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Clifford Algebra Calculations with Representation Theory 

& an Introduction to Clifford Algebra 

Alexander I. Scherling
*
 

California Polytechnic State University, San Luis Obispo, CA, 93407 

The goals of this paper are to provide an introduction to vector, exterior and Clifford 

algebra and to present a method for performing Clifford algebra calculations efficiently 

using representation theory. Vectors, exterior algebra and other mathematical and historical 

foundations of Clifford algebra are introduced. Matrix representations of Clifford algebras 

are elucidated. The computation of rotations using Clifford representations of spin groups is 

discussed, and a few of the relevant scientific and engineering applications of the Clifford 

and exterior algebras are noted throughout. 

I. Introduction to Vectors and Exterior Algebra 

One of the most fundamental ideas used in the study of linear algebra and geometry is the concept of a vector. A 

vector is defined as an element of a vector space. A definition of a vector space adapted from one given by Kreyzig
1
 

is as follows: a vector space is a nonempty set V of vectors with the same number of components such that any two 

vectors a and b in V and all their linear combinations aα + bβ (where α and β are scalars, defined as elements of a 

field F) are elements of V, and these vectors satisfy the rules of vector addition and scalar multiplication. The 

definition of a field is too involved for it to be inserted in the middle of the definition of a vector space, but due to 

the scope of this work the only fields that will be considered hereafter are those of the real numbers and the complex 

numbers. The rules of vector addition and scalar multiplication are presented in tables 1A and 1B below for any 

vectors A, B and C of a vector space V, and any scalars c and k of a field F. 

 

Table 1A. The Rules of Vector Addition 

Commutativity A + B = B + A 

Associativity A + B + C = (A + B) + C = A + (B + C)  

Existence of Additive Identity, where the zero vector 0 is 

unique to the vector space 

A + 0 = A 

Existence of Additive Inverse (−A) for all A, where (–A) is 

unique to the vector space 

A + (−A) = 0 

 

Table 1B. The Rules of Scalar Multiplication 

Scalar Distributivity c(A + B) = cA + cB 

Vector Distributivity (c + k)A = cA + kA 

Associativity c(kA) = (ck)A = ckA 

Existence of Multiplicative Identity (where the identity 

element 1 is unique to the field) 

1A = A 

 

 One common notation for writing a concrete example of a vector expresses the vector as a summation in which a 

set of characters serve as units for vector components. An example three-component vector V over the real number 

field can be written as shown in quantity (1a): 
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where the units i, j and k prevent the summation from simplifying. One benefit of this notation is that the summation 

of two or more vectors with each other is easily accomplished by grouping like units and simplifying the sum to a 

single vector. This notation is also satisfying because scalar multiplication immediately follows from the distributive 

property - each of the vector's components will be multiplied by the scalar when the product is simplified.  

Many different physical phenomena can be modeled using vectors, such as positions, velocities and accelerations 

in classical mechanics. In a three-dimensional Euclidean space, a position vector can be visualized as an arrow 

drawn from the origin (the zero vector) to a point in the Euclidean space with Cartesian coordinates defined by the 

vector’s components. As an aside, please note that although Cartesian coordinates are often utilized in vector 

calculations (and any coordinate system mentioned in this paper is assumed to be Cartesian) other coordinate 

systems such as polar coordinates also exist.  

One of the most fundamental concepts in vector algebra is that a vector quantity describes both a scalar 

magnitude and a spatial direction. When a position vector is considered, for example, it follows that the scalar 

magnitude of the vector is the distance from the origin to the point in space that the vector is describing. In a 

Euclidean space, the scalar magnitude of a vector can be calculated using the Euclidean norm, which is the square 

root of the sum of the squares of the vector components. Using the Euclidean norm, a Euclidean vector can be 

factored into the product of a scalar magnitude with a vector of unit Euclidean norm. The vector of unit Euclidean 

norm is sometimes called a direction cosine, because it describes direction, while its scalar coefficient describes a 

scalar magnitude.  

Vectors that do not describe a position (such as an acceleration vector) lack concrete spatial orientations - they 

describe a scalar magnitude and a direction, but are not intrinsically located anywhere. One of the most common 

non-position quantities represented by a vector is that of a point-force. In classical mechanics, a summation of all 

point-force vectors acting on a particle results in a vector that describes the net force on the particle. To ease the 

visualization of a vector summation in the context of point-forces acting on a particle, one can utilize the origin of 

the given Cartesian coordinate system as a virtual location at which the particle can be imagined to exist. Consider 

the following example in which vector summation is employed in a two-dimensional Euclidean space to sum two 

point-forces A and B acting on a particle. The summation of two vectors follows the "parallelogram law." A 

parallelogram can be constructed from the origin using A and B to define its sides, and the sum of A and B is a vector 

from the origin to the opposite vertex of the parallelogram, as illustrated in fig. 1, which was drawn using 

MATLAB.
2
  

 
  

 The fact that two or more vectors (each with the same number of components) can always be summed is quite 

fundamental to the definition of a vector, as is scalar multiplication. Product operations on two or more vectors are 

not present in the definition of a vector, but they can be quite useful. One of the oldest and most well-known product 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x

y

 

 

C

B

A

Figure 1. The "parallelogram law" of vector addition, illustrating the vector sum A + B = C. 
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operators that can act on two vectors each with n components is called the wedge or exterior product. The exterior 

product is used in what is today known as exterior algebra. As a historical aside, the exterior product was first seen 

in the work of Hermann Grassmann. As described by Israel Kleiner in A History of Abstract Algebra,
3
 many of the 

fundamental notions in linear algebra, including linear independence and the idea of a vector space, were 

investigated by Grassmann and published in his work Die Lineale Ausdehnungslehre (translated as Doctrine of 

Linear Extension) in 1844, and another work in 1862. According to Kleiner, Grassmann’s work influenced Giuseppe 

Peano in his formulation of the modern definition of a vector space in his Geometric Calculus of 1888. 

 The exterior product may be considered complicated by students first learning it for two reasons: firstly, the 

exterior product of two vectors does not result in a vector, and secondly, the exterior product is a non-commutative 

product, so the order in which vectors are multiplied matters. In Clifford Algebras and Spinors
4
 by Pertti Lounesto, 

the exterior algebra is introduced by defining a set of rules for the exterior product with respect to the vector units ε1, 

ε 2, ... , ε n where subscripts are used to denote different units instead of individual letters such as i, j and k. The 

defining rules for the exterior product are provided by relations (1b) and (1c) below, where the wedge operator ˄ 

denotes the exterior product. 

