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Abstract— This paper presents real-time experimental results
for a new lane positioning system using Markov localization
based on inter-vehicle communication. The proposed system
uses low-cost GPS receivers to provide vehicle locations. The
system also combines a low-pass Butterworth filter and a
particle filter for GPS receiver noise rejection. To study the
new lane positioning system, a multi-threaded program in
C++, that enables the communication between vehicles and
determines their lane positions in real-time, was developed.
Experiments using this software validate the effectiveness of
the lane positioning system.

I. INTRODUCTION

INTELLIGENT transportation systems are being devel-

oped in many different countries with the objective of

improving road traffic efficiency and safety. Many systems

have been proposed and a large number of transportation

research applications would benefit from lane-level posi-

tioning capability. For example, such a capability could

be used for a lane-level navigation system which advises

the driver as to which lane should be chosen to reach the

specified destination without requiring excessive last-minute

lane changing. Another approach is to use probe vehicles that

measure lane-specific traffic conditions on a freeway. This is

particularly important when understanding the efficiency of

weaving road sections that may unnecessarily cause recurrent

congestion [1].

Due to the importance of such applications, much effort

has been put in lane finding/positioning and commercially

available lane finding/detection systems are already appear-

ing. Ieng et al. [2] dealt with multi-lane detection using

multiple cameras. Pierre-Yves and Jeff [3] used lane-level

navigation systems with a high level DGPS/DR sensor inte-

gration system and a map database. Their system was able

to detect which lane a car was driving in and when a car

was changing lanes. Other research directions can be found

in [4][5].

These systems either required image processing algorithms

and/or costly equipment such as highly accurate sensors,
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high performance computers, etc. With that in mind, we

approach the problem by using Inter-Vehicle Communication

(IVC) and low-cost GPS to determine lane positions. Besides

the cost effectiveness, this approach can also increase the

applicability of the system in areas where the infrastructure

for DGPS is not available for systems as described in

[3]. IVC and co-operative driving systems have been under

development for some time [6][7]. With the availability of

GPS systems, it is practical to locate a vehicle with certain

accuracy. However, GPS data do not provide the exact

positions of vehicles (sometimes even placing the vehicle

beside the road) due to degradation or multi-path problems.

Therefore, it is challenging to determine the exact lane that

a vehicle is traveling in, even when a digital map of the road

network is available.

This paper builds from our recent research in the area

of low-cost lane level position determination [8]. Introduced

here is a software architecture that enables real-time imple-

mentation of the method proposed in [8]. Also, unlike our

previous work, a filtering scheme to reject GPS receiver noise

and improve system performance is presented, highlighting

details of our Butterworth filter and particle filter imple-

mentations. Finally, new real-time experimental results are

presented to validate the system. Our fundamental assump-

tion is the existence of a number of vehicles equipped with

GPS receivers. Each vehicle has the ability to communicate

with other vehicles within a certain radius and is able to

send its information regarding position to other vehicles via

a wireless ad-hoc network.

This paper is organized as follows: Section II gives a

short introduction to the architecture of the lane position-

ing system. Section III deals with the Markov localization

algorithm in detail and its specific application to the lane

positioning problem. Section IV proposes a method to reject

GPS receiver noise. The experiments are discussed in Section

V, and some concluding remarks are provided in Section VI.

II. PROGRAM ARCHITECTURE

To demonstrate the lane positioning algorithm, an in-car

localization software was written in C++ which is responsible

for reading GPS data from sensors as well as ensures the

smooth communication between the vehicles via wireless ad-

hoc network and estimation of vehicles’ lane positions from

sharing information. Each vehicle is equipped with a GPS

receiver and a processor to implement the lane positioning

algorithm and to communicate with other vehicles. The

GPS data for the vehicles is fed into a position filter to

reject the measurement noise from receivers. The in-car
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localization software is organized in a multi-thead program.

The functionality for the threads are as follows:

1) TCP/IP socket server thread: to send GPS data to other

vehicles,

2) Client threads: to receive GPS data from other vehi-

cles,

3) GPS thread: to read GPS measurements from sensor,

i.e., GPS receiver,

4) Filters thread: to reject receiver measurement noise

from raw GPS data,

5) Localization thread: to conduct localization algorithm

for lane positions estimation.

The architecture for the system is illustrated in Fig. 1 and

a screenshot of the localization software GUI is shown in

Fig. 2.
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Fig. 1. Program architecture.

GPS fixes

Fig. 2. Screenshot of localization program.

