
111111111111111111111111111111111111111111111111111111111111111111111111111 
US006878974B2 

(12) United States Patent (10) Patent No.: US 6,878,974 B2 
Heeger et al. (45) Date of Patent: *Apr. 12, 2005 

(54) VISIBLE LIGHT EMITTING DIODES 5,317,169 A 5/1994 Nakano et al. 

FABRICATED FROM SOLUBLE 5,331,182 A 7/1994 Takimoto et al. 

SEMICONDUCTING POLYMERS 5,331,183 A 7/1994 Sariciftci et al. 
5,334,539 A 8/1994 Shinar et al. 

(75) Inventors: Alan J. Heeger, Santa Barbara, CA 
(US); David Braun, San Luis Obispo, 
CA(US) 

5,408,109 A 
5,443,921 A 
5,705,284 A 
5,726,457 A 

4/1995 
8/1995 
1/1998 
3/1998 

Heeger et al. 
Hosokawa et al. 
Hosokawa et al. 
Nakano et al. 

(73) Assignee: The Regents of the University of 
5,869,350 A 2/1999 Heeger et al. 

California, Oakland, CA (US) FOREIGN PATENT DOCUMENTS 

( * ) Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.c. 154(b) by 0 days. 

CA 
EP 
EP 
EP 

2037917 
0319 881 
0423283 
0443861 

2/1991 
6/1989 
4/1991 
8/1991 

EP 0573549 5/1998 

This patent is subject to a terminal dis­
claimer. 

JP 
JP 

59-181681 
60-95979 

10/1984 
5/1985 

JP 60-149177 8/1985 

(21) Appl. No.: 10/223,917 
JP 
JP 

61-226974 
63-133682 

10/1986 
6/1988 

(22) Filed: Aug. 20, 2002 JP 
JP 

63-264692 
63-295695 

11/1988 
12/1988 

(65) Prior Publication Data JP 
JP 

2-223188 
2-251428 

9/1990 
10/1990 

US 2002/0197755 A1 Dec. 26, 2002 JP 2-282263 11/1990 
JP 3-20992 1/1991 

Related U.S. Application Data JP 3-29293 2/1991 
JP 3-244630 10/1991 

(60) Continuation of application No. 09/243,173, filed on Feb. 2, 
1999, now Pat. No. 6,534,329, which is a continuation of 

JP 
JP 

3-274693 
4-202394 

12/1991 
7/1999 

application No. 08/359,883, filed on Dec. 20, 1994, now Pat. WO WO 90/13148 11/1990 
No. 5,869,350, which is a division of application No. 
07/662,290, filed on Feb. 27,1991, now Pat. No. 5,408,109. 

WO 
WO 

WO 92/03490 
WO 92/16023 

3/1992 
9/1992 

WO WO 92/22911 12/1992 
(51) Int. CI? HOiL 21/44 WO WO 98/10621 3/1998 

(52) 
(58) 

U.S. CI. 
Field of Search 

257/103; 313/498 
257/103, E33.061, OTHER PUBLICATIONS 

257!E33.063, E33.064; 313/498, 499 Derwent WPI, INPADOC record of lP 2-223188. 

(56) References Cited 
Derwent WPI, INPADOC record of lP 3-244630. 
Derwent WPI, INPADOC record of lP 3-274693. 

U.S. PATENT DOCUMENTS Derwent WPI, INPADOC record of lP 3-29293. 

3,172,862 A 3/1965 Gurnee et al. Derwent WPI, INPADOC record of lP 63-264692. 
3,263,110 A 7/1966 Berg lAPIO, Derwent WPI, INPADOC record of lP 59-181681. 
3,341,915 A 
3,992,203 A 

9/1967 
11/1976 

Knochel et al. 
Harhold et al. lAPIO, Derwent WPI, INPADOC record of lP 60-149177. 

4,507,672 A 3/1985 Potember et al. lAPIO, Derwent WPI, INPADOC record of lP 60-95979. 
4,611,385 A 9/1986 Forrest et al. lAPIO, Derwent WPI, INPADOC record of lP 61-226974. 
4,684,353 A 
4,720,432 A 

8/1987 
1/1988 

deSouza 
VanSlyke et al. lAPIO, Derwent WPI, INPADOC record of lP 63-133682. 

4,769,292 A 9/1988 Tang et al. Adachi et aI., (1988). "Organic Electroluminescent Device 
4,808,681 A 2/1989 Harper et al. with a Three-Layer Structure," Jpn. J. Appl. Phys., 
4,885,211 A 12/1989 Tang et al. 27(4):L713-L715. 
5,009,958 A 4/1991 Yamashita et al. 
5,047,687 A 9/1991 VanSlyke (Continued) 
5,059,861 A 10/1991 Littman et al. 
5,059,862 A 
5,061,569 A 
5,073,446 A 

10/1991 
10/1991 
12/1991 

VanSlyke et al. 
VanSlyke et al. 
Scozzafava et al. 

Primary Examiner-George Fourson 
(74) Attorney, Agent, or Firm-Morrrison & Foerster LLP 

5,085,946 A 
5,093,691 A 

2/1992 
3/1992 

Saito et al. 
Utsugi et al. 

(57) ABSTRACT 

5,116,708 A 5/1992 Shikatani et al. Visible light LEDs are produced having a layer of conju­
5,142,343 A 
5,171,373 A 
5,185,208 A 
5,213,983 A 

8/1992 
12/1992 

2/1993 
5/1993 

Hosokawa et al. 
Hebard et al. 
Yamashita et al. 
Gustafsson et al. 

gated polymer which is cast directly from solution or formed 
as a gel-processed admixture with a carrier polymer. The 
LEDs can be formed so as to emit polarized light. 

5,232,631 A 8/1993 Cao et al. 
5,247,190 A 9/1993 Friend et al. 69 Claims, No Drawings 



US 6,878,974 B2 
Page 2 

OlliER PUBLICATIONS 

Adachi et aI., (1990). "Confinement of Charge Carriers and
 
Molecular Excitons Within 5-nm-thick Emitter Layer in
 
Organic Electroluminescent Devices with a Double Hetero­

structure," Appl. Phys. Lett., 57(6):531-533.
 
Adachi et aI., (1989). "Organic electroluminescent device
 
having a hole conductor as an emitting layer," Appl. Phys.
 
Lett., 55(15):1489-149l.
 
Adachi et aI., (1990). "Blue light--emitting organic electrolu­

minescent devices," Appl. Phys. Lett., 56(9):799-80l.
 
Allen, (1991). "Impact Processes in Electroluminescence," J
 
Lumin. 48&49:18-22. 
Arbogast, J., et aI., (1991). "Photophysical properties of
 
C60," J. Phys. Chern., 95:11-12.
 
Askari et aI., (1988). "Substituted-PPV Conducting Poly­

mers: Rigid Rod Polymers with Flexible Side Chains," Proc.
 
ACS Div. Polym Mat. Sci. Eng., 59:1068-1070.
 
Bloor (1992). "Tunable polymer diodes," Nature 356:19-20.
 
Bradley et aI., (1989). "Light-induced Luminescence
 
Quenching in Precursor-route Poly(p-phenylene
 
vinylene)," J. Phys.: Condo Matter 1:3671-3678.
 
Bradley et aI., (1991). "Light Emission from Poly(p-phe­

nylene vinylene): A Comparison Between Photo- and Elec­

tro-luminescence," Synthetic Metals, 41-43:3135-314l.
 
Bradley, (1991). "Molecular electronics-aspects of the
 
physics," Chemistry In Britain, Aug. 1991; pp. 719-723.
 
Braun et aI., (1991). "Improved Efficiency In Semiconduct­

ing Polymer Light-Emitting Diodes," J. Electron. Mat
 
20(11):945-948.
 
Braun et aI., (1991). "Visible Light Emission from Semi­

conducting Polymer Diodes," Appl. Phys. Lett.,
 
58(18):1982-1984.
 
Braun et aI., (1993). "Transient Electroluminescence From
 
Polymer Light Emitting Diodes," Synthetic Metals (pre­

sented at the Int'l Conf. on Science and Technology on
 
Synthetic Metals, Goteborg, Sweden in Aug. 1992),
 
55-57:4145-4150.
 
Bredas et aI., (1985). "Polarons, Bipolarons and Solitons in
 
Conducting Polymers" Accounts Chern Research,
 
18:309-315.
 
Brown et aI., (1992). Poly(p-phenylenevinylene) lightemit­

ting diodes: Enhanced electroluminescent efficiency through
 
carrier confinement, Appl. Phys. Lett., 61(23):2793-2795.
 
Brown et aI., (1993). "Optical Probes of Electronic States
 
Injected into Poly(P-Phenylenevinylene) Electrolumines­

cent Devices," Synthetic Metals (presented at the Int'l Conf.
 
on Science and Technology on Synthetic Metals, Goteborg,
 
Sweden in Aug. 1992),55-57:4117-4122.
 
Burn et aI., (1992). "Chemical Tuning of Electrochemilu­

minescent Copolymers to Improve Emission Efficiencies
 
and Allow Patterning", Nature, 356:47-49.
 
Burroughes et aI., (1990). "Light-emitting diodes based on
 
conjugated polymers," Nature, 347:539-54l.
 