 

                     

 

        
  

Relation (1b) shows that the exterior product of two vectors is non-commutative. Relation (1b) also helps to explain 

why the exterior product of two vectors does not result in a vector; the exterior product of two unlike units does not 

reduce. The product of two like units reduces to zero, however, as shown in relation (1c). 

 The exterior product has a very interesting Euclidean geometric interpretation. The exterior product of two non-

parallel vectors, for example, can be interpreted as resulting in a parallelogram-shaped plane segment called a 

bivector with a characteristic area and planar attitude. The area magnitude of a general Euclidean bivector is equal to 

the area of a parallelogram constructed using the two non-parallel vectors as its sides, and can be calculated as the 

Euclidean norm of the bivector's components. Note that a bivector does not have a complete spatial orientation 

because it lacks a definite position, much like a vector. In a two-dimensional Euclidean space, an arbitrary bivector 

B is described by quantity (1d): 

 

         

 

and has an area magnitude equal to the absolute value of the scalar a. In a three-dimensional Euclidan space, an 

arbitrary bivector B has three components necessary to establish a planar attitude, and can be written as shown in 

relation (1e): 

 

                       

  

where a, b and c are scalars. In this special case of three dimensions, a duality exists between vectors and bivectors: 

 

                                

 

and allows for a surface normal vector to be substituted in the place of a bivector without loss of information. As 

noted by Lounesto, this linear isomorphism between vectors and bivectors in three dimensions explains the 

existence of the vector cross product. The cross product is widely used in vector analysis, an algebraic system of 

operations on three-dimensional vectors published by Gibbs in 1901.
4
 A vector cross product exists for three-

dimensional vectors because it is only in three-dimensional spaces that vectors are dual to bivectors. In any n-

dimensional space every bivector has a companion bivector of opposite sign with the same planar attitude and area-

magnitude, but in the three-dimensional case there exist a pair of surface normal vectors dual to the described pair of 

bivectors. These normal vectors can be visualized as being collinear and pointing in opposite directions. 

 The exterior product has numerous physical applications, one example of which is calculating the moment which 

results from the application of a point force to a lever. The difference between two bivectors that are equal up to a 

sign becomes important in this case because a plane of orientation and a magnitude alone are not enough to describe 

a moment (for example, think of the difference between a “clockwise” and a “counterclockwise” moment of the 

same magnitude in a given plane of rotation). As an illustration of the exterior product of two vectors, consider fig. 

2. in which a vector A describing the length of a moment arm and a vector B describing a force applied to it are 

(1b) 

(1c) 

(1d) 

(1e) 

(1f) 
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multiplied to produce a bivector C. The bivector has signed area with magnitude equal to that of the resulting 

moment. If A were instead the force and B the moment arm, the vectors would "wrap around" the other side of the 

parallelogram area in the opposite sense of rotation, and the sign of the bivector would change but not the area. 

 
 

The net moment acting on a rigid body can be calculated by summing all the moments acting on the body, where 

each moment is represented by a bivector. Bivectors are summed in the same way that vectors are summed – by 

grouping like units and simplifying. Due to the duality between vectors and bivectors in three dimensional spaces, 

any summation of bivectors can be equivalently represented by a summation of vectors dual to those bivectors, as is 

the case when a sum of moments is written as a sum of cross products of pairs of vectors in vector analysis.  

As a closing remark on bivectors, it should be noted that there exist bivectors in exterior algebras of dimension 

four and greater that cannot be formed from the exterior product of two vectors.
4
 The exterior product of two vectors 

results in what is known as a simple bivector; a general bivector can be constructed by summing multiple simple 

bivectors. For example, consider the bivector below that is a sum of two simple bivectors in a four-dimensional 

space as shown in relation (1g). The two simple bivectors in the sum can be imagined as two planes in a four-

dimensional space that intersect only at a single point – the origin of the coordinate system. These two planes in 

four-dimensional space are thus orthogonal, in almost the same sense as two Euclidean vectors separated by a right 

angle – they cannot be projected onto one another and hence the magnitude of their exterior product would be the 

product of their magnitudes. 

 

                

 

The exterior product of three vectors (or equivalently the exterior product of a simple bivector and a vector) 

results in a simple trivector, which in a Euclidean space has volume-magnitude equal to the volume of a 

parallelepiped. As was the case with bivectors, an arbitrary trivector in an n-dimensional space can be written as a 

summation of simple trivectors, and represents a collection of parallelepipeds that intersect only at single point. A 

key difference between vectors and multivectors (n-vectors with n > 1) in some k-dimensional space is that the sum 

of two orthogonal vectors is always a simple vector, which is not the case with n-vectors because two orthogonal n-

vectors sum to a non-simple n-vector.  

As will be explained soon in connection with determinants of matrices, an n-vector in an n-dimensional space is 

of special significance. Just as there is only one bivector component (e1˄e2) in the two-dimensional exterior algebra, 

there is only one trivector component (e1˄e2˄e3) in the three-dimensional exterior algebra; the highest grade 

multivector in an exterior algebra always has a single component. Because the components of bivectors, trivectors, 

and multivectors in general are formed by unique combinations of vector units under the exterior product, the 

number of components that describe a given grade of multivector in an n-dimensional exterior algebra is given by 

binomial coefficients - and hence can be nicely presented in the form of Pascal's triangle. As seen in fig. 3, in a four-

Figure 2. Diagram illustrating the exterior product of two vectors A˄B = C which results in a bivector. 

         (1g) 
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dimensional exterior algebra there are six components in a bivector, four components in a trivector, and one 

component in a quadvector. 

 

1 

1  1 

1  2  1 

1  3  3  1 

1  4  6  4  1 
 

Figure 3. An illustrative example of the first five rows of Pascal's triangle. The number of linear 

components that are used to describe an arbitrary multivector are given by binomial coefficients. 

 

All of the concepts that were mentioned thus far in exterior algebra are also applicable to Clifford algebras, 

which are the focus of this paper. To obtain a definition for Clifford algebras in Euclidean geometry, a tiny 

adjustment is needed in the rules of the exterior product to obtain the Clifford product. There is, however, one more 

aspect of the exterior algebra that should at least be briefly mentioned first due to its great significance in linear 

algebra. 

II. Exterior Algebra and Linear Independence 

One of the pioneering ideas of linear algebra that was recognized early on by Hermann Grassmann was the 

notion of linear independence. A set of vectors is linearly independent if none of the vectors in the set can be formed 

by linear combinations of any of the other vectors in the set.
4
 A linearly independent set of vectors can serve as a 

basis for a vector space, a set of vectors that is closed with respect to linear combinations of its constituent vectors. 

