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Abstract 

This paper presents several algorithmic innovations and a hybrid programming style that lead to highly scalable performance using shared 
memory for a new computational fluid dynamics flow solver. This hybrid model is then converted to a strict message-passing implementation, 
and performance results for the two are compared. Results show that using this hybrid approach our OpenMP implementation is actually 
marginally faster than the MPI version, with parallel speedups of up to 599 out of 640 using OpenMP and 486 with MPI. 
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1. Introduction 

One of the first choices to make when developing a 
new parallel application is whether to use a message-based 
distributed-memory model with MPI or a shared-memory 
programming model using parallel directives such as 
OpenMP. Both approaches have their advantages and dis
advantages. MPI is the most portable across multiple plat
forms, since it runs on both distributed and shared-memory 
machines. With the number of disappearing languages and 
architectures in the last 20 years, it is the safer way to in
sure longer lasting software. On the other hand, since MPI 
involves an assembly-like attention to buffers and memory 
management, the MPI route is generally recognized as the 
more tedious approach. Shared-memory models offer a 
simpler path for code development. Often a developer of 
a shared-memory application will start with a serial code 

and put in simple loop-level OpenMP directives, obtaining 
incremental parallel improvements. Unlike MPI, when the 
parallel performance is sufficiently high, the parallelization 
effort can stop. 

However, as has been reported in the literature, incremen
tal parallelization does not typically yield good parallel scal
ability on large numbers of processors [14,20]. It relies too 
heavily on the compiler for loop level parallelization and 
does not pay enough attention to memory locality. Compiler 
directives and other hints are insufficient to transform a se
rial code into a high performing parallel code without more 
attention to memory issues early in the design process. 

In this paper, we report on the development of a new 
computational fluid dynamics solver using a hybrid of these 
two approaches. Our paradigm is to do explicit memory 
management, complete with domain decomposition, dupli
cated variables, and explicit communication steps (in other 
words, close to a distributed-memory model code), but im
plemented in shared memory. This approach yields much 
higher performance than typically reported for shared mem
ory, while still being easier to implement and debug than 
MPI code. It provides a simple path for a second step of 



� 

conversion to MPI for distributed-memory machines once 
the code has been tested and debugged. Experimental results 
with both of these implementations will be reported in this 
paper. By using a subset of OpenMP directives with careful 
attention to memory location, we believe that this approach 
will make it possible to avoid an MPI conversion, at least 
a manual one. Instead, we believe that by using a hybrid 
programming paradigm it should be possible to use software 
shared-memory layers that sit on top of distributed-memory 
machines and still obtain good performance. 

In the rest of this section we present some background 
material describing what a flow solver looks like for the 
non-expert in computational fluid dynamics. We also review 
some material on space-filling curves, which we make heavy 
use of in the rest of this paper. In Section 2, we describe 
the new OpenMP parallel flow solver, including its most im
portant aspects of domain partitioning, load balancing, and 
the data structures for communication. Several algorithmic 
innovations that contribute to the scalability, in addition to 
the hybrid programming paradigm, are described. Section 3 
presents the small modifications needed to convert the code 
to MPI. Most data structures were completely suitable (and 
highly successful) for both approaches. Computational ex
periments for several realistically large computational ex
amples, on both shared and distributed-memory machines, 
are presented in Section 4. Conclusions are in Section 5. 

1.1. Background 

In this section, we describe the salient features of our flow 
solver that affect its parallelization. We then review some of 
the basic properties of space-filling curves. 

