
Performance of a new CFD flow solver using a hybrid
programming paradigm

M.J. Bergera,b,∗, M.J. Aftosmisb, D.D. Marshallc, S.M. Murmand

aCourant Institute, New York University, New York, NY 10012, USA

bNASA Ames Research Center, MS T27B, Moffett Field, CA 94035, USA

cAerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

dELORET, MS T27B, Moffett Field, CA 94035, USA

Abstract

This paper presents several algorithmic innovations and a hybrid programming style that lead to highly scalable performance using shared
memory for a new computational fluid dynamics flow solver. This hybrid model is then converted to a strict message-passing implementation,
and performance results for the two are compared. Results show that using this hybrid approach our OpenMP implementation is actually
marginally faster than the MPI version, with parallel speedups of up to 599 out of 640 using OpenMP and 486 with MPI.

Keywords: Parallel programming; Shared address space; Message passing; Space-filling curves

1. Introduction

One of the first choices to make when developing a
new parallel application is whether to use a message-based
distributed-memory model with MPI or a shared-memory
programming model using parallel directives such as
OpenMP. Both approaches have their advantages and dis
advantages. MPI is the most portable across multiple plat
forms, since it runs on both distributed and shared-memory
machines. With the number of disappearing languages and
architectures in the last 20 years, it is the safer way to in
sure longer lasting software. On the other hand, since MPI
involves an assembly-like attention to buffers and memory
management, the MPI route is generally recognized as the
more tedious approach. Shared-memory models offer a
simpler path for code development. Often a developer of
a shared-memory application will start with a serial code

and put in simple loop-level OpenMP directives, obtaining
incremental parallel improvements. Unlike MPI, when the
parallel performance is sufficiently high, the parallelization
effort can stop.

However, as has been reported in the literature, incremen
tal parallelization does not typically yield good parallel scal
ability on large numbers of processors [14,20]. It relies too
heavily on the compiler for loop level parallelization and
does not pay enough attention to memory locality. Compiler
directives and other hints are insufficient to transform a se
rial code into a high performing parallel code without more
attention to memory issues early in the design process.

In this paper, we report on the development of a new
computational fluid dynamics solver using a hybrid of these
two approaches. Our paradigm is to do explicit memory
management, complete with domain decomposition, dupli
cated variables, and explicit communication steps (in other
words, close to a distributed-memory model code), but im
plemented in shared memory. This approach yields much
higher performance than typically reported for shared mem
ory, while still being easier to implement and debug than
MPI code. It provides a simple path for a second step of

�

conversion to MPI for distributed-memory machines once
the code has been tested and debugged. Experimental results
with both of these implementations will be reported in this
paper. By using a subset of OpenMP directives with careful
attention to memory location, we believe that this approach
will make it possible to avoid an MPI conversion, at least
a manual one. Instead, we believe that by using a hybrid
programming paradigm it should be possible to use software
shared-memory layers that sit on top of distributed-memory
machines and still obtain good performance.

In the rest of this section we present some background
material describing what a flow solver looks like for the
non-expert in computational fluid dynamics. We also review
some material on space-filling curves, which we make heavy
use of in the rest of this paper. In Section 2, we describe
the new OpenMP parallel flow solver, including its most im
portant aspects of domain partitioning, load balancing, and
the data structures for communication. Several algorithmic
innovations that contribute to the scalability, in addition to
the hybrid programming paradigm, are described. Section 3
presents the small modifications needed to convert the code
to MPI. Most data structures were completely suitable (and
highly successful) for both approaches. Computational ex
periments for several realistically large computational ex
amples, on both shared and distributed-memory machines,
are presented in Section 4. Conclusions are in Section 5.

1.1. Background

In this section, we describe the salient features of our flow
solver that affect its parallelization. We then review some of
the basic properties of space-filling curves.

The flow solver was developed to solve the inviscid steady
state Euler equation on multi-level Cartesian grids with em
bedded boundaries. Such grids have recently become pop
ular largely because of the ease of grid generation around
complicated geometries, along with their robustness and au
tomation [2,6,4]. Fig. 1 illustrates a two-dimensional exam
ple of embedded boundary grids for purposes of discussion.
Unlike typical body-fitted structured or unstructured grids,
with embedded boundary grids the geometry simply inter
sects the underlying Cartesian grid in an essentially arbi
trary way, creating general polyhedral cells next to the solid
body which need special discretizations. However the bulk
of the grid contains regular Cartesian cells, so finite volume
schemes can be accurately and efficiently implemented. An
essential ingredient for such methods is the use of a multi
level grid, so that cells at different levels of refinement can
be used to accurately discretize both the geometry and the
solution. This means some cells have more than one face in a
given coordinate direction, but a mesh ratio of 2:1 is strictly
enforced. Details of the grid generation can be found in [2].