The concept of linear independence is fundamental to linear algebra, but can be somewhat difficult to understand 

due to the abstract nature of the idea. The following non-technical explanation may help. 

Consider a set containing lists of numbers (vectors) where each of these lists can be summed with another list to 

produce a resultant list containing information from only the two lists that were summed to create it. Due to the 

geometric interpretation of vectors, the “information” that they contain can be interpreted as regarding a certain 

linear attitude in space, hence two parallel vectors are not linearly independent because they both equally well 

describe the attitude of a certain line. Although it is inaccurate to make this analogy due to modern knowledge of 

genetics and genetic mutations, it may help to think of the resultant vector as being an “offspring vector” that 

inherits only the information of its parents. A set of vectors that is linearly independent contains no vectors that 

could be offspring or clones; each of the vectors in the set contains some unique information. Eliminating any one of 

the vectors in a linearly independent set of vectors results in a net loss of information; the vector space generated by 

the remaining vectors would have a smaller range.   

Grassmann’s exterior algebra can be a useful tool for determining whether a set of vectors is linearly 

independent. It can be shown that a set of vectors is linearly independent if and only if the exterior product of all of 

the vectors in the set produces a non-zero result. In linear algebra, it is well known that the determinant of a square 

matrix can serve as a test for whether the column vectors (or equivalently the row vectors) of a square matrix form a 

linearly independent set. The geometric meaning of determinant of a square matrix can be clearly explained in terms 

of the exterior product. For example, consider the matrix determinant below. 

 

 
   
   
   

      

 

The determinant of a square matrix such as the example above can be computed as the exterior product of its column 

vectors (or equivalently its row vectors). 

 

                                          
 

                                         
 

             

 

(2a) 

(2b) 
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As such, the geometric interpretation of a matrix determinant can be verified using the geometric interpretation of 

the exterior product. In linear algebra, the determinant of an n by n square matrix over the real number field is the 

signed n-volume of a n-dimensional parallelepiped formed by its column vectors; this is exactly what one would 

expect from the exterior product of n linearly independent n-dimensional vectors. In a singular matrix, at least one of 

the column vectors (or equivalently, one of its row vectors) is not linearly independent of the others, so the 

parallelepiped is degenerate and the determinant is zero. 

 Although exterior algebra can be quite useful in linear algebra and geometry, the exterior product has some 

undesirable algebraic characteristics. Because the exterior product serves as a test for linear independence, 

multivectors in exterior algebra cannot be squared, nor can they have inverses with respect to the exterior product. 

This is not the case with Clifford algebras, however. 

III. Euclidean Clifford Algebras 

Clifford algebras are very close relatives of Grassmann's exterior algebra. Their namesake, William Clifford, was 

one of the few early proponents of exterior algebra. According to Lounesto,
4
 Clifford first defined n-dimensional 

Euclidean Clifford algebras in 1882 by altering Grassmann's rules for the exterior product. The definition of the 

Clifford product for a Euclidean Clifford algebra Cℓn is provided below. 

 

                   

 

       

 

Relation (3a) is identical to relation (1d) (note that the wedge operator is no longer used to avoid confusion with the 

Clifford product), but relation (3b) shows the key change that Clifford made in the rules defining the exterior 

product. The Clifford product of two like units in Cℓn simplifies to 1 instead of zero. This small change has 

enormous consequences for the algebra. For example, the Clifford product of two vectors generally does not result 

in a bivector, but instead is the sum of a scalar with a bivector, a quantity called a parabivector. The concept of a 

scalar summed with a bivector may seem unusual, but parabivectors can be very useful, especially in the Clifford 

algebras of two and three dimensional Euclidean spaces Cℓ2 and Cℓ3.  

 A parabivector in Cℓn encodes more information about the vectors that were multiplied to produce it due to its 

additional scalar part. Specifically, a parabivector has a characteristic area, planar attitude, and characteristic angle. 

The geometric interpretation of the bivector part of a parabivector remains unchanged from the exterior product, and 

represents the area of an oriented parallelogram-shaped plane segment. Unlike a bivector however, a parabivector 

has scalar part that contains the information necessary to describe a characteristic angle. This scalar results from the 

inner or “grade-lowering” part of the Clifford product that is absent from the exterior product. The inner product part 

of the Clifford product is valuable because it preserves information that would be discarded by the exterior product, 

allowing Clifford algebras to be compatible with the notion of multiplicative inverses, unlike the exterior algebra. 

For example, the square of a Clifford vector is a scalar, so the multiplicative inverse of a vector is simply the vector 

divided by its square.  

 When a parabivector is the result of the product of two non-parallel Euclidean vectors, the characteristic angle is 

equal to the offset angle between the two vectors that were multiplied. The Euclidean Clifford product of two 

vectors A and B can be written in the following form: 

 

                       
   

     
  

 

where   is the characteristic angle,        is the product of the Euclidean norms of A and B,      is the bivector, 

and       is the Euclidean norm of the bivector. A parabivector thus can be visualized as having a primary vertex 

at which two of the sides of the plane segment meet to form the characteristic angle, as shown in fig. 4. 

 Parabivectors are significant because they can be used to represent a single plane of rotation. A plane of rotation 

is best described as a directed angle paired with a planar attitude; together they describe a unique simple rotation of 

less than a full revolution. In two and three-dimensional Euclidean spaces, only simple rotations can be performed as 

orthogonal planes are not found in these low-dimensional cases. As observed earlier in connection with the exterior 

product, orthogonal planes first appear in four-dimensional Euclidean spaces. In a four-dimensional Euclidean 

space, a bivector can be written as a sum of at most two simple bivectors; an arbitrary rotation in a four-dimensional 

Euclidean space can have at most two planes of rotation.
4
  

(3a) 

  (3b) 

   (3c) 
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In the Euclidean Clifford algebras Cℓ2 and Cℓ3 parabivectors make up the even part of the algebra. Every 

multivector in a Clifford algebra can be identified as being either an odd and even grade multivector; the distinction 

between odd and even grades is based on whether the multivector results from the Clifford product of an odd or 

even number of vectors.
5
 Scalars result from the product of two vectors and thus can be considered multivectors of 

zero grade (0-vectors). The Clifford algebra Cℓ3 has two odd grade multivectors (vectors and trivectors) and two 

even grade multivectors (bivectors and scalars). The even grade multivectors of a Euclidean Clifford algebra form a 

subalgebra useful for describing rotational phenomena. In Cℓ3 for example, the even subalgebra is isomorphic as an 

algebra to (has an algebraic structure identical to) the algebra of quaternions discovered by Sir William Hamilton in 

1843. Quaternions are widely used for modeling three-dimensional rotations in applications such as vehicle 

navigation. The modeling of rotations using spin groups and Clifford algebra will be discussed further in the 

application section of this work.  