The flow solver was developed to solve the inviscid steady 
state Euler equation on multi-level Cartesian grids with em
bedded boundaries. Such grids have recently become pop
ular largely because of the ease of grid generation around 
complicated geometries, along with their robustness and au
tomation [2,6,4]. Fig. 1 illustrates a two-dimensional exam
ple of embedded boundary grids for purposes of discussion. 
Unlike typical body-fitted structured or unstructured grids, 
with embedded boundary grids the geometry simply inter
sects the underlying Cartesian grid in an essentially arbi
trary way, creating general polyhedral cells next to the solid 
body which need special discretizations. However the bulk 
of the grid contains regular Cartesian cells, so finite volume 
schemes can be accurately and efficiently implemented. An 
essential ingredient for such methods is the use of a multi
level grid, so that cells at different levels of refinement can 
be used to accurately discretize both the geometry and the 
solution. This means some cells have more than one face in a 
given coordinate direction, but a mesh ratio of 2:1 is strictly 
enforced. Details of the grid generation can be found in [2]. 

The flow solver uses a finite volume discretization, where 
the flow quantities are stored at the centroid of each cell. 
Each iteration proceeds by computing the flux Fij between 

Fig. 1. Illustration in two dimensions of Cartesian mesh with embed
ded boundaries. Also shown are cells of different refinement levels, but 
adjacent cells are always 2:1. 

cells i and j , at the cell edges, using an equation of the 
form 

�t n+1 n uj = uj − Fij(uL, uR)Aij. (1)
Vj faces of cell j 

Here Vj is the volume (in three dimensions) of cell j , and 
Aij is the “projected normal area” of the face between cells 
i and j . As is typical, the explicit iteration uses a multi
stage Runge–Kutta scheme, and the iterations continue un
til steady state, when the solution stops changing. Since the 
stencil is small and the scheme is explicit, communication 
takes place only between nearest neighbors. The value of the 
flux at each edge is determined from the solution as recon
structed from each adjacent cell, the left and right states uL 
and uR, and a non-linear Riemann problem produces the sin
gle upwinded state u(uL, uR) where the flux F is then eval
uated. For a second order method, the value uL is computed 
from the cell-centered value ui and the cell’s gradient ∇ui . 
Computing the gradient is again a local operation, since it 
is based on solution values from only the nearest neighbors 
that share an edge with the cell. Another important compo
nent of the flow solver is the multi-grid acceleration scheme. 
The essence of this algorithm is to restrict the solution from 
the fine grid to a coarser one, where a solution is cheaper 
to compute and for technical reasons much of the error is 
reduced faster than on the fine grid. The correction to the 
solution is then prolonged back to the fine grid. This idea is 
recursively applied, with three or more levels often used in 
a multigrid hierarchy. For the numerical details of the flow 
solver see [1,3]. Note that in this application, some of the 
grid cells are full Cartesian hexahedra while others are cut 
by the embedded geometry, but this aspect is orthogonal to 
the parallelization efforts described below. 

Although the grid generation for this type of grid has only 
recently been developed, the algorithms and data structures 
used in the flow solver follow established methods [5]. Typ
ical light-weight data structures for these kinds of irregular 
grids use an edge-based data structure, which makes heavy 



Fig. 2. Illustration of space-filling curves in two dimensions, both the 
Peano–Hilbert (“U”) and Morton (“N”) orderings. Three levels of meshes 
are shown. 

use of indirect addressing. This consists of an array of cells 
and an array of faces. Cell-based information, for example 
includes the solution vector at each centroid, consisting of 
density, velocity and pressure. A cell does not know its near
est neighbor in this scheme however, since it is not stored 
using multi-dimensional rectangular indexing. Instead, the 
cells are ordered using space-filling curve indices, described 
next. The array of faces contains the index into the cell array 
of the adjacent left and right cells for each face. The only 
way cells exchange information with their neighbors is by 
sweeping over the face list. For the irregular cells adjacent 
to the embedded boundary, these arrays are augmented with 
additional information such as the surface normals, irregular 
cell centroids, which are also needed for Eq. (1). Faces are 
ordered in the face array according to the minimum index 
of their adjacent cells. 

The face and cell arrays are ordered before the flow solu
tion starts, for both good cache performance and to prepare 
for the domain partitioning described in Section 2. This or
dering is performed using space-filling curves. We briefly 
review here some of their important properties; for more de
tails see [8,9,18]. 