The flow solver uses a finite volume discretization, where
the flow quantities are stored at the centroid of each cell.
Each iteration proceeds by computing the flux Fij between

Fig. 1. Illustration in two dimensions of Cartesian mesh with embed
ded boundaries. Also shown are cells of different refinement levels, but
adjacent cells are always 2:1.

cells i and j , at the cell edges, using an equation of the
form

�t n+1 n uj = uj − Fij(uL, uR)Aij. (1)
Vj faces of cell j

Here Vj is the volume (in three dimensions) of cell j , and
Aij is the “projected normal area” of the face between cells
i and j . As is typical, the explicit iteration uses a multi
stage Runge–Kutta scheme, and the iterations continue un
til steady state, when the solution stops changing. Since the
stencil is small and the scheme is explicit, communication
takes place only between nearest neighbors. The value of the
flux at each edge is determined from the solution as recon
structed from each adjacent cell, the left and right states uL
and uR, and a non-linear Riemann problem produces the sin
gle upwinded state u(uL, uR) where the flux F is then eval
uated. For a second order method, the value uL is computed
from the cell-centered value ui and the cell’s gradient ∇ui .
Computing the gradient is again a local operation, since it
is based on solution values from only the nearest neighbors
that share an edge with the cell. Another important compo
nent of the flow solver is the multi-grid acceleration scheme.
The essence of this algorithm is to restrict the solution from
the fine grid to a coarser one, where a solution is cheaper
to compute and for technical reasons much of the error is
reduced faster than on the fine grid. The correction to the
solution is then prolonged back to the fine grid. This idea is
recursively applied, with three or more levels often used in
a multigrid hierarchy. For the numerical details of the flow
solver see [1,3]. Note that in this application, some of the
grid cells are full Cartesian hexahedra while others are cut
by the embedded geometry, but this aspect is orthogonal to
the parallelization efforts described below.

Although the grid generation for this type of grid has only
recently been developed, the algorithms and data structures
used in the flow solver follow established methods [5]. Typ
ical light-weight data structures for these kinds of irregular
grids use an edge-based data structure, which makes heavy

Fig. 2. Illustration of space-filling curves in two dimensions, both the
Peano–Hilbert (“U”) and Morton (“N”) orderings. Three levels of meshes
are shown.

use of indirect addressing. This consists of an array of cells
and an array of faces. Cell-based information, for example
includes the solution vector at each centroid, consisting of
density, velocity and pressure. A cell does not know its near
est neighbor in this scheme however, since it is not stored
using multi-dimensional rectangular indexing. Instead, the
cells are ordered using space-filling curve indices, described
next. The array of faces contains the index into the cell array
of the adjacent left and right cells for each face. The only
way cells exchange information with their neighbors is by
sweeping over the face list. For the irregular cells adjacent
to the embedded boundary, these arrays are augmented with
additional information such as the surface normals, irregular
cell centroids, which are also needed for Eq. (1). Faces are
ordered in the face array according to the minimum index
of their adjacent cells.

The face and cell arrays are ordered before the flow solu
tion starts, for both good cache performance and to prepare
for the domain partitioning described in Section 2. This or
dering is performed using space-filling curves. We briefly
review here some of their important properties; for more de
tails see [8,9,18].

Space-filling curves (henceforth sfc) provide a linear or
dering of a multi-dimensional Cartesian mesh. The basic
building block of the Peano–Hilbert curve is a “U” shaped
segment, which visits each cell in a 2 by 2 block, or an
“N” shaped segment for a Morton ordering, as shown in
Fig. 2. Subsequent levels replace the coarse cell with fine
cells which are themselves visited consecutively by the ba
sic curve. This implies the mesh is traversed in essentially
the same order (physically in space) on both a coarse and
fine grid. Note that a curve enters a cell from an adjacent
cell through a common face, and leaves through another face
to a different adjacent cell. A cell is thus connected to two
neighbors in the one-dimensional ordering in the array of
cells. This locality provides for good cache re-use.

2. Description of parallel flow solver

We illustrate the points raised in the introduction by dis
cussing the choices made in developing a new flow solver
for the inviscid steady-state Euler equations on multi-level
Cartesian grids with embedded boundaries. Fig. 3 shows a
three-dimensional grid around a realistically complex vehi
cle that will be used as an example throughout the remainder
of the paper.