Clifford algebra can also provide an ideal algebraic structure for vector calculus. As described by Lounesto,
4
 the 

divergence and curl operations on three-dimensional Euclidean vector fields are easily generalized to operations on 

n-dimensional vector fields using the Dirac operator (named after the physicist Paul Dirac) and Clifford algebra. The 

Dirac operator is a first-order differential operator that acts on an n-dimensional vector field, and is defined as: 

 

    
 

   
   

 

   
   

 

   
     

 

   
 

 

where the Clifford product of this operator with an n-dimensional vector field results in the sum of the divergence (a 

scalar) with the curl (a bivector). Assuming that the vector field is defined in an n-dimensional Euclidean space, the 

Euclidean Clifford product can be utilized in this operation. Clifford algebras of non-Euclidean signature also exist, 

however, and some of them find applications in modern physics. 

 
IV. Signatures and Spin Groups 

Unlike the exterior algebra, a Clifford algebra always has a metric signature associated with it, which is used to 

define the “grade-lowering” part of the Clifford product. One of the interesting features of Clifford algebra is the 

ease with which it can describe non-Euclidean geometries. A Euclidean Clifford algebra Cℓn is more accurately 

classified as a Clifford algebra with signature Cℓn,0 because its vector basis is formed from n “space-like” units that 

square to 1, and zero “time-like” units that square to -1. One example a non-Euclidean metric signature exists in the 

algebra Cℓ3,1 which has a Minkowski space-time metric which can be useful for calculations involving relativistic 

phenomena in modern physics. A Clifford algebra of arbitrary signature p,q can be defined using the rules below for 

the Cℓp,q Clifford product. 

 

  (3d) 

Figure 4. Diagram illustrating the Clifford product of two vectors AB = C which results in a parabivector. 
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 Apart from the Minkowski space-time and time-space signature algebras (Cℓ3,1 and Cℓ1,3 respectively) the 

Euclidean and anti-Euclidean families of Clifford algebras (Cℓn,0 and Cℓ0,n respectively) may be more commonly 

encountered in literature due to their homogeneous signatures; these were also the first two families of Clifford 

algebras investigated by Clifford himself.  

 Some interesting patterns exist in these two families of algebras. For example, the even part of a Euclidean 

Clifford algebra Cℓn,0 is always isomorphic as an algebra to the anti-Euclidean algebra Cℓ0,n-1. The n-dimensional 

anti-Euclidean signature Clifford algebras always contain representations of certain abstract groups (sets of elements 

closed with respect to a single binary operation) called Euclidean spin groups, Spin(n), which are useful for 

describing rotations in n-dimensional Euclidean (and anti-Euclidean) spaces. A spin group with arbitrary signature 

p,q is denoted Spin(p,q), and a representation for it exists within the even subalgebra of the Clifford algebra Cℓp,q. 

 The Euclidean spin groups Spin(n) can be represented by sets of Clifford numbers in which every number can be 

written as a product of exponentials of bivectors in the algebra Cℓn,0 or Cℓ0,n. For example, the group Spin(2) is 

isomorphic to the circle group, which has a convenient representation as the set of all complex numbers with unit 

modulus, with ordinary multiplication being the group operation; the even subalgebras of Cℓ2,0 and Cℓ0,2 are both 

isomorphic to the complex number algebra.
4
 As will be further covered in the application section of this work, the 

Euclidean spin groups Spin(n) provide a way to calculate rotations in n-dimensional Euclidean spaces using Clifford 

algebra. Rotations in Spin(n) are composed using the Clifford product; a single rotation equivalent to a sequence of 

rotations is given by the Clifford product of the rotations in sequence in the order that they are to occur. For 

example, consider a sequence of three rotations A, B, and C in which A occurs before B, and B occurs before C. A 

single rotation R that is equivalent to this rotation sequence is computed as the product given in relation (4d). 

 

      

 

In order to investigate the Euclidean spin groups further, more fundamentals of Clifford algebra should be 

introduced such as conjugation operators. 

V.   Conjugation Operators, Euclidean Spin Groups and Normed Division Algebras 

 Clifford algebras have conjugation operators; for example, the algebra Cℓ0,1 is isomorphic to the complex 

number algebra, and has a conjugation operator identical to complex conjugation. In fact, there are two fundamental 

conjugation operators that act on Clifford numbers, but the Clifford algebras of one-dimensional Euclidean and anti-

Euclidean signatures possess only a single conjugation operator (and Cℓ0,0 does not have any). The conjugation 

operator in the complex number algebra is mathematically classified as an automorphism of the algebra – a map 

from the algebra to itself that preserves the real linear structure of the algebra, the multiplication of numbers in the 

algebra, and the unity (identity) element of the algebra.
4
 In Clifford algebra, this conjugation operation is called the 

grade automorphism, and it acts as a spatial inversion.
5
 As shown in relation (5a) the grade automorphism satisfies 

the property that the grade automorphism of a Clifford number equals the product of the grade automorphisms of its 

factors because the multiplication of numbers in the algebra is preserved. 

 

                     
 

The grade automorphism maps the vector basis units that generate the Clifford algebra to their negatives. The one-

dimensional Clifford algebras Cℓ0,1 and Cℓ1,0 are generated by a single vector basis unit, so the grade automorphism 

changes only the sign of that unit. In all other Clifford algebras, the exterior part of the Clifford product is nonzero, 

and multivectors such as bivectors and trivectors can exist. A spatial inversion mapping the generating units of the 

Clifford algebra to their negatives will change the sign of only the odd-grade multivectors, so the even elements of 

the algebra are unaffected
5
 – the grade involution is thus aptly named. 