Space-filling curves (henceforth sfc) provide a linear or
dering of a multi-dimensional Cartesian mesh. The basic 
building block of the Peano–Hilbert curve is a “U” shaped 
segment, which visits each cell in a 2 by 2  block, or an 
“N” shaped segment for a Morton ordering, as shown in 
Fig. 2. Subsequent levels replace the coarse cell with fine 
cells which are themselves visited consecutively by the ba
sic curve. This implies the mesh is traversed in essentially 
the same order (physically in space) on both a coarse and 
fine grid. Note that a curve enters a cell from an adjacent 
cell through a common face, and leaves through another face 
to a different adjacent cell. A cell is thus connected to two 
neighbors in the one-dimensional ordering in the array of 
cells. This locality provides for good cache re-use. 

2. Description of parallel flow solver 

We illustrate the points raised in the introduction by dis
cussing the choices made in developing a new flow solver 
for the inviscid steady-state Euler equations on multi-level 
Cartesian grids with embedded boundaries. Fig. 3 shows a 
three-dimensional grid around a realistically complex vehi
cle that will be used as an example throughout the remainder 
of the paper. 

2.1. Domain partitioning via space-filling curves 

The first step in implementing the flow solver using our 
hybrid distributed-memory programming model is to parti
tion the mesh in a load-balanced fashion. This use of explicit 
domain decomposition and data replication is not a typical 
style for shared-memory machines, but is the essence of our 
hybrid approach. It is also much easier to implement using 
shared memory. As is common with domain decomposition, 
each processor is assigned a subdomain with a certain num
ber of cells, and is responsible for updating those cells using 
the “owner computes” rule. Each domain is surrounded by 
one layer of “overlap” cells, so that a stencil update can be 
performed without communication. Each domain does not 
update its overlap cells, but receives the updated values from 
the subdomain that does own them after each update. 

Since the underlying mesh is Cartesian, general purpose 
partitioners such as Metis [7] are unnecessarily expensive. 
Instead, a natural choice for partitioning these types of grids 
is to use space-filling curves [15–17]. Space-filling curves 
provide a one-dimensional ordering of a three-dimensional 
mesh, and guarantee that each cell is adjacent to at least 
two neighbors (see Fig. 4 for a two-dimensional illustration 
of this). Just prior to flow solution, the cells in the incom
ing Cartesian mesh are ordered using the space-filling curve 
ordering. To improve cache reuse, the faces are also lexico
graphically sorted according to the cell with the minimum 
sfc index. The total amount of “work” on a mesh is the sum 
of the work over the individual cells. In the Cartesian ap
proach there are two distinct cell types: regular Cartesian-
aligned hexahedra, and general “cut-cell” polyhedra adja
cent to the body. These cell types require a different amount 
of computational work. Currently, the cut-cells are empiri
cally determined to be 1.5 times the work of a full (uncut) 
cell. As with many codes, we do not directly account for the 
variation in number of faces, nor the communication work 
that each partition has (a function of the shared faces). This 
value was determined empirically using a linear least squares 
fit to the total execution time taken from serial computations 
with different size meshes. 

One elegant feature of the sfc reordering is that when 
combined with the work estimates it is easy to partition 
the mesh into any number of subdomains at run-time. The 
number of processors is a run-time parameter (obtained 
from the OMP_NUM_THREADS environment variable), 



Fig. 3. Cartesian mesh with embedded geometry representation for space shuttle example. The domain is partitioned into 64 subdomains using Peano–Hilbert 
space-filling curves. Mesh and geometry are colored by partition number. 