C&EN, (Oct. 15, 1990). "Science-Polymer Lights up flat
 
screen displays," p. 26.
 
Cacialli et aI., (1994). "Characterization of properties of
 
polymeric light-emitting diodes over extended periods,"
 
Synthetic Metals, 67:157-160. 
Cacialli et aI., (1998). "Naphthalimide side-chain polymers 
for organic light-emitting diodes: Band-offset engineering 
and role of polymer thickness," J oumal OfApplied Physics, 
83(4):2343-2356. 

Cao et ai. (1998). "Efficient, Low Operting Voltage Polymer
 
Light-Emitting Diodes with Aluminum as the Cathode
 
Material," Adv. Mater. 10(12):917-920.
 
Colvin et aI., (1994). "Light-emitting diodes made from
 
cadmium selenide nanocrystals and a semiconducting poly­

mer," Nature, 370:354-357.
 
D. Braun, et aI., (1992). "Electroluminescence and electrical
 
transport in poly(3-octylthiophene) diodes," J. Appl. Phys
 
72(2):564-568.
 
Document E20 from European Opposition to EP Patent
 
Publication No. 0 573 549 corresponding to "Performance
 
Comparison Between a PPV/A1 Device and a MEH-PPV/
 
Ca Device," 4 pages.
 
Document E21 from European Opposition to EP Patent
 
Publication No. 0 573 549 corresponding to "Table of
 
Publications Reporting Quantum Efficiency Measurements
 
on Single Layer Precursor Route PPV Devices," 1 page.
 
Feast, "Synthesis of Conducting Polymers," Chapter 1 in
 
Skotheim, (1986) editor, Handbook of Conducting Polymers
 
(Marcel Dekker, Inc., New York), vol. 1, pp. 1-43.
 
Fox, M.A., et aI., (1988). "Coneptual Basis," in Photoin­

duced Electron Transfer, Elsevier Science Publishers,
 
Amsterdam, Table of Contents for Part A.
 
Fox, M.A., et aI., (1988). "Photoinduced Electron Transfer
 
Reactions: Inorganic Substrates and Applications" in Pho­

toinduced Electron Transfer, Elsevier Science Publishers,
 
Amsterdam, Part D, Table of Contents for Part D.
 
Greenham et aI., (1993). "Electroluminescent devices made
 
with conjugated polymers," Proc. SPIE Electroluminescent
 
Materials, Devices, and Large-Screen Displays, Esther M.
 
Conwell; Milan Stolka; M. Robert Miller; Eds., 191O:84-9l.
 
Grem, et aI., (1992). "Realization of a Blue-Light-Emitting 
Device using poly(p-phenylene)," Adv. Mater., 4:36-37. 
Gustafsson et aI., (Jun. 1992). "Flexible Light-Emitting 
Diodes Made From Soluble Conducting Polymers," Nature, 
357:477-479. 
Hagler et aI., (1991). "Enhanced order and electronic delo­
calization in conjugated polymers oriented by gel processing 
in polyethylene," Physical Review B, 44(16):8652-8666. 
Hagler et aI., (1991). "Highly ordered conjugated polymers 
in polyethylene: Orientation by mesoepitaxy," Polymer 
Comm., 32(11):339-342. 
Heeger (1989). "Charge Transfer in Conducting Polymers,"
 
Faraday Discuss. Chern Soc., 88:203-21l.
 
Heeger et aI., (1988). "Solitons in conducting polymers"
 
Reviews of Mod. Phys., 60:782-850. 
Herold et aI., (1996). "Tailoring of the electrical and optical 
properties of poly(p-phenylene vinylene)," Synthetic Met­
als, 76:109-112. 
Holmes et aI., (1993). "Photoluminescence And Electrolu­
minescence In Conjugated Polymeric Systems," Synthetic 
Metals, 55-57:4031-4040. 
Hotta et aI., (1987). "Spectroscopic Studies of Soluble 
Poly(3-alkylthienylenes" Macromolecules, 20:212-215. 
Hurych, (1966). "Influence of Non-Uniform Thickness of 
Dielectric Layers on Capacitance and Tunnel Currents." 
Solid-5t. Electron. 9:967-979. 
Hurych, (1970). "Tunnel Current Through Al-Al2 0 3-Al 
Structures in the Case of Non-Uniform Al2 0 3 Layer Thick­
ness," Solid-5t. Electron. 13:683-695. 
Hwang et aI., (1974). "On the Theory of Filamentary Double 
Injection and Electroluminescence in Molecular Crystals," 
J. Chern. Phys., 60(10):3845-3855. 



US 6,878,974 B2 
Page 3 

IEEE Standard Dictionary of Electrical and Electronics
 
Terms, 3rd Edition 1984, p. 1026.
 
Ikenoue et aI., (1988). "Verification of the "Cation-Pop­

ping" Doping Mechanisms of Self-Doped Polymers" J. Am.
 
Chern. Soc. 110:2983-2895.
 
Ivey, (1966). "Electroluminescence and Semiconductor
 
Lasers," IEEE J. Quantum Elec., QE-2(11):713-726.
 
J. Gmeiner, et aI., (1993). "Synthesis, electrical conductivity
 
and electroluminescence of poly(p-phenylene vinylene)
 
prepared by the precursor route," Acta Polymer.
 
44:201-205.
 
Jarzebski, (1982). "Preparation and Physical Properties of
 
Transparent Conducting Oxide Films," Phys. Stat. Sol.,(a)
 
71:13-41.
 
Jen et aI., (1985). "Processible And Environmentally Stable
 
Conducting Polymers" Polym. Materials: Sci. Eng.,
 
53:79-83.
 
Jen et aI., (1986). "Highly Conducting, Soluble, and Envi­

ronmentally-Stable Poly(3-Alkylthiophenes)," J. Chern.
 
Soc. Chern. Commun., pp. 1346-1347.
 
Jenekhe et aI., (1990). "Complexation Mediated Solubiliza­

tion and Processing of Rigid-Chain and Ladder Polymers in
 
Aprotic Organic Solvents," Macromolecules, vol. 23, No.
 
20,pp.4419-4429.
 
Kajigaeshi et aI., (1987). "Iodination of Phenols by Use of
 
Benzyltrimethylammonium Dichloroiodate (1-)," Chemis­

try Letters, pp. 2109-2112.
 
Kajigaeshi et aI., (1988). "Iodination of Aromatic Ethers by
 
Use of Benzyltrimethylammonium Dichloroiodate and Zinc
 
Chloride," Chemistry Letters, pp. 795-798.
 
Kalinowski et aI., (1975). "Magnetic Field Effects on
 
Recombination Radiation in Tetracene Crystal," Chemical
 
Physics Letters, 36(3):345-348.
 
Kamat, P., (1991). "Photoinduced charge transfer between 
fullerenes (C60 and C70) and semiconductor ZnO colloids," 
J. Am, Chern. Soc., 113:9705-9707. 
Karg et aI., (1997). "Light-emitting diodes based on poly-p­

phenylene-vinylene: I. Charge-carrier injection and trans­

port," J. Appl. Phys., 82(4):1951-1960.
 
Kathirgamanathan, (1988). "Review: Inherently Conductive
 
Polymers and Their Commercial Potential," High Perfor­

mance Plastics, 5(5):1-5.
 
Kawabe et aI., (1971). "Electroluminescence of Green Light
 
Region in Doped Anthracene," Japan. J. Appl. Phys.
 
10:527-528.
 
Kholuyanov, (1962). "Light Emission Associated with
 
Breakdown in Silicon Carbide p-n Junctions," Sov. Phys.
 
Solid State, 3(11):2405-2407.
 
Kim et aI., (1998). "Indium-tin oxide treatments for single­

and double-layer polymeric light-emitting diodes: The rela­

tion between the anode physical, chemical, and morphologi­

cal properties and device performance," Journal OfApplied
 
Physics, 84(12):6859-6870.
 
Kivelson et aI., (1988). "Intrinsic Conductivity Of Conduct­

ing Polymers" Synth. Met. 22:371-384.
 
Koezuka et aI., (1985). "Organic Hetrojunctions utilizing
 
two conducting polymers: Poly(acetylene)/poly(N-meth­

ylpyrrole) junctions," J. Appl. Phys., 58:1279-1284.
 
Kraft et aI., (1993). "Hole-Transporting Compounds For
 
Multi-Layer Polymer Light-Emitting Diodes," Synthetic
 
Metals, 55-57:4163-4167.
 
Kroemer, (1963). "A Proposed Class of Heterojunction
 
Injection Lasers," Proc. IEEE 51:1782-1783.
 

Kroemer, (1975). "Problems in the Theory of Heterojunction
 
Discontinuities," CRC Critical Reviews in Solid State Sci­

ences 5(4):555-564.
 
Larousse, (1995). Dictionary of Science and Technology, ed.
 
by P.M. B. Walter, p. 1195.
 
Lazzaroni et aI., (1990). "Electronic Structure of Process­

able Conducting Polymers," in Conjugated Polymeric Mate­

rials: Opprotunities in Electronics, Optoelectronics and
 
Molecular Electronics, J. L. Bredas, R. R. Chance, Eds.,
 
KIumer Academic Publishers, Dordrecht, pp. 149-162.
 
Lehmann, (1966). "Edge Emission of n-Type Conducting
 
ZnO and CdS," Solid-5t. Electron. 9:1107-1110.
 
