangle to better put the 

view into perspective. The near clipping planes shown in Figure 14 have a special role for a 

developer because that is where all objects seen in 3D are transformed onto this 2D plane 

through a process called projection.  

There are two types of projection used in OpenGL, perspective and orthographic.  Orthographic 

cameras are primarily used in 2D video games because at any depth away from the near 

clipping plane, the object is still seen as the same size. On the other hand, perspective cameras 

are used in 3D games because objects appear smaller as they move farther away. The only real 

difference between perspective and orthographic cameras is the shape of the frustum. Figure 3 

shows this difference and how the objects are perceived to the eye.  

 

Figure 14 - Top view of frustum 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   19 

Perspective vs. Orthographic 

I chose to use a perspective camera for Kosmos because I use the third dimension to appeal to 

people’s natural perception of depth. The most obvious feature that utilizes depth is the way I 

transition between screens or logic states. The images below show a transition from the main 

menu to the load game screen. When the user presses play, the load game screen appears at 

twice the viewing distance. The simulation code then takes over and updates the plane depths 

until the load game screen is at the proper viewing distance.  

  

   

Figure 15 - Main Menu to Save Game Screen Transition 

Accommodating Different Screen Sizes 

Touch Input 

Designing a game for Android is arguably harder than designing a game for Apple’s IOS. The 

reason for this difficulty is due to the varying configurations of hardware a game will be played 

on. The hardest part about this is usually not the processing power, but the different screen 

sizes and resolutions. Today’s phones are very powerful and can handle most simple games if 

proper optimization techniques are applied, but screen sizes are something that everyone must 

account for.  

A problem with different screen sizes arose when testing Kosmos on a friend’s phone. The main 

menu screen loaded fine, but the touch input wouldn’t register correctly. The issue was because 

his screen size was smaller than mine and the touch input was being perceived in another 

location. To resolve this I needed to un-project the 2D touch location to my in-game 3D location. 

Lucky for me, libgdx already contains all of the necessary functions and classes required for the 

un-projection. 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   20 

Libgdx performs un-projection by using the helper classes, Ray and Plane. A Ray is created 

using the camera, X and Y coordinates of the touch inputs, and the direction vector of the 

camera. Libgdx has a default camera position at (0, 0, 0) with the camera facing the negative Z 

direction. In other words, as object move farther away from the near clipping plane, the z 

component of its position decreases. The game plane is at a depth of -11.3, so we need to 

figure out it the touch location on the plane at a distance of -11.3.  

The function getTouchPoint in listing 3 shows how it easy it is to perform the required un-

projection to get in game touch coordinates. We first get the pickRay from the camera, and then 

use a function in libgdx that performs the required math operations. It sets the 3D location into 

the Vector3 variable touchPoint and is returned. I can then use the touch location just as if the 

user is directly touching locations at the game plane depth of -11.3. 

 
Listing 3 - 2D to 3D un-projection 

Rendering Objects 

Mesh 

In Mario’s book “Beginning Android Games” he said that OpenGL is “a lean mean triangle 

rendering machine” [4].  It uses a collection of vertices and accompanying indices to make up 

geometric shapes. I am primarily using lines in Kosmos and will be what I use to explain how to 

render objects to the screen. Figure 16 below shows a simple 10x10 square that is defined by 4 

points in 3D space. Each point contains 7 floats; three floats for the x, y, and z components, and 

four floats for the RGBA components that make up the color.  

public static Vector3 touchPoint = new Vector3(); 

public Vector3 getTouchPoint(){ 

pickRay = Kosmos.pCam.getPickRay(input.getX(0), input.getY(0)); 
Intersector.intersectRayPlane(pickRay, Kosmos.gamePlane, touchPoint);

 return touchPoint; 

} 

 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   21 

 

Figure 16 - Simple 10x10 square 

The center of the square is at location (0,0) and the four corners are 5 units away in the X and Y 

directions. The array of vertices that define this square is shown in the table below. 