1 25 50 75 100 

Fig. 4. Sample two-dimensional space-filling curve on a mesh with total 
amount of work=100 work units. 

with the mesh partitioned using an on-the fly domain de
composition as it is input. This alleviates the need to deter
mine in advance the number of partitions, or to re-partition 
if the number of available CPUs changes. Cells are assigned 
sequentially to the next processor until each node’s assigned 
quota has been filled. (The assigned workload is the total 
work on the mesh divided by the number of processors). 
This can be thought of using a garden hose analogy—point 
the hose to the first partition; when it is full, move the hose 
to the second partition, etc. This is the step that transforms 
the global mesh into its partitioned counterpart, relying on 

information which straddles both views of the mesh. It is 
clearly much easier to implement using shared memory than 
MPI directives. At start-up time, we also ensure that memory 
associated with a sub-domain resides on the intended CPU, 
by initializing it right after allocating it, since some OS im
plementations wait until the first touch to allocate. After the 
read, the rest of the initialization and setup work is done in 
parallel. 

The work estimates themselves can be exceedingly well 
balanced, with typical differences between the maximum 
and minimum load on the order of .0001%. This is easy 
to do, since for unstructured meshes the granularity of 
the partitioning is plus or minus one cell. Of course the 
work estimates are only a guess at the actual computational 
load, but the numerical experiments show these to be quite 
accurate. 

The partitioning of the faces follows the cells. As the 
faces are input, if a face points to adjacent cells on the same 
partition, that partition owns the face. If the adjacent cells 
belong to two partitions, the face is duplicated, and the re
spective cells are put on the partition’s overlapping cell list. 
Each domain explicitly copies its overlapping cells from the 
owner, so that a residual calculation can be done without 
inter-partition communication. This architecture follows the 
standard message passing template, except in this case it is 
implemented in shared memory rather than explicitly pack
ing messages into paired sends and receives. Fig. 3 shows a 
domain partitioned into 64 subdomains, along with a cutting 
plane through the mesh colored by partition number as well. 

Table 1 presents the number of overlapping cells as a func
tion of the number of partitions and the size of the mesh. As 
can be seen in Fig. 5, space-filling curves have overlapping 



Table 1 
Statistics on the average number of overlap cells and the average number of neighbors the partition communicates with for three different meshes using 
the space-filling curve partitioning 

# Parts 1.0 M Cells 4.7 M Cells 9.0 M Cells 
# olap cells # nbors # olap cells # nbors # olap cells # nbors 

8 76 656 (7.5%) 3.7 267 558 (5.6%) 6.2 448 528 (5.0%) — 
16 127 159 (12.5%) 6.2 362 724 (7.6%) 8.2 595 177 (6.7%) 7.9 
32 184 418 (18.1%) 7.5 458 174 (9.6%) 9.1 814 642 (9.0%) 8.9 
64 249 929 (24.5%) 8.7 618 866 (13.0%) 9.6 1 070 983 (11.8%) 8.7 
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Fig. 5. Comparison of the number of overlap cells using the space-filling 
curve partitioning on a multi-level mesh (see Table 1) versus an idealized 
uniform mesh with the same total number of cells. 

statistics that are close to the statistics one expects from a 
regular Cartesian mesh. On meshes from between 1 and 9 
million cells, the number of overlapping cells ranges from a 
few percent on small numbers of processors to up to 25% of 
the cells. Note however that in this last case, with 64 CPUs 
there are only 15 K cells per cpu. As an additional bonus, 
space-filling curves have locality properties that are bene
ficial for good cache performance on each processor of a 
parallel machine. 

Once the mesh is partitioned, the time stepping proceeds 
in SPMD fashion. Each processor computes the gradient for 
each cell, copies the gradient for the overlap cells from the 
adjacent processors, computes a residual, updates the cells 
it owns, and copies the new overlap cell values from adja
cent processors. Since this is an explicit finite volume code, 
large chunks of code are executed in parallel with a coarser 
granularity than a typical fine-grained loop level paralleliza
tion. For example, one of the large chunk includes calculat
ing the time step, computing the residual, and updating the 
solution. Another chunk is computing the gradient over the 
entire subdomain and computing the limiter for it. The type 
and number of cells on each domain varies, but as the nu
merical experiments show, the total time it takes to do these 
calculations is balanced across partitions. 