Livingstone et aI., (1973). "Electroluminscence in Forward­

-Biased Zinc Selenide Schottky Diodes," Solid-5t. Elec.
 
16:351-356.
 
Makoto et aI., (Aug. 1985). "Manufacture of Photoelectric
 
Conversion Element," JAPIO Abstract corresponding to
 
published Japanesen patent application No. JP 60-149177.
 
Morgado et aI., (1999). "Luminescence properties of
 
poly(p-phenylenevinylene): Role of the conversion tem­

perature on the photoluminescence and electroluminescence
 
efficiencies," Journal ofApplied Physics, 85(3):1784-1791.
 
Neubert et aI., (1978). "Preparation of Liquid Crystal Inter­

mediates: 4-Substituted Alkoxybenzenes," Mol Cryst. Liq.
 
Cryst., 44:197-210.
 
Nohara et aI., (1989). "A new series of electroluminescent
 
organic compounds," Chemistry Letters pp. 189-190.
 
Nowak et aI., (1987). "Polarons and Bipolarons on a Con­

ducting Polymer in Solution" Macromolecules, 20:965-968.
 
Nowak et aI., (1989). "Charge Storage on a Conducting
 
Polymer in Solution" Macromolecules, 22:2917-2926.
 
O. Inganas, et aI., (1991). "Melt Processable Polymer Elec­
tronics," Synthetic Metals 41-43:1095-1101.
 
Ohmori er aI., (1991). "Blue Electroluminescent Diodes
 
Utilizing Poly(alkylfiuorene)," Japanese Journal ofApplied
 
Physics, 30(l1B):L1941-L1943.
 
Okamoto et aI., (1987). "DC Gas-Discharge Display Panel 
with LaB6 Thin-Film Cathode," Jpn. J. Appl. Phys. 
26(10):1722-1726. 
P. L. Burn, et aI., (1991). "Studies On The Efficient Syn­
thesis Of Poly(Phenylenevinylene) (PPV) And Poly­
(Dimethoxy Phenylenevinylene) (Dimethoxy-PPV)," Syn­
thetic Metals 41-43:261-264. 
Paasche et aI., (1989). "Amorphous-SIC thin-film p-i-n 
light--emitting diode using amorphous-SIN hot-carrier tun­
neling injection layers," IEEE Transactions on Electron 
Devices, 36(12):2895-2901. 
Park, Y. et aI., (1996). "Work Function of Indium Tin Oxide 
Transparent Conductor Measured by Photoelectron Spectro­
copy," App. Phys. Lett 68(19):2699-2701. 
Parker, (1994). "Carrier Tunneling and Device Characteris­
tics in Polymer Light-Emitting Diodes," J. Appl. Phys., 
75(3):1656-1666. 
Partidge et aI., (1983). "Electrochemiluminescence from 
polyvinylcarbazole films: 4. Electrochemiluminescence 
using higher work function cathodes," Polymer, 
24:755-762. 
Partridge (1983). "Electroluminescence from polyvinylcar­
bazole films: 1. Carbazole cations," Polymer 24:733-738. 
Partridge (1983). "Electroluminescence from polyvinylcar­
bazole films: 2. Polyvinylcarbazole films containing anti­
mony pentachloride," Polymer 24:739-747. 



US 6,878,974 B2 
Page 4 

Partridge (1983). "Electroluminescence from polyvinylcar­

bazole films: 3. Electroluminescent devices," Polymer
 
24:748-754.
 
Partridge, (1983). "Electrochemiluminescence from polyvi­

nylcarbazole films 4. Electrochemiluminescence using
 
higher work function cathodes," Polymer, 24:755-762.
 
Patil et aI., (1987). "Self-Doped Conducting Polymers"
 
Synth. Met. 20:151-159. 
Patil et a., (1987). "Water-Soluble Conducting Polymers" J.
 
Am. Chern. Soc. 109:1858-1859.
 
Pichler et aI., (1993). "Photoinduced Absorption of Struc­

turally Improved Poly(P-Phenylene Vinylene)-No Evi­

dence for Bipolarons," Synthetic Metals, (Int'l Conf on
 
Science and Technology on Synthetic Metals, Goteborg,
 
Sweden) 55-57:230-234.
 
Pope et aI., (1982). in Electronic Processes in Organic
 
Crytals, Clarendon Press, Oxford, pp. 508-509.
 
Rughoopath et aI., (1987). "Soluble Conducting Polymers:
 
The poly (3-alkylthienylenes)," Synthetic Metals, 21:41-50.
 
Rughooputh et aI., (1987). "Chromism of Soluble Polythie­

nylenes" J. Polym. Sci.: Part B: Polym. Phys.,
 
25:1071-1078.
 
Sato et aI., (1986). "Soluble Conducting Polythiophenes" J. 
Chern Soc. Chern. Commun. 295:873-874. 
Shi et aI., (1990). "Synthesis and Characterization of a Water 
Soluble Poly(p-phenylenevinylene) Derivative," Macro­
molecules, 23:2199-2124. 
Shi, et aI., (1990). "Synthesis and Characterization of a 
Water Soluble PPV Derivative," Conjugated Polymeric 
Materials: Opportunities in Electronics, Optelectronics and 
Molecular Electronics Ed. by J.L. Bredas and R.R. Chance, 
NATO ASI Series, Series E: Applied Science, Kluwer Aca­
demic Publishers, Dordrecht, 82:83-89. 
Shinar et aI., (1993). "Optically Detected Magnetic Reso­
nance Studies of-Conjugated Polymer-Based Light Emit­
ting Diodes," presented at SPIE/lS&T Symposium on Elec­
tronic Imaging: Science and Technology; San Jose, 
California; Jan. 31-Feb. 4, 1993,Proc. SPIE 1910:147-159. 
Skotheim, editor, (1986). Handbook of Conducting Poly­
mers, Marcel Dekker, Inc., New York, vol. 1, pp. 1-43. 
Smith et aI., (1981). "Ultra-drawing of High Molecular 
Weight Polyethylene Cast From Solution. III. Morphology 
and Structure," Colloid & Polymer Science, 259: 1070-1080. 
Surridge et aI., (1989). "Electron Self--exchange Dynamics 
between Redox Sites in Polymers," Faraday Discuss. Chern. 
Soc., 88:1-17. 
Swanson et aI., (1993). "Photoluminescence, Electrolumi­
nescence, and Optically Detected Magnetic Resonance 
Study of 2, 5-Dialkoxy Derivatives of Poly(P-Phenylene­
acetylene) (PPA) and PPA-Based Light-Emitting Diodes," 
Synthetic Metals (presented at the Int'l Conf. on Science and 
Technology on Synthetic Metals, Goteborg, Sweden, Aug. 
1992),55-57:1-6. 
Swanson et aI.,(1993). "Poly(P-Phenyleneacetylene) (PPA) 
Based Light Emitting Diodes," presented at SPIE/IS&T 
Symposium on Electronic Imaging: Science and Technol­
ogy; San Jose, California; Jan. 31-Feb. 4,1993, Proc. SPIE 
1910:101-110. 
Sze, (1981). in: Physics ofSemiconductor Devices, 2nd ed., 
John Wiley & Son, Inc. New York, New York, pp. 250-25I. 
Sze, (1981). "Photodetectors," Chapter 13, in: Physics of 
Semiconductor Devices, 2nd ed., John Wiley & Son, Inc. 
New York, New York, pp. 743-789. 

Sze, (1981). "Solar Cells," Chapter 14, in: Physics of 
Semiconductor Devices, 2nd ed., John Wiley & Son, Inc. 
New York, New York, pp. 790-838. 
T. Tsutsui, et aI., (1991). "Electroluminescence In Multilayer 
Organic Dye Films," Synthetic Metals 41-43:1193-1196. 
Tang et aI., (1987). "Organic electroluminescent diodes," 
Appl. Phys. Lett., 51(12):913-915. 
Tang et aI., (1989). "Electroluminescence of doped organic
 
thin films," J. Appl. Phys., 65(9):3610-3616.
 
Termonia et aI., (1988). "A Theoretical Approach To the
 
Calculation Of The Maximum Tensile Strength Of Polymer
 
Fibers," Chapter 11, High Modulus Polymers-Approaches
 
to Design and Development, (Zachariades, A.E. and Porter,
 
R.S., eds., Marcel Dekker, Inc.: New York, pp 321-362.
 
Tomozawa et aI., (1987). "Metal-Polymer Schottky Barriers
 
on Cast Films of Soluble Poly(3-alkylthiophenes)," Syn­

thetic Metals, 22:63-69.
 
Tomozawa et aI., (1989). "Metal-polymer Schottky barriers
 
on processible polymers" Synthetic Metals,
 
28(1&2):C687-C690.
 
Uchida et aI., (1987). "Electrical Properties of Thermally
 
Stable LaBdGaAs Schottky Diodes," Appl. Phys. Lett.,
 
50(11):670-672.
 
Uchiike, (1989). "Review of Flat Panel Displays: Electrolu­

minescent Displays, Liquid Crystal Displays, etc.," in Elec­

troluminescence S. Shionoya, H. Kobayashi, Eds. Springer
 
Proceedings in Physics, (Springer-Verlag, Berlin)
 
38:238-245.
 