X Y Z R G B A 

-5 5 -11.3 1 0 0 1 

5 5 -11.3 1 0 0 1 

5 -5 -11.3 1 0 0 1 

-5 -5 -11.3 1 0 0 1 

 

Once the vertex array is ready you may set the vertices, and optionally indices, to a libgdx 

object called a mesh. A Mesh is a convenience data structure that allows developer using libgdx 

to focus more on the game mechanics and less about how to render objects to the screen 

efficiently. Allocating the vertex array is the last step before rendering objects to the screen. 

Listing 4 shows the three steps required to render a collection of points. The first step is to set 

the vertex array, the second step is to set the index array, and the third is to render the mesh 

with the appropriate OpenGL primitive. 

 

Listing 4 - Rendering shapes with a Mesh 

Indices with GL_LINES 

Previously I stated that indices are optional, but when using the OpenGL primitive GL_LINES, 

indices are required to ensure proper functionality. OpenGL works by specifying two indices that 

make up a line. Looking back up to Figure 16, there are four lines that make up the square. The 

top line is made up of the first and second vertex location. The indexes are zero based though, 

mesh.setVertices(vertices, 0, vIndex); 
mesh.setIndices(indices, 0, iIndex); 
mesh.render(GL10.GL_LINES, 0, iIndex); 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   22 

so they represented as 0 and 1. The right line is made up of the second and third vertex position 

and is represented as 1 and 2. Listing 5 below shows the required index array to render the 

square in Figure 16. 

 

Listing 5 - Index array for a square 

Buffered Vertices and Indices 

Using the Dalvik Debug Monitor Server (DDMS), I was able to track down a bug due to the large amount 

of processing time during render functions of Mesh objects. I created a Mesh for every type of object and 

would set the vertices of the object every frame. I later found that when setting vertices to a Mesh a time 

consuming function named bind() is called. The combination of the Mesh objects calling bind() every 

frame was noticeably slowing down the frame rate.  

To solve this issue I developed a buffering technique that allowed me to only set the vertices once every 

frame. To render a shape to the screen I add the vertices of the object to a buffer and keep track of the 

current vertex position. Listing 5 shows a static function called addVerts in a helper class named 

RenderUtil. This function adds the vertex data to the large buffer named vertices and keeps track of the 

index. This index value also functions as the count of the vertices when a call to render occurs. 

 

Listing 6 – RenderUtil’s addVerts function 

Because we are rendering every frame using this buffer, we need to keep track of the indices in 

a special way. We cannot just keep the count of the indices, because of the nature of the data. 

As described in the previous section, indices are dependent upon the vertices and how they are 

entered into the vertex array. We need to keep track of the next index and do so by calculating 

the maximum index value. Listing 7 shows the function addInds that adds the indices and also 

keeps track of the next index. 

float [] squareIndices = new float[]{ 0, 1, // Top line  
                                 1, 2, // Right line 
                                 2, 3, // Bottom line 
                                 3, 0  // Left line  
                                 }; 

public static void addVerts(float[] verts, int count){ 
    for(int i = 0; i < count; i++){ 
        vertices[vIndex] = verts[i]; 
        vIndex++; 
    } 
} 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   23 

 

Listing 7 - addInds function 

Using the RenderUtil and buffering every object rendered that frame drastically improved the 

frame rate of Kosmos. The static buffers used for vertices and indices take up a lot of RAM, but 

is acceptable considering the improvements in rendering speed.  

Base Object 
Every moveable object in Kosmos needs to extend a BaseObject. Extending a class in Java is a 

way to conveniently inherit a class’s data and functions. Listing 8 shows the public data that 

enables objects to be rendered and manipulated. The position vector is a 3D point in space that 

is the center location for an object. Velocity is also a 3D vector, but can be thought of as the 

current speed of the object. BaseObjects can be rotated with helper functions, and the angle 

value represents the current angle of the object. The other two classes, Circle and Polygon, are 

not as straightforward as the others.  