2.1. Domain partitioning via space-filling curves

The first step in implementing the flow solver using our
hybrid distributed-memory programming model is to parti
tion the mesh in a load-balanced fashion. This use of explicit
domain decomposition and data replication is not a typical
style for shared-memory machines, but is the essence of our
hybrid approach. It is also much easier to implement using
shared memory. As is common with domain decomposition,
each processor is assigned a subdomain with a certain num
ber of cells, and is responsible for updating those cells using
the “owner computes” rule. Each domain is surrounded by
one layer of “overlap” cells, so that a stencil update can be
performed without communication. Each domain does not
update its overlap cells, but receives the updated values from
the subdomain that does own them after each update.

Since the underlying mesh is Cartesian, general purpose
partitioners such as Metis [7] are unnecessarily expensive.
Instead, a natural choice for partitioning these types of grids
is to use space-filling curves [15–17]. Space-filling curves
provide a one-dimensional ordering of a three-dimensional
mesh, and guarantee that each cell is adjacent to at least
two neighbors (see Fig. 4 for a two-dimensional illustration
of this). Just prior to flow solution, the cells in the incom
ing Cartesian mesh are ordered using the space-filling curve
ordering. To improve cache reuse, the faces are also lexico
graphically sorted according to the cell with the minimum
sfc index. The total amount of “work” on a mesh is the sum
of the work over the individual cells. In the Cartesian ap
proach there are two distinct cell types: regular Cartesian-
aligned hexahedra, and general “cut-cell” polyhedra adja
cent to the body. These cell types require a different amount
of computational work. Currently, the cut-cells are empiri
cally determined to be 1.5 times the work of a full (uncut)
cell. As with many codes, we do not directly account for the
variation in number of faces, nor the communication work
that each partition has (a function of the shared faces). This
value was determined empirically using a linear least squares
fit to the total execution time taken from serial computations
with different size meshes.

One elegant feature of the sfc reordering is that when
combined with the work estimates it is easy to partition
the mesh into any number of subdomains at run-time. The
number of processors is a run-time parameter (obtained
from the OMP_NUM_THREADS environment variable),

Fig. 3. Cartesian mesh with embedded geometry representation for space shuttle example. The domain is partitioned into 64 subdomains using Peano–Hilbert
space-filling curves. Mesh and geometry are colored by partition number.

1 25 50 75 100

Fig. 4. Sample two-dimensional space-filling curve on a mesh with total
amount of work=100 work units.

with the mesh partitioned using an on-the fly domain de
composition as it is input. This alleviates the need to deter
mine in advance the number of partitions, or to re-partition
if the number of available CPUs changes. Cells are assigned
sequentially to the next processor until each node’s assigned
quota has been filled. (The assigned workload is the total
work on the mesh divided by the number of processors).
This can be thought of using a garden hose analogy—point
the hose to the first partition; when it is full, move the hose
to the second partition, etc. This is the step that transforms
the global mesh into its partitioned counterpart, relying on

information which straddles both views of the mesh. It is
clearly much easier to implement using shared memory than
MPI directives. At start-up time, we also ensure that memory
associated with a sub-domain resides on the intended CPU,
by initializing it right after allocating it, since some OS im
plementations wait until the first touch to allocate. After the
read, the rest of the initialization and setup work is done in
parallel.

The work estimates themselves can be exceedingly well
balanced, with typical differences between the maximum
and minimum load on the order of .0001%. This is easy
to do, since for unstructured meshes the granularity of
the partitioning is plus or minus one cell. Of course the
work estimates are only a guess at the actual computational
load, but the numerical experiments show these to be quite
accurate.

The partitioning of the faces follows the cells. As the
faces are input, if a face points to adjacent cells on the same
partition, that partition owns the face. If the adjacent cells
belong to two partitions, the face is duplicated, and the re
spective cells are put on the partition’s overlapping cell list.
Each domain explicitly copies its overlapping cells from the
owner, so that a residual calculation can be done without
inter-partition communication. This architecture follows the
standard message passing template, except in this case it is
implemented in shared memory rather than explicitly pack
ing messages into paired sends and receives. Fig. 3 shows a
domain partitioned into 64 subdomains, along with a cutting
plane through the mesh colored by partition number as well.