Vakiparta et aI., (1991). "Temperature Dependence of
 
DC-Conductivity in Poly(3-alkylthiophenes) in Tempera­

ture Regime 20-400K," Synth. Met., 41-43:903-906.
 
Vincett et aI., (1982). "Electrical conduction and low voltage
 
blue electroluminescence in vacuum-deposited organic
 
films," Thin Solid Films, 94:171-183.
 
Voit et aI., (1988). "Fluctuation-Induced Tunneling and the
 
Conduction Mechanism in Metallic Polyacetylene," Solid
 
State Commun., 67(12):1233-1237.
 
Voss et aI., (1991). "Substitution Effects on Bipolarons in
 
Alkoxy Derivatives of Poly(1,4-phenylene-vinylene),"
 
Phys. Rev., B 43(6):5109-5118.
 
Wang, (1992). "Photoconductivity of fullerene-doped poly­

mers," Nature, 356:585-587.
 
Williams et aI., (1987). "Lanthanum hexaboride (LaB6)
 

Resistivity Measurement," Appl. Phys. Lett.
 
50(25):1844-1845.
 
Winter et aI., (1983). "Control of Schottky-diode-barrier
 
Height by Langmuir-Blodgett Monolayers," IEEE Proc.
 
130 Pt. 1(5):256-259.
 
Wittmann et aI., (1991). "Highly Oriented Thin Films of
 
Poly(tetrafiuoroethylene) as a Substrate for Oriented Growth
 
of Materials," Nature, 352:414-417.
 
Wudl et aI., (1991). "Polymers and an unusal molecular
 
crystal with nonlinear optical properties," Chapter 46, in:
 
Materials for Nonlinear Optics: Chemical Perspectives, 
Amer. Chern. Soc., vol. 455, pp. 683-686. 
Yokoyama et aI., (1990). "Evaluation of LaB6 Thin Film as 
Low-Work Function Gate for MOSFET Operated at Low 
Temperature," Jpn. J. Appl. Phys. 29(9):L1594-L1596. 
Yoshino et aI., (1987). "Conducting polymer fibre prepared 
by melt-spinning method from fusible polythiophene 
derivative" Polymer Commun. 28:309-310. 
Zener et aI., (1934). "A Theory of the Electrical Breakdown 
of Solid Dielectrics," Proc. Royal Soc. London A 
145:523-529. 



US 6,878,974 B2
 
1 

VISIBLE LIGHT EMITTING DIODES 
FABRICATED FROM SOLUBLE 
SEMICONDUCTING POLYMERS 

RELATED APPLICATIONS 

This application is a continuation of U.S. patent applica­
tion Ser. No. 09/243,173 filed Feb. 2, 1999, now U.S. Pat. 
No. 6,534,329, which is in turn a continuation of U.S. patent 
application Ser. No. 08/359,883 filed Dec. 20, 1994, now 
U.S. Pat. No. 5,869,350, which is a division of U.S. patent 
application Ser. No. 07/662,290 filed Feb. 27, 1991, now 
U.S. Pat. No. 5,408,109. 

GOVERNMENT SUPPORT 

The U.S. Government has a paid-up license in this inven­
tion and the right in limited circumstances to require the 
patent owner to license others on reasonable tenns as pro­
vided for by the terms of Contract Number NOOOI4-83-K­
0450 awarded by the Office of Naval Research. 

FIELD OF THE INVENTION 

This invention relates generally to light-emitting diodes 
and their fabrication. More particularly, it concerns light­
emitting diodes fabricated from semiconducting 
(conjugated) polymers which are soluble in common organic 
solvents, and yet more particularly to the fabrication of such 
diodes on flexible polymer substrates. 

BACKGROUND OF THE INVENTION 

Solid-state light-emitting diodes (LEDs) have found 
widespread application in displays, as well as in a variety of 
less common applications. Currently, LEDs are fabricated 
from conventional semiconductors; for example, gallium 
arsenide (GaAs), typically doped with aluminum, indium, or 
phosphorus. Using this technology, it is very difficult to 
make large area displays. In addition, the LEDs made of 
these materials are typically limited to the emission of light 
at the long wavelength end of the visible spectrum. For these 
reasons, there has been considerable interest for many years 
in the development of suitable organic materials for use as 
the active (light-emitting) components of LEDs. (See refer­
ences 1-6). The need for relatively high voltages (i.e., 
voltages incompatible with digital electronics) for the onset 
of light emission has been a hindrance to the commercial­
ization of LEDs fabricated from organic materials. 

The utilization of semiconducting organic polymers (i.e., 
conjugated polymers) in the fabrication of LEDs expands 
the use of organic materials in electroluminescent devices 
and expands the possible applications for conducting poly­
mers into the area of active light sources, (see Reference 7) 
With the possibility of significant advantages over existing 
LED technology. Controlling the energy gap of the polymer, 
either through the judicious choice of the conjugated back­
bone structure or through side-chain functionalization, 
should make possible the emission of a variety of colors 
throughout the visible spectrum. 

In the prior art, Tomozawa et al (see Reference 8) dis­
closed diodes fabricated by casting semiconducting poly­
mers from solution. 

Also in the art, Burroughs et al (see Reference 7) dis­
closed a multi-step process in the fabrication of LED struc­
tures characterized as follows: 

1) A glass substrate is utilized. The substrate is pre-coated 
with a transparent conducting layer of indium/tin oxide 
(ITO). This ITO coating, having high work function 
serves as the ohmic hole-injecting electrode. 
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2 
2) A soluble precursor polymer to the conjugated polymer, 

poly(phenylene vinylene), PPV, is cast from solution 
onto the substrate as a thin, semitransparent layer 
(approximately 100-200 nm). 

3) The precursor polymer is converted to the final con­
jugated PPV by heat treating the precursor polymer 
(already formed as a thin film on the substrate) to 
temperatures in excess of 2000 C. while pumping in 
vacuum. 

4) The negative, electron-injecting contact is fabricated 
from a low work function metal such as aluminum, or 
magnesium-silver alloy; said negative electrode acting 
as the rectifying contact in the diode structure. 

The resulting devices showed asymmetric current versus 
voltage curves indicative of the formation of a diode, and the 
diodes were observed to emit visible light under conditions 
of forward bias at bias voltages in excess of about 14 V with 
quantum efficiencies up to 0.05%. 

The methods of Burroughs et aI, therefore, suffer a 
number of specific disadvantages. Because of the use of a 
rigid glass substrate, the resulting LED structures are rigid 
and inflexible. The need for heating to temperatures in 
excess of 2000 C. to convert the precursor polymer to the 
final conjugated polymer precludes the use of flexible trans­
parent polymer substrates, such as, for example, 
polyethyleneterephthalate, polystyrene, polycarbonate and 
the like, for the fabrication of flexible LED structures with 
novel shapes and forms. The need for heating to tempera­
tures in excess of 2000 C. to convert the precursor polymer 
to the final conjugated polymer has the added disadvantage 
of possibly creating defects in the conjugated polymer and 
in particular at the upper surface of the conjugated polymer 
which forms the rectifying contact with the low work 
function metal. 

Thus, the ability to fabricate light-emitting diodes from 
organic materials and in particular from polymers, remains 
seriously limited. 
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SUMMARY OF THE INVENTION 

It is accordingly an object of the present invention to 
overcome the aforementioned disadvantages of the prior art 
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and, primarily, to provide light-emitting diodes fabricated 
from semiconducting polymers which are soluble in the 
conjugated form and therefore require no subsequent heat 
treatment at elevated temperatures. 

It is additionally an object of the present invention to 5 

utilize the processing advantages associated with the fabri­
cation of diode structures from soluble semiconductor poly­
mers cast from solution to enable the fabrication of large 
active areas. 

It is additionally an object of the present invention to 
10

provide light-emitting diodes fabricated from semiconduct­
ing polymers using flexible organic polymer substrates. 

It is additionally an object of the present invention to 
provide methods for the fabrication of light-emitting diodes 
fabricated from semiconducting polymers which turn on at 
bias voltages compatible with digital electronics (i.e., at 15 

voltages less than 5 volts). 
Additional objects, advantages and novel features of the 

invention will be set forth in part in the description which 
follows, and in part will become apparent to those skilled in 
the art on examination of the following, or may be learned 20 

by practice of the invention. The objects and advantages of 
the invention may be realized and attained by means of the 
instrumentalities and combinations particularly pointed out 
in the appended claims. 

In one aspect this invention provides a process for fabri­ 25 
cating light-emitting diodes (LEDs). In this embodiment the 
process involves a process for fabrication of light-emitting 
diodes which emit visible light. This process comprises the 
steps of: 

i) precoating a substrate with a transparent conducting 30 

first layer having high work function and serving as an 
ohmic hole-injecting electrode; 

ii) casting upon the first layer directly from solution, a thin 
transparent layer of a soluble conjugated polymer; and 

iii) fabricating a negative, electron-injecting contact onto 35 

the conjugated polymer film. This contact is formed from a 
low work function metal and acts as the rectifying contact in 
the diode structure. 