 

 

Listing 8 - BaseObject data 

Circle 

A circle is only used for collision detection and is never rendered. The circle should be created 

so that it closely fits the size of the object to make for the most accurate collisions. A circle only 

has an X and Y position, a radius value, and helper functions that check to see if a point lies 

within itself. 

public static void addInds(short[] inds, int count){ 
 short max = 0; 
 for(int i = 0; i < count; i++){ 
  indices[iIndex++] = (short) (inds[i]+nextInd); 
  if( (inds[i]+nextInd)  > max){ 
   max = (short) (inds[i]+nextInd); 
  } 
 } 
 nextInd = max+1; 
} 

// 3D point in space representing the objects position  
public Vector3 position; 
// 3D Vector that represents the objects velocity/speed 
public Vector3 velocity; 
// The current angle of the object 
public float angle; 
// Used for collision detection 
public Circle circle;  
// Contains the vertices required to render a shape 
public final Polygon shape; 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   24 

Polygon 

A Polygon is a very important class because it holds the array of vertices used to render the 

object. To render an Enemy, which extends BaseObject, all that is required is to set the Mesh 

vertices by accessing the shape Polygon of the BaseObject. Polygons also contain functions 

that translate and rotate the objects vertices. Translation is a simple process of adding the 

distance you wish to move to the current vertices, but rotation is much more difficult.  

Listing 9 displays the logic behind the setRotation function. An array of vertices is created upon 

initialization to be a reference shape at a rotation of zero degrees located at the origin. This 

reference array allows me to calculate the rotated position of each vertex centered at the origin. 

Once I have the rotated vertices, I add the current position to each vertex, and I am left with a 

rotated shape at its current position.  

 

Listing 9 - Sets the rotation of a Polygon 

Collision Detection 
When people ask me what was the hardest part of making Kosmos, I answer “collision 

detection”. Almost every game needs to have some way to be able to determine if two objects 

are overlapping. Collisions can happen very frequently, therefore need to be efficient algorithms. 

On top of efficiency, collision detection needs to be accurate. If a user fires a projectile and 

travels right through an enemy, they will feel cheated and will not want play your game. There is 

a sweet spot that every developer must find that is a good balance between efficiency and 

accuracy. I was able to find this sweet spot by using a few online resources, and a lot of trial 

and error. 

Without optimization, collision detection is a O(n2) operation because every object must be 

checked for collision against every other object on screen. In Kosmos this is not acceptable 

because there could be more than 100 objects on screen at a time. To improve the detection 

public void setRotation (float newAngle) { 
 // Get the cosine value of the new angle 
 float cos = Space.COS(newAngle); 
 // Get the sine value of the new angle 
 float sin = Space.SIN(newAngle); 
 // Set the current angle to the new angle 
 this.angle = newAngle; 
 // Increments of 7 because there are 7 floats per vertex.  
 // 3 for position, and 4 for RGBA values 
 for(int i = 0; i < verts.length; i+=7){ 
  float x = refVerts[i]; 
  float y = refVerts[i+1]; 
  // X component = Rotated X point of reference + current X position   
  verts[i]   = ((cos * x) - (sin * y)) + this.x; 
  // Y component = Rotated Y point of reference + current Y position 
  verts[i+1] = ((sin * x) + (cos * y)) + this.y; 
 } 
} 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   25 

algorithm I implemented a two-step process that is referred to as broad phase and narrow 

phase. 

Broad Phase 

As stated before collision detection is naturally a O(n2) algorithm. The goal of the broad phase is 

to improve that algorithm to a O( n*log(n) ) operation. To achieve this I implemented a relatively 

simple spatial hashing technique using the help of an awesome blog post by Metanet Software 

Inc [5].  

Spatial hashing is a grid based algorithm that reduces the number of collision checks by only 

testing for collisions if there are two or more objects that can collide. Each cell contains a 

collection of objects and therefore knows if a cell could have a collision. Figure 17 shows the 

grid lines which normally are not rendered during gameplay. 

 

Figure 17 - Grid based collision detection 

If and object is located in multiple Cells like the SquareEnemy on the left in Figure 17, that 

object is allocated to both Cells. So in the situation pictured above, the Ship is allocated to Cell 

4, 5, 15, and 16. This will ensure that the Ship can be hit by enemies the Ship when it is located 

in multiple Cells. Figure 17 displays the power of spatial hashing because even though there is 

a lot going on, only Cells 15 and 16 will be checked for a collision. 