After each computational chunk, synchronization fol
lowed by an explicit communication step is performed 
to update the copies of the overlap cells. Tradition
ally, these cells are not duplicated with shared-memory 
programming—one updates one’s cells, and uses the neigh
boring cell as needed. However for performance with the 
hybrid paradigm, local memory is associated with each 
subdomain. Each computational node allocates and fills 
its own local memory for its partition, again not typi
cal with shared-memory implementations. The alternative 
shared-memory strategy would have been to allocate one 
large array, and assign each partition a range of indices to 
update within the array. However, there is no way to en
force the memory locality for each subdomain with such 
a strategy. The communication step itself can be imple
mented in a very simple way using shared memory. For 
each overlap cell j the location to obtain the updated 
state is computed once and saved on the receiving pro
cessor. It is obtained using in essence a loop that looks 
like 

// each partition performs the following procedure 
for (j=0;j<my_num_overlapCells;j++){
 

p_myDomain_U[j]
 
= p_otherDomain_U[j’s_index_in_otherGrid]
 

}
 

This shared-memory implementation requires a pointer 
p_otherDomain_U, determined at run-time, directly into the 
other domain. It is the only such pointer required for single 
grid calculations, with an additional shared-memory refer
ence required for multigrid restriction and prolongation cal
culations. In MPI this step requires send/receive pairs and 
packing/unpacking of messages. 

2.2. Multigrid via space-filling curves 

A second big design decision for the new flow solver 
is how to implement the multigrid acceleration. The 
steps include creating the coarse meshes, partitioning 
them, and implementing the restriction and prolongation 
steps. 

As with the sfc ordering performed with the initial mesh 
generation, the multigrid coarse meshes are generated 



Fig. 6. Two-dimensional example of Cartesian mesh coarsening. Note that some cells do not coarsen because of the 1-irregular rule. 

before the flow solution begins. Overall, the complete 
mesh preparation time, including initial mesh generation, 
space-filling curve ordering and multigrid mesh coarsening, 
typically takes only 2–3 min for meshes with several mil
lion cells, (using a 600 MHz SGI workstation), so we have 
not (yet) parallelized these steps. Since we use unstructured 
data structures to represent the mesh, it is not a trivial mat
ter for a cell to coarsen: it must find its neighbors, check if 
they are coarsenable, and create the coarse face lists from 
the fine face information. 

The coarse meshes are generated from the fine mesh in a 
novel way which uses the same sfc ordering as the partition
ing. The key insight is to realize that this ordering places all 
sibling cells of a given parent sequentially in the sfc-ordered 
mesh. Thus, each coarse cell can be generated by agglom
erating the (up to) eight fine cells in adjacent positions in 
the sfc-ordered mesh with a single pass. Cells are only al
lowed to coarsen if all the sibling cells are at the same level; 
otherwise, a cell is left alone, and a finer level cell will try 
to coarsen with its siblings by searching through the next 
eight cells. A second pass through the mesh checks that two 
adjacent cells are not more than one refinement level apart 
(the one-irregular rule), or the coarsening is disabled. Coarse 
mesh generation is thus a linear time algorithm in the num
ber of cells in the mesh. 

The mesh coarsening algorithm is illustrated in two di
mensions in Fig. 6. A realistic example of the mesh coars
ening is shown in Fig. 7 for a 4.5 million cell mesh. The 
coarsening ratios in generating four coarser meshes are 7.1, 
6.5, 5.1 and 4.2, illustrating the retardation of the 8:1 coars
ening as the mesh irregularity increases as a fraction of the 
total mesh. Nevertheless, the flow solver achieves excellent 
multigrid acceleration rates. Numerical experiments consis
tently show convergence rates of .85 to .95, comparable to 
the best 3D Euler solvers in the literature. 