Table 1 presents the number of overlapping cells as a func
tion of the number of partitions and the size of the mesh. As
can be seen in Fig. 5, space-filling curves have overlapping

Table 1
Statistics on the average number of overlap cells and the average number of neighbors the partition communicates with for three different meshes using
the space-filling curve partitioning

Parts 1.0 M Cells 4.7 M Cells 9.0 M Cells
olap cells # nbors # olap cells # nbors # olap cells # nbors

8 76 656 (7.5%) 3.7 267 558 (5.6%) 6.2 448 528 (5.0%) —
16 127 159 (12.5%) 6.2 362 724 (7.6%) 8.2 595 177 (6.7%) 7.9
32 184 418 (18.1%) 7.5 458 174 (9.6%) 9.1 814 642 (9.0%) 8.9
64 249 929 (24.5%) 8.7 618 866 (13.0%) 9.6 1 070 983 (11.8%) 8.7

ov

er
la

p
ce

lls

2M

1M

500k

0

sfc 1M cells
sfc 4.7M cells
sfc 9.0M cells
uniform 1M cells
uniform 4.7M cells
uniform 9.0M cells

01 02 03 04 0 50 60 70
cpus

Fig. 5. Comparison of the number of overlap cells using the space-filling
curve partitioning on a multi-level mesh (see Table 1) versus an idealized
uniform mesh with the same total number of cells.

statistics that are close to the statistics one expects from a
regular Cartesian mesh. On meshes from between 1 and 9
million cells, the number of overlapping cells ranges from a
few percent on small numbers of processors to up to 25% of
the cells. Note however that in this last case, with 64 CPUs
there are only 15 K cells per cpu. As an additional bonus,
space-filling curves have locality properties that are bene
ficial for good cache performance on each processor of a
parallel machine.

Once the mesh is partitioned, the time stepping proceeds
in SPMD fashion. Each processor computes the gradient for
each cell, copies the gradient for the overlap cells from the
adjacent processors, computes a residual, updates the cells
it owns, and copies the new overlap cell values from adja
cent processors. Since this is an explicit finite volume code,
large chunks of code are executed in parallel with a coarser
granularity than a typical fine-grained loop level paralleliza
tion. For example, one of the large chunk includes calculat
ing the time step, computing the residual, and updating the
solution. Another chunk is computing the gradient over the
entire subdomain and computing the limiter for it. The type
and number of cells on each domain varies, but as the nu
merical experiments show, the total time it takes to do these
calculations is balanced across partitions.

After each computational chunk, synchronization fol
lowed by an explicit communication step is performed
to update the copies of the overlap cells. Tradition
ally, these cells are not duplicated with shared-memory
programming—one updates one’s cells, and uses the neigh
boring cell as needed. However for performance with the
hybrid paradigm, local memory is associated with each
subdomain. Each computational node allocates and fills
its own local memory for its partition, again not typi
cal with shared-memory implementations. The alternative
shared-memory strategy would have been to allocate one
large array, and assign each partition a range of indices to
update within the array. However, there is no way to en
force the memory locality for each subdomain with such
a strategy. The communication step itself can be imple
mented in a very simple way using shared memory. For
each overlap cell j the location to obtain the updated
state is computed once and saved on the receiving pro
cessor. It is obtained using in essence a loop that looks
like

// each partition performs the following procedure
for (j=0;j<my_num_overlapCells;j++){

p_myDomain_U[j]

= p_otherDomain_U[j’s_index_in_otherGrid]

}

This shared-memory implementation requires a pointer
p_otherDomain_U, determined at run-time, directly into the
other domain. It is the only such pointer required for single
grid calculations, with an additional shared-memory refer
ence required for multigrid restriction and prolongation cal
culations. In MPI this step requires send/receive pairs and
packing/unpacking of messages.

2.2. Multigrid via space-filling curves

A second big design decision for the new flow solver
is how to implement the multigrid acceleration. The
steps include creating the coarse meshes, partitioning
them, and implementing the restriction and prolongation
steps.

As with the sfc ordering performed with the initial mesh
generation, the multigrid coarse meshes are generated

Fig. 6. Two-dimensional example of Cartesian mesh coarsening. Note that some cells do not coarsen because of the 1-irregular rule.

before the flow solution begins. Overall, the complete
mesh preparation time, including initial mesh generation,
space-filling curve ordering and multigrid mesh coarsening,
typically takes only 2–3 min for meshes with several mil
lion cells, (using a 600 MHz SGI workstation), so we have
not (yet) parallelized these steps. Since we use unstructured
data structures to represent the mesh, it is not a trivial mat
ter for a cell to coarsen: it must find its neighbors, check if
they are coarsenable, and create the coarse face lists from
the fine face information.