In another embodiment, an alternative process for fabri­
cating light-emitting diodes which emit visible light is 40 

provided. This process comprises the steps of: 
i) casting a free-standing, semi-transparent film of a 

soluble conjugated polymer from solution, said film serving 
as a luminescent, semiconducting polymer and simulta­
neously as a substrate; 45 

ii) coating the free-standing, conjugated polymer film on 
one side with a transparent conducting first layer having a 
high work function and serving as the ohmic hole-injecting 
electrode; and 

iii) fabricating a negative electron-injecting contact onto 50 

the other side of the conjugated polymer film. This contact 
is made of a low work function metal and acts as the 
rectifying contact in the diode structure. 

In yet an additional embodiment this invention provides a 
process for making oriented polymer-based LEDs which 55 

emit polarized visible light. This process includes the steps 
of: 

i) gel-processing a soluble conjugated polymer as a mem­
ber of an admixture with ultra-high molecular weight carrier 
polymer. The gel-processed mixture is formed into an 60 

oriented, free-standing film in which the conjugated polymer 
is chain-aligned. This chain-aligning resulting in polarized 
luminescence for the polymer. 

ii) coating the free-standing, oriented polymer film on one 
side with a transparent, conducting first layer having high 65 

work function and serving as an ohmic hole-injecting 
electrode, and 

iii) fabricating a negative, electron-injecting contact onto 
the other side of the conjugated polymer film. This contact 
is fabricated from a low work function metal and acts as the 
rectifying contact in the diode structure. 

In another general aspect this invention provides the 
LEDs fabricated by any of these processes. In a more 
particular aspect of this invention, the LED devices employ 
poly(2- me thoxy,5 -(2-e thy1-hexyloxy)-1 ,4-phenylene 
vinylene), MEH-PPV, as the conjugated polymer. MEH­
PPV offers the advantage of being a conjugated polymer 
which is soluble in organic solvents. LED device fabrication 
is simplified because of the direct casting of the conjugated 
polymer from solution. 

Surprisingly, it was found that by using calcium as the low 
work function rectifying contact, and by using ITO coated 
PET films as the substrate, flexible LED structures are 
fabricated which benefit from the excellent mechanical 
properties of both the polymer substrate and the conjugated 
polymer semiconducting layer and which exhibit the advan­
tageous characteristics of a turn-on voltage reduced to 3-4 
volts (i.e TTL compatible), and a quantum efficiency which 
is improved by more than an order of magnitude to values 
of approximately 1%. 

Specific advantages of this invention over the prior art 
include the following: 

(i) Because the luminescent semiconducting polymer is 
soluble in its final conjugated form, there is no need for 
heat treatment at elevated temperatures. This greatly 
simplifies the fabrication procedure and enables a con­
tinuous manufacturing process. 

(ii) Since the luminescent semiconducting polymer layer 
can be cast onto the substrate directly from solution at 
room temperature, the LED structure can be fabricated 
on a flexible transparent polymer substrate. These poly­
mer films are manufactured as large area continuous 
films. Thus, the use of flexible polymer films as sub­
strate enables the fabrication of large area polymer 
LEDs using either a batch process or a continuous 
process. 

(iii)The use of Calcium as the low work function contact 
onto MEH-PPV as the luminescent polymer leads to 
unexpected improvements in the efficiency of the 
device and in the compatibility of the device with 
modern digital electronic circuitry. 

DETAILED DESCRIPTION OF THE
 
INVENTION
 

The Substrates 
In some embodiments, the conjugated polymer-based 

LEDs are prepared on a substrate. The substrate should be 
transparent and nonconducting. It can be a rigid material 
such as a rigid plastic including rigid acrylates, carbonates, 
and the like, rigid inorganic oxides such as glass, quartz, 
sapphire, and the like. It can also be a flexible transparent 
organic polymer such as polyester-for example 
polyethyleneterephthalate, flexible polycarbonate, poly 
(methyl methacrylate), poly(styrene) and the like. 

The thickness of this substrate is not critical. 
The Conjugated Polymer 
The invention provides LEDs based on conjugated poly­

mers. 
In one embodiment the conjugated polymer is cast 

directly from a solution onto a precooled substrate to form 
a substrate-supported film. 

In another, the conjugated polymer is present as a free­
standing film. 
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In a third embodiment, the conjugated polymer is present 
as a component of a gel-processed admixture with a carrier 
polymer and the film is formed from this admixture. This 
embodiment offers an easy way to obtain aligned conjugated 
polymer structures which lead to LEDs which can emit 
polarized light. 

The conjugated polymers used herein include soluble 
conjugated polymers known in the art. These include, for 
example, poly(2-me thoxy,5 -(2'-e thy lhexyloxy)-p­
phenylenevinylene) or "MEH-PPV", P3ATs, poly(3­
alkylthiophenes) (where alkyl is from 6 to 16 carbons), such 
as poly(2,5-dimethoxy-p-phenylene vinylene)-"PDMPV", 
and poly(2,5-thienylenevinylene); poly(phenylenevinylene) 
or "PPV" and alkoxy derivatives thereof; and polyanilines. 
Of these, the MEH-PPV materials are preferred. The prepa­
ration of MEH-PPV is given in the examples herein. 

The conjugated polymer can be deposited or cast directly 
from solution. The solvent employed is one which will 
dissolve the polymer and not interfere with its subsequent 
deposition. 

Typically, organic solvents are used. These can include 
halohydrocarbons such as methylene chloride, chloroform, 
and carbon tetrachloride, aromatic hydrocarbons such as 
xylene, benzene, toluene, other hydrocarbons such as 
decaline, and the like. Mixed solvents can be used, as well. 
Polar solvents such as water, acetone, acids and the like may 
be suitable. These are merely a representative exemplifica­
tion and the solvent can be selected broadly from materials 
meeting the criteria set forth above. 

When depositing the conjugated polymer on a substrate, 
the solution can be relatively dilute, such as from 0.1 to 20% 
w in concentration, especially 0.2 to 5% w. Film thicknesses 
of 50-400 and 100-200 nm are used. 

The Carrier Polymer. 
In some embodiments, the conjugated polymer is present 

in admixture with a carrier polymer. 
The criteria for the selection of the carrier polymer are as 

follows. The material should allow for the formation of 
mechanically coherent films, at low concentrations, and 
remain stable in solvents that are capable of dispersing, or 
dissolving the conjugated polymers for forming the final 
film. Low concentrations of carrier polymer are preferred in 
order to minimize processing difficulties, i.e., excessively 
high viscosity or the formation of gross inhomogeneities; 
however the concentration of the carrier should be high 
enough to allow for formation of coherent structures. Pre­
ferred carrier polymers are high molecular weight 
(M.W.>100,000) flexible chain polymers, such as 
polyethylene, isotactic polypropylene, polyethylene oxide, 
polystyrene, and the like. Under appropriate conditions, 
which can be readily determined by those skilled in the art, 
these macromolecular materials enable the formation of 
coherent structures from a wide variety of liquids, including 
water, acids, and numerous polar and nonpolar organic 
solvents. Films or sheets manufactured using these carrier 
polymers have sufficient mechanical strength at polymer 
concentrations as low as 1%, even as low as 0.1%, by 
volume to enable the coating and subsequent processing as 
desired. 

Mechanically coherent films can also be prepared from 
lower molecular weight flexible chain polymers, but 
generally, higher concentrations of these carrier polymers 
are required. 

Selection of the carrier polymer is made primarily on the 
basis of compatibility of the conjugated polymer, as well as 
with the solvent or solvents used. For example, blending of 
polar conducting polymers generally requires carrier struc­
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tures that are capable of co-dissolving with or absorbing 
polar reactants. Examples of such coherent structures are 
those comprised of poly(vinyl alcohol), poly(ethylene 
oxide), poly-para(phenylene terephthalate), poly-para­
benzamide, etc., and suitable liquids. On the other hand, if 
the blending of the final polymer cannot proceed in a polar 
environment, nonpolar carrier structures are selected, such 
as those containing polyethylene, polypropylene, poly 
(butadiene), and the like. 

Turning now to the issue of concentration, it is of crucial 
importance that the carrier structure formed have sufficient 
mechanical coherence for further handling during the for­
mation of the final polymer blend. Therefore, the initial 
concentration of the carrier polymer generally is selected 
above 0.1% by volume, and more preferably above about 
0.75% by volume. On the other hand, it is not desirable to 
select carrier polymer concentrations exceeding 90% by 
volume, because this has a diluting effect on the final 
conjugated polymer composite product. More preferably, 
the concentration of the carrier polymer in the solution is 
below 50% by volume, and still more preferably below. 25% 
by volume. 

Thus, solution is provided by dissolving a selected carrier 
polymer and conjugated polymer in a compatible solvent (or 
mixed solvents) to a predetermined concentration (using the 
aforementioned guidelines). In the present process the 
"compatible solvent" is a solvent system into which a 
desired quantity of soluble conjugated polymer (or soluble 
precursor polymer) can be dissolved. The solvent system is 
also one in which the carrier polymer is substantially 
soluble, and will not interfere with the subsequent structure 
formation process. The carrier solution is formed into 
selected shape, e.g. a fiber, film or the like, by extrusion or 
by any other suitable method. The solvent is then removed 
(through evaporation, extraction, or any other convenient 
method). 