Once the coarse meshes are generated, they also need to be 
partitioned. The immediate decision is whether to partition 
the coarse meshes to conform with the fine meshes, which 
means the restriction step will have no communication, or 
whether to partition them independently so the coarse grid 
computations are load balanced. Since the grids are multi
level, they do not necessarily coarsen in the usual 8:1 ratio 
of uniform grids. Interfaces will retard the coarsening ratios, 
and the increasing percentage of cut cells in the mesh may 
lead to imbalanced work loads. Some multigrid implemen
tations choose the partitioning induced by the finer mesh, so 
that the only communication comes from coarse cells with 
parent cells from two different meshes. Others partition the 
coarse mesh anew [11], and then look for maximal overlap 
with a fine partition in assigning the coarse partitions to a 
CPU. This is sometimes followed by a bartering algorithm 
where neighboring sub-domains exchange boundary cells to 
try to minimize the communication. 

With sfc-ordered meshes, we can implement either ap
proach directly, since the enumeration of the cells follows 
the same layout on the coarse and fine grids. We have cho
sen to partition the coarse mesh in a load balanced way. 
This may lead to additional communication from coarse cells 
that straddle one or more partitions on the fine grid (illus
trated in Fig. 8). However numerical experiments show that 
this potential bottleneck is not encountered, since the multi
grid scalability results are nearly as good as the single grid 
results. 

In many implementations, if there is a lot of communi
cation the fine grid would first coarsen itself, and then send 
the coarse values to the appropriate coarse partitions. How
ever, since most of the cells are on the same partition, this 
preliminary coarsening step is not necessary, and the fine 
grid simply adds its value to the coarse data structure. Note 
that this step needs some kind of synchronization for coarse 



Fig. 7. Sequence of coarser grid levels for a 4.5 million cell mesh. The coarsening ratios are 7.1, 6.5, 5.1, and 4.2 in this example. (The last mesh is 
not shown.) 

Fig. 8. Coarse and fine grids are separately partitioned using the sfc 
ordering. Note that fine cells on different partitions may restrict to the 
same coarse cell. 

cells that are shared by two or more fine mesh partitions, 
as in Fig. 8. For the OpenMP implementation this is done 
using an atomic directive in the restriction loop. 

3. Conversion to MPI 

The conversion of the flow solver to MPI started with the 
OpenMP implementation. Due to the coarse granularity of 
the OpenMP parallelization, over half the code needed little 
(under 30 lines) or no modification. In fact, of the 11 000 
lines of code organized into 18 files, only the three I/O files 
changed substantially, with an additional 1800 lines of MPI 
packing code, derived type assembly, etc. 

One simple strategy made all the parallel loops work in 
both paradigms. The standard loop over a sub-domain is 
wrapped with a macro as follows: 

# pragma omp parallel
 
{
 

int myPartitionNumber
 
= GET_MY_PARTITION_NUM;
 

do_something_on_my_subdomain;
 
} /* -- end parallel region -- */
 

In OpenMP, the GET_MY_PARTITION_NUM macro be
comes a call to the function omp_get_thread_num(). 
With MPI code however all processors are running all the 
time, and a parallel region does not need to be invoked like 
this. Every partition might as well think of itself as partition 
1, which the macro evaluates to in MPI. Where needed, ad
ditional MPI get_my_procnum() calls are inserted. Of 
course, the reduction operations and all I/O routines needed 
to be completely rewritten. 

While the data structures involved in flow computations 
on a domain were suitable for both paradigms, the data struc
tures involved in any communication step had to be com
pletely changed. This includes for example, multigrid re
striction and prolongation, and sharing of overlapping cell 
information between sub-domains. A shared memory-based 
implementation is more naturally served by a GET opera
tion: domain A gets its overlap information from the owner 
domain B. This is efficiently accomplished by domain A 
with the use of pointers to the overlap information in do
main B. Translating this to message based communication 
would require two steps: first, domain A has to request the 
overlap information from domain B, then domain B has to 



Table 2 
Average number of cells on the fine mesh per partition that communicate 
to the coarse mesh on a different partition during the restriction step for 
a 4.7 M cell mesh 

# partitions Avg. # fine cells Avg. # fine cells restricting 
to different partition 

8 
16 
32 
64 

128 

593 824 
296 912 
148 456 

74 228 
37 114 

46 925 ( 7.9%) 
36 206 (12.2%) 
28 670 (19.3%) 
24 284 (32.7%) 
21 228 (57.2%) 

return the overlap information. A more efficient implemen
tation for message based communication is to use a SEND 
operation: domain B sends the information needed for the 
overlap to domain A. This eliminates the first step of the get 
operation and requires only one communication step. 