III. MARKOV LOCALIZATION

The target of Markov localization within this work is to

estimate lane positions of vehicles traveling on highways

from GPS data using IVC. Within the framework of this

paper, we only briefly describe how Markov localization is

used in the proposed lane positioning system. Further details

about Markov localization and associated issues can be found

in [8].

Let us start with the simplest case: two vehicles traveling

on a two-lane road. The two vehicles are assumed close

enough to be able to communicate with each other. Within

this Markov localization approach, call P(v1,t = la,v2,t = lb)
the probability that vehicle 1 is traveling in lane a and vehicle

2 is in lane b at time t, where a and b are either 1 or 2. There

are four possibilities in total, which are P(v1 = l1,v2 = l1),
P(v1 = l1,v2 = l2), P(v1 = l2,v2 = l1), and P(v1 = l2,v2 = l2).
Initially, these probabilities are equally set to 0.25. In the

course of the vehicles’ mission (i.e., for t > 0), P is updated

through two basic steps: (1) prediction, and (2) correction.

A. Prediction

In the prediction step, the state of a vehicle is modeled

through the conditional probability P(vi,t = la|vi,t−1 = l j),
which denotes the probability for a motion action that carries

vehicle i from lane j to lane a ( j and a can be equal). When

the vehicle moves, P(vi,t = la|vi,t−1 = l j), which models the

uncertainty in the vehicle’s dynamics, is used to compute the

probability distribution at time t as

P(vi,t = la) ←
2

∑
j=1

P(vi,t = la|vi,t−1 = l j)P(vi,t−1 = l j), (1)

where P(vi = la) is the probability that vehicle i is traveling

in lane a. This step is repeated for both vehicles and then the

product of them is used to form the combined probabilities:

P(v1,t = la,v2,t = lb) = P(v1,t = la)P(v2,t = lb). (2)

The conditional probabilities P(vi,t = la|vi,t−1 = l j) for a

vehicle are computed by comparing its current position

estimate to the position at the last time step t − 1. For

example, by calculating the shortest distance ∆D from the

vehicle position estimate from the GPS reading at time t

to the line passing through the two most recent position

estimates, the probability at which vehicle 1 switches to lane

a (see Fig. 3) can be computed.

−1t

t

∆D

Moving direction in last time step

Vehicle 1

Vehicle 1

Lane j

Lane a

Fig. 3. Prediction step: this figure illustrates a vehicle switching lane and
its position is unknown. The shortest distance ∆D from the position estimate
at time t to the line passing through the two most recent position estimates
is used to calculate the conditional probability.
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B. Correction

Denote z as the vehicle position estimates from GPS

measurements that come in at time step t for both vehicles,

and P(z|v1 = la,v2 = lb) as the probability of perceiving z

when the two vehicles are in lanes a and b respectively. When

the GPS measurements are taken into account, P(z|v1 =
la,v2 = lb) is used to update the probability distribution at

time t according to Bayes’ rule

P(v1,t = la,v2,t = lb|zt) ←

← P(zt |v1,t = la,v2,t = lb)P(v1,t = la,v2,t = lb)

P(zt)
,

(3)

where P(zt) has the purpose of normalizing the sum of all

P(v1,t = la,v2,t = lb|zt).
At time t, the new measurement z is the perpendicular

distance from one vehicle to the other vehicle’s direction

of motion (see Fig. 4). The conditional probability P(z|v1 =
la,v2 = lb) can be calculated based on z using the probability

density function 1

σ
√

2π
e
−(z−µ)2

2σ2 . The mean µ = w× (la − lb)

where w is the lane width. For example, in the case la = 2

and lb = 1, the conditional probability P(z|v1 = la,v2 = lb)
is closer to 100% when the measurement z is closer to the

lane width w.

Z

Vehicle 1

Vehicle 2

Lane a

Lane b

Fig. 4. Correction step: this figure illustrates two vehicles traveling on a
highway. The distance z is used to update the belief in prediction step.

The result for two-vehicle-and-two-lane-road can be ex-

tended to the general case. Denote the number of vehicles

that are communicating with each other as nv, and and the

number of lanes as nl . Let P(v1,t = la,v2,t = lb, ...,vnv,t = lx)
be the probability that vehicle 1 is traveling in lane a, vehicle

2 is in lane b, etc., at time t where a, b, ..., x take on values

between 1 and nl . The probability distribution at time t for

the prediction step is given by

P(vi,t = la) ←
nl

∑
j=1

P(vi,t = la|vi,t−1 = l j)P(vi,t−1 = l j), (4)

and

P(v1,t = la,v2,t = lb, ...,vnv,t = lx) =

= P(v1,t = la)P(v2,t = lb)...P(vnv,t = lx).
(5)

Bayes’ rule for the correction step is

P(v1,t = la,v2,t = lb, ...,vnv,t = lx|zt) ←
QS

P(zt)
. (6)

where Q = P(zt |v1,t = la,v2,t = lb, ...,vnv,t = lx) and S =
P(v1,t = la,v2,t = lb, ...,vnv,t = lx).