The coarse meshes are generated from the fine mesh in a
novel way which uses the same sfc ordering as the partition
ing. The key insight is to realize that this ordering places all
sibling cells of a given parent sequentially in the sfc-ordered
mesh. Thus, each coarse cell can be generated by agglom
erating the (up to) eight fine cells in adjacent positions in
the sfc-ordered mesh with a single pass. Cells are only al
lowed to coarsen if all the sibling cells are at the same level;
otherwise, a cell is left alone, and a finer level cell will try
to coarsen with its siblings by searching through the next
eight cells. A second pass through the mesh checks that two
adjacent cells are not more than one refinement level apart
(the one-irregular rule), or the coarsening is disabled. Coarse
mesh generation is thus a linear time algorithm in the num
ber of cells in the mesh.

The mesh coarsening algorithm is illustrated in two di
mensions in Fig. 6. A realistic example of the mesh coars
ening is shown in Fig. 7 for a 4.5 million cell mesh. The
coarsening ratios in generating four coarser meshes are 7.1,
6.5, 5.1 and 4.2, illustrating the retardation of the 8:1 coars
ening as the mesh irregularity increases as a fraction of the
total mesh. Nevertheless, the flow solver achieves excellent
multigrid acceleration rates. Numerical experiments consis
tently show convergence rates of .85 to .95, comparable to
the best 3D Euler solvers in the literature.

Once the coarse meshes are generated, they also need to be
partitioned. The immediate decision is whether to partition
the coarse meshes to conform with the fine meshes, which
means the restriction step will have no communication, or
whether to partition them independently so the coarse grid
computations are load balanced. Since the grids are multi
level, they do not necessarily coarsen in the usual 8:1 ratio
of uniform grids. Interfaces will retard the coarsening ratios,
and the increasing percentage of cut cells in the mesh may
lead to imbalanced work loads. Some multigrid implemen
tations choose the partitioning induced by the finer mesh, so
that the only communication comes from coarse cells with
parent cells from two different meshes. Others partition the
coarse mesh anew [11], and then look for maximal overlap
with a fine partition in assigning the coarse partitions to a
CPU. This is sometimes followed by a bartering algorithm
where neighboring sub-domains exchange boundary cells to
try to minimize the communication.

With sfc-ordered meshes, we can implement either ap
proach directly, since the enumeration of the cells follows
the same layout on the coarse and fine grids. We have cho
sen to partition the coarse mesh in a load balanced way.
This may lead to additional communication from coarse cells
that straddle one or more partitions on the fine grid (illus
trated in Fig. 8). However numerical experiments show that
this potential bottleneck is not encountered, since the multi
grid scalability results are nearly as good as the single grid
results.

In many implementations, if there is a lot of communi
cation the fine grid would first coarsen itself, and then send
the coarse values to the appropriate coarse partitions. How
ever, since most of the cells are on the same partition, this
preliminary coarsening step is not necessary, and the fine
grid simply adds its value to the coarse data structure. Note
that this step needs some kind of synchronization for coarse

Fig. 7. Sequence of coarser grid levels for a 4.5 million cell mesh. The coarsening ratios are 7.1, 6.5, 5.1, and 4.2 in this example. (The last mesh is
not shown.)

Fig. 8. Coarse and fine grids are separately partitioned using the sfc
ordering. Note that fine cells on different partitions may restrict to the
same coarse cell.

cells that are shared by two or more fine mesh partitions,
as in Fig. 8. For the OpenMP implementation this is done
using an atomic directive in the restriction loop.

3. Conversion to MPI

The conversion of the flow solver to MPI started with the
OpenMP implementation. Due to the coarse granularity of
the OpenMP parallelization, over half the code needed little
(under 30 lines) or no modification. In fact, of the 11 000
lines of code organized into 18 files, only the three I/O files
changed substantially, with an additional 1800 lines of MPI
packing code, derived type assembly, etc.

One simple strategy made all the parallel loops work in
both paradigms. The standard loop over a sub-domain is
wrapped with a macro as follows:

pragma omp parallel

{

int myPartitionNumber

= GET_MY_PARTITION_NUM;

do_something_on_my_subdomain;

} /* -- end parallel region -- */

In OpenMP, the GET_MY_PARTITION_NUM macro be
comes a call to the function omp_get_thread_num().
With MPI code however all processors are running all the
time, and a parallel region does not need to be invoked like
this. Every partition might as well think of itself as partition
1, which the macro evaluates to in MPI. Where needed, ad
ditional MPI get_my_procnum() calls are inserted. Of
course, the reduction operations and all I/O routines needed
to be completely rewritten.