 The second conjugation operation fundamental to Clifford algebras is Hermitian conjugation. In the case of a 

Euclidean Clifford algebra, Hermitian conjugation can also be called reversion conjugation.
5
 The Hermitian 

conjugate of a Clifford number changes the sign of all Clifford multivector units that square to negative unity. When 

  (4a) 

 

  (4b) 

 

  (4c) 

  (4d) 

 

   

 

  (5a) 
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a Clifford number is multiplied by its Hermitian conjugate, the resulting Clifford number is equal to its own 

Hermitian conjugate. Hermitian conjugation is not an automorphism, but instead an antiautomorphism of a Clifford 

algebra because it reverses the order of multiplication.
4
 

 

              

 

Note that in the algebra Cℓ0,1 multiplication is commutative so the Hermitian conjugation and grade automorphism 

operators of the algebra coincide. In the two Clifford algebras apart from Cℓ0,0 that are normed division algebras (the 

algebras Cℓ0,1 and Cℓ0,2 which are isomorphic to the complex number, and quaternion algebras respectively) the 

Hermitian conjugate can be used to define the norm; the norm of a number in any of these algebras is the square root 

of the positive scalar obtained by multiplying the number by its Hermitian conjugate. The multiplicative inverse of 

any number in these algebras is equal to the Hermitian conjugate of the number divided by its norm as shown in 

relation (5d). 

 

         

 

    
  

   
 

 

Representations of Euclidean spin groups exists in Cℓ0,1 and Cℓ0,2 where the elements of the spin group are 

represented by the set of all Clifford numbers in the algebra with norm equal to unity. Hence the inverse of an 

element of a spin group is simply its Hermitian conjugate. In fact, this is true of all Euclidean spin groups. A 

Clifford algebra representation of an element of a Euclidean spin group is obtained by computing the exponential of 

a bivector in a Euclidean Clifford algebra,
4
 and all bivector elements of a Euclidean Clifford algebra square to 

negative unity.
5
 Thus the Hermitian conjugate of a Euclidean bivector B is its negative so the exponentials of a 

bivector and its Hermitian conjugate are multiplicative inverses of each other. The Hermitian conjugate of an 

element of a Euclidean spin group is its multiplicative inverse then, as can be shown by writing the exponential 

function as a Taylor series in relation (5f). 

 

                          

 

                  
     

  

 

   

       
    

 
         

  

 
   

 

         

 

 Taking the Hermitian conjugate of an element of a spin group can be thought of as reversing the sense of 

rotation of each plane of rotation that the element describes, resulting in a rotation that would cancel that of the 

original spin group element (multiplicative unity obviously represents no rotation). The normed division algebras 

Cℓ0,1 and Cℓ0,2 are distinct from other Clifford algebras of anti-Euclidean signature because they contain 

representations of Euclidean spin groups (Spin(2) and Spin(3) respectively) whose elements describe at most one 

plane of rotation. The Cℓ0,3 Clifford algebra contains a representation of Spin(4), where orthogonal planes of 

rotation can exist. The algebra Cℓ0,3 is isomorphic to the direct sum algebra Cℓ0,2 Cℓ0,2
 
and thus a representation of 

Spin(4) is isomorphic to Spin(3) Spin(3). Lounesto
4
 gives an explicit example of this isomorphism and describes 

how any rotation in a four-dimensional Euclidean space can be written as a direct sum of two isoclinic rotations – 

non-simple rotations in which each plane of rotation has the same rotation angle. In the context of a four-

dimensional Euclidean space, a quaternion of unit-norm (which can represent an element of Spin(3)) can instead 

represent an isoclinic rotation.
4
 If each of the unit-norm quaternions in the direct sum representation of Spin(4) are 

instead replaced by numbers in the quaternion algebra (which again is isomorphic to Cℓ0,2) then the norm of an 

arbitrary Clifford number in Cℓ0,3 (isomorphic to Cℓ0,2 Cℓ0,2) can clearly be seen not to exist because this would 

require that the norms of each of the quaternions in the direct-sum pair be equal. The existence of orthogonal 

bivectors and non-simple rotations in the Euclidean spaces of dimension four and greater can thus serve as one 

rationalization for why Clifford algebras Cℓ0,n are not normed division algebras for n > 2. 

 

 

 

  (5c) 

 

   

  (5d) 

 

  (5b) 

 

   

 

   

  (5e) 

 

 

  (5f) 

 



 

 
 

 

11 

VI. Clifford Algebras as Matrices 
As noted by Lounesto,

4
 the Clifford algebra Cℓn,n can always be represented by the algebraic ring of all 2

n
 by 2

n
 

matrices over the real numbers. As previously noted, one rationale for finding matrix representations of Clifford 

algebras is that efficient algorithms for computing matrix exponentials, logarithms, and multiplicative inverses are 

commonly employed in software such as MATLAB.
2
 To the author’s knowledge, it remains to be seen whether 

efficient algorithms exist for computing the multiplicative inverse, exponential and logarithm of arbitrary Clifford 

numbers. Of course exceptions exist for specific Clifford numbers such as vectors. As noted earlier, the square of a 

vector is a scalar so the inverse of any vector with nonzero square can be trivially computed by dividing the vector 

by its square. Computations in low-dimensional Clifford algebras can more efficient in their standard form – only 

insight in representation theory can be gained by representing in matrix form a Clifford number that is isomorphic to 

a complex number or a quaternion. The few examples involving 2 by 2 matrices below are thus of didactic rather 

than practical interest.  

In the matrix representation of the Clifford algebra Cℓ1,1 the odd part of the algebra is a vector, and can be 

identified with the anti-diagonal part of a 2 by 2 real matrix, while the even part of the algebra can be identified with 

the matrix diagonal. The isomorphism between 2 by 2 real matrices and the algebra Cℓ1,1 can be defined as shown in 

(6a). 

 

   
  
  

                
  
  

                
   
  

                  
  
   

  

 

The Clifford algebras Cℓ2,0 and Cℓ0,2 which have Euclidean and anti-Euclidean signatures respectively can be 

constructed as algebraic rings within the space of 2 by 2 matrices over the complex numbers by multiplying one of 

the vector basis units of Cℓ1,1 by the imaginary unit. For example, the algebra Cℓ2,0 can be defined by the basis 

matrices below. 

 

   
  
  

                
  
  

                
   
  

                  
  
   

  

  

The algebra Cℓ0,2 is isomorphic to the quaternion algebra, and can be defined using the basis given in (6c). 

 

   
  
  

                
  
  

                
   
  

                  
  
   

  

 

Any Clifford algebra Cℓp,q where p + q = 2n can be obtained from the Cℓn,n real matrix representation by 

selectively scalar multiplying Cℓn,n vector basis matrices by the imaginary unit to obtain a set of vector basis 

matrices with the desired signature.  