Cell 

There are five types of objects that can have collisions in Kosmos; Ship, Projectile, 

RocketExplosion, Enemy, and EnemyExplosion. At any given time there could be any number 

of objects allocated to that cell, so it must have a container for each of those objects. Listing 10 

http://www.metanetsoftware.com/technique/tutorialB.html


Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   26 

shows the declarations of those containers in the Cell class. You might notice that ship is not an 

array like the rest, because there can only be up to one ship at a time.  

 

Listing 10 - Data declaration of Cell class 

A Cells job is to keep track of objects on the grid and conveniently tell me if a collision should 

occur. Every frame the grid is cleared and objects are then allocated to it. This ensures that at 

any moment during simulation, I can iterate through the grid and ask for a specific type of 

collision. Listing 11 shows the types of collisions that can occur and the conditions which must 

be met in order to check for one. 

 

 
Listing 11 - Collision condition function 

public class Cell {  
 public Ship ship;   
 public ArrayList<Enemy> enemies; 
 public ArrayList<Projectile>   projectiles; 
 public ArrayList<EnemyExplosion>  enemyExplosions; 
 public ArrayList<RocketExplosion>  rocketExplosions; 
 public Rectangle bounds; 

} 

// Ship and Enemy 
public boolean shouldCheckShipAndEnemy(){ 
 return (enemies.size() >= 1 && ship != null); 
} 
 
// Ship and EnemyExplosion 
public boolean shouldCheckShipAndEnemyExplosion(){ 
 return (enemyExplosions.size() >= 1 && ship != null); 
} 
 
// Enemy and EnemyExplosion 
public boolean shouldCheckEnemiesAndEnemyExplosion(){ 
 return  (enemyExplosions.size() >= 1 && ship != null); 
} 
 
// Enemy and Projectile   
public boolean shouldCheckEnemiesAndProjectiles(){ 
 return  (enemies.size() >= 1 && projectiles.size() >= 1); 
} 
 
// Enemy and RocketExplosion 
public boolean shouldCheckEnemiesAndRocketExplosion(){ 
 return  (rocketExplosions.size() >= 1 && enemies.size() >= 1); 
}   
 
public boolean shouldCheckEnemiesAndEnemyExplosion(){ 
 return  (enemyExplosions.size() >= 1 && ship != null);  
} 

 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   27 

Grid 

A class named CollisionUtil is used to hold the Cells and provide some helper function that clear 

and allocate the Cells. CollisionUtil is a class that gets instantiated upon startup of the 

application. The width and height are passed in to create the 2D array of Cells which is 

appropriately named grid. Every frame the grid is cleared and allocated with the functions 

clearGrid and allocateGrid. Listing 12 and 13 show the implementation of the clearGird and 

allocateGrid functions respectively. 

 

Listing 12 - clearGrid function 

 

Listing 13 - allocateGrid function 

Narrow Phase 

The narrow phase is the next step in determining whether two objects overlap or collide. After 

reading the post written by William on the CodeZealot website [6], I decided to use his example 

and implement the separating axis theorem. William states in his post that: 

public void clearGrid(){ 
 // Iterate through the grid  
 for (int rowIndex = 0; rowIndex < rows; rowIndex++){ 
  for(int colIndex = 0; colIndex < cols; colIndex++){ 
   // Clears the cell contents 
   grid[rowIndex][colIndex].clearCell(); 
  } 
 } 
} 

public void allocateGrid(ArrayList<Enemy> enemies,  
   Ship ship,  
   ArrayList<Projectile> projectiles,  
   ArrayList<RocketExplosion> rocketExplosions,  
   ArrayList<EnemyExplosion> enemyExplosions){ 
   // Iterate through the columns and rows 
   for (int rowIndex = 0; rowIndex < rows; rowIndex++){ 
      for(int colIndex = 0; colIndex < cols; colIndex++){ 
    // Allocate enemies 
    for(int i = 0; i < enemies.size(); i++){ 
       Enemy enemy = enemies.get(i); 
             // Only check enemies if they are OK. Not DEAD or NEW 
       if(enemy.state == EnemyState.OK){ 
          if(grid[rowIndex][colIndex].contains(enemy.shape)){  
       grid[rowIndex][colIndex].enemies.add(enemy); 
          } 
       } 
          } 
 . . .   
       } 
   } 
} 