While the data structures involved in flow computations
on a domain were suitable for both paradigms, the data struc
tures involved in any communication step had to be com
pletely changed. This includes for example, multigrid re
striction and prolongation, and sharing of overlapping cell
information between sub-domains. A shared memory-based
implementation is more naturally served by a GET opera
tion: domain A gets its overlap information from the owner
domain B. This is efficiently accomplished by domain A
with the use of pointers to the overlap information in do
main B. Translating this to message based communication
would require two steps: first, domain A has to request the
overlap information from domain B, then domain B has to

Table 2
Average number of cells on the fine mesh per partition that communicate
to the coarse mesh on a different partition during the restriction step for
a 4.7 M cell mesh

partitions Avg. # fine cells Avg. # fine cells restricting
to different partition

8
16
32
64

128

593 824
296 912
148 456

74 228
37 114

46 925 (7.9%)
36 206 (12.2%)
28 670 (19.3%)
24 284 (32.7%)
21 228 (57.2%)

return the overlap information. A more efficient implemen
tation for message based communication is to use a SEND
operation: domain B sends the information needed for the
overlap to domain A. This eliminates the first step of the get
operation and requires only one communication step.

Table 2 shows the number of cells on the fine grid that
restrict the solution to a different partition on the coarser
grid. As the number of CPUs increases, the number of cells
per CPU decreases, but the percentage that communicate
increases. It is clear that until very high numbers of CPUs are
reached, the percentage of the fine and coarse grids on the
same partition is very high, minimizing the communication
bandwidth required for restriction and prolongation Note
that on 64 CPUs there are only 75 K fine grid cells per
node and 24 K coarse grid cells with this mesh, and the
communication percentages are rising, yet the scalability
results are not greatly affected by this. However, if our final
goal were only an MPI implementation, a better choice may
have been to partition the coarse grid to follow the fine grid
(and also to ensure that the fine partitions ended on coarse
cell boundaries). This was not investigated further.

4. Computational experiments

The scalability studies presented here use a variety of
mesh sizes on two different machine architectures. The CPU
times measure ten cycles, where the work per cycle includes
a 5 stage Runge–Kutta scheme with gradient evaluations at
every stage. The timing excludes the cost of the initial start
up and final I/O.

In the first experiment we compare the OpenMP and
MPI versions of the flow solver for a single grid. This
was run on the NASA Ames SGI Origin 3600, which has
600 MHz R14000 MIPS CPUs. This shared-memory ma
chine has 1024 CPUs, of which subsets were reserved for
this study. The machine was not in dedicated mode for these
runs. For the OpenMP experiments, the environment vari
able OMP_DYNAMIC was set to false. The MPI imple
mentation in this experiment is the native SGI version. Ex
periments show that MPICH is slower for these tests (see
[10]) and it is not included in this set of experiments. The
mesh contains 4.7 million cells, although also included here
is an example with a smaller mesh of 1.6 million cells run

0

100

200

300

400

500

600

Pa
ra

lle
l S

pe
ed

up

Ideal
OpenMP: 1.6 M cells (ONERA M6)
OpenMP: 4.7 M cells (STS Launch Config)
MPI: 4.7 M cells (STS Launch Config)

0 128 256 384 512 640

CPUs

Fig. 9. Performance comparison of MPI and OpenMP code on SGI Origin
3600 for single grid computations.

on smaller numbers of nodes. Note that the 4.7 M cell mesh
has fewer than 7200 cells per CPU on 640 processors, and
the 1.6 million cell mesh has 6250 cell on 256 nodes. The
smaller mesh speedup curve shows the superlinear speedup
that comes from fitting more of the mesh in cache. On the
larger mesh, speedups of 599 for the OpenMP version and
486 for the MPI version were obtained on 640 processors.
Obviously the space-filling curve load balancing algorithm
is doing a good job of partitioning the work to obtain this
degree of scalability. The computation does not fit on one
processor, so scalability is measured relative to timings on
8 CPUs.

As Fig. 9 shows, initially both MPI and OpenMP perform
equivalently, but the MPI version begins to slow down on
more then 320 CPUs. This seems to indicate slightly greater
overhead in the MPI version. If this is the case, then the
slowdown should be more pronounced when using multi
grid, which has greater emphasis on communication.