The algebraic ring of all 2 by 2 matrices over the complex numbers can be mapped to the Clifford algebras Cℓ3,0 

and Cℓ1,2. The Euclidean Clifford algebra Cℓ3,0 was popularized in a 2 by 2 matrix form discovered by the Physicist 

Wolfgang Pauli and used to describe the behavior of the nonrelativistic electron (and is thus sometimes called the 

Pauli algebra). It is defined below by taking the matrix representation of the Euclidean algebra Cℓ2,0 above and 

dividing its bivector matrix by the imaginary unit to define a third space-like vector basis unit, as seen in (6d).   

 

   
  
  

                   
  
  

                   
   
  

                   
  
   

  

 

        
  
  

                 
  
  

                  
  
   

                 
  
   

  

 

As described earlier, the Clifford algebra Cℓn,n can always be represented by the algebraic ring of all 2
n
 by 2

n
 

block matrices over the real numbers. One efficient way to construct vector basis units within 2
n
 by 2

n
 real matrices 

makes use of the Kronecker product (also called the matrix tensor product). This follows from the mixed-product 

property of tensor products. As described in Matrix Mathematics: Theory, Facts, and Formulas by Bernstein,
6
 for 

matrices A, B, C and D, a matrix obtained from the Kronecker product of A with B can be matrix-multiplied with a 

second matrix obtained from the Kronecker product of C with D using the following identity (where   denotes the 

Kronecker product):
 

 

                 

  (6a) 

  (6b) 

  (6c) 

  (6d) 

   (6e) 
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if and only if A and B are m by n and p by q respectively and C and D are n by m and q by p respectively. In the 

example below, the four vector basis units of the algebra Cℓ2,2 (σ1, σ2, σ3, σ4) are defined by taking Kronecker 

products of the matrices used in the representation of Cℓ1,1 with units 1, ε1, ε2, ε1ε2.  The vector basis units of all 

algebras Cℓn,n can also be defined by taking Kronecker products of the matrices used in the 2 by 2 matrix 

representation of of Cℓ1,1 as demonstrated in (6f). One observation worth noting at this point is that 2
n
 by 2

n
 matrices 

can be interpreted as 2 by 2 block matrices with 2
n-1

 by 2
n-1

 matrices as entries – the Kronecker product can be 

thought of as a binary operation that results in a block matrix. This suggests that the even and odd parts of any 

Clifford algebra Cℓn,n can be identified with the diagonal and anti-diagonal parts of a 2 by 2 block matrix with 2
n-1

 

by 2
n-1

 real matrix entries, as exemplified in earlier in (6a) and in the vector basis unit representations shown in (6f) 

below. 

 

  

            
  
  

   
  
   

   

    
     
    
     

  

 

          
  
  

   
  
  

   

    
    
    
    

  

 

          
  
  

   
   
  

   

     
    
     
    

  

 

         
   
  

   
  
  

   

     
     
    
    

  

 

The highest grade multivector (which is a quadvector) in the Cℓ2,2 algebra is represented by: 

 

                                                    

    
    
     
     

  

 

and as was the case with the 2 by 2 matrix representations, the algebraic ring of all 4 by 4 complex matrices can be 

identified with a few specific Clifford algebras when the Cℓ2,2 quadvector matrix is employed in the definition of an 

additional vector basis unit. This process can be extended to all Clifford algebras Cℓn,n; when the highest grade 

multivector of the algebra Cℓn,n is used to define an additional vector basis unit, the new multivector of highest grade 

in the resulting Clifford algebra Cℓp,q where p + q = n + 1 is identified with the imaginary unit. In this way, the 

algebraic ring of all 4 by 4 complex matrices is seen to be isomorphic with the Clifford algebras Cℓ4,1, Cℓ2,3, and 

Cℓ0,5. It may be worth noting that 2
n
 by 2

n
 complex matrices always are isomorphic to a Clifford algebra with either 

Euclidean or anti-Euclidean signature, with the Euclidean cases occurring when n is odd, and the anti-Euclidean 

cases occurring when n is even. 

 When working with matrix representations of Clifford algebras, one problem that the author encountered was 

that of “reading” a matrix representation of a Clifford algebra. As emphasized earlier, the algebra Cℓn,n is always 

isomorphic to the algebraic ring of all 2
n
 by 2

n
 real matrices. Mapping an arbitrary 2

n
 by 2

n
 real matrix to a Clifford 

number in the algebra Cℓn,n is not a trivial matter however. Fortunately, the author believes he has found a reliable 

transformation method to accomplish this task. 
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VII. Mapping 2
n
 by 2

n
 Matrices to the Algebra Cℓn,n 

 The following method for mapping an arbitrary 2
n
 by 2

n
 real matrix to a Clifford number in the algebra Cℓn,n is 

influenced by the fact that Kronecker products of the 2 by 2 matrix algebra representation of Cℓ1,1 provide the 

simplest means to find basis matrices for representing the algebra Cℓn,n. Let the notation given in (7a) be utilized for 

the Clifford units in the 2 by 2 matrix representation of Cℓ1,1. 

 

    
  
  

                
  
  

                
   
  

                 
  
   

  

 

A Clifford number in Cℓ1,1 can be rewritten as a 2 by 2 real matrix as shown in (7b). 

 

                  
  
  

   
  
  

   
   
  

   
  
   

   
      
        

 

The relationship between the components of the Clifford number and the entries in the matrix is a linear 

transformation that can be written in matrix form from a sum of Kronecker products of the Cℓ1,1 basis matrices. 

 

 

   
   
   
   

   

    
    
     
     

  

 
 
 
 

    
  
  

   
  
  

   
  
   

   
  
  

   

 
 
 
 

  

 

This linear transformation is almost involutory; up to a scalar multiple, the transformation matrix is its own inverse. 

 

 

 
 
 
 

  
 

 
 

    
    
     
     

  

   
   
   
   

  

 

The Kronecker product is commonly used in conjunction with the vec operator, which constructs a column vector 

from the columns of a matrix.
6
 Consider the action of the vec operator on a 2 by 2 matrix X composed from a sum of 

Clifford basis matrices, as demonstrated in relation (7e). 

 

            
      
          

   
   
   
   

  

 

The following useful identity (7f) exists:
6 

 

                    
 

which can be used to show that for any 2 by 2 matrix X that relation (7g) holds. 

 

                                            
 

 Thus any 2 by 2 matrix can be “read” as a Clifford algebra using relation (7h). 

 
 

 
  
  
  

  
      
        

  
  

   
  
  

  
      
        

  
   

    
  
    

 

A deep relationship may exist between the Cℓ1,1 basis matrices used in the transformation and a set of matrices 

called Walsh matrices. A Walsh matrix is a binary (has +1 and -1 as its only entries) 2
n
 by 2

n
 matrix that is 

symmetric and has orthogonal column (and row) vectors so that the inner product of any two columns (or rows) of 

the matrix is zero. The smallest nontrivial Walsh matrix can be expressed as a sum of Cℓ1,1 basis matrices, as shown 

in relation (7i). 