Table 2 shows the number of cells on the fine grid that 
restrict the solution to a different partition on the coarser 
grid. As the number of CPUs increases, the number of cells 
per CPU decreases, but the percentage that communicate 
increases. It is clear that until very high numbers of CPUs are 
reached, the percentage of the fine and coarse grids on the 
same partition is very high, minimizing the communication 
bandwidth required for restriction and prolongation Note 
that on 64 CPUs there are only 75 K fine grid cells per 
node and 24 K coarse grid cells with this mesh, and the 
communication percentages are rising, yet the scalability 
results are not greatly affected by this. However, if our final 
goal were only an MPI implementation, a better choice may 
have been to partition the coarse grid to follow the fine grid 
(and also to ensure that the fine partitions ended on coarse 
cell boundaries). This was not investigated further. 

4. Computational experiments 

The scalability studies presented here use a variety of 
mesh sizes on two different machine architectures. The CPU 
times measure ten cycles, where the work per cycle includes 
a 5 stage Runge–Kutta scheme with gradient evaluations at 
every stage. The timing excludes the cost of the initial start
up and final I/O. 

In the first experiment we compare the OpenMP and 
MPI versions of the flow solver for a single grid. This 
was run on the NASA Ames SGI Origin 3600, which has 
600 MHz R14000 MIPS CPUs. This shared-memory ma
chine has 1024 CPUs, of which subsets were reserved for 
this study. The machine was not in dedicated mode for these 
runs. For the OpenMP experiments, the environment vari
able OMP_DYNAMIC was set to false. The MPI imple
mentation in this experiment is the native SGI version. Ex
periments show that MPICH is slower for these tests (see 
[10]) and it is not included in this set of experiments. The 
mesh contains 4.7 million cells, although also included here 
is an example with a smaller mesh of 1.6 million cells run 
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Fig. 9. Performance comparison of MPI and OpenMP code on SGI Origin 
3600 for single grid computations. 

on smaller numbers of nodes. Note that the 4.7 M cell mesh 
has fewer than 7200 cells per CPU on 640 processors, and 
the 1.6 million cell mesh has 6250 cell on 256 nodes. The 
smaller mesh speedup curve shows the superlinear speedup 
that comes from fitting more of the mesh in cache. On the 
larger mesh, speedups of 599 for the OpenMP version and 
486 for the MPI version were obtained on 640 processors. 
Obviously the space-filling curve load balancing algorithm 
is doing a good job of partitioning the work to obtain this 
degree of scalability. The computation does not fit on one 
processor, so scalability is measured relative to timings on 
8 CPUs. 

As Fig. 9 shows, initially both MPI and OpenMP perform 
equivalently, but the MPI version begins to slow down on 
more then 320 CPUs. This seems to indicate slightly greater 
overhead in the MPI version. If this is the case, then the 
slowdown should be more pronounced when using multi
grid, which has greater emphasis on communication. 

The next set of experiments includes the multigrid acceler
ation scheme in comparing OpenMP and MPI. Fig. 10 shows 
results using the same 4.7 M cell mesh. We use a multigrid 
W-cycle with three grid levels and one pre- and one post-
sweep per level. The MPI runs has a speedup of 392 on 640 
CPUs. The OpenMP achieves 514 on 640 CPUs, measured 
relative to a 32 node baseline. For reasonable numbers of 
CPUs, the multigrid scalability is slightly worse than for a 
single grid, despite the fact that surface to volume ratio of 
the partitioning is increasing rapidly. The 4.7 million cell 
fine mesh has 700 000 cells in the first coarser mesh (for an 
average of approximately 1100 cells per node on 640 CPUs), 
and 105 K cells on the second coarser mesh (for an aver
age of only 180 cells per node), but the fact that the multi
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Fig. 10. Performance comparison of MPI and OpenMP code on SGI 
Origin 3600 using multigrid W-cycle with 3 grid levels. 

grid communication overhead is creeping up (the results in 
Table 2) has little effect. 