The next set of experiments includes the multigrid acceler
ation scheme in comparing OpenMP and MPI. Fig. 10 shows
results using the same 4.7 M cell mesh. We use a multigrid
W-cycle with three grid levels and one pre- and one post-
sweep per level. The MPI runs has a speedup of 392 on 640
CPUs. The OpenMP achieves 514 on 640 CPUs, measured
relative to a 32 node baseline. For reasonable numbers of
CPUs, the multigrid scalability is slightly worse than for a
single grid, despite the fact that surface to volume ratio of
the partitioning is increasing rapidly. The 4.7 million cell
fine mesh has 700 000 cells in the first coarser mesh (for an
average of approximately 1100 cells per node on 640 CPUs),
and 105 K cells on the second coarser mesh (for an aver
age of only 180 cells per node), but the fact that the multi

0 128 256 384 512 640
0

100

200

300

400

500

600

Pa
ra

lle
l S

pe
ed

up

Ideal
OpenMP: 4.7 M cells MG 3 (STS Launch Config)
MPI: 4.7 M cells MG 3 (STS Launch Config)

0 8 12 16
0

5

10

15

Pa
ra

lle
l S

pe
ed

up

Ideal
Multigrid

Single Grid

4
CPUs

Fig. 10. Performance comparison of MPI and OpenMP code on SGI
Origin 3600 using multigrid W-cycle with 3 grid levels.

grid communication overhead is creeping up (the results in
Table 2) has little effect.

At first glance, these results appear surprising in that
the OpenMP version outperforms the MPI version. This
holds even when only the core components of the code are
executed, i.e. no gradients, no limiters, and no multigrid.
The OpenMP version is still somewhat more scalable. De
tailed instrumentation reveals that the communication rou
tine where the solution in the overlap cells is retrieved from
neighboring partitions (OpenMP version), or buffered and
sent to neighbors (MPI version), consistently takes between
2 to 3 times longer in MPI. This additional overhead is a
small fraction of the runtime relative to the total integration
time of the solution. However on larger numbers of CPUs
this overhead becomes increasingly dominant as the rest of
the code speeds up. This situation is exacerbated when gra
dients are included as part of the computation, since three
times as much information needs to be communicated twice
per solution update (once for the gradients themselves, and
once for the limited gradients in the overlap cells).

Since we are using the native SGI MPI library, we can
only speculate as to what is causing this slowdown. Analy
sis using Paraver 1 [19] shows that the cause is internal to
the MPI calls, with an order of magnitude more instructions
being executed inside the MPI calls than the OpenMP ver
sion. Variations using Send/Irecv or Isend/Recv combina
tions do not affect this outcome. Actually we believe that our
MPI performance is quite good, and similar to other careful
MPI applications; what is surprising is the scalability of the
OpenMP code.

1 Thanks to Gabriele Jost at NASA Ames for the Paraver results.

CPUs

Fig. 11. Scalability study on Linux cluster using MPICH—single 4.7 M
cell grid and multigrid with 3 levels.

The last experiment, in Fig. 11, shows results of the MPI
code using MPICH on a 16 node 2.4 GHz Pentium 4 Linux
cluster with a Gigabit ethernet switch. The single grid and
multigrid speedups are essentially identical, although the
actual wall clock time of the multigrid is approximately 40%
more than for a single grid. Since the timings are so close,
it is clear that the additional communication of multigrid is
easily handled by the network.

5. Conclusions

We have presented our approach to shared-memory pro
gramming using a hybrid paradigm. By adopting many of the
explicit domain decomposition and memory management
techniques of distributed-memory programming but imple
menting them with the substantially easier shared-memory
constructs, we can demonstrate performance with some of
the best scalability results for shared memory on a real ap
plication yet obtained. Our scalability results are especially
significant since OpenMP results using loop-level constructs
found in the literature have been so disappointing. Similar
results were found in [13].

By careful attention to memory placement and locality,
our OpenMP implementation is actually marginally faster
than MPI. We believe this is because there is less time con
sumed packing and unpacking buffers, and because of the
overhead of MPI. The one-sided communication available
in MPI2 may help in this regard. Additional steps for bet
ter performance would be to investigate use of parallel I/O.
Ideas along the lines of those in [12] could also be very
useful in further scalability improvements.

The hybrid paradigm uses a restricted set of OpenMP
functionality, and follows closely the architecture of MPI
codes. Thus we believe that an automatic conversion tool
from OpenMP to MPI should be possible to a large degree.
Alternatively, a shared-memory layer sitting on top of dis
tributed memory, such as found in Treadmarks, Hamster,
DSM-THREADS and the like, might provide good perfor
mance with the hybrid paradigm. However, this software
was either not available or insufficiently stable for us to in
clude here.