http://www.codezealot.org/archives/55


Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   28 

The Separating Axis Theorem, SAT for short, is a method to determine if two convex 

shapes are intersecting. The algorithm can also be used to find the minimum penetration 

vector which is useful for physics simulation and a number of other applications. SAT is 

a fast generic algorithm that can remove the need to have collision detection code for 

each shape type pair thereby reducing code and maintenance. 

Because the separating axis theorem can detect collisions between any two convex polygons 

and because I am only using convex polygons for Kosmos it was an easy decision to choose to 

implement SAT as my collision detection algorithm. 

Separating Axis Theorem 

The separating axis theorem is great for collision detection in terms of accuracy. The downside 

of this algorithm is that it must perform projection for every axis that makes up the two shapes 

being tested. Listing 14 shows pseudo-code taken from William’s post and displays how much 

processing is required for every collision test. 

Collision detection performance was never an issue until Kosmos was almost complete. I was 

testing the gameplay with dozens of enemies on screen and shooting roughly 100 projectiles 

per second.  The frames per second dropped in half and looking at the function profiler in the 

Eclipse IDE, collision detection was the culprit. This forced me to implement a different collision 

detection algorithm. 

 

Listing 14 - Separating axis theorem pseudo-code 

Axis[] axes1 = shape1.getAxes(); 
Axis[] axes2 = shape2.getAxes(); 
// loop over the axes1 
for (int i = 0; i < axes1.length; i++) { 
  Axis axis = axes1[i]; 
  // project both shapes onto the axis 
  Projection p1 = shape1.project(axis); 
  Projection p2 = shape2.project(axis); 
  // do the projections overlap? 
  if (!p1.overlap(p2)) { 
    // then we can guarantee that the shapes do not overlap 
    return false; 
  } 
} 
// loop over the axes2 
for (int i = 0; i < axes2.length; i++) { 
  Axis axis = axes2[i]; 
  // project both shapes onto the axis 
  Projection p1 = shape1.project(axis); 
  Projection p2 = shape2.project(axis); 
  // do the projections overlap? 
  if (!p1.overlap(p2)) { 
    // then we can guarantee that the shapes do not overlap 
    return false;  
  } 
} 
// if we get here then we know that every axis had overlap on it 
// so we can guarantee an intersection 
return true;  



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   29 

Bounding Circles 

Although performance became my number one priority for collision detection, I still needed an 

algorithm that was accurate enough for an error to occur. In “Beginning Android Games” Mario 

discusses 2D collision detection and suggests using a bounding shape approach [4]. This 

technique works by creating an invisible shape that is as close to the size of the object as 

possible and then testing for collision between the two predictable shapes. Circles are used in 

Kosmos because most shapes resemble a circle and will give more accurate results than a 

square. 

Figure 18 shows an example of bounding circles being used. A collision was detected between 

the closest enemy on the left and the projectile touching it. As you can see, the accuracy of the 

collision test is dependent upon how close the circle maps to the size of the object. It took some 

fiddling to get all of the object’s circles to fit closely with their size, but the outcome was very 

accurate. 

 

Figure 18- Bounding circles example 

The code required to test for a collision between two circles is shown in Listing 15 and as you 

can see, it is much more efficient that the SAT code. The function works by calculating the 

distance between the centers of the two circles and comparing that with the sum of the radii. If 

the distance is less than the sum, then the circles overlap. This optimization proved to be 

successful and under the extreme condition where the separating axis theorem failed, bounding 

circles handled the situation without a stutter.  



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   30 

 

Listing 15 - overlapCircles function 

Text 
In most games text is generated using an imported image that contains every possible character 

that will be used in the game. The large image is then separated into individual characters that 

can be accessed using their ascii representation as the index of the full image. The problem 

with this is that I’m not using imported graphics and wanted to keep a consistent look to the 

game. The only way to keep graphical consistency was to manually create every character the 

old fashioned way, with vertices and indices.  