Gels can be formed from the carrier conjugate solution in 
various ways, e.g., through chemical crosslinking of the 
macromolecules in solution, swelling of cross-linked 
macromolecules, thermoreversible gelation, and coagulation 
of polymer solutions. In the present invention, the two latter 
types of gel formation are preferred, although under certain 
experimental conditions, chemically crosslinked gels may 
be preferred. 

Thermoreversible gelation refers to the physical transfor­
mation of polymer solution to polymer gel upon lower of the 
temperature of a homogeneous polymer solution (although 
in exceptional cases a temperature elevation may be 
required). This mode of polymer gelation requires the prepa­
ration of a homogeneous solution of the selected carrier 
polymer in an appropriate solvent according to standard 
techniques known to those skilled in the art. The polymer 
solution is cast or extruded into a fiber, rod or film form, and 
the temperature is lowered to below the gelation temperature 
of the polymer in order to form coherent gels. This proce­
dure is well known and is commercially employed, e.g., for 
the formation of gels of high molecular weight polyethylene 
in decalin, paraffin oil, oligomeric polyolefins, xylene, etc., 
as precursors for high strength polyolefin fibers and films. 

"Coagulation" of a polymer solution involves contacting 
the solution with a nonsolvent for the dissolved polymer, 
thus causing the polymer to precipitate. This process is well 
known, and is commercially employed, for example, in the 
formation of rayon fibers and films, and spinning of high­
performance aramid fibers, etc. 

Frequently, it is desirable to subject the carrier polymer/ 
conducting polymer composite to mechanical deformation, 
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typically by stretching, during or after the initial forming 
step. Deformation of polymeric materials is carried out in 
order to orient the macromolecules in the direction of draw, 
which results in improved mechanical properties. Maximum 
deformations of thermoreversible gels are substantially 
greater than melt processed materials.(P. Smith and P. J. 
Lemstra, Colloid and Polym. Sci., 258, 891, (1980).) The 
large draw ratios possible with thermoreversible gels are 
also advantageous if composite materials may be prepared 
with materials limited in their drawability due to low 
molecular weights. In the case of conducting polymers, not 
only do the mechanical properties improve, but, more 
importantly, the electrical conductivity also often displays 
drastic enhancement by tensile drawing and the orientation 
of the conjugated polymer gives rise to LEDs which will 
emit polarized light because of the orientation. 

The Transparent Conducting First Layer. 
The conjugated polymer layer of the LEDs of this inven­

tion is bounded on one surface by a transparent conducting 
first layer. 

When a substrate is present, this layer is between the 
substrate and the conjugated polymer layer. This first layer 
is a transparent conductive layer made of a high work 
function material that is a material with a work function 
above 4.5 eV. This layer can be a film of an electronegative 
metal such as gold or silver, with gold being the preferred 
member of that group. It can also be formed of a conductive 
metal-metal oxide mixture such as indium-tin oxide. 

These layers are commonly deposited by vacuum sput­
tering (RF or Magnetron) electron beam evaporation, ther­
mal vapor deposition, chemical deposition and the like. 

The ohmic contact layer should be low resistance: pref­
erably less than 300 ohms/square and more preferably less 
than 100 ohms/square. 

The Electron Injecting Contact 
On the other side of the conjugated polymer film an 

electron-injecting contact is present. This is fabricated from 
a low work function metal or alloy (a low work function 
material has a work function below 4.3. Typical materials 
include indium, calcium, barium and magnesium, with cal­
cium being a particularly good material. These electrodes 
are applied by using methods well-known to the art (e.g. 
evaporated, sputtered, or electron-beam evaporation) and 
acting as the rectifying contact in the diode structure. 

EXAMPLES 

This invention will be further described by the following 
examples. These are intended to embody the invention but 
not to limit its scope. 

Example 1 

This example involves the preparation of poly(2-methoxy, 
5-(2'-ethylhexyloxy)-p-phenylenevinylene) "MEH-PPV". 

Monomer Synthesis 
1. Preparation of 1-Methoxy-4-(2-Ethyl-Hexyloxy)Benzene 

A solution of 24.8 g (0.2 mole) of 4-methoxy phenol in 
150 ml dry methanol was mixed under nitrogen with 2.5. M 
solution of sodium methoxide (1.1 equivalent) and refiuxed 
for 20 min. After cooling the reaction mixture to room 
temperature, a solution of 2-ethylbromohexane (42.5 ml, 1.1 
equivalent) in 150 ml methanol was added dropwise. After 
refiuxing for 16 h, the brownish solution turned light yellow. 
The methanol was evaporated and the remaining mixture of 
the white solid and yellow oil was combined with 200 ml of 
ether, washed several times with 10% aqueous sodium 
hydroxide, H20 and dried over MgS04. After the solvent 
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was evaporated, 40 g (85%) of yellow oil was obtained. The 
crude material was distilled under vacuum (2.2 mm Hg, b.p. 
148-149° C.), to give a clear, viscous liquid. 1 H NMR 
(CDCI3) /) 6.98 (4H, s, aromatics), 3.8 (5H, t, 0-CH2 
0-CH3), 0.7-1.7 (15 H, m, C7 H1S' IR (NaCI plate) 750; 
790, 825, 925, 1045, 1105, 1180, 1235, 1290, 1385, 1445, 
1470, 1510, 1595, 1615, 1850, 2030, 2870, 2920, 2960, 
3040. MS. Anal. Calc. for ClsH2402: C, 76.23; H, 10.23; 0, 
13.54. Found: C, 76.38; H, 10.21; 0, 13.45. 
2. Preparation of 2,5-bis(Chloromethyl)-1-Methoxy-4-(2­
Ethyl-Hexyloxy)Benzene 

To the solution of 4.9 g (20.7 mmoles) of compound (1) 
in 100 ml p-dioxane cooled down to 0-5° c., 18 ml of conc. 
HCI, and 10 ml of 37% aqueous formalin solution was 
added. Anhydrous HCI was bubbled for 30 min, the reaction 
mixture warmed up to R.T. and stirred for 1.5-2 h. Another 
10 ml of formalin solution was added and HCI gas bubbled 
for 5-10 min at 0-5° C. After stirring at R.T. for 16 h, and 
then refiuxed for 3-4 h. After cooling and removing the 
solvents, an off-white "greasy" solid was obtained. The 
material was dissolved in a minimum amount of hexane and 
precipitated by adding methanol until the solution became 
cloudy. After cooling, filtering and washing with cold 
methanol, 3.4 g (52%) of white crystalline material (mp 
52-54° C.) was obtained. lH NMR (CDCI3) /) 6.98 (2H, s, 
aromatics), 4.65 (4H, s, CH2-CI), 3.86 (5H, t, 0-CH3 , 

0-CH2), 0.9-1.5 (ISH, m, C7H1S)' IR (KEr) 610, 700, 740, 
875, 915, 1045, 1140, 1185, 1230, 1265, 1320, 1420, 1470, 
1520, 1620, 1730,2880,2930,2960,3050. MS. Anal. Calc. 
for Cl7H2602C12: C, 61.26; H, 7.86; 0, 9.60; CI, 21.27. 
Found: C, 61.31; h, 7.74; 0, 9.72; CI, 21.39. 

Polymerization 
Preparation of Poly(1-Methoxy-4-(2-Ethylhexyloxy-2,5­
Phenylenevinylene) MEH-MPV 

To a solution of 1.0 g (3 mmol) of 2,5-bis (chloromethyl)­
methoxy-4-(2-ethylhexyloxy)benzene in 20 ml of anhydrous 
THF was added dropwise a solution of 2.12 g (18 mmol) of 
95% potassium tert-butoxide in 80 ml of anhydrous THF at 
R.T. with stirring. The reaction mixture was stirred at 
ambient temperature for 24 h and poured into 500 ml of 
methanol with stirring. The resulting red precipitate was 
washed with distilled water and reprecipitated from THF/ 
methanol and dried under vacuum to afford 0.35 g (45% 
yield). UV (CHCI3) 500. IR (film) 695, 850, 960, 1035, 
1200, 1250, 1350, 1410, 1460, 1500, 2840, 2900, 2940, 
3040. Anal. Calc. for Cl7H240 2: C, 78.46; H, 9.23. Found: 
C, 78.34; H, 9.26. 

Molecular weight (GPC vs. polystyrene) 3xlOs. Inherent 
viscosity -5 dllg (but time dependent due to the tendency to 
form aggregates). As is the case with a few other stiff chain 
polymers, the viscosity increases with standing, particularly 
in benzene. The resulting solution is therefore thixotropic. 

The conjugated polymer is highly colored (bright red­
orange). 

Example 2 

Preparation of MEH-PPV via a precursor polymer route. 

Monomer Synthesis 

The monomer synthesis is exactly the same as in Example 
1. 
Polymerization of the Precursor Polymer and Conversion to 
MEH-PPV 

A solution of 200 mg (0.39 mmol) of the monomer salt of 
Example 1 in 1.2 ml dry methanol was cooled to 0° C. for 
10 min and a cold degassed solution of 28 mg (1.7 
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equivalents) of sodium hydroxide in 0.7 ml methanol was 
added slowly. After 10 min the reaction mixture became 
yellow and viscous. The above mixture was maintained at 0° 
C. for another 2-3 h and then the solution was neutralized. 
A very thick, gum-like material was transferred into a 
Spectrapore membrane (MW cutoff 12,000-14,000) and 
dialyzed in degassed methanol containing 1% water for 3 
days. After drying in vacuo, 70 mg (47%) of "plastic" yellow 
precursor polymer material was obtained. UV (CHCI3 ) 365. 
IR (film) 740, 805, 870,1045,1075,1100,1125,1210,1270, 
1420, 1470, 1510, 2930, 2970, 3020. Soluble in C6HsCI, 
C6H3 C13 , CH2 CI2 , CHCI3 , Et2 0, THE Insoluble in MeOH. 