Acknowledgments

Marsha Berger was supported by AFOSR grant F19620
00-0099 and by DOE grants DE-FG02-00ER25053 and
DE-FC02-01ER25472. David Marshall was supported by
NASA’s Graduate Student Research Program.

References

[1] M.J. Aftosmis, M.J. Berger, G. Adomavicius, A parallel multilevel
method for adaptively refined cartesian grids with embedded
boundaries, AIAA Paper 2000–0808, Reno, NV, January 2000.

[2] M. Aftosmis, M. Berger, J. Melton, Robust and efficient cartesian
mesh generation for component-based geometry, AIAA J. 36 (6)
(June 1998).

[3] M.J. Berger, M.J. Aftosmis, G. Adomavicius, Parallel multigrid on
cartesian meshes with complex geometry, In: Computational Fluid
Dynamics: Trends and Applications, Elsevier, 2001; Proceedings
of the Parallel CFD Conference, Trondheim, Norway, May
2000.

[4] E. Charlton, K. Powell, An octree solution to conservation laws over
arbitrary regions (OSCAR), AIAA paper 97-0198, January 1997.

[5] A. Jameson, W. Schmidt, E. Turkel, Numerical solutions of the Euler
equations by finite volume methods using Runge–Kutta time-stepping
schemes, AIAA Paper 81-1259.

[6] S. Karman Jr., SPLITFLOW: A 3D unstructured crtesian/prismatic
grid CFD code for complex geometries, AIAA paper 95-0343,
January 1995.

[7] G. Karypis, V. Kumar, A fast and high quality multilevel scheme
for partitioning irregular graphs, Technical Report, Department of
Computer Science TR95-035, University of Minnesota, 1995.

[8] X. Liu, G. Schrack, The spatial U-order and some of its mathematical
characteristics, Proceedings of the IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing, Victoria BC,
Canada, May 1995.

[9] X. Liu, G. Schrack, Encoding and decoding the Hilbert order,
Software—Practice Exp. 26 (12) (December 1996).

[10] G.R. Luecke, M. Kraeva, L. Ju, Comparing the performance of
MPICH with Cray’s MPI and with SGI’s MPI, Concurrency and
Computation: Practice and Experience, 2002.

[11] D. Mavriplis, Three-dimensional high-lift analysis using a parallel
unstructured multigrid solver, ICAS Report No. 98–20, May 1998.

[12] J. No, S. Park, J. Perez, A. Choudhary, Design and implementation
of a parallel I/O runtime system for irregular applications, J. Parallel
Distrib. Comput. 62 (2) (February 2002).

[13] L. Oliker, R. Biswas, Parallelization of a dynamic unstructured
algorithm using three leading programming paradigms, IEEE Trans.
Parallel Distrib. Systems 11 (2000).

[14] L. Oliker, X. Li, P. Husbands, R. Biswas, Effects of ordering strategies
and programming paradigms on sparse matrix computations, SIAM
Rev. 44 (3) (2002).

[15] M. Parashar, J.C. Browne, Distributed dynamic data-structures for
parallel adaptive mesh refinement, Proceedings of the International
Conference on High Performance Computing, 1995.

[16] J.R. Pilkington, S.B. Baden, Dynamic partitioning of non-uniform
structured workloads with spacefilling curves, IEEE Trans. Parallel
Distrib. Systems 7 (3) (March 1996).

[17] J.K. Salmon, M.S. Warren, G.S. Winckelmans, Fast parallel tree codes
for gravitational and fluid dynamical N -body problems, Internat. J.
Supercomput. Appl. 8 (2) (1994).

[18] H. Samet, The Design and Analysis of Spatial Data Structures,
Addison-Wesley, Reading MA, 1990.

[19] See http://www.cepba.upc.es/paraver.
[20] H. Shan, J.P. Singh, L. Oliker, R. Biswas, A comparison of three

programming models for adaptive applications on the origin2000, J.
Parallel Distrib. Comput. 62 (2) (February 2002).

http://www.cepba.upc.es/paraver

	Performance of a new CFD flow solver using a hybridprogramming paradigm
	Introduction
	Background

	Description of parallel flow solver
	Domain partitioning via space-filling curves
	Multigrid via space-filling curves

	Conversion to MPI
	Computational experiments
	Conclusions
	References