The next section discusses the problem of GPS receiver

noise elimination to enhance lane estimation results.

IV. GPS RECEIVER NOISE REJECTION

Error from GPS generally comes from several sources

including satellite clock, ephemeris error, ionospheric effects,

tropospheric effects, and the geometry of visible satellites.

This set of errors from GPS will be common for vehicles.

Other errors are local to the different receivers and include

RF noise from the environment, receiver noise and resolu-

tion, multi-path, and receiver clock error. Aside from multi-

path, errors from this second set are generally smaller than

those common to the receivers. Hence if multi-path is not

a problem (as is the case for many open highways), then

common errors from receivers that are relatively close to

one another can be eliminated by utilizing relative distance

between vehicles.

Other errors that need to be eliminated are the errors

caused by receiver noise. Receiver noise, which is dependent

on the design of antenna, the method used for the analogue

to digital conversion, the correlation process, etc., sometimes

can falsely indicate a vehicle is switching lanes. The high

pitched receiver noise can be rejected using a low-pass filter.

In the proposed lane positioning system, a combination of

a low-pass Butterworth filter [10] fused with a particle filter

[9] can satisfy this task.

A low-pass Butterworth filter is used to smooth the

raw data distance measurements between two vehicles.

More specifically, let the raw data measurement be

zr
t =distance(GPS

car1
t ,GPS

car2
t ) where GPS

car1
t and GPS

car2
t

are raw GPS measurements from two vehicles. The distance

zr
t is then smoothed using a low-pass Butterworth filter pro-

ducing the output zb
t . However, Butterworth filter causes time

delay in the output due to phase-shift. The main objective of

the particle filter is to compensate this delay while preserving

the smoothed feature of the output curve. Particle filter, also

known as Sequential Monte Carlo methods (SMC), is a so-

phisticated model estimation technique based on simulation.

Particle filter is used to reduce the number of states based on

estimating the posterior probability distribution on the state.

It does so by ”tracking” a variable of interest as the variable

evolves over time. In our problem, the variable of interest

at time t, which is the relative distance zt , is represented

as a set of M particles St = (zt [i],wt [i]) : i = 1...M, where

the index i denotes the particle. Each particle consists of an

estimate of the variable of interest and a weight wt [i] defining

the contribution of this particle to the overall estimate of the

variable. Let P(zr
t |zt [i]) be the probability of perceiving zr

t

given zt [i]. The weight wt [i] can be calculated by

wt [i] = P(zr
t |zt [i]). (7)

The calculated weights are then employed to generate a

new set of particles for the next time step (re-sampling) using

roulette wheel selection.

The particle filtering algorithm can be illustrated by pseu-

docode in Algorithm 1.

In experiments, the number of particles was chosen to be

500 particles so that the filtering algorithm can work in real-

time on Intel R© Pentium R©-M 1.4GHz processors (computers
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Algorithm 1 Particle Filter

Require: A set of particles at time 0: S0 = (z0[i],w0[i]) : i =
1...M

1: while t > 0 do

2: zr
t = Distance(GPS

car1
t ,GPS

car2
t )

3: zb
t = Butterworth(zr

t ) {Smooth raw distance}
4: for i = 1...M do

5: zt [i] = Propagate(zt−1[i],z
b
t ) {Prediction with zb

t }
6: wt [i] = P(zr

t |zt [i]) {Update the weights}
7: end for

8: for i = 1...M do

9: wt [i] =
wt [i]

∑M
j=1 wt [ j]

{Normalize the weights}
10: end for

11: St = (zt [i],wt [i]) : i = 1...M

12: St = Resampling(St) {Generate new set of particles}
13: end while

used in the experiments). Fig. 5 shows the GPS plot for

the two laptops used in an experiment. The raw relative vs.

filtered distances between the two computers (see Fig. 6)

shows the effectiveness of the filtering scheme. It can be

observed that the random walk caused by the GPS receiver

noise was rejected effectively.
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Fig. 5. GPS measurements for two computers.

V. EXPERIMENTS

To further enhance the results from the real-road tests

described in [8] where the lane positions of the cars used in

the tests were estimated off-line, this section discusses the

experiments in real-time at low speeds with the new software

(see Section II) and the new filtering scheme.