The precursor polymer was converted to the conjugated 
MEH-PPV by heating to reflux (approx. 214° C.) in 1,2,4­
trichlorobenzene solvent. The product was identical with the 
material obtained in Example 1. 

Example 3 

Light-emitting diodes (LEDs) were fabricated consisting 
of a rectifying indium (work function=4.2 eV, Reference 10) 
contact on the front surface of an MEH-PPV film which is 
deposited by spin-casting from dilute tetrahydrofuran solu­
tion containing 1% MEH-PPV by weight onto a glass 
substrate. The resulting MEH-PPV films have uniform sur­
faces with thicknesses near 1200 A. The glass substrate had 
been previously coated with a layer of indium/tin-oxide to 
form an ohmic contact. The Indium contact is deposited on 
top of the MEH-PPV polymer film by vacuum evaporation 
at pressures below 4xlO-7 Torr yielding active areas of 0.04 

2cm . 

While ramping the applied bias, yellow-orange light 
becomes visible to the eye just below 9 V forward bias (no 
light is observed under reversed bias). Above 15 V, the 
rectification ratio of the diode exceeds 104 

. 

The EL spectra, obtained with 3 V AC superposed (at 681 
Hz) on BV forward bias, showed characteristic spectral 
features similar to those observed in the photoluminescence 
of MEH_Ppv.11 The room temperature electroluminescence 
peaks near 2.1 eV with a hint of a second peak above 1.9 eV. 
At 90K, the intensity increases and shifts to the red, and the 
two peaks become clearly resolved. 

The electroluminecence intensity was measured as a 
function of current flow under increasing forward bias. The 
quantum efficiency was determined with a calibrated Silicon 
photodiode and corrected for the spectral response and the 
solid angle of the collecting optics. The measured quantum 
efficiency at 0.8 rnA is =5x1031 

4 photons per electron for 
Indium electrodes. 

Example 4 

Light-emitting diodes (LEDs) were fabricated consisting 
of a rectifying calcium (work function=3 eV, Reference 10) 
contact on the front surface of an MEH-PPV film which is 
deposited by spin-casting from dilute solution onto a glass 
substrate. The resulting MEH-PPV films have uniform sur­
faces with thicknesses near 1200 A. The glass substrate has 
been partially coated with a layer of indium/tin-oxide to 
form an "ohmic" contact. The calcium contact is deposited 
on top of the MEH-PPV polymer film by vacuum evapora­
tion at pressures below 4xlO-7 Torr yielding active areas of 
0.04 cm2 

. 

For the calcium/MEH-PPV diodes, rectification ratios as 
high as 105 are achieved. 

While ramping the applied bias, yellow-orange light 
becomes visible to the eye just above 3 V forward bias (no 

light is observed under reversed bias). The quantum effi­
ciency was determined with a calibrated Silicon photodiode 
and corrected for the spectral response and the solid angle of 
the collecting optics. The measured quantum efficiency at 

5	 0.8 rnA is =7xlO-3 photons per electron for calcium elec­
trodes (i.e., nearly 1%!!). The emission from the Calcium/ 
MEH-PPV LEDs is bright and easily seen in a lighted room 
at 4V forward bias. 

10	 Example 5 

Light-emitting diodes (LEDs) were fabricated consisting 
of a rectifying calcium (work function=3 eV, Reference 10) 
contact on the front surface of an MEH-PPV film which is 
deposited by spin-casting from dilute solution onto a flexible 

15	 transparent polyethyleneterephthalate (PET) film (7 mils 
thickness) as substrate. The resulting MEH-PPV films on 
PET have uniform surfaces with thicknesses near 1200 A. 
The PET substrate is pre-coated with a layer of indium/tin­
oxide to form an "ohmic" contact. The calcium rectifying 

20 contact is deposited on top of the MEH-PPV polymer film 
by vacuum evaporation at pressures below 4xl0-7 Torr 
yielding active areas of 0.04 cm2 

. 

For the calcium/MEH-PPV/ITO/PET diodes, rectification 

25	 
ratios as high as 103 are achieved. 

While ramping the applied bias, yellow-orange light 
becomes visible to the eye above 3V forward bias (no light 
is observed under reversed bias). The quantum efficiency 
was determined with a calibrated Silicon photodiode and 

30	 corrected for the spectral response and the solid angle of the 
collecting optics. The measured quantum efficiency at 5.5 
fAA is 4xlO-3 photons per electron for calcium electrodes. 
The emission from the calcium/MEH-PPV LEDs is bright 
and easily seen in a lighted room at 4V forward bias. 

35 
Example 6 

MEH-PPV is cast onto a film of pure UHMW-PE which 
has been stretched to a moderate draw ratio (e.g. draw ratio 
>20, Reference 11). The MEH-PPV is observed to orient 

40	 spontaneously along the draw direction; both the photo­
absorption and the photoluminescence spectra are highly 
anisotropic. Since the luminescence spectrum is polarized 
with electric vector along the chain alignment direction, 
light-emitting diodes can be fabricated which emit polarized 

45	 light. 

Example 7 

MEH-PPV was gel-processed and chain oriented as a 
50	 guest in UHMW-PE. The gel-processing of conjugated 

polymer as a guest in a gel-processed blend involves three 
steps: 

A. Co-solution with a suitable carrier polymer 
B. Carrier Structure Formation 

55 C. Drawing of the Carrier/Polymer blend. 
Carrier Solution Preparation, Film Formation, Gelation, and 
Drawing. 

PE-MEH-PPV blends are prepared by mixing MEH-PPV 
PPV (Mw=450,000) in xylene with UHMW polyethylene 

60 (Hostalen GUR 415; Mw=4x106
) in xylene such that the PE 

to solvent ratio was 0.75% by weight. This solution is 
thoroughly mixed and allowed to equilibrate in a hot oil bath 
at 126° C. for one hour. The solution is then poured onto a 
glass surface to cool, forming a gel which was allowed to dry 

65 (into a film). Films were then cut into strips and tensile­
drawn over a hot pin at 110-120° C. Once processed in this 
manner, the films are oriented. The high work function and 
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low work function electrodes are offered as in Examples 4 
and 5, and LEDs result. 

We claim: 
1. A light-emitting diode which emits visible light and 

which turns on at voltages below 5 volts, comprising: 
i) a substrate; 
ii) a transparent conducting first layer coated onto said 

substrate, said first layer having high work function and 
serving as a hole-injecting electrode; 

iii) a transparent layer of a soluble semiconducting lumi­
nescent conjugated polymer fabricated onto the trans­
parent conducting first layer; and 

iv)	 an electron-injecting contact fabricated from a low 
work function metal onto the semiconducting conju­
gated polymer layer. 

2. The light-emitting diode of claim 1, wherein the 
substrate is a transparent, inorganic substrate. 

3. The light-emitting diode of claim 1, wherein the 
substrate is a transparent, organic polymer substrate. 

4. The light-emitting diode of claim 1, wherein the 
conducting first layer is an electronegative metal. 

5. The light-emitting diode of claim 1, wherein the 
conducting first layer is a conductive metal-metal oxide 
mixture. 

6. The light-emitting diode of claim 1, wherein the 
semiconducting conjugated polymer layer comprises poly 
(2-methoxy,5-(2'-ethylhexyloxy)-1 ,4-phenylenevinylene). 

7. The light-emitting diode of claim 1, wherein the 
semiconducting conjugated polymer layer comprises a semi­
conducting conjugated polymer selected from the group 
consisting of soluble alkoxy derivatives of poly 
(phenylenevinylene). 

8. The light-emitting diode of claim 1, wherein the 
conducting first layer comprises gold or silver. 

9. The light-emitting diode of claim 1, wherein the 
conducting first layer comprises indium-tin oxide. 

10. The light-emitting diode of claim 1, wherein the 
substrate comprises an organic polymer selected from the 
group consisting of polyesters, polycarbonates, 
polyacrylates, and polystyrenes. 

11. A light-emitting diode which emits visible light and 
which turns on at voltages below 5 volts, comprising: 

i) a substrate; 
ii) a transparent conducting first layer coated onto said 

substrate, said first layer having high work function and 
serving as a hole-injecting electrode; 

iii) a transparent layer of a soluble semiconducting lumi­
nescent conjugated polymer fabricated onto the trans­
parent conducting first layer; and 

iv) an electron-injecting contact fabricated from calcium 
or a lower work function alkaline earth metal onto the 
semiconducting conjugated polymer layer. 

12. The light-emitting diode of claim 11, wherein the 
substrate is a transparent, inorganic substrate. 

13. The light-emitting diode of claim 11, wherein the 
substrate is a transparent, organic polymer substrate. 

14. The light-emitting diode of claim 11, wherein the 
substrate comprises an organic polymer selected from the 
group consisting of polyesters, polycarbonates, 
polyacrylates, and polystyrenes. 