Font Class 

The Font class is a utility that helps me write text to the screen. Utilizing Java’s inheritance 

model I created an abstract class named Alphabet that contains two functions, getVerts and 

getInds. Listing 16 shows the declaration of the abstract class and its function prototypes. The 

purpose of this class is to allow me to create objects that extend the Alphabet class so I am able 

to then create an array of Alphabets. The classes that extend the Alphabet class represent 

characters and will return the vertices and indices of that specific character. In Listing 17 you 

can see the alphabet array and how I have the classes organized. The classes are arranged in 

an ASCII order so the character data may be used to index the correct class. For example, in 

Listing 18 I use the character ‘A’ to reference the A class and call its getVerts function. Using 

the array as a lookup table I can easily get the vertices or indices of each class when given a 

string. 

 

Listing 16 – Alphabet class declaration 

 public static boolean overlapCircles (Circle c1, Circle c2) { 
 float x = c1.x - c2.x; 
 float y = c1.y - c2.y; 
 float distance = x * x + y * y; 
 float radiusSum = c1.radius + c2.radius; 
 return distance <= radiusSum * radiusSum; 
} 

 static abstract class Alphabet 
{ 
   public abstract int getVerts(float x, float y, float z,  
                                float w, float h, Color color); 
   public abstract int  getInds(); 
} 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   31 

 

Listing 17 - Alphabet classes in ASCII order 

 

Listing 18 - Alphabet array example 

Creating Characters 

Creating each character in the ASCII table was a very long and monotonous task. Every vertex 

needs to have a position with respect to the origin that can be scaled by a width and height. On 

engineering paper I designed every character that is displayed in Kosmos and then later 

translated it into code. Figure 19 shows an example of how I would have designed each 

character.  

The width and height of every character was initially created with units of 8 and 12 respectively. 

These dimensions gave a blocky look to the character that scaled well will when increasing the 

size like the character ‘A’ shown in the image below. The white lines represent the maximum 

size of the character and the top right and bottom left locations are labeled with the green text. 

The vertices needed to be determined relative to the given width and height and are calculated 

every render to allow flexibility. 

public static Alphabet [] alphabet = new Alphabet[]{ 
       
   _SPCAE,null,null,null,_$,_PERCENT, null, null,null, null,null,null, 
   _COMMA,_NEG,_PERIOD,null, _0,_1,_2, _3,_4,_5,_6,_7,_8,_9,_COLON, 
   null,null,null,null, _QUESTION,null,A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R, 
   S,T,U,V,W,X,Y,Z  
}; 

int numVerts = alphabet['A'].getVerts(X, Y, Z, width, height, color); 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   32 

 

Figure 19 - Character creation 

Listing 19 shows the A class and the vertices being set to the Font’s static vertex array. This 

vertex array will then be allocated into the RenderUtils vertex array prior to the screen being 

rendered. This was a painstaking process and plenty of debugging was required to get the Font 

class completed and working as expected.  



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   33 

 

Listing 19 - A class 

 

 

 

 

 

 

public static class A extends Alphabet 
{ 
   public int getVerts(float x, float y, float z, float w, float h, Color color) 
   { 
      vertices[0] = (-w/2)+x; vertices[1] = (-h/2)+y; vertices[2] = z;   
      vertices[3] = color.r; vertices[4] = color.g; vertices[5] = color.b; vertices[6] = color.a; 
      vertices[7] = (-w/2)+x;vertices[8] = (h/2)+y; vertices[9] = z;    
      vertices[10] = color.r; vertices[11] = color.g; vertices[12] = color.b; vertices[13] = color.a; 
      vertices[14] = (-w*3/8)+x;vertices[15] = (h/2)+y;vertices[16] = z;   
      vertices[17] = color.r; vertices[18] = color.g; vertices[19] = color.b; vertices[20] = color.a; 
      vertices[21] = (0)+x;vertices[22] = (h/2)+y;vertices[23] = z;    
      vertices[24] = color.r; vertices[25] = color.g; vertices[26] = color.b; vertices[27] = color.a;     
      vertices[28] = (w/4)+x;vertices[29] = (0)+y;vertices[30] = z;    
      vertices[31] = color.r; vertices[32] = color.g; vertices[33] = color.b; vertices[34] = color.a; 
      vertices[35] = (w/2)+x;vertices[36] = (-h/2)+y;vertices[37] = z;   
      vertices[38] = color.r; vertices[39] = color.g; vertices[40] = color.b; vertices[41] = color.a; 
      vertices[42] = (-w*3/8)+x; vertices[43] = (0)+y;vertices[44] = z;   
      vertices[45] = color.r; vertices[46] = color.g; vertices[47] = color.b; vertices[48] = color.a; 
    