 

  (7a) 

  (7b) 

  (7c) 

  (7d) 

  (7e) 

  (7f) 

  (7g) 

  (7h) 
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It can be shown that matrices resulting from Kronecker products of the 2 by 2 Walsh matrix with itself are also 

Walsh matrices. It thus follows that a Walsh matrix can be expressed as a sum of 2
n
 unique basis matrices from the 

2
n
 by 2

n
 real matrix representation of the algebra Cℓn,n, which are also formed by Kronecker products of  Cℓ1,1 basis 

matrices. In relation (7j) below the 4 by 4 Walsh matrix is expressed in this manner. 

 

                                                       

    
      
      
      

  

 

The Cℓn,n basis matrices that are summed to create the 2
n
 by 2

n
 Walsh matrix may be related to the linear 

transformation needed to map a 2
n
 by 2

n
 real matrix to the Clifford algebra Cℓn,n. For example, consider a 4 by 4 real 

matrix composed as a sum of the 16 Clifford units in the algebra Cℓ2,2 as shown in (7k). 

 

 

                            
                            
                            
                            

  

 

The linear transformation that maps the Clifford algebra Cℓ2,2 to a 4 by 4 real matrix (and vice versa) is given below. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       
       
       
       
       
       
       
       
       
       

       
       
       
       
       
        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                
                
                
                
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                  
                   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

The transformation matrix is equal to the following sum of Kronecker products of the Cℓ1,1 basis matrices: 

 

                                                    
 

and using the Kronecker product identity (7f) it can be shown that: 

 

                                                             
 

                                                                                        
 

where the matrices      ,       ,        and         are the four Cℓ2,2 basis matrices which when summed 

result in a 4 by 4 Walsh matrix. These matrices are always right-multiplied in the transformation, while the left-

multiplied matrices substitute    for     in the Kronecker product of Cℓ1,1 basis matrices. The author has verified the 

   (7i) 

   (7j) 

  (7k) 

   (7l) 

   (7m) 

  (7n) 
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relationship between the Walsh matrices and the linear map from a 2
n
 by 2

n
 real matrix to the Clifford algebra Cℓn,n 

for n < 5 and conjectures that this relationship holds for all n.  

     As a closing remark, the ties between Walsh matrices and Clifford algebras are very deep. Lounesto devotes part 

of one chapter in his book
4
 to binary definitions of Clifford algebras using the Walsh functions (which are the binary 

sequences given by the columns of a Walsh matrix). Lounesto does not remark upon the relationship between the 

Walsh matrices and matrix representations of Clifford algebras in his book, however. As an illustration of this 

relationship, consider how any vector with 2
n
 components can be decomposed into summation of the 2

n
 column 

vectors of a 2
n
 by 2

n
 Walsh matrix, each with a scalar coefficient, as in the decomposition relation (7o). 

 

 

    
     
    
    

         

 
 
 
 

         

 
  
 
  

         

 
 
  
  

         

 
  
  
 

  

 
Regions of a 2

n
 by 2

n
 matrix such as the matrix diagonal and matrix antidiagonal can be regarded as vector-like 

modules with respect to matrix summation, and indeed can be decomposed into a summation of 2
n
 Clifford basis 

matrices, each of which carries the binary sequence of a different Walsh function. Any 2
n
 by 2

n
 matrix thus can be 

decomposed into a summation of 2
n
 vector-like regions (such as the matrix diagonal), where each of these regions 

can be decomposed into a summation of 2
n
 Clifford basis matrices. In this sense, the Walsh matrices allow for 

matrix representations of Clifford algebras to exist. 

 

VIII. Application: Euclidean Spin Groups and Rotations 
One of the most prominent motivations for working with Clifford algebra stems from the fact that Clifford algebras 

are the natural parents of the spin groups. The success of spin groups and spinor theory in modeling physical 

phenomena such as the angular momentum of an electron is evidenced by the pioneering works of Wolfgang Pauli,  

Paul Dirac and others in the early twentieth century, and such theories remain important to active physicists today. 

As mentioned earlier, spin groups are also useful for calculating rotation transformations. For example, a Euclidean 

spin group Spin(n) is related to the special orthogonal group SO(n) which can be represented by the set of all n by n 

orthogonal matrices with unit determinant (sometimes called rotation matrices) and both can be used to model 

rotations in an n-dimensional Euclidean space. In the language of mathematical topology, Spin(n) is both a universal 

covering group and a two-fold covering group of the SO(n) group.
4 

 To elaborate on the relationship between Spin(n) and SO(n), consider that an n by n rotation matrix serves as a 

unique rotation transformation in an n-dimensional Euclidean space; in contrast, there exist two different Clifford 

numbers in the Clifford algebra representation of Spin(n), either of which can be used in a computation of the same 

rotation transformation. As an example of this phenomenon, consider the group Spin(2) and the everyday experience 

of navigating the surface of Earth. If one is facing north and desires to face east instead, one can rotate either 

clockwise or counterclockwise to do so; the topology of Spin(2) and Spin(3) allows one to distinguish between 

equivalent "clockwise" and "counterclockwise" rotations of less than a full revolution (quotations emphasizing that 

the terms clockwise and counterclockwise are ambiguous and used for their analogy only). The ability to distinguish 

between two equivalent rotations of less than a full revolution may be desirable in some applications such as 

robotics and computer animation. 

 As described earlier, the exponential function has special significance in representations of both the SO(n) and 

Spin(n) groups. A matrix representation of an element in the group SO(n) can be generated by taking the matrix 

exponential of a real-valued n by n matrix which changes only its sign when operated on by the matrix transpose (or 

equivalently the Hermitian conjugate); such matrices are called skew-symmetric. Likewise, an Clifford algebra 

representation of an element in the group Spin(n) can be generated by the exponential of a bivector in the algebra 

Cℓn. Euclidean bivectors also change only their sign when operated on by the Hermitian conjugate. In the special 

case of a two-dimensional Euclidean space, representations of elements in the groups Spin(2) and SO(2) can both be 

generated by the matrix exponential of a 2 by 2 skew-symmetric matrix because the Clifford algebra Cℓ2 can be 

represented using 2 by 2 real matrices. The difference between rotations calculated using representations of Spin(2) 

instead of SO(2) in this case results only from the difference between the actions of these group representations on 

vectors. Rotation matrices, for example, act on matrix column vectors, while the Clifford spin groups act on Clifford 

vectors. When Clifford algebras are represented by matrices, Clifford vectors take the form of square matrices 

instead of column vectors, and the rotation is computed as a matrix similarity transformation as opposed to the 

action of a column vector on a matrix. 