15. The light-emitting diode of claim 11, wherein the 
conducting first layer is a conductive metal-metal oxide 
mixture. 

16. The light-emitting diode of claim 11, wherein the 
conducting first layer comprises indium-tin oxide. 

17. The light-emitting diode of claim 11, wherein the 
conducting first layer is an electronegative metal. 

18. The light-emitting diode of claim 11, wherein the 
conducting first layer comprises gold or silver. 

19. The light-emitting diode of claim 11, wherein the 
semiconducting conjugated polymer layer comprises a semi­

S	 conducting conjugated polymer selected from the group 
consisting of soluble alkoxy derivatives of poly 
(phenylenevinylene). 

20. The light-emitting diode of claim 11, wherein the 
semiconducting conjugated polymer layer comprises poly 

10 (2-methoxy,5-(2'-ethylhexyloxy)-1 ,4-phenylenevinylene). 
21. The light-emitting diode of claim 11, wherein 

electron-injecting contact is calcium. 
22. The light-emitting diode of claim 11, wherein 

electron-injecting contact is barium. 
23. A light-emitting diode which emits visible light and 

15 which turns on at voltages below 5 volts, comprising: 
i) a substrate; 
ii) a transparent conducting first layer coated onto said 

substrate, said first layer having high work function and 

20 serving as a hole-injecting electrode; 
iii) a transparent layer of a soluble semiconducting lumi­

nescent conjugated polymer fabricated onto the trans­
parent conducting first layer; and 

iv) an electron-injecting contact fabricated from calcium 
25 onto the semiconducting conjugated polymer layer. 

24. The light-emitting diode of claim 23, wherein the 
substrate is a transparent, inorganic substrate. 

25. The light-emitting diode of claim 23, wherein the 
substrate is transparent, organic polymer substrate. 

30	 26. The light-emitting diode of claim 23, wherein the 
substrate comprises an organic polymer selected from the 
group consisting of polyesters, polycarbonates, 
polyacrylates, and polystyrenes. 

27. The light-emitting diode of claim 23, wherein the 
35	 conducting first layer is a conductive metal-metal oxide 

mixture. 
28. The light-emitting diode of claim 23, wherein the 

conducting first layer comprises indium-tin oxide. 
29. The light-emitting diode of claim 23, wherein the 

40 conducting first layer is an electronegative metal. 
30. The light-emitting diode of claim 23, wherein the 

conducting first layer comprises gold or silver. 
31. The light-emitting diode of claim 23, wherein the 

semiconducting conjugated polymer layer comprises poly 
(2-methoxy,5-(2'-ethylhexyloxy)-1 ,4-phenylenevinylene). 45 

32. A light-emitting diode which emits visible light and 
which turns on at voltages below 5 volts, comprising: 

i) a substrate; 
ii) a transparent conducting first layer coated onto said 

50	 substrate, said first layer having high work function and 
serving as a hole-injecting electrode; 

iii) a transparent layer of a soluble semiconducting lumi­
nescent conjugated polymer fabricated onto the trans­
parent conducting first layer; and 

55	 iv) an electron-injecting contact fabricated from barium 
onto the semiconducting conjugated polymer layer. 

33. The light-emitting diode of claim 32, wherein the 
substrate is a transparent, inorganic substrate. 

34. The light-emitting diode of claim 32, wherein the 
60 substrate is a transparent, organic polymer substrate. 

35. The light-emitting diode of claim 32, wherein the 
substrate comprises an organic polymer selected from the 
group consisting of polyesters, polycarbonates, 
polyacrylates, and polystyrenes. 

65	 36. The light-emitting diode of claim 32, wherein the 
conducting first layer is a conductive metal-metal oxide 
mixture. 
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37. The light-emitting diode of claim 32, wherein the 
conducting first layer comprises indium-tin oxide. 

38. The light-emitting diode of claim 32, wherein the 
conducting first layer is an electronegative metal. 

39. The light-emitting diode of claim 32, wherein the 
conducting first layer comprises gold or silver. 

40. The light-emitting diode of claim 32, wherein the 
semiconducting conjugated polymer layer comprises poly 
(2-methoxy,5-(2'-ethylhexyloxy)-1 ,4-phenylenevinylene). 

41. A light-emitting diode which emits visible light and 
which turns on at voltages below 5 volts, comprising: 

i) a substrate; 

ii) a transparent conducting first layer coated onto said 
substrate, said first layer having high work function and 
serving as a hole-injecting electrode; 

iii) a transparent layer of a soluble semiconducting lumi­
nescent conjugated polymer selected from the group 
consisting of soluble alkoxy derivatives of poly 
(phenylenevinylene) fabricated onto the transparent 
conducting first layer; and 

iv) an electron-injecting contact fabricated from calcium 
or a lower work function alkaline earth metal onto the 
semiconducting conjugated polymer layer. 

42. The light-emitting diode of claim 41, wherein the 
substrate is a transparent, inorganic substrate. 

43. The light-emitting diode of claim 41, wherein the 
substrate is a transparent, organic polymer substrate. 

44. The light-emitting diode of claim 41, wherein the 
substrate comprises an organic polymer selected from the 
group consisting of polyesters, polycarbonates, 
polyacrylates, and polystyrenes. 

45. The light-emitting diode of claim 41, wherein the 
conducting first layer is a conductive metal-metal oxide 
mixture. 

46. The light-emitting diode of claim 41, wherein the 
conducting first layer comprises indium-tin oxide. 

47. The light-emitting diode of claim 41, wherein the 
conducting first layer is an electronegative metal. 

48. The light-emitting diode of claim 41, wherein the 
conducting first layer comprises gold or silver. 

49. The light-emitting diode of claim 41, wherein the 
semiconducting conjugated polymer layer comprises poly 
(2-methoxy,5-(2'-ethylhexyloxy)-1 ,4-phenyenevinylene). 

50. The light-emitting diode of claim 41, wherein the 
electron-injecting contact is calcium. 

51. The light-emitting diode of claim 41, wherein the 
electron-injecting contact is barium. 

52. A light-emitting diode which emits visible light and 
which turns on at voltages below 5 volts, comprising: 

i) a substrate; 
ii) a transparent conducting first layer coated onto said 

substrate, said first layer having high work function and 
serving as a hole-injecting electrode; 

.iii) a transparent layer of a soluble semiconducting lumI­
nescent conjugated polymer selected from the group 
consisting of soluble alkoxy derivatives of poly 
(phenylenevinylene) fabricated onto the transparent 
conducting first layer; and 
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iv) an electron-injecting contact fabricated from calcium 
onto the semiconducting conjugated polymer layer. 

53. The light-emitting diode of claim 52, wherein the 
substrate is a transparent, inorganic substrate. 

54. The light-emitting diode of claim 52, wherein the 
substrate is a transparent, organic polymer substrate. 

55. The light-emitting diode of claim 52, wherein the 
substrate comprises an organic polymer selected from the 
group consisting of polyesters, polycarbonates, 
polyacrylates, and polystyrenes. 

56. The light-emitting diode of claim 52, wherein the 
conducting first layer is a conductive metal-metal oxide 
mixture. 

57. The light-emitting diode of claim 52, wherein the 
conducting first layer comprises indium-tin oxide. 

58. The light-emitting diode of claim 52, wherein the 
conducting first layer is an electronegative metal. 

59. The light-emitting diode of claim 52, wherein the 
conducting first layer comprises gold or silver. 

60. The light-emitting diode of claim 52, wherein the 
semiconducting conjugated polymer layer comprises poly 
(2-methoxy,5-(2'-ethylhexyloxy)-1 ,4-phenylenevinylene). 

61. A light-emitting diode which emits visible light and 
which turns on at voltages below 5 volts, comprising: 

i) a substrate; 

ii) a transparent conducting first layer coated onto said 
substrate, said first layer having high work function and 
serving as a hole-injecting electrode; 

iii) a transparent layer of a soluble semiconducting lumi­
nescent conjugated polymer selected from the group 
consisting of soluble alkoxy derivatives of poly 
(phenylenevinylene) fabricated onto the transparent 
conducting first layer; and 

iv)� an electron-injecting contact fabricated from barium 
onto the semiconducting conjugated polymer layer. 

62. The light-emitting diode of claim 61, wherein the 
substrate is a transparent, inorganic substrate. 

63. The light-emitting diode of claim 61, wherein the 
substrate is a transparent, organic polymer substrate. 

64. The light-emitting diode of claim 61, wherein the 
substrate comprises an organic polymer selected from the 
group consisting of polyesters, polycarbonates, 
polyacrylates, and polystyrenes. 

65. The light-emitting diode of claim 61, wherein the 
conducting fist layer is a conductive metal-metal oxide 
mixture. 

66. The light-emitting diode of claim 61, wherein the 
conducting first layer comprises indium-tin oxide. 

67. The light-emitting diode of claim 61, wherein the 
conducting first layer is an electronegative metal. 

68. The light-emitting diode of claim 61, wherein the 
conducting first layer comprises gold or silver. 

69. The light-emitting diode of claim 61, wherein the 
semiconducting conjugated polymer layer comprises poly 
(2-methoxy,5-(2'-ethylhexyloxy)-1 ,4-phenylenevinylene). 

* * * * * 