      return 49; 
   } 
 
 

   @Override 
   public int getInds() { 
      indices[0] = 0; 
      indices[1] = 1; 
      indices[2] = 2; 
      indices[3] = 3; 
      indices[4] = 3; 
      indices[5] = 4; 
      indices[6] = 4; 
      indices[7] = 5; 
      indices[8] = 4; 
      indices[9] = 6; 
      return 10; 
   } 
} 

 



Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   34 

Appendix 

Reference 

[1] http://www.opengl.org/about/ 

[2] Millennial Media’s Mobile Mix “2011 Year in Review” http://www.millennialmedia.com/mobile-

intelligence/mobile-mix/ 

[3] Badlogicgames.com, “NEW CAMERA CLASSES IN LIBGDX” 

http://www.badlogicgames.com/wordpress/?p=1550 

[4] “Beginning Android Games” by Mario 

[5] http://www.metanetsoftware.com/technique/tutorialB.html 

[6] http://www.codezealot.org/archives/55 

Table of Figures 
Figure 1- Machine gun, rocket launcher, and laser examples 5 

Figure 2- Example Gameplay 6 

Figure 3 - Virtual joysticks 7 

Figure 4 - Main menu screen 9 

Figure 5 - Load game screen 9 

Figure 6 - Upgrade screen 10 

Figure 7 - Weapon upgrade screen 10 

Figure 8 - Pause screen 11 

Figure 9 - Gameplay 12 

Figure 10- Results screen 13 

Figure 11 - Music screen 14 

Figure 12 - The Confirm State 17 

Figure 13 - Frustum example 18 

Figure 14 - Top view of frustum 18 

Figure 15 - Main Menu to Save Game Screen Transition 19 

Figure 16 - Simple 10x10 square 21 

Figure 17 - Grid based collision detection 25 

Figure 18- Bounding circles example 29 

Figure 19 - Character creation 32 

 

Table of Listings 
Listing 1 – Example of leaking memory 15 

Listing 2 - Example of not leaking memory by using static variables 16 

Listing 3 - 2D to 3D un-projection 20 

Listing 4 - Rendering shapes with a Mesh 21 

Listing 5 - Index array for a square 22 

Listing 6 – RenderUtil’s addVerts function 22 

Listing 7 - addInds function 23 

Listing 8 - BaseObject data 23 

http://www.opengl.org/about/
http://www.millennialmedia.com/mobile-intelligence/mobile-mix/
http://www.millennialmedia.com/mobile-intelligence/mobile-mix/
http://www.badlogicgames.com/wordpress/?p=1550
http://www.metanetsoftware.com/technique/tutorialB.html
http://www.codezealot.org/archives/55


Kosmos, an OpenGL Android Game 
California Polytechnic State University San Luis Obispo, CA   35 

Listing 9 - Sets the rotation of a Polygon 24 

Listing 10 - Data declaration of Cell class 26 

Listing 11 - Collision condition function 26 

Listing 12 - clearGrid function 27 

Listing 13 - allocateGrid function 27 

Listing 14 - Separating axis theorem pseudo-code 28 

Listing 15 - overlapCircles function 30 

Listing 16 – Alphabet class declaration 30 

Listing 17 - Alphabet classes in ASCII order 31 

Listing 18 - Alphabet array example 31 

Listing 19 - A class 33 

 