To evaluate the localization system at low-speed condi-

tions, a number of experiments were conducted on Wilhelm

St in Kitchener, ON, Canada with two persons holding two

laptops, both are Compaq Evo N620c, equipped with two

Garmin 18 GPS receivers. The communication between the

laptops was made through the IEEE 802.11b standard D-Link

DWL-AG660 Wireless Adapters. The experimental apparatus

are shown in Fig. 7. The walking speeds for both persons

were estimated from GPS data to be approximately 5km/h.
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Fig. 6. Relative distance from raw GPS data vs. filtered data.

D-Link Wireless
Adapter

Garmin-18 GPS

Fig. 7. Experiment apparatus.

The GPS measurements for both computers in the first

experiment are plotted in Fig. 5. The strategy was as follows:

Initially, both person 1 (computer 1) and person 2 (computer

2) were in lane 1. After 6 seconds, person 2 switched to

lane 2. Person 2 moved back to lane 1 after 44 seconds.

Person 1 switched to lane 2 at the 63th second and stayed

in lane 2 until the end of the test. The resulting probability

distributions and estimated lane positions are shown in Fig. 8

and Fig. 9, respectively. The estimation appears to be quite

good with the estimated lane positions following the actually

values very closely. Fig. 8 shows how confident the system

was about its estimation.

In the second experiment (see Fig. 10 for GPS plots)

person 1 (computer 1) was initially in lane 1 and person

2 (computer 2) was in lane 2. After 12 seconds, person 1

switched to lane 2. Person 1 moved back to lane 1 after

28 seconds and finally moved to lane 2 after 63 seconds.

Person 2 switched to lane 1 at the 45th second and stayed

in lane 1 until the end of the test. Fig. 11 and Fig. 12

show the resulting probability distributions and estimated

lane positions, respectively. It is interesting to note that the

system sometimes could anticipate the lane changing action

before the vehicles completely moved to the other lanes as

indicated in Fig. 12 at around the 28nd second. This can
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Fig. 8. Probability distributions for experiment 1.
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Fig. 9. Estimated vs. actual lane positions for computer 1 (top) and
computer 2 (bottom).

be explained by the fact that when a vehicle/person starts

making a lane change maneuver, its lateral displacement

notifies the prediction step of the localization algorithm that

the vehicle is about to make a lane change before the lane

changing is completed. In this case, this happened when

person 1’s made a sharp turn at the 28th second as can be

seen in Fig. 10.

The third experiment dealt with a three-lane situation on

the same road section. The lane estimation results are given

in Fig. 13 and Fig. 14. It can be seen from Fig. 14 that

both computers started off with the wrong estimation as the

computers initially had no knowledge about the lanes they

occupied and the initial lane positions were assumed to be the

lowest lane, i.e., lane 1. Fig. 13 shows that the system was not
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Fig. 10. GPS measurements for experiment 2.
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Fig. 11. Probability distributions for experiment 2.

very confident about the estimation in the first 7 seconds of

the experiment. However, as soon as person 1 started moving

to lane 1 at around the 10th second, the estimated lane

positions for both computers quickly converge to the actual

values. This experiment indicates that Markov localization

algorithm can work well without prior knowledge about

the vehicle’s initial lane position. It is, therefore, possible

to localize the vehicle from scratch and to recover from

localization failures or GPS outage in which the positions

of the vehicle are lost.
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Fig. 13. Probability distributions for experiment 3.

VI. CONCLUSION

The implementation of a new lane position estimation

system that uses a Markovian approach based on cooperative

driving models has been discussed in this paper.

In comparison to conventional lane positioning methods

which usually deal with complicated image processing tech-

niques and/or expensive equipment, the proposed method

only requires low cost GPS receivers, IVC, and a simple

localization algorithm. Experimental results have shown the

efficiency of the algorithm. It is also important to note

from the experimental results that in practise low cost GPS

receivers can be effectively fused with a filter to obtain low-

noise GPS measurements, rather than resorting to the use of
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Fig. 14. Estimated vs. actual lane positions for computer 1 (top) and
computer 2 (bottom).

more expensive sensors.

The limitation of the proposed strategy lies in the fact that

it only uses GPS data to estimate lane positions. This might

be challenging where GPS data is not available or GPS signal

is blocked completely by large obstacles like in a long tunnel.

One possible solution to this problem is to fuse the GPS data

with another type of sensor such as an Inertial Measurement

Unit (IMU) until GPS data is again available.
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