At first glance, these results appear surprising in that 
the OpenMP version outperforms the MPI version. This 
holds even when only the core components of the code are 
executed, i.e. no gradients, no limiters, and no multigrid. 
The OpenMP version is still somewhat more scalable. De
tailed instrumentation reveals that the communication rou
tine where the solution in the overlap cells is retrieved from 
neighboring partitions (OpenMP version), or buffered and 
sent to neighbors (MPI version), consistently takes between 
2 to 3 times longer in MPI. This additional overhead is a 
small fraction of the runtime relative to the total integration 
time of the solution. However on larger numbers of CPUs 
this overhead becomes increasingly dominant as the rest of 
the code speeds up. This situation is exacerbated when gra
dients are included as part of the computation, since three 
times as much information needs to be communicated twice 
per solution update (once for the gradients themselves, and 
once for the limited gradients in the overlap cells). 

Since we are using the native SGI MPI library, we can 
only speculate as to what is causing this slowdown. Analy
sis using Paraver 1 [19] shows that the cause is internal to 
the MPI calls, with an order of magnitude more instructions 
being executed inside the MPI calls than the OpenMP ver
sion. Variations using Send/Irecv or Isend/Recv combina
tions do not affect this outcome. Actually we believe that our 
MPI performance is quite good, and similar to other careful 
MPI applications; what is surprising is the scalability of the 
OpenMP code. 

1 Thanks to Gabriele Jost at NASA Ames for the Paraver results. 
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Fig. 11. Scalability study on Linux cluster using MPICH—single 4.7 M 
cell grid and multigrid with 3 levels. 

The last experiment, in Fig. 11, shows results of the MPI 
code using MPICH on a 16 node 2.4 GHz Pentium 4 Linux 
cluster with a Gigabit ethernet switch. The single grid and 
multigrid speedups are essentially identical, although the 
actual wall clock time of the multigrid is approximately 40% 
more than for a single grid. Since the timings are so close, 
it is clear that the additional communication of multigrid is 
easily handled by the network. 

5. Conclusions 

We have presented our approach to shared-memory pro
gramming using a hybrid paradigm. By adopting many of the 
explicit domain decomposition and memory management 
techniques of distributed-memory programming but imple
menting them with the substantially easier shared-memory 
constructs, we can demonstrate performance with some of 
the best scalability results for shared memory on a real ap
plication yet obtained. Our scalability results are especially 
significant since OpenMP results using loop-level constructs 
found in the literature have been so disappointing. Similar 
results were found in [13]. 

By careful attention to memory placement and locality, 
our OpenMP implementation is actually marginally faster 
than MPI. We believe this is because there is less time con
sumed packing and unpacking buffers, and because of the 
overhead of MPI. The one-sided communication available 
in MPI2 may help in this regard. Additional steps for bet
ter performance would be to investigate use of parallel I/O. 
Ideas along the lines of those in [12] could also be very 
useful in further scalability improvements. 



The hybrid paradigm uses a restricted set of OpenMP 
functionality, and follows closely the architecture of MPI 
codes. Thus we believe that an automatic conversion tool 
from OpenMP to MPI should be possible to a large degree. 
Alternatively, a shared-memory layer sitting on top of dis
tributed memory, such as found in Treadmarks, Hamster, 
DSM-THREADS and the like, might provide good perfor
mance with the hybrid paradigm. However, this software 
was either not available or insufficiently stable for us to in
clude here. 
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