 Consider the following 2 by 2 rotation matrix R calculated to the nearest four decimal places: 

   (7o) 
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and its action on the column vector defined below: 

 

   
 
 
  

 

where the V is multiplied by R to compute the rotated vector as shown. 

 

 
      
       

   
            
             

  
 
 
  

 

Because a rotation in two spatial dimensions has a single plane of rotation (unlike rotations in n-dimensional 

Euclidean spaces where n > 3) one can identify the rotation composed in eq. (8a) as a "counterclockwise" rotation of 

5 radians, which is approximately 286.5 degrees. This rotation is indistinguishable from a rotation of about –1.2832 

radians, where the negative sign indicates "clockwise" rotation; a single rotation matrix represents both of these 

rotations, as demonstrated in the example below. 

 

       
   
  

        
       

        
    

            
             

  

 

 In contrast with the matrix representations of special orthogonal groups (which act on matrix column vectors) the 

Clifford algebra representations of spin groups act on Clifford vectors using a coordinate transformation called 

similarity transformation. If S is an element in Spin(n) then it can rotate a Clifford vector U in the algebra Cℓn using 

the following similarity relation: 

 

          

 

where V is the vector that results from the rotation transformation acting on U. The sign of the spin element S in the 

rotation similarity transformation has no impact on the result of the transformation because negative signs cancel. 

This effect is responsible for the phenomenon by which two different Clifford numbers can be used in the 

computation of the same rotation transformation. Equivalent "clockwise" and "counterclockwise" rotations of less 

than a full revolution in the algebras Cℓ2 and Cℓ3 can be distinguished by the sign of the S term in eq. (8e). The 

previous example in which a rotation was computed using SO(2) will now be reworked using Spin(2) to demonstrate 

rotation calculations in Clifford algebra. First, consider the matrix representation of the algebra Cℓ2 defined below. 

 

   
  
  

                
  
  

                
  
   

                  
   
  

  

 

An element S of the group Spin(n) can be written as the exponential of some bivector B in the Cℓn algebra, but when 

composing rotations, it is customary to scalar multiply the bivector by one-half before the exponential is computed; 

doing so provides clarity because the bivector then can be interpreted as having units of radians. Thus a rotation in 

the Cℓn algebra can be composed using relation (8g): 

 

    
  

 
       

 

 
     

  

where B is a bivector, U is a Clifford vector to be rotated and V is the resultant vector. Due to the factor of one-half 

in the exponential this similarity transformation is sometimes called a half-angle rotation transformation, particularly 

in the case where the bivector represents a single plane of rotation. In the special case of Spin(2), one can make use 

of the isomorphism between elements of Spin(2) and elements of SO(2) and realize that eq. (8g) can be equivalently 

written in this case as: 
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  (8b) 

  (8c) 

  (8d) 

  (8e) 

  (8f) 

  (8g) 

   (8h) 
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where R is a 2 by 2 rotation matrix. One can then reuse the results of the rotation calculation in the SO(2) example 

and calculate the square root of the rotation matrix:  

 

      
            
             

 

 

 
    

            
             

  

 

and then verify the difference in sign that exists between the two equivalent rotations computed using Cℓ2: 

    
 

 
 

       
        

    
            
             

  

 

    
 

 
 
   
  

    
              
             

  

 

giving an example of how the sign of the S term in eq. (8e) allows one to distinguish between "clockwise" and 

"counterclockwise" versions of the same rotation in two-dimensional space. The vector used in the SO(2) example, 

when written as a Clifford vector in the 2 by 2 real matrix representation of Cℓ2 has the form: 

 

           
  
  

    
  
   

   
  
   

  

 

and the equivalence of the Clifford algebra and rotation matrix methods can be shown as demonstrated below. 

 

 
             
            

  
  
   

  
            
             

   
             
            

  

 

 In the previous examples, it was interesting to see how the elements of Spin(2) and SO(2) can both be 

represented by 2 by 2 orthogonal matrices, which are algebraically isomorphic to complex numbers with unit 

modulus. When these 2 by 2 orthogonal matrices were used to compute rotations of Euclidean vectors however, they 

acted on completely different matrices (matrix column vectors versus matrix representations of Clifford vectors). 

Clifford vector rotations composed using representations of Spin(2) were seen to use the half-angle rotation formula, 

while SO(2) rotations could be composed from the exponential of a 2 by 2 skew-symmetric matrix without the 

factor of one-half; this fundamental difference in computation is observed between all Clifford vector rotations 

composed using Spin(n) and all matrix column vector rotations using SO(n), as noted by Lounesto.
4 

 Before concluding, a brief note on the relationship between quaternions and Clifford algebra with respect to the 

computation of three-dimensional rotations seems appropriate. As previously described, the even subalgebra of Cℓ3 

is the subalgebra of all parabivectors in Cℓ3 and is isomorphic to the quaternion algebra. By exploiting the duality 

between vectors and bivectors that exists in a three-dimensional Euclidean, a bivector can be substituted for a vector 

(and vice versa) as the object that the parabivector acts on in the rotation transformation. Thus rotations in a three-

dimensional Euclidean space can be computed using only the even part of Cℓ3, or equivalently the algebra of 

quaternions. 

IX.  Conclusion 
     Although Clifford algebras are primarily known for their use in constructing representations of spin groups, they 

also provide a useful algebraic structure for calculations involving vectors. For example, Clifford algebra not only 

generalizes vector calculus operations such as divergence and curl to n-dimensional vector spaces, but also allows 

for calculations involving non-Euclidean vectors to be easily handled. The applications of Clifford algebra are 

numerous, and the scope of this work greatly limited the number of applications of Clifford algebra that could be 

discussed; in particular, the ability of Clifford algebra to describe conformal transformations and the use of Clifford 

algebra in projective geometry were both completely neglected. Its usefulness in calculations involving relativistic 

phenomena were mentioned only in passing. Any reader interested in learning relativistic electrodynamics should 

consider reading Baylis’ book Electrodynamics: A Modern Geometric Approach, which provides a good 

introduction to Clifford algebra before applying it to physics usually addressed using cumbersome space-time 

tensors. In closing, the author highly recommends Clifford Algebras and Spinors by Lounesto as an excellent 

reference which greatly assisted in the production of this work.    
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